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Abstract

Gradient-boosted decision Trees (GBDT) is a highly effective learning method widely used
for addressing classification and regression problems. However, akin to other ensemble meth-
ods, GBDT suffers from a lack of explainability. Explainability is a desirable property: the
ability to discover relationships between input data attributes and the ultimate model pre-
dictions is crucial for a comprehensive understanding of the GBDT method. To enhance the
explainability of such algorithms, we propose to exhibit particular training data, referred to
as comparable samples, upon which the model heavily relies for specific predictions. To that
end, we show that a prediction of GBDT can be decomposed as a weighted sum of training
data when using specific loss functions. It is noteworthy that these weights may be negative.
Furthermore, during the prediction of a training sample’s response, the weights associated
with other training samples in the prediction’s decomposition vanish, indicating a potential
issue of overfitting. To overcome this issue, we introduce nonnegativity constraints on the
weights and substitute gradient descent with a methodology inspired by the Frank-Wolfe
algorithm called Explainable Gradient Boosting (ExpGB). The predictions generated by
the proposed algorithm can be directly interpreted as convex combinations of the training
targets. This allows for selecting training data resembling a given sample by comparing
their decomposition coefficients. We conduct a comparative analysis with classical GBDT
algorithms across diverse datasets to validate the estimation quality. Additionally, we eval-
uate the fidelity of comparable samples by demonstrating their proficiency in estimating the
characteristics of the considered sample. Our approach, thus, offers a promising avenue for
enhancing the explainability of GBDT and similar ensemble methods.

1 Introduction

Historically, machine learning techniques were designed to perform well on accuracy metrics, placing less
emphasis on other criteria, such as explainability. However, explainability enhances trust, and users are
more likely to use a specific model if they understand how a prediction was made. In particular applications,
basic models such as linear regression may be preferred over more accurate but complex ones. On top
of that, model explainability can help assess if a model behaves as expected before deploying it in real-
world applications where data may differ significantly from validation datasets. Many techniques were
developed in the explainable artificial intelligence domain (XAI) to enhance human understanding of machine
learning models (Adadi & Berrada, 2018). The literature defines several notions, such as understandability,
comprehensibility, interpretability, and transparency (Arrieta et al., 2020). Explainability is usually defined
as an interface between users and models that is understandable to human users and an accurate proxy of
the model.

Several methods and tools have been proposed to enhance the explainability of ML models. Feature im-
portance (Breiman, 2001; Ishwaran, 2007) was initially introduced to facilitate feature selection but is now
widely used to explain any tree ensemble model. It aims to quantify each input feature’s contribution to
the global predictions. LIME (Ribeiro et al., 2016) explains any classifier or regression model individual
prediction by learning an interpretable model around this local prediction. SHAP values (Lundberg & Lee,
2017; Lundberg et al., 2020) enhance a model’s explainability by approximating the model with an additive
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interpretable model. With this approach, one can understand the effect of each variable on a given predic-
tion. These methods are model-agnostic but can hardly take the specificity of each model into account and
are often expensive to compute for large datasets.

In this work, we focus on regression problems and aim to explain a prediction by extracting data from the
training set with similar features and similar responses to a given member of the testing set. This way of
explaining or interpreting a prediction may be preferred to methods that create summaries of features, such
as the methods cited above, especially for non-expert users. This is particularly the case when an instance
of the data can be represented in a humanly understandable way. For instance, in real estate estimation
problems, this definition is more similar to the analyses performed by real estate agents to evaluate the price
of a property.

In particular, this paper is concerned with Gradient Boosted Decision Trees (GBDT)(Friedman, 2001; 2002;
Hastie et al., 2009), a prevalent method proven to perform well on a wide range of regression and classification
problems (Caruana & Niculescu-Mizil, 2006; Grinsztajn et al., 2022). In recent years, GBDT algorithms
have improved to achieve better estimation performances (Prokhorenkova et al., 2018; Chen et al., 2015),
without improving explainability. In parallel, methods have been developed to make gradient boosting
more interpretable, for instance, with boosted generalized additive models (Lou et al., 2013). Still, these
methods remain less efficient as they only consider the interaction between pairs of features and not the
entire interaction between features like trees ensemble. More recently, there have been some improvements
in GBDT explainability, for example, in (Delgado-Panadero et al., 2022). However, these works usually focus
on feature-based explanations, while we aim to develop an example-based explanation.

The problem considered here is similar to the prototype selection problem, which was extensively studied
for classification problems(Tan et al., 2020; Bien & Tibshirani, 2011; Kim et al., 2014; Gurumoorthy et al.,
2017; 2019), but remains relatively unexplored for regression problems (Arnaiz-González et al., 2016; Kordos
& Blachnik, 2012). One reason is that members of a given class are homogeneous, while samples yielding
similar responses can be very diverse in regression. Consequently, the method proposed here is local because
the chosen representative training samples, comparable sample, will depend on the sample of interest.

1.1 Contribution

The main contribution of the paper is the introduction of a variant of GBDT for regression problems, aiming
at improving the explainability of the results. To this end, the method extracts training samples similar to
a given test sample, both in terms of features and response.

The proposed method is based on the observation that in GBDT-applied-to-regression problems with the
ℓ2 loss, a prediction can be expressed as a linear combination of target values of the training dataset.
Intuitively, training samples that appear with high weights in the decomposition of the predicted response
of a training sample will be considered similar to the training sample. A limitation of this approach is
that these coefficients are only computable for specific loss functions, are not guaranteed to be nonnegative,
involve many training values for each prediction, and are expensive to compute.

To address these issues, we propose to constrain the learned model to decompose its predictions as linear
combinations of the responses of the training set, with positive weights. Based on the Frank-Wolfe algorithm,
a variant of the gradient boosting algorithm is proposed to account for these additional constraints. We
show that the induced algorithm fixes the previously mentioned issues, and that it is can be applied to more
general loss functions. This algorithm has an additional advantage: the number of iterations determines the
upper bound for nonzero weights. Consequently, the resulting weight vector exhibits sparsity.

This approach of modifying the gradient algorithm was investigated to accelerate GBDT following the
principles of Nesterov’s descent (Biau et al., 2019), with application to massive amounts of high-dimensional
data, or by using the Frank-Wolfe algorithm to solve a ℓ1 penalized problem to reduce overfitting (Wang
et al., 2015).

In addition to providing a prediction, our approach gives the weights used to attain this prediction as a
weighted sum of the responses of the training data. A measure of similarity between samples is computed
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from these weights, assuming that similar samples will yield similar decomposition for the prediction of their
response.

An application of this measure of similarity is the selection of a set of training samples similar to the sample
of interest. This set of samples can then be used to explain the prediction.

Numerical tests conducted on real data show that the proposed method provides similar prediction perfor-
mance as the best state-of-the-art GBDT algorithms: catboost (Prokhorenkova et al., 2018), XGBOOST
(Chen et al., 2015), and the scikit-learn implementation of gradient boosting (Pedregosa et al., 2011). It is
also shown by comparing decomposition weights that comparable samples to a given sample can be extracted
from the training or testing database. The ensuing comparable samples are very close to the considered sam-
ple regarding features and response. Moreover, decomposition weights obtained by GBDT methods for the
prediction of a member of the training set involve only this particular sample at high iteration numbers,
which indicates overfitting. Decomposition weights for the proposed method remain diverse when the number
of iterations increases.

This article recalls first, in section 2, the gradient boosting algorithm and, in the case of the ℓ2 loss, interprets
its prediction as linear combinations of the training data. The modifications of the algorithm improving the
explainability are introduced in section 3, for more general losses. Section 4 gives results obtained on various
real-world datasets, using the ℓ2 and ℓ1 losses.Section 5 concludes this paper.

2 Gradient tree boosting

In regression problems, one aims at learning a function F mapping features x ∈ Rd to a response y ∈ R,
so that it minimizes the expected loss L(F ) = E(L(y, F (x))) where L denotes a loss function, and E is the
mathematical expectation. This function F is trained using N training samples {(xn, yn)}, assumed to be
distributed according to the joint distribution p(x, y), by minimizing the empirical expectation of the loss

EF = 1
N

N∑
n=1

L(yn, F (xn)) (1)

≡ l(f) , (2)

where
f = (F (xn))n (3)

is the vector of RN collecting the estimated responses of the training samples xn.

As the amount of available data is limited, the minimizers of Eq. (1) are not guaranteed to yield accurate es-
timations of F (x) for x not in the training dataset. Introducing priors on F can alleviate this problem. Usual
choices include linear models, regularity assumptions, covariance models (e.g. used in kriging interpolation),
or parametric models, where a small number of parameters can describe F . Gradient tree boosting follows
the latter approach. More specifically F is restricted to belong to the set :

{
F, F (x) =

∑T
t=1 γthθt

(x)
}

,
where the hθt

are simple functions parameterized by low-dimensional parameters θt ∈ Θ, where Θ is a low-
dimensional parameter space, and the γt are real weights. We assume that the set of simple functions is
stable by multiplication by a scalar, that is for any θ and scalar α, there exists θ⋆ such that αhθ = hθ⋆ .

Gradient boosting is an iterative algorithm, which generates a sequence of functions Ft, inspired by gradient
descent: at each iteration t, an update hθt

is added to decrease the empirical loss EFt
. This update is selected

so that its values hθt
∈ RN on the training points xn is the most parallel with the gradient gt−1 = grad l(ft−1)

for ft−1 = (Ft−1(xn))n of the empirical loss at the previous iteration, and is found by solving the optimization
problem

θt = arg min
θ∈Θ

∥gt−1 − hθ∥2
2 . (4)

The fact that hθt is the most parallel to gt−1 can be seen by replacing this optimization problem by the
equivalent problem
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(α⋆, θ⋆) = arg min
α∈R,θ∈Θn

∥gt−1 − αhθ∥2
2 , (5)

where Θn is the subset of Θ such that ∥hθ∥2 = 1. Rewriting the objective function as ∥gt−1∥2
2 −α ⟨gt−1, hθ⟩+

α2, the optimal hθ⋆ maximizes the scalar product with gt−1, or equivalently, minimizes the angle with gt−1.
As hθt and hθ⋆ are co-linear, hθt also minimizes the angle with gt−1.

It is worth observing that Eq. (5) involves the minimization of an ℓ2 norm, independently of the choice of
the loss L. Once hθt is fitted, a line search is conducted similarly as in the steepest descent strategy:

γt = arg min
γ

l(Ft−1 + γhθt
) (6)

= arg min
γ

1
N

N∑
n=1

L(yn, Ft1(xn) + γhθt
(xn)) . (7)

Algorithm 1 Gradient boosting
Input: {(xn, yn)}n=1,...,N , T,

F0 = arg minC EC = arg minC

∑N
n=1 L(yn, C)

for t = 1 to T do
Compute gt−1 = grad l(ft−1)
θt, αt = arg minα∈R,θ∈Θ ∥gt−1 − αhθ∥2

2
γt = arg minγ EFt−1 + γhθt

Update Ft(x) = Ft−1(x) + γthθt(x))
end for

A popular choice for hθt
is to use shallow regression trees (Breiman et al., 1993), θt corresponding in this

case to the splitting features, splitting location, and terminal node values of the tree. In practice, solving
(5) simply corresponds to training a tree on the set {(xn, gt−1,n)} with quadratic loss, where gt−1,n is the
n-th coordinate of gt−1.

Such trees can be described by subsets {At
k} covering the space, and values bt

k, with

hθt =
K∑

k=1
bt

k1At
k

, (8)

and
bt

k = 1
#{n, xn ∈ At

k}
∑

n∈{n,xn∈At
k

}

gt−1,n . (9)

The number of subsets K depends on the depth of the trees.

Overfitting is avoided by limiting the complexity of each hθt
(e.g. by constraining the depth of the regression

trees), using a finite number of iterations, and dampening the iterations by setting Ft(x) = Ft−1(x) +
λγth(x, θt) with 0 < λ < 1. Further regularizations can also be applied.

After T iterations, the prediction model FT is described by the coefficients γt, the sets At
k and the values

bt
k, t varying from 1 to T . The cost of a prediction is the computational cost of applying the weak learners

ht to x.

2.1 Unfolding gradient boosting

The proposed method is based on the observation that the estimation of a response by GBDT algorithms,
in the case of regression with a ℓ2 loss, can be interpreted as a weighted average of responses yn from the
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training data, with weights depending only on the sets At
k and the features x. In the case of the ℓ2 loss, the

function EF to minimize corresponds to 1
N

∑N
n=1(yn − F (xn))2 and thus g = 2(yn − F (xn))n.

Choosing F0 = 1
N

∑N
n=1 yn, and from the equations (8), (9) and the update step of Algorithm 1, it is clear,

by induction, that a prediction Ft(x) can be obtained as a weighted sum of the training values yn:

Ft(x) =
N∑

n=1
wt

n(x)yn , (10)

and that the sum of the weights is equal to 1. Indeed, assuming that Ft−1(x) =
∑N

n=0 wt−1
n (x)yn with∑N

n=0 wt−1
n (x) = 1, and observing that gt(xi) = yi − Ft−1(xi), each gt(xi) can be decomposed as a linear

combination of the yn, with weights summing to 0, as also do the bt
k. Thus, the update conserves the sum

of the weights.

In the prediction phase, in addition to Ft(x), weights wt
n(x) can be computed by the following iterations:

wt
n(x) = wt−1

n (x) + γt
1

#{n′, x′
n ∈ At

k}
∑

n′∈{n′,x′
n∈At

k
}

δnn′ − wt−1
n (x′

n) , (11)

with k such that x ∈ At
k, revealing the structure of the estimated value in function of the training values.

δnn′ is defined as 1 if n = n′, and 0 if n ̸= n′.

However, this approach is limited by three main aspects. Firstly, the computation of the weights wt
n(x) is

expensive in time and space. Indeed, the update of the weights at iteration t involves bt
k, which itself involves

the prediction of each xn falling into the same leaf At
k as x. Thus, the weights wt

n(x) depend on the weights
wt−1

n′ (xn′) of all training vectors xn′ falling into the same leaf At
k. These weights wt−1

n′ (xn′) depend on the
weights of all training data falling in the same leaf At

k as the previously considered data, etc. Ultimately,
to obtain the weights wt

n(x), it is necessary to compute and store the weights of the training data at each
iteration, with memory cost N2T . The cost of computing the decomposition of a prediction is therefore high
compared to computing the prediction itself (which only depends linearly on T , and is independent of N).

Secondly,this decomposition has been obtained in the case of the ℓ2 loss, and is unlikely to be easily extensible
to other losses: the values gt(xn) must be decomposed as a linear combination of the target values.

Finally, numerical experiments show that the weights wt
n(x) are not guaranteed to be non-negative, which

weakens the explainability of the gradient boosting regression. Similar issues also arise in kriging regression
(Deutsch, 1996; Barnes & Johnson, 1984). Furthermore, for a training sample x′

n, it was observed that
at high number of iterations T , the decomposition weights wT

n (x′
n) of the estimated output FT (x′

n) tend
towards δnn′ . That is, the estimation of its output, at large T , does not involve the other training data,
indicating overfitting. Numerical results supporting these observations will be given in section 4.

3 Explainable gradient boosting predictions

The previous sections showed that gradient boosting with the ℓ2 loss, in addition to an estimation of a
response to test data, can also provide the weights used to form this prediction, however with limitations.

To alleviate these limitations, we propose modifying the gradient-boosting algorithm to ensure that the
weights wt

n(x) remain positive, more precisely, to constrain the estimators Ft in the set of functions Ω where
for each x, the weights wt

n(x) belong to the unit simplex ∆ = {(w1, . . . , wN ), wn ≥ 0,
∑N

n=1 wn = 1}.
The constrained problem could be theoretically solved by adapting the gradient boosting similarly to the
projected gradient algorithm, by projecting Ft in Ω after each gradient step. Although projection on the
unit simplex is a low complexity operation (Condat, 2016), one has to project a set of weights in ∆ for each
possible set of weights, that is, for each combination of leaves of the regression tree at each iteration, and
for each training or testing sample.

To avoid the combinatorial growth of the number of projections, we suggest following the principles of
the Frank-Wolfe algorithm, or conditional gradient algorithm (Frank & Wolfe, 1956; Jaggi, 2013), given in
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Algorithm 2. At each iteration, the gradient of the objective function is computed, and the minimizer s of
the linear approximation of the objective function is searched. Then, the new iterate is found as a convex
combination of the previous iterate and the minimizer of the linearized problem. As the feasible set is
convex, the iterates are guaranteed to satisfy the constraints, and no projection is needed. Furthermore, the
solution s of the linearized problem is frequently easily obtained. Application of the Frank-Wolfe algorithm
to regularized gradient boosting was investigated in (Wang et al., 2015), and similarities between the Frank-
Wolfe algorithm and boosting variational inference were highlighted in (Locatello et al., 2018).

We consider the scalar product ⟨·, ·⟩ defined by

⟨s, h⟩ =
∫

Rd

s(x)h(x)p(x)dx , (12)

where p is the probability density of x.

In our algorithm, the tree hθt
is replaced by st, obtained by solving the problem

st = arg min
s∈Ωm

⟨s, hθt⟩ , (13)

where Ωm is the set of functions of Ω, such that the weights wt
n(x) for a x in At

k involve training samples in
At

k. This choice is made to ensure that the weights wt
n(x) are increased only for training samples xn falling

in the same leaf as the tested sample.

Expliciting hθt
and writing s(x) =

∑N
n=1 wn(x)yn,

⟨s, ht⟩ =
∫

Rd

N∑
n=1

wn(x)yn

K∑
k=1

bt
k1At

k
(x)p(x)dx . (14)

This scalar product is maximized by maximizing the integrand pointwise, which does not necessitate the
probability density p. For a given x falling in the leaf At

k⋆ , the integrand

N∑
n=1

wn(x)ynbt
k⋆ , (15)

is maximized by setting wn(x) = 1 for the index nt
k = n+ or n− depending on the sign of bt

k⋆ , with n+ and
n− the index of the largest, resp. smallest, yn in At

k⋆ .

The complete algorithm is given in Algorithm 3. In addition to the fact that, for a given x, the weights are
guaranteed to be positive and to sum to one, the update step shows that at each iteration for a given x,
at most one new nonzero weight is added to the convex combination. Consequently, storing the index nt

k,
(either n+ or n−) for each set At

k at each iteration is sufficient to compute the decomposition weights.

The prediction algorithm is given in Algorithm 4, yielding the predicted response, and its decomposition
weights as a sum over the training responses. It is worth noting that the proposed algorithm is not strictly
a Frank-Wolfe algorithm. Indeed, a regression tree is used instead of the gradient, and s is searched in a
smaller space than the feasible set Ω.

Algorithm 2 Frank-Wolfe Algorithm
x0 ∈ Ω
for t = 1 to T do

Compute s := arg mins∈Ω⟨s, ∇f(xt)⟩
γ := 2

t+2
Update xt+1 = (1 − γ)xt + γs

end for
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Algorithm 3 ExpGB, fit
Input: {(xn, yn)}n=1,...,N , T,

initialization : F0(xn) = 1
N

∑N
n=1 yn, n = 1 . . . N

for t = 1 to T do
Compute gt−1 = grad l(ft−1)
Fit a tree hθt on the data {(xn, gt−1)}, n = 1 . . . N with leaves At

k and values bt
k

Set nt
k =

{
arg max{n,xn∈At

k
} yn if bt

k > 0
arg min{n,xn∈At

k
} yn else

γ := 2
t+2

Ft(xn) = (1 − γ)Ft−1(xn) + γynt
k
, where xn ∈ At

k

end for
return hθt

, t = 1 . . . T

Algorithm 4 ExpGB, predict
Input: x, trees ht, indices nt

k, values yn

F0(x) = 1
N

∑N
n=1 yn

wt
n(x) = 1/N

for t = 1 to T do
γ := 2

t+2
With k such that x ∈ At

k

Ft(x) = (1 − γ)Ft−1(x) + γynt
k

wt
n(x) = (1 − γ)wt−1

n (x) + γδnnt
k

end for

3.1 Measure of similarity

We now introduce a measure of similarity between samples based on the decomposition weights of the
prediction of their response. An application of this measure of similarity is to find training data similar to
a testing sample in the sense that they have similar weights and thus are part of the same leaves in a high
number of iterations.

The similarity between two points x and z is assessed by comparing the decomposition weights wT (x) and
wT (z), e.g. by computing their ℓ1 distance. We define the distance

d(x, z) = ∥wT (x) − wT (z)∥1 , (16)

where wT (x) = (wT
1 (x), . . . , wT

N (x)). The following observations support this choice:

• a small distance d(x, z) implies that the estimated response is similar. Indeed, |FT (x) − FT (z)| ≤
d(x, z) max |yn|. Conversely, a small change in response does not imply small changes in features.
This is desirable, as similar responses do not necessarily imply similar features.

• samples frequently falling in the same leaves will have similar decomposition weights and, therefore,
the distance between them will be small.

A set of members of the training set similar to a testing sample is then obtained by picking the K closest
samples (with K user-defined) or by picking samples whose distance to the considered testing sample is
below a given threshold.

We note that gradient boosting does not allow such comparison. Indeed, training samples, even though
similar, will always have a mutual distance d tending to 2, as their weights concentrate on themselves.
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Dataset_name n_sample n_feature
Abalone 4177 8
Ailerons 13750 33
Bike_sharing_demand 17379 6
Brazilian_houses 10692 8
CPU_act 8192 21
Diamonds 53940 6
Elevators 16599 16
Houses 20640 8
House_16h 22784 18
House_sales 21613 15
Medical_charges 163065 3
Miami_housing_2016 13932 14
NY C_taxi_green_dec_2016 581835 9
Pol 15000 26
Sulfur 10081 5
Superconductor 21263 79
Wine 6497 11
Y prop_4_1 8885 61

Table 1: Number of observations and features in each dataset

Because the similarity measure introduced here consists of a ℓ1 distance between two weight vectors, it is
not necessary to store the weights coming from F0 as they are the same for all observations. Hence we can
consider that the weight vectors are sparse, with a maximum of T non-null coefficients.

4 Results

4.1 Datasets

To evaluate the performance of the proposed approach, we will compare it to other gradient boosting methods
- Catboost, XGBOOST (XGB), and the scikit-learn implementation of gradient boosting - on several classic
public datasets with regression tasks from OpenML (Vanschoren et al., 2014). More precisely, our experiment
setup consists of 18 regression datasets as defined in (Grinsztajn et al., 2022), that are compiled in Table
1. These datasets contain various problems with tabular data that enable these estimators to be properly
evaluated: they have heterogeneous columns, have no missing values, are not high dimensional, are well
documented, come from real-world problems, are not too small, are not too easy, and are not deterministic.
In addition, the choice of data sets covers a wide variety of cases, with the number of data ranging from 4k
to 580k and the number of variables from 3 to 79.

4.2 Evaluating the models

To assess the models, we randomly split the data into a training dataset representing 75% of the data and
a test dataset with the remaining 25%. The models are trained using the best hyperparameters selected as
described in section 4.2.1.

4.2.1 Hyperparameter selection

We considered two parameters to be optimized: the number of iterations (200,400,600,800,1000) and the
depth of the trees (2,3,4,5,6,7,8,9,10). To select the hyperparameters of each model, we used a standard
approach by taking a grid search with a K-fold cross-validation (K being 5 in most cases) on the training
dataset. That is, we split the training data into 5 folds and trained the models on 4 of them while assessing
the result on the last one. We then repeated the process 4 times so that each fold was used exactly once as
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Dataset Cat XGB Sklearn ExpGB
Abalone 4.46e0 4.55e0 4.45e0 4.33e0
Ailerons 2.26e-8 2.56e-8 2.39e-8 2.26e-8
Bike_sharing_demand 1.29e3 1.55e3 1.53e3 1.40e3
Brazilian_houses 1.28e-1 1.30e-1 1.32e-1 1.28e-1
CPU_act 4.94e0 4.82e0 4.94e0 4.77e0
Diamonds 2.76e5 2.97e5 2.85e5 2.67e5
Elevators 3.72e-6 3.99e-6 3.94e-6 4.01e-6
Houses 4.61e-2 5.05e-2 5.07e-2 4.54e-2
House_16h 3.67e-1 3.75e-1 4.05e-1 3.59e-1
House_sales 2.74e-2 2.85e-2 2.88e-2 2.68e-2
Medical_charges 6.56e-3 6.48e-3 6.55e-3 6.44e-3
Miami_housing_2016 1.95e-2 2.26e-2 2.14e-2 1.94e-2
NY C_taxi_green_dec_2016 6.50e0 6.52e0 6.51e0 6.65e0
Pol 1.64e1 2.39e1 2.54e1 1.72e1
Sulfur 9.17e-4 1.19e-3 1.13e-3 1.13e-3
Superconductor 8.24e1 8.44e1 8.70e1 9.03e1
Wine 3.49e-1 3.70e-1 3.72e-1 3.79e-1
Y prop_4_1 7.20e-4 7.46e-4 7.43e-4 7.27e-4

Table 2: Errors (MSE) on the test set for each of the 18 datasets tested using Catboost, XGboost, the
implementation of gradient boosting in scikit learn, and ExpGB using a ℓ2 loss function. All of the models
are trained using hyper-parameters obtained with grid-search which depend on the dataset. For each dataset,
the best performance is in bold.

a validation dataset. We selected the hyperparameters that minimize the average of the mean squared error
on the 5 test subsets.

4.2.2 Data preprocessing

We used as few data preprocessing processes as possible and only some classical transformations, which are:

• Remove feature: We removed features in some datasets when their variance was very low. For in-
stance, in the elevator dataset we removed diffSaTime2 and diffSaTime4, as their standard variations
were around 1e − 6.

• Dummies: Categorical variables are encoded as dummy features for all models.

• Log transformation of target feature: for datasets having heavy-tailed target features, we
log-transform them. This concerns the following datasets: diamonds, houses, house_16H,
house_sales, medical_charges, MiamiHousing2016, nyc_taxi_green_dec_2016.

4.3 Prediction performances

The prediction performance of ExpGB is compared with three reference models (Catboost, XGBoost,
Sklearn) for each of the 18 datasets. More precisely, Table 2 shows the MSE on each test set for the three
reference models and ExpGB. As expected the three models reach similar performances on all datasets.
ExpGB exhibits similar performances as well, proving the modifications made to enhance explainability are
not done at the expense of a decrease in performance. In particular, we reach a minimal MSE with ExpGB
for ten datasets and the same amount for Catboost. The thin margins prevent us from concluding that
ExpGB outperformed the most popular implementations of GBDT but these results indicate that we can ex-
pect comparable performances on any given datasets. The analysis of the results reveals another interesting
property of our new implementation of GBDT. Figure 1 plots the MSE of all four model implementations
on the train set (upper panel) and the test set (lower panel) as a function of the number of iterations for
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Figure 1: Bike-sharing demand dataset. Mean squared error on both the training dataset and the test
dataset for each tested model as a function of the number of iterations.

the bike-sharing dataset. For the visualization, the depth chosen is the same for all models, i.e. the optimal
depth for catboost obtained using cross-validation. It appears that ExpGB overfits much less than the other
gradient-boosting algorithms. Although we present these plots only for the case of bike sharing, this property
holds for all other datasets. An intuition of this apparent immunity against over-fitting is proposed in 4.6.
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4.4 Extracted prototypes at a glance

The main objective of our algorithm ExpGB was to enhance the explainability of GBDT by extracting
similar training samples to a given tested sample. Here we are looking at these prototypes through examples
extracted from the house-sales dataset. This dataset aims to predict the sale price of different houses in
King County located in the USA. It contains information about the houses such as their location, their
characteristics (e.g. number of bathrooms, area,...), and their sale date. We chose to explore this dataset
because it is common to consider similar houses in real estate regression problems. Figure 2, for a given
testing sample, similar training samples according to three different similarity measures on each row. Each
column represents a feature, the last being the price to be estimated. The represented features are selected
by decreasing feature importance. In the last column, the purple square indicates the estimated response.

In each panel is represented the histogram of the feature in the training dataset (in grey), the value of the
feature for the tested sample (green arrow), and the values of the feature of the ten most similar training
samples (blue disk, the higher the more similar).

The first row represents the prototypes extracted using our method as described in section 3.1. We can
observe that, for the four most important features, the samples extracted are very close in terms of features
even though the testing sample’s features are in the tail of each feature distribution. Also, the responses
of the extracted prototypes (last column) are close to the attained sell price of the tested sample and its
estimation.

The second row represents the training samples with the sell price being the closest to the estimated price
of the testing sample. We can easily see that these samples are very different in terms of features, meaning
that the task of identifying similar samples is not trivial.

Finally, the last row of this figure corresponds to the closest training samples in terms of the Mahalanobis
distance of their features. The obtained training samples are not as similar as for the proposed method, in
particular for the second and third features.

It is well known that real estate prices are highly dependent on the location of the property. Figure 3 shows,
on two different houses with exactly the same sale price (500 000$), that the proposed method can capture
the importance of location. We can see from this example that in regression problems, prototypes must
depend on the features and not only on the response of the observations, implying a very local approach.

4.5 Assessing systematic prototype relevance

In the previous sections, we defined (3.1) and showed a telling example of a real-life use case (4.4) with
the similar samples ExpGB provides on top of the regression result. Here we intend to prove they are
systematically relevant, not only by cherry-picking examples. To be meaningful, prototypes should exhibit
several properties. First, the response value of the most similar training samples has to be close to the
response of the chosen sample. On top of that, for the users to consider them as relevant and comparable
to their inputs, we would like them to have similar features. This is especially true for non-expert users.
Finally, similar samples extracted with the method must be stable at high iterations.

4.5.1 Similarity of prototypes response

We introduce a K nearest neighbours (KNN ExpGB) estimator based on the proposed similarity distance in
section 3.1. We emphasize here that this estimator is not intended to be used in practice, but highlights the
ability of the proposed similarity measure to identify prototypes similar to a testing sample in response. The
response of a testing sample is obtained by averaging the responses of the K (here, K = 10) closest training
samples. The number of prototypes K used for KNN ExpGB was set arbitrarily to 10, which is low enough
to remain intelligible to the user, but high enough to get sufficient information. MSE of this estimator is
compared with ExpGB in Table 3, with the variance of the responses (i.e., MSE of the estimation of the
response by the mean of the complete training set), and with the MSE of a classic KNN trained using the
euclidean distance between normalized features (KNN euclidean). The number of neighbours defined with
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Figure 2: Members of the training dataset (blue disks) similar to a testing sample (green arrow). Most
important features and responses (right, predicted as a purple square), histogram of the training features
and responses in the dataset in grey. a) Proposed measure of similarity d, b) increasing |ŷ −yn|, c) increasing
∥x − xn∥Σ
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Figure 3: Map of King County. Two testing samples with the exact same selling price are represented in
blue. Their respective similar samples are in red.
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Dataset ExpGB KNN ExpGB KNN Euclidean Variance
Abalone 4.33e0 4.81e0 4.63e0 9.74e0
Ailerons 2.26e-8 2.48e-8 4.10e-8 1.57e-7
Bike_sharing 1.40e3 1.69e3 1.26e4 3.33e4
Brazilian_houses 1.29e-1 1.40e-1 1.77e-1 6.18e-1
CPU_act 4.76e0 5.63e0 2.17e1 3.20e2
Diamonds 2.67e5 3.14e5 7.23e5 1.28e6
Elevators 4.01e-6 5.83e-6 1.29e-5 1.28e-5
Houses 4.54e-2 4.76e-2 7.90e-2 3.23e-1
House_16h 3.59e-1 4.08e-1 4.65e-1 8.34e-1
House_sales 2.94e-2 3.31e-2 5.26e-2 2.85e-1
Medical_charges 5.94e-3 6.51e-3 6.48e-3 3.20e-1
Miami_housing_2016 1.94e-2 2.22e-2 3.87e-2 3.17e-1
NY C_taxi_green_dec_2016 6.65e0 8.24e0 6.78e0 7.17e0
Pol 1.71e1 2.36e1 8.78e1 1.72e3
Sulfur 1.13e-3 1.35e-3 9.83e-4 2.70e-3
Superconductor 9.03e1 9.41e1 1.13e2 1.19e3
Wine 3.79e-1 4.20e-1 4.89e-1 7.58e-1
Y prop_4_1 7.27e-4 7.71e-4 7.46e-4 8.02e-4

Table 3: MSE of the KNN estimator compared to ExpGB and the variance of the response. For each dataset,
the best performance between KNN EpxGB and KNN Euclidean is in bold.

this KNN Euclidean is obtained via cross-validation for all datasets. MSE are higher for KNN ExpGB than
ExpGB, but not significantly so, showing that the K prototypes have similar responses to the testing sample.

4.5.2 Features of prototypes

In this section, we assess the capability of our algorithm to extract meaningful prototypes in terms of
features. To do so, we compute an estimation of each feature of a tested sample by averaging the features
of its prototypes as selected in section 3.1. We then compare the MSE of this estimation with the variance
of each feature, the variance corresponding to the MSE that is made by the naive estimator consisting of
the mean of the full dataset. In table 4, the ratio between the MSE of the estimator defined above (KNN
ExpGB) and the variance of the features are given. We can see that the features of the closest training
samples are concentrated near the features of the testing sample.

4.5.3 Stability of prototype sets over iterations

At each iteration, the set of prototypes for a given example may change since all weights are updated. A
desirable property for the proposed approach is a certain stability of the sets of prototypes. Figure 4 shows,
at each iteration, the averaged cardinality of the symmetric difference of the sets of prototypes before and
after an iteration. As the algorithm progresses, changes in the sets of prototypes become less probable, and
this is true even for T relatively small. We have only represented the case for one dataset here, but we
observe this phenomenon no matter the dataset tested.

4.6 Overfitting and decomposition weights

Decomposing weights of a prediction of the response of a training sample are given in Figure 5 both classical
gradient boosting (catboost) and ExpGB. As pointed out, decomposition weights can be negative in gradient
boosting, and overfitting is visible here as the weight associated with the training sample tends to 1, while
the other weights are decaying to 0. In contrast, decomposition weights obtained by ExpGB are spread out
and in this particular case, do not involve the training sample considered here.
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Dataset Feat 1 Feat 2 Feat 3 Feat4
Abalone 1.48e-2 1.01e-2 1.61e-3 2.47e-1
Ailerons 1.65e-2 4.97e-2 5.94e-2 1.32e-1
Bike_sharing 6.16e-3 1.37e-1 7.39e-2 3.76e-2
Brazilian_houses 7.02e-1 7.30e-2 9.95e-2 3.02e-2
CPU_act 3.52e-1 8.20e-2 1.17e-2 4.84e-2
Diamonds 1.99e-3 2.24e-3 9.95e-4 1.5e-3
Elevators 1.42e-2 7.48e-3 2.66e-2 7.84e-3
Houses 4.57e-3 5.05e-3 3.41e-2 2.36e-1
House_16h 1.65e0 1.47e-1 1.14e-1 1.41e-1
House_sales 8.30e-3 7.31e-2 6.72e-2 1.18e-2
Medical_charges 3.89e-4 4.80e-2 1.96e-1 X
Miami_housing_2016 4.26e-2 4.09e-3 9.57e-3 1.15e-2
NY C_taxi_green_dec_2016 1.92e-3 0.00 1.27e-5 2.67e-2
Pol 4.41e-2 8.89e-2 11.3e-1 2.47e-1
Sulfur 4.22e-2 5.26e-2 2.36e-2 5.89e-2
Superconductor 1.78e-2 1.09e-2 1.07e-1 3.42e-1
Wine 7.97e-2 1.30e-1 1.34e-1 2.51e-1
Y prop_4_1 1.03e-1 3.09e-1 1.70e-1 1.13e-1

Table 4: Ratio between the MSE of the estimation of the features by KNN ExpGB and the variance of the
features. Features are ordered by decreasing importance.

Figure 4: Average cardinality of the symmetric difference between prototype sets at successive iterations.
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Figure 5: Bike sharing dataset. Decomposition weights wt
n(x) for a sample xm in the training set, in the

function of the number of iterations t. Top: Gradient boosting (catboost). Bottom: Proposed algorithm.
The weights wt

m(xm) of the response of xm in its prediction are highlighted.

Dataset Cat XGB Sklearn ExpGB
Abalone 1.07e+01 1.58e+01 3.16e+01 1.03e+01
Ailerons 4.10e-08 5.88e-08 1.25e-07 4.16e-08
Bike_sharing_demand 4.09e+03 5.96e+03 4.00e+03 4.38e+03
Brazilian_houses 1.93e+00 1.30e+01 1.66e+01 2.16e+00
CPU_act 1.34e+02 5.16e+02 4.43e+02 1.01e+02
Diamonds 7.82e+05 2.64e+06 2.23e+06 1.09e+06
Elevators 1.46e-05 3.24e-05 4.42e-05 1.46e-05
Houses 1.50e+00 5.89e+00 1.01e+01 9.51e-01
House_16h 1.53e+00 4.44e+00 6.72e+00 1.20e+00
House_sales 2.67e+00 1.50e+00 7.34e+00 1.50e+01
Medical_charges 1.90e-01 5.32e-01 1.44e+00 3.42e-01
Miami_housing_2016 1.39e+00 7.45e+00 9.08e+00 1.25e+00
NY C_taxi_green_dec_2016 9.22e+00 6.98e+00 6.55e+00 7.75e+00
Pol 1.63e+02 1.99e+02 3.59e+02 1.02e+02
Sulfur 1.51e-03 2.01e-03 1.83e-03 1.53e-03
Superconductor 1.60e+02 1.94e+02 2.37e+02 1.59e+02
Wine 3.06e+00 5.83e+00 6.16e+00 2.13e+00
Y prop_4_1 2.67e-02 6.73e-02 9.50e-02 8.59e-03

Table 5: Errors (MSE) on the test set for each of the 18 datasets. We modified the target values on
approximately 1% of the data to introduce outliers. The hyperparameters are determined on this new
dataset using cross-validation. Each model is trained using a ℓ2 loss.

4.7 Sensibility to outliers

From the definition of the proposed algorithm, one can see that a prediction is mainly based on the extreme
points of the data. To ensure that ExpGB does not heavily depend on outliers in the dataset, we propose
to look at the predictive performance of each gradient-boosting algorithm when the dataset contains a lot
of outliers. For this purpose, we randomly modified the target features of 1% of the observations in each
dataset. Half of them will have their target values divided by 10, and the other half will be multiplied
by 10. We then computed the best hyper-parameters in this case for every model using the same method
described in 4.2.1. Each model has been trained using a ℓ2 and a ℓ1 loss, results are presented respectively
in table 5 and 6. As expected, we can see that all algorithms have their error improved, with those trained
with a ℓ1 loss being more robust to outliers. Interestingly, whether it is for ℓ1 or ℓ2 loss function, ExpGB
achieves similar performances as the other algorithms, proving that ExpGB is as robust to outliers as the
other algorithms.
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Dataset Cat XGB Sklearn ExpGB
Abalone 5.02e+00 4.73e+00 4.38e+00 4.92e+00
Ailerons 2.44e-08 2.43e-08 3.88e-08 2.67e-08
Bike_sharing_demand 1.75e+03 2.08e+03 1.89e+03 1.69e+03
Brazilian_houses 1.32e-01 1.34e-01 1.36e+01 1.78e-01
CPU_act 9.59e+00 4.54e+01 6.96e+01 1.69e+01
Diamonds 3.28e+05 3.35e+05 3.59e+05 3.67e+05
Elevators 5.17e-06 5.96e-06 5.61e-06 4.98e-06
Houses 5.83e-02 5.51e-02 7.55e-02 2.06e-01
House_16h 4.31e-01 4.13e-01 3.63e-01 7.85e-01
House_sales 1.07e-01 1.75e-01 3.12e-01 1.20e-01
Medical_charges 7.14e-03 9.00e-03 1.99e-02 2.59e-02
Miami_housing_2016 2.61e-02 1.98e-01 2.66e-02 1.58e-01
NY C_taxi_green_dec_2016 6.80e+00 6.73e+00 6.73e+00 6.71e+00
Pol 3.22e+01 2.75e+01 2.43e+01 2.11e+01
Sulfur 1.07e-03 1.38e-03 1.64e-03 1.21e-03
Superconductor 9.33e+01 9.56e+01 9.95e+01 9.10e+01
Wine 5.63e-01 5.42e-01 4.87e-01 4.81e-01
Y prop_4_1 1.04e-03 1.68e-03 1.09e-03 1.67e-03

Table 6: Errors (MSE) on the test set for each of the 18 datasets. We modified the target values on
approximately 1% of the data to introduce outliers. The hyperparameters are determined on this new
dataset using cross-validation. Each model is trained using a ℓ1 loss.

5 Conclusion and future works

In this article, we showed that for regression tasks with an ℓ2 loss, the predictions of GBDT can be written
as linear combinations of the training values, with weights summing to one, depending on the sample of
interest. A new tree-based gradient boosting algorithm based on the Frank-Wolfe algorithm was proposed,
constraining the linear combinations to be convex and applicable to a wider range of losses. Results on several
datasets showed that performances are comparable to state-of-the-art gradient-boosting implementations.

We have shown that similar (in terms of features and response) data can be identified by selecting training
samples with low l1-norm between their weights and the weights of the tested samples.

Such results open the way for many developments. Concerning the ExpGB algorithm, some original
elements for proving at a theoretical level the algorithm convergence will be developed in future works.
Indeed, mimicking the Franck-Wolfe proof does not allow direct proof of the convergence. Another
important perspective would be to exploit the outputs of the proposed algorithm in a clustering perspective.
Indeed, each weight vector of a predicted observation corresponds to the observation “signature” and can
be used in any similarity measures. Finally, implementations of our algorithm for classification tasks are
straightforward by simply changing the loss function.

References
Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a survey on explainable artificial

intelligence (xai). IEEE access, 6:52138–52160, 2018.

Álvar Arnaiz-González, José F Díez-Pastor, Juan J Rodríguez, and César García-Osorio. Instance selection
for regression: Adapting drop. Neurocomputing, 201:66–81, 2016.

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Al-
berto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, et al. Explainable
artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai.
Information fusion, 58:82–115, 2020.

17



Under review as submission to TMLR

Randal J. Barnes and Thys B. Johnson. Positive Kriging, pp. 231–244. Springer Netherlands, Dordrecht,
1984. ISBN 978-94-009-3699-7. doi: 10.1007/978-94-009-3699-7_14. URL https://doi.org/10.1007/
978-94-009-3699-7_14.

Gérard Biau, Benoît Cadre, and Laurent Rouvìère. Accelerated gradient boosting. Machine learning, 108:
971–992, 2019.

Jacob Bien and Robert Tibshirani. Prototype selection for interpretable classification. The Annals of Applied
Statistics, 5(4):2403–2424, 2011.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and regression trees. Chapman
& Hall, New York, 1993. ISBN 9780412048418.

Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning algorithms.
In Proceedings of the 23rd international conference on Machine learning, pp. 161–168, 2006.

Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho, Kailong Chen, et al.
Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4):1–4, 2015.

Laurent Condat. Fast projection onto the simplex and the ℓ1 ball. Mathematical Programming, 158(1-2):
575–585, July 2016. ISSN 0025-5610, 1436-4646. doi: 10.1007/s10107-015-0946-6. URL http://link.
springer.com/10.1007/s10107-015-0946-6.

Ángel Delgado-Panadero, Beatriz Hernández-Lorca, María Teresa García-Ordás, and José Alberto Benítez-
Andrades. Implementing local-explainability in gradient boosting trees: feature contribution. Information
Sciences, 589:199–212, 2022.

Clayton V. Deutsch. Correcting for negative weights in ordinary kriging. Computers & Geosciences, 22
(7):765–773, August 1996. ISSN 0098-3004. doi: 10.1016/0098-3004(96)00005-2. URL https://www.
sciencedirect.com/science/article/pii/0098300496000052.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research Lo-
gistics Quarterly, 3(1-2):95–110, 1956. ISSN 1931-9193. doi: 10.1002/nav.3800030109. URL http:
//onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statis-
tics, 29(5):1189 – 1232, 2001. doi: 10.1214/aos/1013203451. URL https://doi.org/10.1214/aos/
1013203451.

Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):367–378,
2002.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? Advances in Neural Information Processing Systems, 35:507–520, 2022.

Karthik S Gurumoorthy, Amit Dhurandhar, and Guillermo Cecchi. Protodash: Fast interpretable prototype
selection. arXiv preprint arXiv:1707.01212, 2017.

Karthik S Gurumoorthy, Amit Dhurandhar, Guillermo Cecchi, and Charu Aggarwal. Efficient data repre-
sentation by selecting prototypes with importance weights. In 2019 IEEE International Conference on
Data Mining (ICDM), pp. 260–269. IEEE, 2019.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of statistical
learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Hemant Ishwaran. Variable importance in binary regression trees and forests. Electronic Journal of Statistics,
1:519–537, 2007.

18



Under review as submission to TMLR

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the
30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013,
volume 28 of JMLR Workshop and Conference Proceedings, pp. 427–435. JMLR.org, 2013. URL http:
//proceedings.mlr.press/v28/jaggi13.html.

Been Kim, Cynthia Rudin, and Julie A Shah. The bayesian case model: A generative approach for case-based
reasoning and prototype classification. Advances in neural information processing systems, 27, 2014.

Mirosław Kordos and Marcin Blachnik. Instance selection with neural networks for regression problems.
In Artificial Neural Networks and Machine Learning–ICANN 2012: 22nd International Conference on
Artificial Neural Networks, Lausanne, Switzerland, September 11-14, 2012, Proceedings, Part II 22, pp.
263–270. Springer, 2012.

Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, and Gunnar Ratsch. Boosting variational inference: an
optimization perspective. In Amos Storkey and Fernando Perez-Cruz (eds.), Proceedings of the Twenty-
First International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Ma-
chine Learning Research, pp. 464–472. PMLR, 09–11 Apr 2018. URL https://proceedings.mlr.press/
v84/locatello18a.html.

Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate intelligible models with pairwise
interactions. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 623–631, 2013.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp. 4768–4777,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit Katz,
Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global understanding
with explainable ai for trees. Nature machine intelligence, 2(1):56–67, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
Catboost: unbiased boosting with categorical features. Advances in neural information processing systems,
31, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should i trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pp. 1135–1144, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939778. URL https://doi.org/
10.1145/2939672.2939778.

Sarah Tan, Matvey Soloviev, Giles Hooker, and Martin T Wells. Tree space prototypes: Another look at
making tree ensembles interpretable. In Proceedings of the 2020 ACM-IMS on Foundations of Data Science
Conference, pp. 23–34, 2020.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in machine
learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

Chu Wang, Yingfei Wang, Weinan E, and Robert Schapire. Functional Frank-Wolfe boosting for general
loss functions, 2015.

19


