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Abstract001

Temporal knowledge graph (TKG) reasoning,002
a central task in temporal knowledge represen-003
tation, focuses on predicting future facts by004
leveraging historical temporal contexts. How-005
ever, current approaches face two major chal-006
lenges: limited generalization to unseen facts007
and insufficient interpretability of reasoning008
processes. To address these challenges, this009
paper proposes the Denoising Logic-based010
Temporal Knowledge Graph (DLTKG) frame-011
work, which employs a denoising diffusion pro-012
cess to complete reasoning tasks by introduc-013
ing a noise source and a historical condition-014
guiding mechanism. Specifically, DLTKG con-015
structs fuzzy entity representations by treating016
historical facts as noise sources, thereby en-017
hancing the semantic associations between en-018
tities and the generalization ability for unseen019
facts. Additionally, a condition-based guidance020
mechanism, rooted in the relationship evolu-021
tionary paths, is designed to improve the inter-022
pretability of the reasoning process. Further-023
more, we introduce a fine-tuning strategy that024
optimizes the denoising process by leveraging025
shortest path information between head entity026
and candidate entities. Experimental results027
on three benchmark datasets demonstrate that028
DLTKG outperforms state-of-the-art methods029
across multiple evaluation metrics1.030

1 Introduction031

The temporal knowledge graph (TKG) (Gottschalk032

and Elena, 2018; Zhao, 2021) is a dynamic mul-033

tirelational graph structure represented in the form034

of quadruples (s, r, o, t), where s denotes the sub-035

ject (i.e., head entity), r denotes the relation, o036

denotes the object (i.e., tail entity), and t denotes037

the timestamp. The reasoning tasks of TKGs are038

primarily divided into interpolation and extrapola-039

tion (Jin et al., 2020). The interpolation task (Xu040

1Code is available at https://anonymous.4open.
science/r/DLTKG-7CCB/
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Figure 1: (a) The thought process involved in making
predictions. (b) An example of reasoning used to answer
the query in (a).

et al., 2020; Xiong et al., 2024) involves inferring 041

missing facts within a known time interval, while 042

the extrapolation task (Xu et al., 2020; Sun et al., 043

2021; Liu et al., 2022) focuses on predicting fu- 044

ture events. This study specifically addresses the 045

extrapolation task of TKGs, as it can forecast fu- 046

ture events and provide forward-looking insights 047

for decision-making, offering substantial practical 048

value in areas such as event prediction (Deng et al., 049

2020), risk prediction (Jhee et al., 2025), and trend 050

analysis (Choudhury et al., 2020). 051

Recent studies (Hahamy et al., 2023; Kolibius 052

et al., 2025) suggest that during narrative compre- 053

hension, humans activate neural representations 054

of relevant historical events at event boundaries, 055

facilitated by the hippocampus and default mode 056

network. This enables memory integration and 057

knowledge structure updates across time scales. 058

As shown in Figure 1(a), humans follow a three- 059

step process in prediction tasks: recalling histor- 060

ical events, filtering potential answers, and com- 061

bining personal experience to form a prediction. 062

Figure 1(b) illustrates TKG extrapolation, where 063

the task is to predict whom Obama visited on 064

December 29, 2014. The process begins with 065
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recalling events related to "Make_a_visit" and066

"Barack_Obama", filtering outcomes like Malaysia,067

China, Poland, and concluding that Obama visited068

Malaysia.069

TKG reasoning has seen notable progress in re-070

cent years (Trivedi et al., 2017; Wang et al., 2023;071

Chen and Chen, 2024), as will be discussed in072

Section 2. Motivated by the success of diffusion073

techniques in sequence-to-sequence tasks (Gong074

et al., 2023), DiffuTKG (Cai et al., 2024) intro-075

duces diffusion methods to TKG reasoning, achiev-076

ing competitive results. However, existing diffu-077

sion models (Cai et al., 2024) lack interpretability,078

as random noise and denoising are disconnected079

from the target entities. To address this, we propose080

a noise-adding and denoising method based on his-081

torical evolutionary paths (HEPs), leveraging past082

entities to generate fuzzy entities, i.e., the memory083

fusion process. Denoising these fuzzy entities en-084

hances the interpretability and generalization of the085

reasoning process.086

Specifically, we propose three innovative strate-087

gies: (1) Sequence Learning Strategy: This mod-088

ule extracts the HEPs of each relationship and uti-089

lizes them as denoising conditional guiding infor-090

mation. This design enables DLTKG to perform091

efficient logical reasoning based on HEPs. (2) En-092

tity Fusion Strategy: This strategy merges entities093

that have appeared in HEPs as memory informa-094

tion to obtain noisy fuzzy entities. Given the strong095

semantic and structural correlations between histor-096

ical and target entities, key information about the097

target entity may be implicitly embedded within098

the historical entities. Consequently, generating099

noise through the fusion of historical entities is100

more justifiable. (3) Fine-tuning Strategy: After101

the initial round of denoising, candidate entities are102

ranked from high to low based on their scores, and103

the top k entities are selected. The shortest paths104

between the query head entity and the top k candi-105

date entities are then obtained, and these shortest106

paths are used as guiding information for further107

denoising. Empirical research on three benchmark108

datasets validates the effectiveness of DLTKG.109

The main contributions are as follows:110

• To the best of our knowledge, DLTKG is the111

first model to apply memory fusion strategy112

to diffusion-based temporal knowledge graph113

reasoning, aiming to enhance the logical inter-114

pretability of model through the noise-adding115

and denoising process.116

• We propose a fuzzy entity noise addition strat- 117

egy and introduce a historical condition guid- 118

ance mechanism, aiming to enhance the cor- 119

relation between historical events and thereby 120

delve deeper into the potential information 121

between entities and relationships. 122

• We propose a fine-tuning strategy that utilizes 123

shortest path information between the head 124

entity and candidate entities to optimize the 125

denoising process, further enhancing the rele- 126

vance between the query and historical knowl- 127

edge. 128

• DLTKG significantly surpasses the existing 129

diffusion-based models on three representa- 130

tive TKGR datasets, including ICEWS14, 131

ICEWS05-15, YAGO, and achieves compet- 132

itive performance with the other state-of-the- 133

art baselines. 134

2 Related Work 135

2.1 Temporal Knowledge Graph Reasoning 136

Existing TKG extrapolation methods can 137

be broadly categorized into four types: (1) 138

Embedding-based models dynamically model 139

temporal evolutionary patterns of entities and 140

relationships using low-dimensional vectors, 141

inferring missing facts through the similarity of 142

historical embeddings. Representative models 143

include CyGNet (Zhu et al., 2021), HIP (He 144

et al., 2021), among others. (2) Graph neural 145

network-based models focus on uncovering 146

structural evolution in temporal knowledge graphs, 147

predicting dynamic associations by aggregating 148

neighborhood information through message pass- 149

ing, e.g., xERTE (Han et al., 2020) and SRPL (Li 150

et al., 2024). (3) Rule-based models focus on 151

inductively deriving interpretable logical rules 152

from historical facts. TLogic (Liu et al., 2022) 153

extracts interpretable temporal logic rules through 154

temporal random walks. TempValid (Huang 155

et al., 2024) models the temporal validity of 156

rule confidence and designs learnable temporal 157

functions. (4) Language model-based models 158

treat entities and relationships as semantic symbols, 159

using generative models to predict knowledge 160

completion, such as CoH (Xia et al., 2024) and 161

GenTKG (Liao et al., 2024). 162
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Figure 2: Overview of DLTKG structure. DLTKG mainly consists of five parts: (1) Data Processing, which is used
to obtain the historical evolutionary paths (HEPs) of relationships; (2) Sequence Learning Module, which captures
historical evolutionary information; (3) Entity Fusion Module, which generates fuzzy entity representations from
noise sources; (4) Denoising Module, which cleans fuzzy entities using the HEPs; (5) Fine-tuning Module, which
further optimizes the denoising process. The core components are (2), (3), and (5).

2.2 Diffusion Model163

Diffusion models are a type of generative model164

that learn data distributions by gradually adding165

and removing noise, and they are commonly used166

for high-quality image and audio generation. Cur-167

rently, some research has explored text diffusion168

models in discrete state spaces (Li et al., 2022a;169

Reid et al., 2023; Gong et al., 2023).170

DiffuTKG (Cai et al., 2024) is the first model to171

introduce diffusion methods into TKG reasoning172

tasks, by introducing random noise to target entities173

and reconstructing the entities from it.174

Unlike DiffuTKG, our approach: (1) constructs175

entity-related noise sources that are not random;176

(2) utilizes logical reasoning information about re-177

lationship evolution as conditional guidance for178

the denoising process. DLTKG enables collabora-179

tive modeling of semantic correlation and temporal180

dependence, leading to more accurate predictions.181

3 Problem Formulation182

A Temporal Knowledge Graph G =183

(E ,R, T ,Q) (Gu et al., 2022) is a directed184

multirelational graph where there are times-185

tamped edges between entities, with E ,186

R, and T representing the sets of enti-187

ties, relations, and timestamps, respectively.188

Q = {(es, r, eo, t) | es, eo ∈ E , r ∈ R, t ∈ T } is189

a set of quadruples in G. The TKG is viewed as a 190

series of snapshots arranged in ascending order of 191

timestamps, denoted as G =
{
G1,G2, . . . ,G|T |

}
. 192

The problem addressed in this paper is Tempo- 193

ral Knowledge Graph Reasoning (TKGR) through 194

extrapolation, which is formalized as link predic- 195

tion aimed at inferring future quadruples. For- 196

mally, for a quadruple query (sq, rq, ?, tq), the 197

goal of extrapolated TKGR is to predict the miss- 198

ing entity oq, given the historical graph sequence 199{
G1,G2, . . . ,Gtq−1

}
prior to the prediction time tq. 200

4 Method 201

The DLTKG framework (Figure 2) consists of sev- 202

eral key components: (1) Sequence learning, which 203

helps denoise by extracting relationship evolution- 204

ary patterns as conditional information; (2) Entity 205

fusion strategy, which integrates historical infor- 206

mation related to the target entity to obtain a fuzzy 207

entity, modeling the potential uncertainty between 208

entities; (3) Fine-tuning strategy, which uses the 209

top k candidate entities and the query head entity 210

sq to calculate shortest paths, providing conditional 211

information for further training. 212

4.1 Sequence Learning 213

We frame the link prediction task as a sequence pre- 214

diction problem, focusing on exploring HEPs of re- 215
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lationships. Section 4.1.1 derives all possible HEPs216

using temporal walks. Section 4.1.2 constructs a217

path encoding representation. Section 4.1.3 filters218

the most relevant HEPs to the query relationship rq219

using a relevance discrimination function.220

4.1.1 Historical Evolution of Relationship221

Exploration222

We extract temporal walks from the TKG G as223

follows: For a historical evolutionary path (HEP)224

of length ℓ, we sample a non-increasing random225

walk sequence of length ℓ+1, where the additional226

step corresponds to querying events for relation227

rq. The walk starts by randomly sampling an edge228

(e1, rq, eℓ+1, tℓ+1), then iteratively sampling adja-229

cent edges until it reaches length ℓ+ 1. In the final230

step, if an edge links back to the first entity e1, we231

sample it; otherwise, we proceed to the next path.232

For sampling steps s ∈ {2, 3, . . . , ℓ+ 1}, let233

(es, r, eo, t) represent the edge sampled previously,234

and Ne (s, eo, t) denote the set of feasible edges235

for the next transition. To satisfy the temporal236

constraints, we define Ne (s, eo, t) :=237



{(
eo, r, e, t̂

)
|
(
eo, r, e, t̂

)
∈ G, t̂ < t

}
if s = 2,{(

eo, r, e, t̂
)
|
(
eo, r, e, t̂

)
∈ G̃, t̂ ≤ t

}
if s ∈ {3, . . . , ℓ},{(

eo, r, e1, t̂
)
|
(
eo, r, e1, t̂

)
∈ G̃, t̂ ≤ t

}
if s = ℓ+ 1,

(1)238

where Ĝ := G \
{(

eo, r
−1, es, t

)}
excludes the239

inverse edges to avoid redundant rules. Remove240

the edges sampled in the first step, then arrange241

the remaining random walk sequence of length ℓ in242

reverse chronological order. This results in a HEP243

of rq denoted as pℓ
rq :244

((e1,r
−1, e2, t1), ..., (eℓ, r

−1, eℓ+1, tℓ))245

with tℓ > tℓ−1... > t1. (2)246

For each relation r ∈ R, we draw n ∈ N =247

{1, . . . , N} time walks from a pre-specified set of248

lengths L. The setWℓ
r denotes all evolving paths249

of length ℓ that are headed by relation r. All HEPs250

of relation r are contained in Wr :=
⋃

ℓ∈LWℓ
r251

and the complete set of learned HEPs is W :=252 ⋃
r∈RWr.253

4.1.2 Sequence Prediction254

Let G0:tq−1 be the historical TKG snapshot, and255

qt = (sq, rq, ?, tq) be the query quadruple. In-256

spired by DiffuTKG (Cai et al., 2024), we reshape257

the task into a sequence prediction problem. The 258

difference is that we predict the missing entities 259

in qt by observing the historical evolutionary pat- 260

terns. 261

First, we extract the HEPs P = 262

{P0, . . . ,Pi, . . . ,Pn−1} of the query rela- 263

tion rq from W , where each path contains at 264

least one query subject sq, and the length of 265

each path is ℓ. Each path is represented as 266

Pi = {(e0, r0, e1, t0) , ..., (eℓ−1, rℓ−1, eℓ, tℓ−1)}. 267

Additionally, let Pi =
{
Sie,Sir,Sit

}
, where 268

Sie = {e0, ..., eℓ} represents the sequence of 269

entities in the HEP pi, Sir = {r0, ..., rℓ−1} 270

represents the sequence of relations in the HEP, 271

and Sit = {t0, ..., tℓ−1} represents the sequence of 272

timestamps in the HEP. 273

Next, we obtain the representations of entities, 274

relations, and time in each HEP as follows: 275

e =
ℓ∑

i=0

E(ei), t =
ℓ−1∑
k=0

T(tk), r =
ℓ−1∑
j=0

R(rj),

(3)

276

where E ∈ R|E|×d, R ∈ R2|R|×d, T ∈ R|T |×d, 277

e, r, t ∈ Rd, d represents the size of the hidden 278

dimension. We combine entity, relationship, and 279

timestamp embeddings along the HEPs to obtain 280

the final evolutionary embeddings, as follows: 281

pi = e+ r+ t. (4) 282

The embedded representation of HEPs is de- 283

noted as P = [p0; ...;pn−1], where P ∈ Rn×d, 284

[; ] represents the concatenation operation. 285

4.1.3 Path Selection 286

We use the path relevance discrimination function 287

Ψ(·) to filter the HEPs most relevant to the query. 288

Given the query relation rq, we obtain the embed- 289

ded representation of HEPs, i.e. P, and we apply 290

the path relevance discrimination function: 291

Ψ(P, rq) = ∥P ◦E (rq)∥2 > λ, (5) 292

where ◦ denotes the Hadamard product operation, 293

λ represents the adaptive threshold. The path em- 294

beddings that satisfy Ψ(P, rq) = True form the 295

condition-guided set P̃, and the corresponding set 296

of HEPs is P̃ . 297
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4.2 Entity Fusion Strategy298

After obtaining the HEPs related to the query rela-299

tionship rq and the query subject sq, we extract the300

relevant candidate entities from the HEPs P̃ . The301

extracted entities are distinct and are represented302

as the set C:303

C = S0e ∪ S1e ∪ · · · ∪ S
|P̃|
e . (6)304

Based on the Historical Recurrence Hypothe-305

sis (Trompf, 1979), we propose a fuzzy entity con-306

struction method based on maximum entropy fu-307

sion: by using a nonlinear aggregation function308

Φ (·) to perform information fusion on the entity309

set C. The specific process is as follows:310

Φ ({ei}) =argmin
ê1

(

|C|∑
i=0

ωiDKL (f (ei) ∥ f (ê1))311

+λL (ê1)) , (7)312

f (ei) =softmax (Wei + b) , (8)313

wi =exp (−γ (tq − ti)) , (9)314

where DKL represents the KL divergence, ei,315

ê1 ∈ Rd denote the historical candidate entity em-316

beddings and the fuzzy entity embeddings, respec-317

tively. The function f (·) is a probability mapping318

function, wi is the time decay weight, and γ con-319

trols the decay rate. The variable ti indicates the320

timestamp corresponding to the entity ei, while321

L (·) is the L2 regularization term. W, b, and λ are322

learnable parameters.323

4.3 Auxiliary Denoising Strategy324

During the denoising phase, DLTKG cleans the fuz-325

zty entity ê1 to obtain the target entity êq, using his-326

torical information as a condition. This approach327

relieves the need for additional classifier training.328

Following DiffusEQ (Gong et al., 2023), we use a329

Transformer architecture to model fθ, where his-330

torical information is inherently considered during331

the cleaning process. The denoising process is as332

follows:333

êq =Transformer(ẽ), (10)334

ẽ = [P̃; ê1] + E(sq) + R(rq) + T(tq), (11)335

where êq ∈ R|E|. We introduce the query subject336

sq, the query relation rq, and the query time tq337

to strengthen the connection between the query338

problem and the target entity.339

4.4 Fine-tuning Strategy 340

To enhance the ability of model to recognize low- 341

discriminative entities, we employ a fine-tuning 342

strategy. After the initial denoising, we select top k 343

candidate entities based on their scores for further 344

fine-tuning. Building on the query relation evolu- 345

tionary path features used in the initial training, this 346

phase further strengthens the semantic association 347

between the query head entity and the target entity. 348

Specifically, we introduce the multi-hop shortest 349

paths between the head entity and each candidate 350

entity as auxiliary guiding information. This pro- 351

cess is described as follows: 352

p∗
sq→ek

=
∑

x∈path(sq ,ek)


E (x) if x ∈ E ,
R (x) if x ∈ R,
T (x) if x ∈ T ,

(12) 353354

P̃∗ = [p∗
0;p

∗
1; . . . ;p

∗
m−1], (13) 355

where x represents the entity, relationship, or times- 356

tamp within the path, m represents the total number 357

of shortest paths, path (sq, ek) refers to the shortest 358

path between the head and tail entity. To maintain 359

consistency in the noise injection strategy, we per- 360

form feature fusion on the set of entities involved in 361

the shortest paths, constructing a fuzzy entity repre- 362

sentation denoted as ê2. Then, perform denoising 363

according to the method in Section 4.3: 364

o =Transformer(e∗), (14) 365

e∗ = [P̃∗; ê2]+E(sq) +R(rq) +T(tq). (15) 366

4.5 Train and Inference 367

We will perform a dot product operation between 368

the predicted entities o and the embedding matrix 369

E to obtain the distance between the vectors. A 370

shorter distance indicates a higher predicted proba- 371

bility for that entity. The calculation process is as 372

follows: 373

y = Softmax
(
o · (E)T

)
, (16) 374

Lrecon = −
∑

i∈{1,2,...,|E|}

gilog(yi), (17) 375

where "·" denotes the inner product operation, (·)T 376

denotes the matrix transpose operation, gi denotes 377

the unique heat coding of the i-th real object entity, 378

and yi is the predicted probability of the entity. 379

Additionally, we employ a regularization method 380

based on uncertainty perception, as detailed in Cai 381
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Ntrain Nvalid Ntest Nent Nrel Ntime Interval

ICEWS14 74845 8514 7371 7128 230 365 24 hours
ICEWS05-15 368868 46302 46159 10488 251 4017 24 hours
YAGO 161540 19523 20026 10623 10 188 1 year

Table 1: Statistics of the datasets.

et al. (2024), which dynamically adjusts the regu-382

larization strength according to the prediction con-383

fidence and applies stronger constraints to high-384

uncertainty predictions.385

Score (y,F01) =f (σ (f (y ⊗ F01))) , (18)386

Luncertainty =Eu∽Pseen387 [
−log exp−Score(u,F01)/τ

1 + exp−Score(u,F01)/τ

]
388

+Ev∽Punseen389 [
−log 1

1 + exp−Score(v,F01)/τ

]
,

(19)

390

where Score(y,F01) ∈ R1×2 denotes the confi-391

dence score. f (·) represents the fully connected392

layer, and σ denotes the ReLU activation function.393

The binary vector F01 ∈ R1×d denotes the occur-394

rence of the fact before the timestamp t, where395

0 means it has not occurred and 1 means it has396

occurred. τ is the temperature coefficient.397

The overall training loss is:398

L = Lrecon + Luncertainty. (20)399

5 Experiments400

5.1 Experimental Setup401

Datasets We evaluate DLTKG on three widely402

used datasets: ICEWS14 (García-Durán et al.,403

2018), ICEWS05-15 (García-Durán et al., 2018),404

and YAGO (Mahdisoltani et al., 2013). ICEWS14405

and ICEWS05-15 are derived from the Integrated406

Crisis Early Warning System (ICEWS) (Boschee407

et al., 2015), which records political events that oc-408

curred in 2014 and from 2005 to 2015, respectively.409

YAGO (Mahdisoltani et al., 2013) is a knowledge410

base that includes temporal information. The statis-411

tics of these datasets are shown in Table 1.412

Evaluation Metrics During testing, we per-413

form experiments under time-aware filtering set-414

tings (Dong et al., 2023; Zhang et al., 2023) to filter415

out other correct entities. To evaluate model perfor-416

mance, we adopt standard evaluation metrics from417

the field, including Mean Reciprocal Rank (MRR), 418

Hits@1, Hits@3, and Hits@10, where higher met- 419

ric values indicate better performance. 420

Baseline Methods We compare the performance 421

of our model with five categories of state-of- 422

the-art models. The embedding-based models 423

include CyGNet (Zhu et al., 2021), HIP Net- 424

work (He et al., 2021). The graph neural network- 425

based models include RE-NET (Jin et al., 2020), 426

xERTE (Han et al., 2020), REGCN (Li et al., 427

2021), ODE (Han et al., 2021), HiSMatch (Li 428

et al., 2022b), RETIA (Liu et al., 2023), SRPL (Li 429

et al., 2024). The rule-based models include 430

TLogic (Liu et al., 2022), TR-Rules (Li et al., 431

2023), TempValid (Huang et al., 2024), ON- 432

SEP (Yu et al., 2024). The language model-based 433

methods include ChapTER (Peng et al., 2024), 434

STORE (Zhang et al., 2024), CoH (Xia et al., 2024), 435

LLM-DA (Wang et al., 2024), GenTKG (Liao et al., 436

2024). The diffusion-based model DiffuTKG (Cai 437

et al., 2024), which is the first model to introduce 438

diffusion into TKG reasoning tasks. 439

We provide the implementation details of 440

DLTKG in Appendix A and introduce each base- 441

line model in detail in Appendix D. 442

5.2 Main Results 443

The comparative performance of various baseline 444

models on the link prediction task is detailed in 445

Table 2. DLTKG consistently outperforms the 446

main diffusion-based baseline DiffuTKG across all 447

datasets, with improvements of 19.00%, 16.60%, 448

21.52% and 23.76% in MRR, Hits@1, Hits@3, 449

and Hits@10, respectively, on ICEWS14. This 450

demonstrates the effectiveness of denoising train- 451

ing guided by the HEPs of relationships in TKGR. 452

Compared to embedding-based and language 453

model-based methods, our model DLTKG outper- 454

forms nearly all baselines, with an average MRR 455

improvement of 20.38% on ICEWS14. Further- 456

more, it surpasses the LLM-based models STORE, 457

CoH, and LLM-DA across all metrics, indicating 458

that DLTKG is more effective at capturing abstract 459

semantic relationships in TKGs. 460

When compared to rule-based models and graph 461

neural network-based models, DLTKG signifi- 462

cantly outperforms the second-best models on 463

ICEWS14 and ICEWS05-15, with MRR improve- 464

ment of 8.20% and 0.94%, respectively. Notably, 465

DLTKG shows a more substantial performance 466

gain on the ICEWS14 than on the ICEWS05-15 467
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Method
ICEWS14 ICEWS05-15 YAGO

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CyGNet† (Zhu et al., 2021) 39.86 30.11 44.02 58.10 40.42 29.44 46.06 61.60 68.98 58.97 76.80 86.98
HIP Network (He et al., 2021) 50.57 45.73 54.28 61.65 - - - - 67.55 66.32 68.49 70.37

RE-NET† (Jin et al., 2020) 38.48 28.52 42.85 58.10 44.56 34.16 50.06 64.51 66.93 58.59 71.48 86.84
xERTE (Han et al., 2020) 40.79 32.70 45.67 57.30 46.62 37.84 52.31 63.92 53.62 48.53 58.42 60.53
REGCN† (Li et al., 2021) 42.48 31.90 47.73 62.85 48.10 37.48 53.92 68.56 82.30 78.83 84.27 88.58
ODE (Han et al., 2021) 26.25 17.30 29.07 44.18 42.86 32.72 48.14 62.34 62.50 58.77 64.73 68.63
HiSMatch (Li et al., 2022b) 46.42 35.91 51.63 66.84 52.85 42.01 59.05 73.28 - - - -
RETIA (Liu et al., 2023) 45.29 34.60 50.88 66.06 52.17 40.21 59.42 73.98 - - - -
SRPL (Li et al., 2024) 56.19 50.12 59.02 67.43 - - - - - - - -

TLogic (Liu et al., 2022) 42.53 33.20 47.61 60.29 46.94 36.16 53.24 67.21 78.76 74.31 83.38 83.72
TR-Rules∗ (Li et al., 2023) 43.32 33.96 48.55 61.17 45.91 36.22 51.60 65.57 - - - -
TempValid (Huang et al., 2024) 45.78 35.50 51.34 65.06 50.31 39.46 56.71 70.55 79.72 74.64 84.78 85.73
ONSEP (Yu et al., 2024) - 33.20 46.50 57.70 - 39.00 55.10 66.80 - - - -

ChapTER (Peng et al., 2024) 33.80 - 38.00 52.70 33.10 - 36.90 52.50 - - - -
STORE (Zhang et al., 2024) 48.77 36.53 55.58 71.91 49.74 38.52 55.91 71.14 64.65 51.94 71.50 83.10
CoH (Xia et al., 2024) 43.94 33.07 49.64 64.90 49.71 38.01 56.40 71.25 - - - -
LLM-DA (Wang et al., 2024) 47.10 36.90 52.60 67.10 52.10 41.60 58.60 72.80 - - - -
GenTKG (Liao et al., 2024) - 36.85 47.95 53.50 - - - - - 79.15 83.00 84.25

DiffuTKG∗ (Cai et al., 2024) 45.39 35.88 50.12 63.56 50.74 39.73 55.51 73.17 80.98 74.25 85.63 89.41

DLTKG(Ours) 64.39 52.48 71.64 87.32 53.79 42.05 59.43 76.35 81.46 75.09 86.57 90.74

APG 8.20 2.36 12.62 15.41 0.94 0.04 0.01 2.37 -0.84 -4.06 0.94 1.33
RPG(%) 14.59 4.71 21.38 21.43 1.78 0.10 0.02 3.20 -1.02 -5.13 1.10 1.49

Table 2: Performance (%) comparison on temporal link prediction on three event-based TKG datasets (ICEWS14,
ICEWS05-15, and YAGO). APG and RPG represent the absolute and relative performance gains of our model over
the best-performing baselines, calculated as APG = Rours − Rbaseline and RPG = (Rours − Rbaseline) /Rbaseline,
where Rours and Rbaseline denote the results of our model and best-performing baselines, respectively. Best results
are in bold, and the second best are underlined. The results marked with † are from Huang et al. (2024), marked
with ∗ are from our reimplementation with default settings, and other results are retrieved from the original papers.

α (e) α (r) |P|

ICEWS14 48.5 90.22 13189
ICEWS05-15 57.96 92.03 28005
YAGO 35.09 55.00 1172

Table 3: Statistical data on three datasets. α (e) repre-
sents the percentage (%) of the target entity appearing
historically in the test set. α (r) represents the propor-
tion (%) of relationships with HEPs. |P| represents the
total number of HEPs for each dataset.

and YAGO. We attribute the primary reason to468

the differing proportions of entities, relations, and469

HEPs across the datasets, as shown in Table 3. The470

occurrence rate of target entities in the ICEWS14471

is relatively low, leading to a greater distinction be-472

tween fuzzy and target entities. By fusing historical473

information to obtain fuzzy entity representations,474

DLTKG effectively reconstructs the target entities.475

In ICEWS05-15, the abundance of high-quality476

facts at each timestamp complicates the ability of477

DLTKG to distinguish target entities from fuzzy478

ones. In the YAGO, only 55% of relationships479

Method
ICEWS14 YAGO

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DLTKG w/o fe 64.02 52.10 71.45 86.64 80.56 73.98 85.23 89.45
DLTKG w/o rh 63.97 52.12 71.31 86.50 80.93 74.82 85.02 90.23
DLTKG w/o ft 63.28 51.33 70.35 86.45 80.31 74.18 83.45 89.13

DLTKG 64.39 52.48 71.64 87.32 81.46 75.09 86.57 90.74

Table 4: Results (%) of the ablation studies on
ICEWS14 and YAGO.

have HEPs, resulting in fewer effective informa- 480

tion for DLTKG. Experiments demonstrate the ef- 481

fectiveness of denoising fuzzy entities using HEPs 482

and further enhance model accuracy through fine- 483

tuning. 484

5.3 Ablation Study 485

To validate the effectiveness of various modules 486

in DLTKG, we conduct ablation experiments on 487

ICEWS14 and YAGO. (1) "w/o fe" indicates that 488

we do not use fuzzy entities, but instead directly 489

add random noise to the target entities. (2) "w/o 490

rh" means that we remove the HEPs of relation- 491

ships and do not use guiding information. (3) "w/o 492

ft" indicates that we do not use the fine-tuning 493
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Noise Sources MRR H@1 H@3 H@10

Random noise 64.02 52.10 71.45 86.64
Random entities 63.82 51.80 71.29 86.88
Relevant entities (Ours) 64.15 52.20 71.50 87.09

Table 5: Comparison results of denoising different noise
sources on ICEWS14.

Figure 3: Generalization results on ICEWS14: Dif-
fuTKG (Cai et al., 2024) is enhanced by our different
strategy combinations.

strategy, but directly use the results from the initial494

training.495

As shown in Table 4, we have the following496

observations: (1) Removing the entity fusion and497

HEPs leads to a decrease in all metrics. This indi-498

cates that treating related entities as noise sources499

and using evolutionary history for denoising can500

effectively capture the underlying patterns between501

events. (2) After removing the fine-tuning mod-502

ule, the MRR decreases by 1.11% and 1.15% for503

ICEWS14 and YAGO, confirming the effectiveness504

of the fine-tuning structure.505

5.4 Analysis of Different Noise Sources506

We believe future event prediction is strongly cor-507

related with historical data. The process of de-508

noising noise sources (entities) can be viewed as509

a search process for historical data. Table 5 com-510

pares results with random noise, fuzzy entities with511

random fusion, and fuzzy entities with historically512

relevant fusion. The model performs worse with513

random entities as noise sources than with random514

noise, as random entities interfere with the model’s515

judgment. Additionally, correct entity information516

yields significantly better results than both incor-517

rect and absent entity information.518

5.5 Generalization Analysis519

To validate the generalization of our proposed520

strategies in DLTKG, we conduct a comparative521

analysis with DiffuTKG (Cai et al., 2024) on the522

Figure 4: Performance of different parameters.

ICEWS14 dataset. Figure 3 shows that incorpo- 523

rating the entity fusion (fe), historical evolution 524

(rh), and fine-tuning (ft) modules results in signifi- 525

cant improvements in MRR, Hits@1, and Hits@10, 526

with MRR increasing by 15.62%, 14.61%, and 527

15.40%, respectively. These results demonstrate 528

the effectiveness of each strategy: entity fusion 529

captures the relationships between entities, the his- 530

torical evolution module models the trends of event 531

development, and fine-tuning enhances reasoning 532

performance. 533

5.6 Parameter Analysis and Case Study 534

We run our model with different important hyper- 535

parameters (i.e., k, ℓ, and n) to explore the weight 536

impacts. From the Figure 4, it can be observed that 537

the influence of these parameters on model perfor- 538

mance is relatively minimal. The detailed results 539

are reported in Appendix B. 540

To facilitate the understanding of the modeling 541

mechanism of DLTKG, we provide several case 542

studies in Appendix C. 543

6 Conclusion 544

In this paper, we present DLTKG, a temporal 545

knowledge graph reasoning model based on a de- 546

noising diffusion process for future fact prediction. 547

We introduce an entity fusion strategy that aggre- 548

gates past entities into fuzzy representations, recon- 549

structed by a conditional denoising decoder. The 550

fine-tuning phase further refines the model by incor- 551

porating the shortest paths between query head en- 552

tity and candidate entities as additional conditions. 553

Empirical results on benchmark datasets demon- 554

strate that DLTKG outperforms existing methods, 555

offering superior accuracy and generalization in 556

temporal reasoning tasks. 557
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Limitations558

We demonstrate the effectiveness and generalizabil-559

ity of our DLTKG method through evaluations on560

multiple benchmarks. Nevertheless, DLTKG may561

still exhibit several limitations. On one hand, it562

uses a simple linear fusion method for generating563

fuzzy entities, and future work could explore more564

advanced strategies like weighted fusion. On the565

other hand, the one-step noise addition approach566

may be improved by investigating stepwise tech-567

niques to better capture entity uncertainties.568
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A Implementation Details792

We compute the mean reciprocal rank (MRR) and793

hits@i for i ∈ {1, 3, 10}. For a rank x ∈ N, the794

reciprocal rank is defined as 1
x , and the MRR is the795

average of all reciprocal ranks of the correct query796

answers across all queries. The metric Hits@i indi-797

cates the proportion of queries for which the correct798

entity appears under the top i candidates.799

We use the AdamW optimizer with a learning800

rate set to 0.001. The number of training epochs801

is set to 100, and if there is no improvement in802

the MRR on the validation set for 20 consecutive803

epochs, training will be terminated early. Addition-804

ally, the length of HEP is set to 3, the number of805

HEPs is set to 16, the number of candidate entities806

k in the fine-tuning module is set to 15, the total807

number of shortest paths is set to 128, and the num-808

ber of random walk steps is set to 200. The hidden809

layer dimension size d for entities, relationships,810

and timestamps is fixed at 200 across all datasets.811

B Parameter Sensitivity Analysis812

Figure 4 in Section 5.6 and Figure 5 show the im-813

pact of different parameters on model performance.814

Overall, the influence of these parameters on model815

performance is relatively minimal.816

For different lengths of HEPs, both shorter and817

longer values tend to degrade performance. This818

is attributed to the limited number of instances for819

shorter or longer HEPs in the ICEWS14. Specifi-820

cally, when ℓ = 1, the performance surpasses that821

of ℓ = 2, as there are 2.5 times more HEPs for822

ℓ = 1. Moreover, the number of historical iter-823

ations, denoted as n, also plays a crucial role in824

model performance. Excessive iterations introduce825

redundancy, which negatively impacts accuracy.826

Figure 5: The impact of different parameters on all
evaluation metrics. The pink blocks, blue blocks, and
green blocks represent the changes in the indicators of
HEPs length, the number of HEPs, and the number of
candidate entities, respectively.

As such, we set n = 16 for optimal performance. 827

Figure 4(a) presents the Hits@ metric results for 828

ICEWS14 under optimal conditions, where the per- 829

formance stabilizes within the range of [10, 30]. 830

Consequently, we investigate the influence of dif- 831

ferent k values on model performance within this 832

interval. As observed, when k exceeds 15, perfor- 833

mance begins to decline, likely due to the excessive 834

number of candidate entities, which may hinder 835

the ability of model to make accurate predictions. 836

Therefore, k = 15 is determined to be the optimal 837

choice. 838

C Case Study 839

We present two queries in Table 6. For Query 1, 840

as described in Section 4.1, we initially retrieve n 841

HEPs related to Use conventional military force, all 842

of which involve Government (Nigeria). The top 843

three predicted entities all appeared in the historical 844

data. We then fine-tune the model, leading to the 845

final prediction of Boko Haram. 846

For Query 2, we utilize r = 3 HEPs. The combi- 847

nation of HEP guidance and the associations with 848

historically relevant entities enables the model to 849

effectively predict the target entity. 850

By incorporating the HEP conditional guidance 851

mechanism, model effectively accounts for the in- 852

fluence of these conditions when denoising. The 853

fuzzy entities, which contain historical information 854

relevant to the target entity, are refined with the help 855

of HEPs, thereby enhancing the interpretability of 856

model. 857
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Query1 (Government (Nigeria), Use conventionalmilitary force, ?, 2014− 12− 02) Answer Boko Haram

p1 : BokoHaram
Threaten−−−−−−−−→

2014−05−19
Government (Nigeria)

Appeal to engage in or acceptmediation←−−−−−−−−−−−−−−−−−−−−−−−−
2014−05−22

Education (Nigeria)

p2 : BokoHaram
Make statement−−−−−−−−−−→
2014−05−21

Government (Nigeria)
Express intent to cooperate←−−−−−−−−−−−−−−−−−

2014−06−02
Citizen (Nigeria)

...
HEP

pn : Government (Nigeria)
Use conventionalmilitary force−−−−−−−−−−−−−−−−−−−−→

2014−08−18
BokoHaram

Engage innegotiation←−−−−−−−−−−−−−
2014−09−04

StephenDavis

Entity fusion
[
BokoHaram;StephenDavis;Citizen (Nigeria);Education (Nigeria);Government (Nigeria); . . . ;Muslim(Nigeria)

]
Initial prediction 1.StephenDavis; 2.BokoHaram; 3.Citizen (Nigeria); 4.T errorist Leader (BokoHaram); 5.ArmedRebel (Nigeria)

Shortest paths

Predicted results 1.BokoHaram; 2.StephenDavis; 3.Citizen (Nigeria); 4.T errorist Leader (BokoHaram); 5.Militant (Nigeria)

Query2 (Citizen (Nigeria),Make an appeal or request, ?, 2014− 12− 02) Answer Government (Nigeria)

p1 : KashimShettima
Make statement−−−−−−−−−−→
2014−05−23

Head of Government (Nigeria)
Praise or endorse−−−−−−−−−−−→

2014−09−30
Government (Nigeria)

Make an appeal or request←−−−−−−−−−−−−−−−−
2014−09−30

Head of Government (Nigeria)

p2 : Citizen (Nigeria)
Investigate←−−−−−−−−
2014−08−04

Court Judge (Nigeria)
Praise or endorse−−−−−−−−−−−→

2014−08−11
Ministry (Nigeria)

Make statement−−−−−−−−−−→
2014−08−11

Court Judge (Nigeria)

...

pn : Citizen (Nigeria)
Make an appeal or request−−−−−−−−−−−−−−−−→

2014−09−22
Government (Nigeria)

Engage innegotiation−−−−−−−−−−−−−→
2014−09−23

BokoHaram

HEP

Make statement←−−−−−−−−−−
2014−09−24

Government (Nigeria)

Entity fusion [Citizen (Nigeria);BokoHaram;Ministry (Nigeria);Head of Government (Nigeria); ...;Court Judge (Nigeria)]

Initial prediction 1.BokoHaram; 2.Ministry (Nigeria); 3.Head of Government (Nigeria); 4.Government (Nigeria); 5.Court Judge (Nigeria);

Shortest paths

Predicted results 1.Government (Nigeria); 2.BokoHaram; 3.Ministry (Nigeria); 4.Head of Government (Nigeria); 5.Court Judge (Nigeria)

Table 6: Two case studies. We report the prediction results of DLTKG. The green font indicates the correct answers,
while the orange font represents entities that appear in HEP.

D Baselines858

The comparison of TKG reasoning models with859

our work is presented as follows:860

CyGNet (Zhu et al., 2021) introduces time-861

aware replication generation, combining new facts862

with repeated pattern recognition to improve pre-863

diction accuracy. 864

HIP Network (He et al., 2021) integrates tem- 865

poral, structure and repetitive patterns, dynami- 866

cally updates relationships, and optimizes multi- 867

dimensional score prediction. 868

RE-NET (Jin et al., 2020) combines event en- 869

coding and neighbor aggregation using an autore- 870
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gressive architecture to sequentially reason about871

future facts.872

xERTE (Han et al., 2020) is based on query873

subgraphs and integrates temporal attention and874

reverse update, taking into account both accuracy875

and interpretability.876

REGCN (Li et al., 2021) combines relation-877

aware convolution with gated recurrence to dy-878

namically model entity relations and fuse static879

attributes.880

ODE (Han et al., 2021) extends multi-relation881

graph convolution to continuous time, integrates882

temporal structures, and models the dynamic for-883

mation and resolution of relationships.884

HiSMatch (Li et al., 2022b) regards temporal885

knowledge graph reasoning as structural matching,886

integrating dual encoders with entity prior informa-887

tion.888

RETIA (Liu et al., 2023) addresses the issues889

of relationship modeling and overfitting through890

dual hyper-relation subgraphs and dual interaction891

modules.892

SRPL (Li et al., 2024) combines dependency-893

aware sequences with time intervals to guide repet-894

itive pattern learning and to capture both temporal895

proximity dependencies and irregular intervals.896

TLogic (Liu et al., 2022) extracts logical rules897

based on temporal random walks, taking into ac-898

count both temporal consistency and inductiveness,899

and supports rule migration and cross-set predic-900

tion.901

TR-Rules (Li et al., 2023) improves confidence902

accuracy and introduces non-circular rules to en-903

hance rule diversity , as well as model interpretabil-904

ity and predictive capability.905

TempValid (Huang et al., 2024) dynamically906

models rule confidence based on time functions907

and combines adversarial and time-aware negative908

sampling to improve learning efficiency.909

ONSEP (Yu et al., 2024) integrates dynamic910

causal rule mining and dual history enhanced gen-911

eration.912

ChapTER (Peng et al., 2024) integrates con-913

trastive learning and prefix tuning, and uses virtual914

time prefixes to achieve low-parameter fine-tuning915

and multi-scenario adaptation.916

STORE (Zhang et al., 2024) combines time-917

aware semantic sampling and virtual tokens, using918

multi-head attention to jointly optimize both se-919

mantic and topological representations of temporal920

knowledge graphs.921

CoH (Xia et al., 2024) leverages higher-order 922

historical information to enhance temporal reason- 923

ing capabilities in large language models. 924

LLM-DA (Wang et al., 2024) utilizes large lan- 925

guage models to extract temporal rules, enabling 926

dynamic adaptation to ever-changing knowledge. 927

GenTKG (Liao et al., 2024) integrates tempo- 928

ral logic rule retrieval and few-shot instruction 929

fine-tuning, connecting temporal knowledge graphs 930

with large language models. 931

DiffuTKG (Cai et al., 2024) frames temporal 932

knowledge graph reasoning as a denoising pro- 933

cess for future fact sequences. It restores target 934

facts using conditional sequence encoding and a 935

Transformer-based denoiser, while applying uncer- 936

tainty regularization to reduce prediction bias and 937

handle rare or unseen facts.. 938
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