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ABSTRACT
Due to significant advantages in terms of storage cost and query
speed, hashing learning has attracted much attention for image re-
trieval. Existing hashing methods often acquiescently use long hash
codes to guarantee performance, which greatly limits flexibility and
scalability. Nevertheless, short hash codes are more suitable for de-
vices with limited computing resources. When these methods use
extremely short hash codes, it is difficult to meet the actual perfor-
mance demand due to the information loss caused by the avalanche
of dimension truncation. To address this issue, we propose a novel
stepwise refinement short hashing (SRSH) for image retrieval that
extracts critical features from high-dimensional image data to learn
high-quality hash codes. Specifically, we propose a three-step cou-
pled refinement strategy to relax a single hash function into three
more flexible mapping matrices, such that the hash function can
have more flexible to approximate precise hash codes and alleviate
the information loss. Then, we adopt pairwise similarity preserving
to promote coarse and fine hash codes to inherit intrinsic semantic
structure from original data. Extensive experiments demonstrate
the superior performance of SRSH on four image datasets.
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1 INTRODUCTION
With the growing amount of high-dimensional data, image retrieval
[7, 13, 47] has been widely used in the practical application of large-
scale data analysis. Due to significant advantages in terms of storage
cost and query speed, image hashing [6, 7, 48] is currently a hot
issue in the field of image retrieval. The goal of learning to hash
[30, 34] is to embed raw images and semantic intrinsic associations
into a string of compact hash codes by adopting the hash function.
The similarities between hash codes can be calculated through
Hamming distance which greatly accelerates computation speed
and reduces space complexity. Therefore, learning to hash is widely
used in large-scale image retrieval [8], cross-modal retrieval [17,
18, 24, 43], image classification [35, 36, 41], multi-view learning
[2–4, 40], and so on[10–12].

Fine hash codes

Coarse hash codes

Aggregated features

Original features

Figure 1: Illustration of the proposed SRSH. Similar to a siev-
ing process physically comparing the size of particles with
the aperture of a sieve, we design a three-step coupled refine-
ment strategywith constraints to shrink the discrete solution
space from loose to strict. Therefore, we can learn a richer
set of hash functions to enhance discrimination.

Learning to hash requires that the learned hash codes should
be as compact and short as possible. In practice, existing hashing
methods [26, 31, 38] usually learn default long hash codes (i.e., 64
or 128 bits) to represent image data. The computational complexity
of the hashing model is usually approximately equal to O(𝑙𝑛) or
O(𝑙2𝑛) (where 𝑙 is hash length and 𝑛 is the number of training data).
When facing with large-scale image data, the long hash codes is
bound to cause large computational consumption, which greatly
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limit flexibility and scalability. Contrarily, short hash codes are
more suitable for devices with limited computing resources and
have more fast training and query speed. For the training images
from 𝑐 categories, the length of hash codes should be no less than
𝑙𝑜𝑔2𝑐 , otherwise the hash length will not be able to distinguish all
categories of samples. Therefore, we define the short-length 𝑙 as
an integer slightly larger than 𝑙𝑜𝑔2𝑐 . For example, if a dataset has
10 categories, the short-length of hash codes is 4 bits. However,
when the length of hash code is extremely short, the retrieval per-
formance will degrade dramatically due to the large information
loss. Therefore, how to mitigate the large amount of information
loss caused by short hash codes is a great challenge.

To overcome the above drawbacks, we propose a novel stepwise
refinement short hashing (SRSH) framework that is tailored
for learning high-quality short hash codes. As shown in Fig 1, our
proposed SRSH is the process of gradually reducing the range of
solution sets. That is, SRSH can progressively refine the original
features and endow more freedom for hash function so that it can
fit and address the problem of large information loss well as much
as possible. Specifically, different from the traditional single hash
strategy, SRSH refines features step by step via a three-step coupled
strategy with constraints from loose to strict, thereby learning fine
hash codes to mitigate large information loss caused by dimensional
avalanches. In summary, the main contributions of our proposed
method are summarized as follows:

• Wepropose a novel stepwise refinement short hashing (SRSH).
For the first time, we propose a three-step coupled refine-
ment strategy, which can shrink the discrete solution space
and is more likely to identify stronger features by learning a
richer set of projections.

• We propose to relax a single hash mapping matrix into three
more flexible mapping matrices, which can make the hash
function to have more flexible to fit short hash codes and
alleviate the information loss.

• A plentiful experiments on four widely used large-scale
datasets, i.e., CIFAR-10, MNSIT, NUS-WIDE, and Caltech-
256, demonstrate that SRSH outperforms the state-of-the-
arts with different hash lengths, especially, short-length.

2 RELATEDWORK
During past years, image hashing mainly has two branches, i.e.,
unsupervised hashing [17, 33] and supervised hashing [15, 16].
Since unsupervised hashing [32] usually does not require intensive
data annotation, this is more attractive in practice. For example,
unsupervised contrastive cross-modal hashing [17] proposes a ro-
bust contrastive learning method to overcome the false-negative
pair problem, thereby improving the quality of hash codes for un-
supervised cross-modal retrieval. However, thanks to the strong
supervision ability of label information, supervised hashing has
made tremendous progress. For example, supervised discrete hash-
ing (SDH) [31] adopts linear classifier to guide the generation of
hash codes. To speed up the algorithm and improve the retrieval
performance, fast supervised discrete hashing (FSDH) [9] trans-
forms labels into hash codes and fast scalable supervised hashing
(FSSH) [25] utilizes a pre-computed intermediate term to avoid
the use of large 𝑛 × 𝑛 similarity matrices. Nevertheless, the static

predefined similarity matrix could not accurately describe the true
similarity of images. Supervised adaptive similarity matrix hashing
(SASH) [34] is proposed that dynamically learns the adaptive simi-
larity matrix to guide the generation of hash codes. To excavate the
intrinsic latent features and the underlying topological structure,
ordinal-preserving latent graph hashing (OLGH) [45] utilizes the
latent representation to preserve the high-order topological struc-
ture. And probability ordinal-preserving semantic hashing (POSH)
[46] proposes a novel ordinal-preserving hashing concept based on
the non-parametric Bayesian theory to further explore triplet-level
ordinal structure. Moreover, to overcome the problem of conceptual
drift in non-stationary environments, deep incremental hashing
(DIH) [37] is proposed that captures high-level descriptive features
from images to learn discriminative binary codes.

Though existing hashing methods [39] can achieve efficient re-
trieval and storage, theymainly have two limitations: (1)When hash
codes are long, it will inevitably lead to higher computational com-
plexity. (2) When hash codes is extremely short, the performance
is fairly poor and difficult to meet the demand. Therefore, how to
learn high-quality short hash codes for scalable image retrieval is a
great challenge [29]. To meet the performance and storage require-
ments in practical applications, supervised short length hashing
(SSLH) [23] proposes a mutual reconstruction strategy to reduce
the loss of semantic information, and a robust estimator term to
enhance the robustness of short hash codes. Reinforced short length
hashing (RSLH) [22] unifies mutual regression, semantic pairwise
similarity, and a relaxed strategy for learning high-quality short
hash codes. However, these two short hashing methods are not
flexible and scaleable for large-scale image retrieval due to dis-
crete cyclic coordinate descent (DCC) optimization. We also note
that the existing hashing prototype directly learns a single-layer
hash function to generate compact low-dimensionality hash codes
from high-dimensional image data. This sudden dimensionality
avalanche inevitably results in massive discriminative information
loss, especially, the extremely low length of hash codes. In addition,
some researchers propose strongly constrained discrete hashing
(SCDH) [5], i.e., using two extra strong hash constraints (bit balance
and de-correlation constraints) on hash codes instead of a simple
binary discretization constraint can encourage the generation of
compact high-quality binary codes as much as possible to achieve
better retrieval accuracy. However, hash codes learned from feature
data is difficult to inherit these two strong constraint properties
in one step due to this strict hash constraint problem. Overall, for
short hashing practical applications, the problem of information
loss is very serious due to the uncontrolled environment of image
collection and the avalanche of dimension truncation.

3 PROPOSED METHOD
3.1 Notation
For image retrieval task, 𝑿 = [𝒙1, 𝒙2, · · · , 𝒙𝑛] ∈ R𝑑×𝑛 is denoted
as training set with 𝑛 images, where 𝑑 is the feature dimension of
each instance. The corresponding ground-truth class label matrix
is represented as 𝑳 = [𝒍1, 𝒍2, · · · , 𝒍𝑛] ∈ R𝑐×𝑛 , where 𝑐 is the number
of classes. Y = [𝒚1,𝒚2, · · · ,𝒚𝑚] ∈ R𝑑×𝑚 is denoted as query set
with𝑚 images. Hashing learning methods aim to learn hash codes
𝑩 = [𝒃1, 𝒃2, · · · , 𝒃𝑛] ∈ {−1, 1}𝑙×𝑛 in Hamming space to preserve
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the intrinsic similarities from the original feature space. Follow the
existing hashing methods, we suppose all image instances to be zero
centered, i.e.,

∑𝑛
𝑖=1 𝒙𝑖 = 0. To capture the non-linear underlying

structure from the image instances, we adopt a popular kerneliza-
tion operation [20] (such as RBF kernel mapping). In particular, we
randomly choose 𝑘 points as anchors (i.e., 𝒂 𝑗 ) from the training
images. The 𝑑-dimension feature of each image can be denoted as
a kernel feature as

𝜙 (𝒙𝑖 ) = [𝑒𝑥𝑝 (
∥𝒙𝑖 − 𝒂1∥22

−2𝜎2
), ..., 𝑒𝑥𝑝 (

∥𝒙𝑖 − 𝒂𝑘 ∥22
−2𝜎2

)]⊤ (1)

where 𝜎 = 1
𝑛𝑘

∑𝑛
𝑖=1

∑𝑘
𝑗=1 ∥𝒙𝑖 − 𝒂 𝑗 ∥2 is the kernel width. For the

sake of convenience, we use 𝑯0 to represent 𝜙 (𝑿 ).

3.2 Formulation
The existing hashing methods project high-dimensional data into
low-dimensional hash codes by a single-layer hash function, which
could result in a large volume of the kernel discriminative infor-
mation loss and the representation error. Particularly, when the
length of hash codes is extremely short, the retrieval accuracy of
existing methods will degrade dramatically due to the information
loss caused by the avalanche of dimension truncation. To address
the limitation, we propose a three-step coupled strategy with con-
straints from loose to strict to refine features and enhance the
representation capability.

Aggregation feature: A single-layer hashing function can di-
rectly map high-dimensional image features with size R𝑑×𝑛 into
low-dimensional hash codes with size R𝑙×𝑛 . To alleviate the large
loss of discriminative information caused by dimensionality avalanche,
we learn the transition subspace to aggregate discriminative fea-
tures. The motivation for introducing the transitional transforma-
tion space is that learning the hash function for three relatively
simple tasks is more flexible than learning a hash projection ma-
trix for a complex task. We thus use the first-layer hash function
W1 ∈ R𝑙×𝑘 to learn aggregated features 𝑯1 as follows

min
𝑾1,𝑯1

∥𝑯1 −𝑾1𝑯0∥2𝐹 + 𝜆∥𝑾1∥2𝐹 (2)

where 𝜆 is a regularization parameter.
Coarse hash codes: To further learn a set of discrete hash codes,

we use the second-layer hash function to transform the aggregated
discriminative information extracted in the first layer into coarse
hash codes, meanwhile preserving the intrinsic similarities in the
original space. Therefore, we enforce the discrete binary constraint
to learn coarse hash codes. The quality of generated fine hash codes
in the third layer can be improved. Formally, coarse hash codes 𝑯2
can be written as

min
𝑾2,𝑯2

∥𝑯2 −𝑾2𝑾1𝑯0∥2𝐹 + 𝜆(∥𝑾1∥2𝐹 + ∥𝑾2∥2𝐹 )

⇒ min
𝑾2,𝑯2

∥𝑯2 −𝑾2𝑯1∥2𝐹 + 𝜆∥𝑾2∥2𝐹

𝑠 .𝑡 . 𝑯2 ∈ {−1, 1}𝑙×𝑛

(3)

where 𝜆 is a regularization parameter and𝑾2 is the second-layer
hash function.

Fine hash codes: To unleash the full potential of hash codes
and improve representation abilities, we impose bit de-correlation
𝑯⊤
3 𝑯3 = 𝑛𝑰 and bit balance 1𝑯3 = 0 [5] to obtain more efficient

fine hash codes. We utilize structure consistency mapping𝑾3 as
the third-layer hash function. It can integrate the information of
the previous two layers and effectively capture the resemblance
among these two hash codes to output more compact fine hash
codes𝑯3. For the value of structure consistency, it should not be the
identity matrix at least. The structure consistency mapping should
take some of the responsibility, such that hash codes from the same
classes can be kept close together. The final fine hash codes can
update as follows

min
𝑾3,𝑯3

∥𝑯3 −𝑾3𝑾2𝑾1𝑯0∥2𝐹

+ 𝜆(∥𝑾1∥2𝐹 + ∥𝑾2∥2𝐹 + ∥𝑾3∥2𝐹 )
⇒ min

𝑾3,𝑯3
∥𝑯3 −𝑾3𝑯2∥2𝐹 + 𝜆∥𝑾3∥2𝐹

𝑠 .𝑡 .𝑯3 ∈ {−1, 1}𝑙×𝑛, 1𝑯3 = 0,𝑯⊤
3 𝑯3 = 𝑛𝑰

(4)

We consider the three-layer hash mapping to be equally important.
Therefore, we can obtain the following problem

min
𝑾𝑖 ,𝑯𝑖

3∑︁
𝑖=1

∥𝑯𝑖 −𝑾𝑖𝑯𝑖−1∥2𝐹 + 𝜆(
3∑︁

𝑖=1
∥𝑾𝑖 ∥2𝐹 )

𝑠 .𝑡 . 𝑯2 ∈ {−1, 1}𝑙×𝑛,𝑯3 ∈ {−1, 1}𝑙×𝑛,
1𝑯3 = 0,𝑯⊤

3 𝑯3 = 𝑛𝑰

(5)

Similarity preserving: To reduce semantic information loss,
it is expected to deliver rich feature and semantic information to
enhance discriminative hash code learning. If two images

(
𝑯0𝑖 ,𝑯0𝑗

)
are similar in the feature space, they should have similar hash
codes

(
𝑯3𝑖 ,𝑯3𝑗

)
in Hamming space, and vice versa. We use cosine

similarity 𝑠𝑖 𝑗 to measure the semantic similarity between sample
pairs

(
𝒙𝑖 , 𝒙 𝑗

)
, i.e., 𝑠𝑖 𝑗 = cos

(
𝒚𝑖 ,𝒚 𝑗

)
. The semantic similarities can

be transformed as min
∑𝑛
𝑖,𝑗=1

(
𝒉𝑇
𝑖
𝒉 𝑗/𝑙 − 𝑠𝑖 𝑗

)2
, due to ∥𝒉𝑖 ∥ =

√
𝑙 .

Hence, to embed the semantic information into coarse and fine hash
codes as much as possible, we adopt the inner product between
coarse and fine hash codes to preserve similarity:

min
𝑯2,𝑯3

∥𝑯⊤
2 𝑯3 − 𝑙𝑳⊤𝑳∥2𝐹 (6)

We can observe that this way can avoid using a large 𝑛×𝑛 pairwise
similarity matrix. Obviously, space complexity and computational
cost can be reduced during optimization.

Overall SRSH model: Based on the above insights, the pro-
posed SRSH refines the original features hierarchically to reduce
the information loss of short hash codes, and then further inherits
the intrinsic similarity information to obtain high discriminant fine
hash codes. Afterward, SRSH can be formulated as

min
𝑾𝑖 ,𝑯𝑖

3∑︁
𝑖=1

∥𝑯𝑖 −𝑾𝑖𝑯𝑖−1∥2𝐹 + 𝜆

3∑︁
𝑖=1

∥𝑾𝑖 ∥2𝐹

+ 𝛼 ∥𝑯⊤
2 𝑯3 − 𝑙𝑳⊤𝑳∥2𝐹

𝑠 .𝑡 . 𝑯2 ∈ {−1, 1}𝑙×𝑛,𝑯3 ∈ {−1, 1}𝑙×𝑛,

1𝑯3 = 0,𝑯𝑇
3 𝑯3 = 𝑛𝑰

(7)

In summary, SRSH adopts a three-step coupled refinement strat-
egy with constraints to shrink the discrete solution space from
loose to strict and learns a richer set of hash functions to enhance
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discrimination ability of short-length hash codes. Specifically, we
aggregate beneficial feature information in the first-layer transition
subspace and refine coarse hash codes in the second-layer Ham-
ming space. Finally, we learn fine hash codes with strong hash
constraints, such that the learned fine hash codes can not only
capture the low-level feature distributions but also be correlated
with high-level semantics.

3.3 Optimization
In this subsection, we represent how the challenging discrete op-
timization problems of our SRSH are effectively solved. From the
objective function, it can be observed each sub-problem is convex.
The overall objective function (7) can be optimized by the itera-
tive optimization strategy. Specifically, we update each variable
to be solved while fixing the others and iterate this process until
convergence.
▶ Step-1 update {𝑾𝑖 }3𝑖=1-subproblem:

Fixing other variables variables, {𝑾𝑖 }3𝑖=1-subproblem of (7) can
be rewritten as

min
𝑾𝑖

∥𝑯𝑖 −𝑾𝑖𝑯𝑖−1∥2𝐹 + 𝜆∥𝑾𝑖 ∥22 (8)

Let its derivative with respect to𝑾𝑖 to zero, the closed form solution
of𝑾𝑖 for problem (8) is

𝑾𝑖 = (𝑯𝑖𝑯
⊤
𝑖−1) (𝑯𝑖−1𝑯⊤

𝑖−1 + 𝜆𝑰 )−1 (9)

▶ Step-2 update 𝑯1-subproblem:
Fixing other variables variables {𝑾𝑖 }3𝑖=1 and {𝑯𝑖 }3𝑖=2,𝑯1-subproblem

of (9) with respect to 𝑯1 can reduce to the following formulation

min
𝑯1

2∑︁
𝑖=1

∥𝑯𝑖 −𝑾𝑖𝑯𝑖−1∥2𝐹 (10)

Taking the partial derivative of Eq. (10) with respect to 𝑯1 and
setting it to zero, the closed form solution can be obtained as follows

𝑯1 = (𝑾⊤
2 𝑾2 + 𝑰 )−1 (𝑾1𝑯0 +𝑾⊤

2 𝑯2) (11)

▶ Step-3 update 𝑯2-subproblem:
Fixing other variables variables {𝑾𝑖 }3𝑖=1 and 𝑯𝑖 (i=1, 3), 𝑯2-

subproblem can further reduce to the following formulation

min
𝑯2

3∑︁
𝑖=2

∥𝑯𝑖 −𝑾𝑖𝑯𝑖−1∥2𝐹 + 𝛼 ∥𝑯⊤
2 𝑯3 − 𝑙𝑳⊤𝑳∥2𝐹

𝑠 .𝑡 . 𝑯2 ∈ {−1, 1}𝑙×𝑛
(12)

Setting the derivative of Eq. (12) with respect to 𝑯2 to zero, and we
can obtain

𝑯2 = 𝑠𝑖𝑔𝑛(𝑾2𝑯1 +𝑾⊤
3 𝑯3 + 𝛼𝑙𝑯3𝑳

⊤𝑳) (13)

▶ Step-4 update 𝑯3-subproblem:
Fixing other variables variables {𝑾𝑖 }3𝑖=1 and {𝑯𝑖 }2𝑖=1,𝑯3-subproblem

of (7) can be rewritten as

min
𝑯3

3∑︁
𝑖=2

∥𝑯𝑖 −𝑾𝑖𝑯𝑖−1∥2𝐹 + 𝛼 ∥𝑯⊤
2 𝑯3 − 𝑙𝑳⊤𝑳∥2𝐹

𝑠 .𝑡 . 𝑯3 ∈ {−1, 1}𝑙×𝑛, 1𝑯3 = 0,𝑯3𝑯
𝑇
3 = 𝑛𝑰

(14)

With simple matrix manipulation, Eq.(18) can be transformed as

max
𝑯3

𝑯3 (𝑾⊤
3 𝑯2 + 𝛼𝑙𝑯2𝑳

⊤𝑳)⊤

𝑠 .𝑡 . 𝑯3 ∈ {−1, 1}𝑙×𝑛, 1𝑯3 = 0,𝑯⊤
3 𝑯3 = 𝑛𝑰

(15)

Let 𝑬 = (𝑾⊤
3 𝑯2 + 𝛼𝑙𝑯2𝑳⊤𝑳)⊤. Thereupon, to better solve the

closed-form solution, we drop out the discrete constraint and obtain
the following the formula.

max
𝑯3

𝑯3𝑬 𝑠 .𝑡 . 1𝑯3 = 0,𝑯⊤
3 𝑯3 = 𝑛𝑰 (16)

Its the closed-form solution is

𝑯3 =
√
𝑛[𝑼 ,˜𝑼 ] [𝑽 ,˜𝑽 ]𝑇 (17)

Here, 𝑼 = [𝑼1, 𝑼2, ..., 𝑼𝑙 ] and 𝑽 = [𝑽1, 𝑽2, ..., 𝑽𝑙 ] are calculated by
the SVD of 𝑱 𝑬 , where 𝑱 = 𝑰𝑛 − 1

𝑛 1𝑛1
⊤
𝑛 , i.e.,

𝑱 𝑬 = 𝑼𝚺𝑼⊤ =
∑︁𝑟

𝑖=1
𝜎𝑖𝑢𝑘𝑣

𝑇
𝑘

(18)

where eigenvalues is ordered by 0 ≥ 𝜎
𝑙
≥ · · · ≥ 𝜎1. ˜𝑼 and˜𝑽 can be

obtained by the Gram-Schmidt process. Note that ˜𝑼 and ˜𝑫 will be
empty if 𝑙 = 𝑙 .

Algorithm 1 Stepwise Refinement Short Hashing
Require: Training set 𝑿 with label matrix 𝑳, query set 𝒀 , hash

length 𝑙 , and the number of anchors 𝑘
1: Parameter: 𝛼 and 𝜆;
2: Initialize:𝑾𝑖 and 𝑯𝑖 ;
3: Obtain kernel features 𝑯0 by kernel trick;
4: repeat
5: Update𝑾𝑖 via (9);
6: Update 𝑯1 via (11);
7: Update 𝑯2 via (13);
8: Update 𝑯3 via (15);
9: until Satisfy the stop criteria;

Ensure: Hash function𝑾𝑖 and hash codes 𝑯𝑖 .

3.4 Computational Complexity
The computational complexity of our SRSH is built on top of six
optimizing sub-problems. Since SRSH has fast convergence prop-
erty, the number of iteration 𝑡 is small. Hence, we only concern the
complexity of each iteration. Here, the feature dimension is 𝑘 , the
number of classes is 𝑐 , and 𝑙 is hash length. For the𝑾1-subproblem,
the main complexity is𝑂

(
𝑛𝑙𝑘 + 𝑛𝑘2 + 𝑙3)

)
. For the𝑾2-subproblem,

the complexity is 𝑂
(
2𝑛𝑙2 + 𝑙3)

)
. For the𝑾3-subproblem, the main

complexity is 𝑂
(
2𝑛𝑙2 + 𝑙3)

)
. For the 𝑯1-subproblem, the complex-

ity is 𝑂
(
2𝑙3 + 𝑛𝑙𝑘 + 𝑛𝑙2)

)
. For the 𝑯2-subproblem, the complexity

is 𝑂
(
2𝑐𝑙𝑛 + 𝑛𝑙2)

)
. For the 𝑯3-subproblem, the main complexity is

the SVD of a 𝑙 × 𝑛 matrix, whose complexity is O(𝑙2𝑛). In practice,
𝑘 ≪ 𝑛 and 𝑐 and 𝑙 are small. Hence, the computation complexity is
linear to 𝑛, and SRSH is indeed highly efficient for large-scale data.
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3.5 Convergence Analysis
For the convergence analysis, the six subproblems corresponding
to all variables are convex with respect to one variable and have
a closed-form optimal solution. We can easily know the whole
objective function is monotonously decreasing for each iteration.
In addition, the objective function has a lower bound of zero. Ac-
cording to the bounded monotone convergence theorem, SRSH can
converge to at least one local minimum.

4 EXPERIMENTS
4.1 Datasets
We perform experiments on four large-scale datasets, i.e., CIFAR-10
[27], MNIST [42], NUS-WIDE [1], and Caltech-256 [46].

CIFAR-10 consists of 60000 images from 10 classes collected
from 80 million tiny images. Each class has 6000 images. We employ
a 512-dimension GIST feature vector to represent each image, which
is extracted from the original color image with the size of 32 × 32.
For CIFAR-10, we randomly select 1000 images used for retrieval
and the rest of 59000 images as the training set.MNIST is composed
of 70000 handwritten digits images from 10 classes (i.e., from 0 to 9).
In our experiments, we crop and normalize each image to 28 × 28,
and then employ a 784dimensional feature vector to represent each
image. For MNIST, we randomly choose 1000 images as the query
set and the rest of 69000 images as the training set. NUS-WIDE is
collected from a real-world large-scale multi-label image dataset
Flickr, which contains 269648 images with 81 ground-truth labels.
Following the setting in [31], we choose the 21 most frequent labels
with 195834 images to evaluate the effect. In our experiments, we
use a 500-dimensional bag-of-words feature vector to represent
each image. For NUS-WIDE, we randomly sample 2100 images as
the query set, and the remained images as the training set. In this
multi-label dataset, if two images share at least one common label,
they are semantically similar, and vice versa. Caltech-256 [45]
contains 29780 samples from 256 classes. Each category has at least
80 images. We extract the 1024-dimensional deep features by using
CNN pre-trained on ImageNet, which are obtained from the last
fully-connected layer of the neural network. In our experiments,
we randomly select 1000 images as the query set and the rest as the
training set.

4.2 Experimental Setting
To demonstrate the effectiveness, we compare our method SRSH
with some representative hashing methods, including FSDH [9],
FSSH [25], SSLH [23], RSLH [22], SCDH [5], POPSH [46] , OLGH
[45], SASH [34], and LBSE [21]. Since SRSH is a shallow method,
we do not compare them with deep hashing methods. Since SSLH,
RSLH, and SASH have high space complexity, we randomly sample
2000 images as training sets on the CIFAR-10 and MNIST datasets,
and sample 10500 images on the NUS-WIDE dataset. For fairness,
we use the public codes with default parameters provided by the
respective authors. In the experiments, the length 𝑙 of short hash
codes is a little bigger than 𝑙𝑜𝑔2𝑐 , which are 3.32, 3.32, 4.39, and 8
on the CIFAR-10, MNIST, NUS-WIDE, and Caltech256, respectively.
Hence, we set short-length as 4, 4, 5, and 8 bits. The maximum bit
length is set to 64. All experiments are performed on our windows

PC with an Intel Core i9 (3.2GHz) CPU and 64GB RAM. For our
SRSH, we set anchors as 𝑘 = 1500. According parameter sensi-
tivity analysis, on four datasets, we set 𝛼 and 𝜆 as {10−2, 10−5},
{10−2, 10−4}, {102, 10−4}, and {10−1, 1}, respectively.

4.3 Evaluation Protocols
We use four widely used evaluation protocols [19], i.e., mean aver-
age precision (mAP) [14], Precision@topN [44], NDCG@100, and
precision-recall curves [28]. mAP is the mean of the overall aver-
age precision values. Precision@topN represents precision of the
top 𝑁 retrieved samples returned to the users. NDCG@100 rep-
resents normalized discounted cumulative gain at rank 100. For
these evaluation protocols, a larger value means better retrieval
performance.

4.4 The mAP Results
We report the mAP results with different bits on four benchmark
datasets in the left side of tables 1 to 4, respectively. According to
these experimental results, SRSH outperforms all compared meth-
ods in most cases, which show its effectiveness. Due to the three-
step coupled refinement strategy, for short-length codes, we obtain
absolute boosts of 5.53%, 1.89%, 3.14%, and 2.48% on four datasets,
respectively. It indicates that the proposed SRSH has a distinct
advantage for short-length hash codes. We can observe that the
mAP is increased and the improvement of mAP reduces, with the
increase in length of hash codes. For large class image data, all meth-
ods require longer hash codes to achieve satisfactory performance.
Moreover, since the state-of-the-art short-length hashing methods
(i.e., SSLH, RSLH, and SASH) use the pairwise similarity matrix to
preserve semantics, these methods can result in high space com-
plexity and insufficient memory. We thus randomly sample some
images for training instead of using the entire training set. Clearly,
they cannot achieve satisfactory performance.

4.5 The Precision@TopN Results
The Precision@TopN results of all compared methods on four
datasets are summarized in the middle side of tables 1 to 4, respec-
tively. the proposed SRSH achieves the highest precision results
in terms of Precision@5000 on the first three datasets and Pre-
cision@50 on the last one. It indicates SRSH can extract critical
features from high-dimensional image data to learn high-quality
short-length hash codes, thereby improving retrieval performance.
Specifically, compared to the state-of-the-art hashing methods, for
short-length hash codes, we obtain the boosts of 5.05%, 2.24%, 0.75%,
and 4.23% on all datasets, respectively. As the increase in length of
hash codes, Precision@TopN is also increased. From these results, it
can demonstrate that our SRSH can achieve very delightful retrieval
performance, when we use short-length hash codes.

4.6 The NDCG@100 Results
The NDCG@100 results of all compared methods on four datasets
are summarized in the right side of tables 1 to 4, respectively. We
can see that there is a trend towards better NDCG@100 results for
all comparison methods, as the bit length increases. It indicates
that long-length hash codes can provide more discriminative infor-
mation. For short-length hash codes, our SRSH method can obtain
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Table 1: The retrieval performance results (%) with different bits on the CIFAR-10 dataset. The best values are shown in bold.

Method mAP Precision@5000 NDCG@100
4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

SDH [31] 25.11 31.45 38.24 42.22 45.23 29.37 39.36 46.60 49.92 52.29 31.34 42.02 49.30 51.49 53.52
FSDH [9] 26.50 33.95 37.82 42.40 46.22 31.58 40.74 45.21 49.75 53.16 31.90 42.70 46.71 51.85 53.91
FSSH [25] 22.25 37.49 60.21 65.85 67.03 19.52 33.98 53.32 59.63 60.03 19.73 34.19 53.12 59.68 60.01
SSLH [23] 20.52 26.68 33.60 37.86 39.98 22.29 33.48 44.49 47.97 49.48 23.06 33.62 44.31 47.97 49.76
RSLH [22] 27.48 30.64 28.81 44.92 46.47 21.34 21.80 39.88 32.06 34.86 26.99 30.34 39.85 44.79 46.63
SCDH [5] 55.12 62.53 65.54 68.41 69.17 49.76 57.93 59.53 61.36 62.13 49.78 57.97 59.57 61.33 62.40
POPSH [46] 34.80 60.75 64.33 67.94 69.14 33.21 55.66 59.71 63.29 63.77 33.39 55.95 60.61 63.29 63.85
OLGH [45] 47.46 61.22 66.40 68.31 64.22 42.92 56.15 60.44 63.56 62.11 42.84 56.12 60.50 63.80 63.16
SASH [34] 15.87 16.89 21.36 24.42 27.11 18.20 21.56 28.25 34.14 39.46 17.99 21.36 27.74 33.46 38.76
LBSE[21] 51.23 61.50 68.07 69.49 71.09 46.23 55.73 62.52 62.29 64.07 46.43 55.77 62.54 62.97 64.21
Our SRSH 60.65 64.93 68.11 73.24 73.47 54.81 60.05 64.04 66.88 66.80 54.90 59.95 64.39 66.87 66.78

Table 2: The retrieval performance results (%) with different bits on the MNIST dataset. The best values are shown in bold.

Method mAP Precision@5000 NDCG@100
4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

SDH [31] 51.98 79.17 90.62 92.91 93.24 53.74 53.74 92.15 93.76 93.59 54.30 81.10 91.52 92.71 93.05
FSDH [9] 69.18 89.91 91.38 93.57 93.99 71.78 71.78 92.99 93.02 93.55 71.77 90.60 92.63 93.40 93.85
FSSH [25] 37.33 37.64 94.57 94.59 95.17 36.94 36.94 93.57 93.43 94.13 36.67 36.87 93.56 93.48 91.15
SSLH [23] 37.33 37.64 94.57 94.59 95.17 36.94 36.94 93.57 93.43 94.13 36.67 36.87 93.56 93.48 91.15
RSLH [22] 72.26 66.86 89.31 92.46 93.66 67.71 67.71 91.88 90.42 92.31 71.65 86.51 91.84 92.34 93.71
SCDH [5] 82.91 91.57 87.42 91.68 91.30 81.67 81.67 85.40 90.18 90.00 81.55 90.29 85.40 90.12 90.00
POPSH [46] 79.99 92.88 95.02 96.03 96.26 79.80 79.80 94.21 95.04 95.36 79.57 93.24 94.30 95.08 95.33
OLGH [45] 73.57 91.29 95.00 95.85 95.82 72.73 72.73 94.19 94.92 95.07 72.68 90.27 94.21 94.94 95.23
SASH [34] 41.11 79.17 85.80 87.48 89.23 44.62 85.40 88.98 90.12 91.73 44.15 84.96 89.00 90.32 91.46
LBSE[21] 67.78 94.73 95.78 96.22 96.52 67.03 93.85 94.92 95.46 95.64 67.07 93.90 94.91 95.47 95.62
Our SRSH 84.80 96.06 96.01 97.00 96.92 83.91 95.36 95.50 96.20 96.00 83.87 95.36 95.48 96.20 96.00

Table 3: The retrieval performance results (%) with different bits on the NUS-WIDE dataset. The best values are shown in bold.

Method mAP Precision@5000 NDCG@100
5 8 16 32 64 5 8 16 32 64 5 8 16 32 64

SDH [31] 30.45 30.52 30.45 31.42 31.42 31.68 31.68 31.63 34.25 34.25 27.73 27.73 27.82 28.45 28.45
FSDH [9] 31.45 31.44 31.44 31.45 31.45 36.35 36.35 31.64 36.35 36.36 27.79 27.73 27.72 27.73 27.95
FSSH [25] 48.65 49.14 58.35 60.06 61.11 48.96 52.29 60.53 62.34 64.34 38.70 42.89 47.43 51.70 52.80
SSLH [23] 38.84 40.66 41.93 42.23 43.32 44.74 46.12 47.76 48.18 49.19 34.44 35.10 36.51 37.14 38.29
RSLH [22] 38.78 43.17 41.23 48.47 49.51 34.49 38.26 46.42 42.49 41.74 29.39 32.51 35.22 36.86 37.87
SCDH [5] 46.05 46.38 45.32 47.04 47.75 42.23 42.02 39.71 41.34 41.12 32.81 33.07 31.97 33.48 33.49
POPSH [46] 51.91 54.95 57.46 60.80 61.14 52.42 42.37 61.81 48.02 65.12 39.05 42.37 45.81 48.02 50.19
OLGH [45] 48.50 49.47 53.64 56.80 55.67 42.14 41.83 47.54 52.47 50.16 35.76 35.30 38.60 35.18 36.72
SASH [34] 34.13 34.70 33.52 36.09 38.86 37.04 37.80 37.34 42.06 45.21 28.20 28.84 28.51 31.86 34.47
LBSE[21] 54.81 56.56 60.97 62.29 64.16 53.90 57.38 62.58 65.72 68.02 36.99 41.11 45.11 47.01 47.89
Our SRSH 57.95 60.91 62.73 64.84 64.02 54.65 58.75 62.02 66.92 68.65 40.52 45.78 46.98 45.25 46.96

more improvement compared with these baselines. Specifically,
since SRSH benefits from the three-step coupled refinement strat-
egy to mitigate of information loss, we can get the performance
improvement of 5.12%, 2.32%, 1.47%, and 3.30% on all datasets, re-
spectively. When the number of samples is large (such as the NUS-
WIDE), the data becomes more complex. Hence, image retrieval
becomes more challenging.

4.7 Precision-Recall
Precision-Recall curves for short-length hash codes are plotted in
Fig.2. According these experimental results, we can observe that
the performance of SRSH over the best competitor are significant.
These results show that our SRSH can extract critical features from
high-dimensional image data to mitigate information loss. Hence,
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Table 4: The retrieval performance results (%) with different bits on the Caltech-256 dataset. The best values are shown in bold.

Method mAP Precision@50 NDCG@100
8 16 32 48 64 8 16 32 48 64 8 16 32 48 64

SDH [31] 3.53 29.21 35.91 41.00 44.76 3.54 39.90 49.31 54.67 58.44 3.64 34.48 42.31 47.31 51.04
FSDH [9] 14.93 29.14 39.60 44.69 47.58 18.72 40.10 53.48 58.38 61.02 18.90 35.05 46.13 50.89 53.70
FSSH [25] 19.69 40.53 52.96 58.58 63.09 18.74 38.37 50.51 56.01 60.20 18.63 38.61 50.72 56.20 60.41
SSLH [23] 7.25 9.29 9.73 10.25 12.90 7.87 10.56 11.32 12.68 15.69 7.87 10.59 11.15 12.02 15.03
RSLH [22] 14.25 20.89 43.44 50.33 53.26 10.94 30.69 30.25 35.32 38.33 14.20 26.34 36.76 42.39 45.42
SCDH [5] 25.92 36.88 55.65 60.93 63.55 24.54 34.72 53.44 58.28 60.96 24.62 34.75 53.54 58.48 61.13
POPSH [46] 27.86 51.86 62.25 68.67 69.80 26.24 49.80 59.91 66.17 66.70 26.67 50.06 60.04 66.27 66.89
OLGH [45] 25.69 47.77 60.12 62.67 62.00 24.09 45.80 58.58 62.19 62.87 24.53 45.99 58.21 61.37 61.22
SASH [34] 12.52 21.31 26.60 31.38 33.79 15.05 27.72 35.25 41.62 44.63 14.72 25.54 31.40 36.51 39.34
LBSE[21] 30.97 52.88 65.27 70.67 71.99 29.72 50.90 63.31 68.47 69.40 29.16 51.96 63.48 68.66 69.63
Our SRSH 33.45 54.35 66.52 71.42 73.20 32.05 52.63 64.39 69.41 71.00 32.46 52.81 64.65 69.52 71.18
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Figure 2: The precision-recall curves of all methods for short-length hash codes on the four datasets
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Figure 3: Convergence curves and mAP curves of SRSH with short-length hash codes on four datasets.

the proposed SRSH can obtain the better performance under short-
length hash codes. Generally, according to precision-recall curves,
the effectiveness of SRSH is further demonstrated, which is consis-
tent with other three evaluation protocols.

4.8 Training Time
The time cost of image hashing main depends on the training step.
On the NUS-WIDE, we record the training time of these baselines
with different hash lengths in table 5. From the results, the proposed
SRSH obtains acceptable training time that is scalable for large-scale
data. Especially, for short-length hash codes, SRSH gets the second
lowest training time. With the hash length increases, the training
time also grows. Clearly, short-length hash codes can reduce more

time cost. For short hashing methods (i.e., SSLH and RSLH), they
need more training time due to learning hash codes bit by bit, and
greatly improves dramatically as the length of bits increases. Since
the similarity preserving hashing methods consume more training
time to make similarity approximation, SCDH and SASH need more
training time. Therefore, the training time further demonstrates
the effectiveness of SRSH. In additional, SRSH also has very com-
petitive retrieval performance. Clearly, SRSH enjoys more potential
to handle large-scale image retrieval tasks in practical application.

4.9 Convergence Experiments
To show the convergence property of our SRSH, we draw the con-
vergence curves and mAP curves with short-length hash codes
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Figure 4: The sensitivities of hyper-parameters on mAP results with short-length hash codes on four datasets.

Table 5: The training time (seconds) with different bits on
the NUS-WIDE dataset.

Method 5 8 16 32 64
SDH [31] 15.35 16.76 22.46 46.91 142.05
FSDH [9] 14.59 14.78 15.08 16.21 18.35
FSSH [25] 8.52 8.61 8.72 9.17 9.89
SSLH [23] 10.03 13.85 39.04 87.79 262.82
RSLH [22] 108.23 126.69 160.34 164.12 233.57
SCDH [5] 19.87 20.34 22.67 26.77 79.24
POPSH [46] 2.51 2.72 2.78 2.86 5.97
OLGH [45] 6.76 7.42 7.54 8.16 9.62
SASH [34] 3469.75 3558.76 4501.92 6699.52 7724.92
LBSE[21] 24.1 25.97 16.7 20.24 24.75
Our SRSH 6.96 6.99 7.47 14.4 47.45

Table 6: Ablation results (mAP: %) on the CIFAR-10.

Methods 4 8 16 32 64
SRSH-1 60.65 64.93 68.11 72.94 72.31
SRSH-2 45.36 63.19 69.39 70.82 72.67
SRSH-3 50.34 63.78 45.56 25.05 18.11
SRSH-4 28.72 31.98 41.12 45.23 46.84
SRSH 60.65 64.93 68.11 73.24 73.47

on the four datasets. As shown in Fig.3, the objective values are
monotonically reduced close to a fixed value after a few iterations
(about five iterations). Moreover, we can find that the mAP curves
gradually increase until the mAP results become stable. Hence, we
can set the number of iterations as five.

4.10 Parameter Sensitivity Analysis
Our SRSH involves two trade-off parameters to be set properly, i.e.,
𝛼 and 𝜆. To observe the stability, we perform grid search exper-
iments with different parameter settings to obtain the optimum
performance for short-length hash codes. Specifically, we first vary
parameter 𝛼 in [10−3, 10−2, · · · , 103] and 𝜆 in [10−5, 10−4, · · · , 1],
respectively. As shown in Fig.4, we can observe our SRSH works
well within a wide range of 𝛼 and 𝜆. Hence, the results indicate our
SRSH is insensitive to the two trade-off parameters.

4.11 Ablation Analysis
We perform ablation analysis on the CIFAR-10 to show the effect
of the three-step coupled refinement strategy. Our method has
four variations, i.e., SRSH-1, SRSH-2, SRSH-3, and SRSH-4. There-
into, SRSH-1 preserves three-layer hash function and removes the
regularization term about the hash function. SRSH-2 and SRSH-
3 preserves two-layer hash function. They remove the third and
second level hash function, respectively. SRSH-4 represents the
model with only single hash function. The mAP scores of SRSH and
its variations are shown in table 6. We can see that SRSH obtains
the best mAP with different lengths of hash codes, especially, the
short-length hash codes. In general, the results shows the three-step
coupled strategy with constraints from loose to strict can stepwise
learn fine hash codes to mitigate large information loss caused by
dimensional avalanches.

5 CONCLUSION
In this paper, we propose a novel stepwise refinement short hashing
(SRSH) for image retrieval, which can refine critical features from
high-dimensional image data to learn discriminative short-length
hash codes. For the first time, in order to alleviate the information
loss caused by the avalanche of dimension truncation, we propose
a three-step coupled refinement strategy to identify stronger fea-
tures by learning a richer set of projections and shrink the discrete
solution space to obtain coarse and fine hash codes. To inherit in-
trinsic semantic structure, we further preserve the similarity of
original space between coarse and fine hash codes. Comprehensive
experimental results on four large-scale datasets demonstrate the
effectiveness, superiority, and efficiency of our SRSH.
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