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ABSTRACT

Reinforcement learning (RL) training is inherently unstable due to factors such
as moving targets and high gradient variance. Reinforcement Learning from Hu-
man Feedback (RLHF) and Reinforcement Learning from AI Feedback (RLAIF)
introduce additional challenges. For instance, diverse preferences complicate the
alignment process, and prediction errors in a trained reward model can become
more severe as the LLM generates unseen outputs. These RL challenges create
confusion about whether the probability of an action for a given state should be
increased or decreased, similar to the noise in labels for classification tasks. In this
work, we enhance the stability of the RL training procedure by adapting reverse
cross-entropy (RCE) from supervised learning for noisy data to define a symmet-
ric RL loss. We demonstrate performance improvements across various tasks and
scales. We conduct experiments in discrete action tasks (Atari games) and contin-
uous action space tasks (MuJoCo benchmark and Box2D) using Symmetric A2C
(SA2C) and Symmetric PPO (SPPO), with and without added noise. Notably,
SPPO shows strong performance across different hyperparameters. Furthermore,
we validate the benefits of the symmetric RL loss in the RLHF framework using
PPO for natural language processing tasks, demonstrating improved performance
in tasks such as IMDB positive sentiment and TL;DR summarization.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have shown impressive performance
across various natural language processing tasks (Chung et al., 2022; Wei et al., 2023), robot control
(Huang et al., 2022; Driess et al., 2023), and healthcare (Lee et al., 2023c; Huang et al., 2020). How-
ever, as these LLMs are typically trained to predict the next word in a provided dataset, they require
post-training processing to make them useful for particular tasks. Reinforcement Learning from
Human Feedback (RLHF) trains LLMs to generate responses aligned with user preferences through
human feedback. Additionally, Reinforcement Learning from AI Feedback (RLAIF), which lever-
ages feedback from well-trained AI models, has also been employed (Lee et al., 2023a; Bai et al.,
2022). Thus, adapting fundamental Reinforcement Learning (RL) algorithms such as REINFORCE
(Williams, 1992), A2C (Mnih et al., 2016), and PPO (Schulman et al., 2017) to suit the fine-tuning
of LLMs for LLM tasks is an area of active interest (Ahmadian et al., 2024; Ouyang et al., 2022;
Rafailov et al., 2023).

RL methods (Sutton et al., 2000; Sutton & Barto, 2018a) have lead to substantial breakthroughs
in tasks such as robot control and game playing. Still, they entail learning instability compared to
supervised learning due to factors such as moving targets, high-gradient variance, and training value
functions. The RL literature has proposed various methods to make the RL learning process more
robust, such as preventing overestimation with Double DQN (van Hasselt et al., 2015), reducing
variance with Generalized Advantage Estimation (GAE) (Schulman et al., 2018), updates within the
trust region (Schulman et al., 2015; 2017), and encouraging diverse behavior with Soft Actor-Critic
(SAC) (Haarnoja et al., 2018). In addition to the methods devised specifically for RL problems, RL
literature has also adopted supervised learning techniques to make the learning process more robust.
For example, ensembles have been used for more accurate value function prediction, while Layer
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Normalization and Batch Normalization have been employed to constrain predictions for out-of-
distribution samples, thereby mitigating the overestimation and extrapolation.

RLHF (Ouyang et al., 2022; Lee et al., 2023b) and RLAIF Lee et al. (2023a); Bai et al. (2022); Byun
et al. (2024) potentially introduce additional training challenges. For example, these algorithms of-
ten receive feedback from multiple sources (human or AI models) to align LLMs, and each feedback
provider may have different preferences, meaning a sample considered preferable by one provider
could be deemed undesirable by another (Ethayarajh et al., 2024; Chakraborty et al., 2024). In ad-
dition, RLHF and RLAIF often leverage a trained reward model to provide feedback on samples
generated by the LLM. This indirection raises the question: does the learned reward model provide
the correct reward? The reward model has prediction errors itself (See Figure 1), but as the LLM
is trained with RL, its outputs deviate from the reward model’s training dataset, introducing more
error in the reward model’s predictions for out-of-distribution samples.

The challenges associated with RL, RLHF, and RLAIF, as mentioned above, can introduce confusion
when calculating advantage values in RL algorithms like A2C and PPO. Specifically, an action that
should have a positive advantage value may have a negative sign in the next update, depending
on which samples (states, actions) are generated and how the batch is composed during advantage
normalization. The sign of the advantage determines whether the probability of a corresponding
action for a given state increases or decreases in policy gradient algorithms. If the advantages are
predicted incorrectly, this can lead to learning in the opposite direction. We hypothesize that these
difficulties are similar to noisy classification tasks in supervised learning, where some labels are
incorrect.

In this paper, we leverage a technique developed for classification tasks with noisy labels, employing
a robust loss function to enhance the learning procedures of A2C and PPO. We define a symmetric
RL loss, whose fundamental mechanism aligns with the robust loss function used in supervised
learning (Wang et al., 2019), to improve the robustness of RL procedure for A2C and PPO (See
Section 4.3). We apply this symmetric RL loss to A2C and PPO, naming them Symmetric A2C
(SA2C) and Symmetric PPO (SPPO), and evaluate their performance across various tasks and model
scales.

First, we assess the performance gains of SA2C and SPPO on Atari games (Mnih et al., 2016),
which have discrete action spaces, as well as on the MuJoCo benchmark (Todorov et al., 2012) and
Box2D (Catto, 2011) environments, which have continuous action spaces. For these control tasks,
we introduce a noisy reward variant, hypothesizing that it will increase confusion in advantage
prediction to better evaluate our method. Additionally, we test our method on RLHF tasks using
LLMs, such as IMDB positive sentiment analysis (Maas et al., 2011) and TL;DR summarization
(Völske et al., 2017). The IMDB task involves generating positive sentiment for a given context and
TL;DR is a summarization task where an LLM is required to summarize content.

SA2C and SPPO demonstrate better performance improvements across diverse control tasks com-
pared to A2C and PPO. Notably, both SA2C and SPPO perform well in settings with added noise
to the reward. Additionally, SPPO shows consistent performance improvements across various hy-
perparameters (Table 4). We analyze why SPPO exhibits more robust improvements than SA2C
in Section 5.4. Furthermore, SPPO shows superior performance to PPO in RLHF tasks, such as
IMDB positive sentiment and TL;DR summarization. We demonstrate SPPO outperforming PPO
on reward in both tasks, and SPPO’s summarization is significantly better, as measured by win-rate
against PPO, judged by GPT-4 Turbo (gpt-4-turbo-2024-04-09).

In summary, our key contributions are:

• We propose the symmetric RL loss for A2C and PPO, along with the gradient analysis that
aligns with the gradient behavior of robust loss functions used in noisy classification tasks
in Section 4.3.

• We conduct experiments across various environments and model scales, demonstrating per-
formance improvements to validate the effectiveness of the symmetric RL loss for general
control tasks and RLHF tasks in Section 5.

• We analyze how PPO can introduce additional confusion in advantage estimates, which
justifies using symmetric RL loss (See Section 5.4). This shows that SPPO demonstrates
consistent improvement across a range of hyperparameters.
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2 RELATED WORK

We briefly introduce robust loss functions studied in the context of noise in supervised learning
classification tasks. Ghosh et al. (2017) prove that, in the presence of a noisy dataset, the mean
absolute error (MAE) has a slower learning speed compared to cross-entropy loss (CE), but the
model learns more robustly. Zhang & Sabuncu (2018) propose a generalized cross entropy loss Lq ,
which becomes CE when q → 0, and becomes MAE when q → 1. By adjusting this parameter
0 ≤ q ≤ 1, robust learning is achieved in noisy datasets. The symmetric cross entropy (SCE)
(Wang et al., 2019) that we mainly refer to suggests a symmetric cross-entropy loss. This loss not
only considers the flow of information from the true distribution to the model’s predictions but also
incorporates information flowing in the reverse direction. SCE works better than GCE in general,
especially for data with high noise rates. Ma et al. (2020) introduce various loss functions and
classify them into types: Active Loss and Passive Loss functions. They demonstrate that normalizing
the loss can help improve robustness. They use a combination of one active loss and one passive
loss like SCE. We define a loss function that considers reverse information to match the RL version
and use it to improve the RL procedure.

In the RL literature, Wang et al. (2018) proposes using a confusion matrix to handle perturbed re-
wards, predicting surrogate rewards for robust policy updates. While this method appears effective
for Atari games, later research (Chen et al., 2024) shows that it does not outperform corresponding
baselines in continuous tasks. Additionally, introducing noise in RL has demonstrated performance
benefits. For instance, Obando-Ceron et al. (2023) show that smaller batch sizes improve perfor-
mance, and Schaul et al. (2022) present that policy churn aids exploration. These studies primarily
conduct experiments on Atari games, which require navigating many novel states. However, whether
noise is beneficial or not in continuous action spaces remains debatable (Mai et al., 2022; Byun &
Perrault, 2024). Our work proposes a robust loss function designed to handle noise (confusion in
advantage prediction) without judging whether the noise is beneficial.

Reinforcement Learning from Human Feedback (RLHF) Ouyang et al. (2022); Lee et al. (2023b)
and Reinforcement Learning from AI Feedback (RLAIF) (Lee et al., 2023a; Bai et al., 2022) have
contributed to the success of large language models (LLMs) by aligning them with user preferences.
However, these methods require training a reward model and a value function. Each of these compo-
nents has prediction errors, and finding appropriate hyperparameters for training requires significant
effort. Direct Preference Optimization (DPO) (Rafailov et al., 2023) eliminates the cost associated
with the reward model by rearranging PPO loss for ranking-based feedback (e.g., sample A is pre-
ferred over sample B). Ethayarajh et al. (2024) remove the requirement ranking-based feedback by
modifying DPO loss further, allowing a model to be trained with bad or good labels. Additionally,
Chakraborty et al. (2024) demonstrate that feedback from diverse people, each with different pref-
erences, makes a single reward model difficult to reflect preferences correctly. Recent studies focus
on sentence-level feedback (Lightman et al., 2023; Wang et al., 2024), but DPO and KTO cannot
utilize sentence-level feedback. Therefore, we propose the reverse RL loss term, which can make
PPO in existing RLHF methods more robust.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING

Reinforcement Learning (RL) formulates a Markov decision process (MDP) (Puterman, 2014; Sut-
ton & Barto, 2018b) defined by the tuple M = (S,A,P, R, γ, µ). At each timestep t, an action
at ∈ A is sampled from an agent’s policy πθ(· | st) for a given state st ∈ S. For the taken action at,
the reward function returns a reward R(st, at) where R : S×A → R, and the transition probability
P(· | st, at) determines the next state st+1. γ is the discount factor, and µ represents the initial state
distribution for s0. The RL objective is to find the optimal θ that maximizes the expected discounted
sum of rewards:

θ∗ = argmax
θ

E
s0∼µ

at∼πθ(·|st)
st+1∼P(·|st,at)

[ ∞∑
t=0

γtR(st, at)

]
. (1)
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3.2 A2C AND PPO ALGORITHMS

The Advantage Actor-Critic (A2C) algorithm (Mnih et al., 2016) is an actor-critic method that com-
bines value-based and policy-based approaches. A2C uses the advantage function A to reduce the
variance in policy updates. The policy πθ is updated by following the gradient of the objective
function to maximize the sum of rewards as defined in 1:

∇θJ(πθ) =
∑
t=0

∇θ log πθ(at | st)A(st, at) (2)

Proximal Policy Optimization (PPO) (Schulman et al., 2017) aims to update the policy within a
trust region. This is achieved through a clipped loss function to ensure that the new policy does not
deviate too much from the old policy. The PPO loss function can be written as:

Lppo(θ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] (3)

where rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio, and ϵ is a small hyperparameter that controls the

range of the clipping. The advantage function estimates how much better an action a is compared
to the other actions for at a given state s. Both algorithms increase the probability of a for s if the
corresponding advantage A(a, s) > 0 and decrease it if A(a, s) < 0. In the approach section, we
introduce the connection between A2C and PPO with the cross-entropy loss for classification and
define the symmetric RL loss.

3.3 SYMMETRIC CROSS ENTROPY

Symmetric Cross Entropy (SCE) (Wang et al., 2019) is designed for noisy classification datasets.
Cross Entropy (CE) loss (Equation 4) performs effectively when the data is clean; however, it en-
counters challenges in the presence of noise. Given a true distribution q and a predicted distribution
p, p is learned based on the information derived from q according to information theory. How-
ever, when q is noisy, p can only approximate the true distribution to a limited extent. To address
this issue, Symmetric Cross Entropy (SCE) also consider incorporates information in the opposite
direction through Reverse Cross Entropy (RCE) (Equation 5).

Lce = −
K∑

k=1

q(k|x) log p(k|x) (4)

Lrce = −
K∑

k=1

p(k|x) log q(k|x) (5)

where k ∈ {1, . . . ,K} is a class and x is an input. RCE loss has been proven to be robust to a
certain amount of noise, but the learning speed is too slow. Therefore, SCE combines CE and RCE
losses (Equation 6),

Lsce = αLce + βLrce (6)

where α and β are constants determining the contribution of each part. SCE demonstrates perfor-
mance improvement across various noisy ratios and types. As mentioned in the introduction section,
the RL training process can lead to noisy advantage predictions, so we propose a symmetric RL loss
in the next approach section.

4 APPROACH

This section introduces the reverse RL loss and proposes the symmetric RL loss for A2C (Mnih
et al., 2016) and PPO (Schulman et al., 2017), an RL version of Symmetric Cross Entropy (SCE)
(Wang et al., 2019). A2C and PPO training procedures basically increase or decrease the probability
of an action depending on the advantage sign, but the advantage prediction involves noise due to
several factors. A highly engineered reward function is required to eliminate errors, and the trained
reward model has a prediction error in RLHF (Ouyang et al., 2022) and RLAIF (Lee et al., 2023a;
Bai et al., 2022). Receiving feedback from multiple sources further complicates the training of the
reward model (Chakraborty et al., 2024). Additionally, the value function also has model errors,
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Reward: 6.66

Content: So Okay, I’m from New 
York but I study in Oregon for most 
of year. Recently a friend of mine…

Summary: <empty>

Reward: 3.14

Content: We were friends for 10 
years, before we got together. He 
than told me once about his…
Summary: <empty>

Reward: 5.40

Content: My Grandma and my aunt 
(her daughter-in-law) haven’t 
spoken to each other in years…

Summary: Some summary

!= >

Figure 1: Example of reward prediction errors in a trained reward model for TL;DR summarization.
The generated summary samples (left and middle) are both empty, yet they receive significantly
different rewards. The middle sample is higher than some summarization text (right) and even
scores higher (6.66) than the average reward score of SPPO (6.13). The full text for these samples
can be found in Appendix 15.

and the sign of the advantage in advantage normalization depends on how the batch is composed.
PPO increases sample efficiency compared to A2C, but the off-policy part can introduce confusion in
advantage predictions (See Section 5.4). Similar to SCE, which is robust to noisy data, the symmetric
RL loss contributes to robust learning in an RL environment that can introduce noisy predictions.

4.1 REVERSE REINFORCEMENT LEARNING LOSS

Given a true (target) distribution q and a predicted distribution p, if q is noisy, training p can be
challenging and p cannot accurately reflect the true distribution. Reverse Cross Entropy (RCE)
considers the reverse information from p. We propose that the reverse RL losses for A2C and PPO
also incorporate reverse information to address noisy factors in the RL training procedure. The RCE
loss (Equation 5) defines log 0 = Z where Z < 0 is some constant for q(k|x) = 0. We also use this
definition for the negative advantage and this also is useful to prove the robustness of the reverse RL
losses. For all tasks conducted in this paper, we use Z = −1. Note that the constant terms Z and β
in Equation 4 and 9 are multiplied together, so we control the impact of the reverse RL loss solely
by adjusting β. For example, (β = 1.0, Z = −1.0) and (β = 10.0, Z = −0.1) yield the exact same
results. Suppose there exist k actions and a(i) indicates ith action. π(i)

θ = πθ(a
(i)|s) for a state s.

Let’s denote the possible action probabilities set s as πθ(s) = {π(1)
θ , π

(2)
θ , ..., π

(k)
θ }. Note that we

discretize the continuous action space for continuous action tasks (Tang & Agrawal, 2020). One
thing we need to note is that when updating a policy, we use advantages instead of label sets in RL.
Advantages can have negative values (negative labels) unlike ordinary labels. We only consider the
sign of the advantage1 because this advantage is the role of the label in supervised learning. For a
sampled action probability π

(i)
θ and the corresponding advantage A(s, a(i)) = A(i), the sample-wise

reverse A2C (RA2C) loss is:

Lra2c(πθ(s), A
(i)) =

{∑
j∈[k]\{i} −π

(j)
θ A(i)Z, if A(i) > 0∑

j∈[k]\{i} π
(j)
θ A(i)Z, if A(i) < 0

(7)

For a positive advantage A, the difference between A2C’s loss A log π and CE loss 1 log p is that
A2C can be considered as CE multiplied by the advantage. In terms of gradients, A is a constant,
so A2C reflects the information A times more strongly than the CE loss. Thus, we also reflect the
reverse direction A times more strongly. Similarly, since PPO has π(i)

old term in the loss, the sample-
wise reverse PPO (RPPO) loss just introduces the additional constant π(i)

old for a sampled action

1We do not consider when the advantages are zero because those are not considered when updating a policy.
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Figure 2: Change of advantage rate (%): The graphs show how often the advantage signs flip in
various environments as training progresses. In Atari games, often over 5% of samples change signs,
while in MuJoCo tasks, usually over 10% of samples change signs after the advantage normalization.
We use 5 different random seeds for CrazyClimber and WizardOfWor, and 30 different random
seeds for Ant-v4 and Walker2d-v4. The line is the mean of the change ratio across the seeds, and
the shaded area represents standard errors.

probability π
(i)
θ to consider the same amount of reverse information:

Lrppo(πθ(s), A
(i), π

(i)
old) =


∑

j∈[k]\{i} −
π
(j)
θ A(i)Z

π
(i)
old

, if A(i) > 0∑
j∈[k]\{i}

π
(j)
θ A(i)Z

π
(i)
old

, if A(i) < 0
(8)

We define the symmetric RL loss, which is composed of the original RL loss (A2C or PPO) and
the corresponding reverse RL loss, in Section 4.2. We then analyze why these reverse RL losses
contribute to the RL learning procedure in Section 4.3.

4.2 SYMMETRIC REINFORCEMENT LEARNING LOSS

The Symmetric Reinforcement Learning (SRL) loss Lsrl consists of two parts like SCE (Equation
6): the original actor loss Lrl (A2C or PPO) and the corresponding reverse RL loss Lrev (RA2C or
RPPO). Lsrl flexibly adjust the symmetric learning framework with two additional hyperparameters
(α > 0 and β > 0) as follows:

Lsrl = αLrl + βLrev (9)

We name A2C and PPO using the symmetric RL loss as Symmetric A2C (SA2C) and Symmetric
PPO (SPPO), respectively. The meanings of α and β align with SCE, where α represents the degree
of actively training a policy, and β serves as auxiliary support to stabilize the entire learning process.
In the following section, we analyze the gradient of the two types of losses.

4.3 GRADIENT ANALYSIS

For an input x and the corresponding correct label k, the cross entropy (CE) loss gradient is
− 1

pθ(k|x)∇θpθ(k|x). Smaller pθ values aggressively increase the magnitude of the gradient. CE
loss rapidly increases uncertain predictions. If there is no noise, this method is correct, but it may
lead to incorrect predictions on noisy datasets and excessive overfitting (Zhang & Sabuncu, 2018).
A2C and PPO losses also have the same issue. For A2C, the gradient is simply multiplied by an
advantage A, i.e., − A(s,a)

πθ(a|s)∇θπθ(a|s). In the case of PPO, the magnitude of the gradient tends to
increase as the probability of an action decreases. Consider a sample that passes the clipping func-
tion: the difference between πold and π is within the ϵ bound. As the denominator πold gets smaller,
the magnitude of the gradient increases.

Detailed analysis: The symmetric RL loss gradient analysis aligns with the analysis of SCE. For
simplicity, we set α and β to 1 and examine the gradient direction for two types of A2C loss (RL
and reverse RL) with respect to the action logits z. We use the notation defined in Section 4.1 and
introduce the case when A(i) > 0. For the full derivation including SPPO and A(i) < 0, please refer
to Appendix A. The sample-wise SA2C loss is:

Lsa2c = La2c + Lra2c (10)

6
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Table 1: Mean final scores and standard errors (over the last 10 episodes) of PPO and SPPO on Atari
games, without and with binary symmetric channel (BSC) noise with a crossover probability of 0.1
across 5 seeds. Full results can be found in Table 11.

Without Noise ϵ ∼ BSC(0.1)

PPO SPPO PPO SPPO
Alien 1128 ± 105 1081 ± 79 525 ± 26 713 ± 26
Centipede 2961 ± 379 3694 ± 224 4759 ± 257 7525 ± 769
CrazyClimber 86764 ± 3568 103588 ± 2871 71144 ± 11060 99810 ± 2487
Gravitar 371 ± 47 442 ± 67 269 ± 39 332 ± 61
Qbert 4352 ± 128 4412 ± 282 2827 ± 1927 4020 ± 2415
MsPacman 837 ± 62 1204 ± 86 704 ± 41 1011 ± 52
NameThisGame 5665 ± 280 5423 ± 63 2681 ± 143 5187 ± 247
UpNDown 58289 ± 21226 126830 ± 27534 8815 ± 1395 73490 ± 33553

The gradients for each part are:

∂La2c(π
(i), A(i))

∂zy
=

{
A(i)(π(i) − 1), if i = y

A(i)π(y), if i ̸= y
(11)

∂Lra2c(π
(i), A(i))

∂zy
=

{−A(i)Zπ(y)(π(y) − 1), if i = y and A(i) > 0

−A(i)Zπ(y)π(i), if i ̸= y and A(i) > 0
(12)

Thus, the SA2C loss gradient is:

∂Lsa2c

∂zy
=


A(i)(π(i) − 1)︸ ︷︷ ︸

∇La2c < 0

−A(i)Zπ(i)(π(i) − 1)︸ ︷︷ ︸
∇Lra2c < 0

, if i = y and A(i) > 0

A(i)π(y)︸ ︷︷ ︸
∇La2c > 0

−A(i)Zπ(y)π(i)︸ ︷︷ ︸
∇Lra2c > 0

, if i ̸= y and A(i) > 0
(13)

For both cases, the gradient directions of the RL (A2C) loss and the reverse RL (RA2C) loss are
aligned. When i = y and A(i) > 0, the gradient of the RA2C loss is −A(i)Zπ(y)(π(y)−1), reaching
its maximum magnitude at π(y) = 0.5 as a parabolic function. This means that the accelerator helps
the probability π(i) increase most rapidly when the action to take is ambiguous. When i ̸= y and
A(i) > 0, the probability of actions other than a(i) is reduced, and this reduction is influenced by
the confidence of both π(i) and π(y). Specifically, the gradient of the RA2C loss is −A(i)Zπ(y)π(i).
When both π(i) and π(y) are 0.5, representing the most ambiguous predictions, the accelerator aids
the A2C loss in reducing π(y) most effectively. Thus, the RA2C loss helps deviate from ambiguous
predictions as an accelerator. SPPO’s loss gradients are also aligned like SA2C and follow the same
mechanism (See Appendix B.2).

5 EXPERIMENTS

To validate the effectiveness of our algorithm, we conduct experiments on various tasks and models
of different scales. First, we experiment on Atari games (Mnih et al., 2013) featuring discrete action
spaces (Section 5.1), as well as MuJoCo benchmark tasks (Todorov et al., 2012) and Box2D tasks
(Catto, 2011) (Section 5.2) with continuous action spaces using Stable-Baselines3 (Raffin et al.,
2021). In these control tasks, we also create a variant of each that introduces reward noise, hypothe-
sizing that it will create more confusion in advantage prediction. SPPO performs better than SA2C
for various reverse RL loss hyperparameters β. We also evaluate our method on IMDB and TL;DR
datasets using TRIL Chang et al. (2023) to determine whether our approach is practical for LLM
tasks. We primarily present the experimental results for PPO in the main paper. In the latter part of
this section, we analyze why our method works better with PPO than A2C (Section 5.4), conduct
hyperparameter sensitivity tests, and examine the training cost (Section 5.5).
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Table 2: Mean final scores and standard errors (over the last 10 episodes) of PPO and SPPO on Atari
games, without and with binary symmetric channel (BSC) noise with a crossover probability of 0.1
across 5 seeds. To leverage the reverse RL loss, we discretize the continuous action space. DPPO is
added as another baseline (α = 1.0, β = 0.0), and DSPPO is our proposed method. Full results can
be found in Table 12 and 13.

ϵ ∼ N (0, 0.052) Ant Hopper HalfCheetah HumanoidStandup
PPO 601 ± 47 1936 ± 147 2068 ± 208 80945 ± 2130

DPPO 1897 ± 86 2153 ± 106 2722 ± 188 146038 ± 1841
DSPPO 2095 ± 102 2333 ± 109 3118 ± 195 145974 ± 2520

Walker2d Swimmer BipedalWalker LunarLanderContinuous
PPO 1270 ± 107 44 ± 3.0 158 ± 15.2 181 ± 13.8

DPPO 3419 ± 100 57 ± 3.6 274 ± 7.1 281 ± 5.7

DSPPO 3523 ± 129 72 ± 5.1 267 ± 8.8 294 ± 3.3

5.1 DISCRETE ACTION SPACE TASKS

We first conduct experiments on Atari games (Mnih et al., 2016) that the action spaces are discrete
to evaluate SPPO and SA2C. We primarily select 22 games based on the reported score for A2C in
Schulman et al. (2017), focusing on games where the A2C scores are not close to 0, as this allows
us to demonstrate meaningful score changes.

The reward functions for Atari games only output 0 or 1 and are well-defined. To introduce some
reward noise, we flip the reward from 0 to 1 or from 1 to 0 with a probability of 10%. We denote
this noise setting as a Binary Symmetric Channel (BSC). This setting is analogous to a potential
problem in ranking-based feedback (Ouyang et al., 2022) from humans or AI, where evaluators may
have different preferences, resulting in reversed scores. We observe that SA2C shows marginal im-
provements (Table 8), with a narrow range of effective hyperparameter β values. In contrast, SPPO
performs well in both noise-free and noisy environments (See Section 5.4 for discussion). Table 1
presents partial results, while the complete results for SPPO, including training curves (Figure C.3),
can be found in Table 11. SPPO achieves 16 out of 22 wins in noise-free settings and 19 out of 22
wins in noisy settings.

5.2 CONTINUOUS ACTION SPACE TASKS

Next, we perform experiments on MuJoCo benchmark (Todorov et al., 2012) and Box2D (Catto,
2011) continuous action space environments. To utilize the reverse RL loss, we need other action
probabilities for a sampled action probability. However, conventional RL uses a multivariate Gaus-
sian distribution as a policy, so it cannot provide the other action probabilities. Thus, we discretize
the continuous action space (Tang & Agrawal, 2020), naming these methods DA2C and DPPO, and
add them as additional baseline comparisons.

Note that discretizing the continuous action space generally works better than the original RL meth-
ods like A2C and PPO for these tasks if the continuous action space is discretized with a sufficient
number of bins. This discretized distribution can represent more complex distributions than a diag-
onal Gaussian distribution (where the covariance is diagonal). We apply the reverse RL loss to both
DA2C and DSPPO.

Since the reward functions in these environments are highly engineered, we perturb the reward
function with Gaussian noise with a mean of 0 and a standard deviation of 0.05. Table 2 shows
partial results for SPPO under noise settings. The full experiment results are in Table 12 and 13.
Similar to the Atari game results, SA2C without noise shows tied performance in the noiseless
setting, and improvements when the reward noise is introduced. SPPO consistently shows robust
performance gains across a wide range of β values for both settings.
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Table 3: RM Score indicates the reward model score, Perplexity measures the uncertainty of the
model, and Win Rate is judged by GPT-4 Turbo by comparing the generated output and reference
text. We use 4 different random seeds for each task.

IMDB Sentiment TL;DR Summarization
RM Score (↑) Perplexity (↓) RM Score (↑) Perplexity (↓) Win Rate (↑)

SFT 0.54 ± 0.00 33.02 ± 0.09 5.83 ± 0.02 18.35 ± 0.02 42.00 ± 2.58
PPO 0.89 ± 0.02 41.09 ± 0.43 5.94 ± 0.08 19.08 ± 0.17 43.25 ± 3.82
SPPO 0.92 ± 0.01 40.60 ± 0.44 6.13 ± 0.02 19.27 ± 0.21 52.50 ± 2.40

5.3 RLHF TASKS

The final tasks are RLHF tasks to determine if our method is applicable to large language models.
The first task is IMDB positive sentiment. The objective of the IMDB task is to generate positive
sentiment continuations for movie reviews (Maas et al., 2011). The sentiment classifier (Sanh et al.,
2019) is used as a reward model to evaluate how positive a provided text is. The base policy is
GPT-2 (Radford et al., 2019), which we fine-tune using PPO or SPPO. We evaluate this model based
on the reward score and perplexity. SPPO shows improvement in both reward score and perplexity
compared to PPO.

The second RLHF task is TL;DR summarization (Völske et al., 2017). The objective is to summa-
rize a post from Reddit. The reward model is a fine-tuned GPT-J (Wang & Komatsuzaki, 2021) with
LoRA adapters (Hu et al., 2021) by Chang et al. (2023). The training dataset for this reward model
is the filtered dataset with additional human preference data used in Stiennon et al. (2020). The base
policy model is an open-source GPT-J model (CarperAI/openai_summarize_tldr_sft)
with added LoRA adapters. Note that the open-source GPT-J model is often outputs empty sum-
marizations for most evaluation data. Therefore, we report results after 10 epochs of RL updates as
an alternative to SFT, as it begins to consistently summarize posts. We evaluate SPPO based on the
reward score, perplexity, and win rate. This win rate is judged by GPT-4 Turbo (OpenAI, 2024)
(gpt-4-turbo-2024-04-09) by comparing the generated output and reference text. Even
though the perplexity of SPPO is slightly higher than that of PPO, there is an improvement in the
reward score and a significantly increased win rate.

In the introduction section, we mention that RLHF or RLAIF have additional errors due to a trained
reward model. We check whether the trained reward model used in TL;DR has reward prediction
errors. Figure 4.1 shows a dramatic example: the generated summary sample (left) and the middle
sample were both empty, but the two rewards show a huge gap. The middle sample even scores
(6.66) better than those learned with an SPPO score (6.13). Wrong summaries, like empty, can score
higher than a summarized text (right). These cases are observed very often. This makes the RL
training procedure more noisy and means that the sign of advantage changes depending on how the
batch is composed. The full text for these samples can be found in Appendix D.

5.4 WHY SPPO WORKS BETTER THAN SA2C

The motivation for using the reverse RL loss is to address the issue of ambiguity in advantage predic-
tions (Section 4.3). We hypothesize that the PPO advantage prediction (sign) is less consistent than
in A2C during policy updates, but this does not mean that PPO is worse than A2C. There are two
main reasons why consistency is not maintained. First, PPO has improved sample efficiency com-
pared to A2C, but after the first epoch, subsequent updates become off-policy, affecting advantage
estimates. Second, PPO often uses advantage normalization to restrict large advantage values from
being involved with policy updates to stabilize the learning process. In addition, PPO often uses
smaller mini-batch sizes (e.g., 64), whereas A2C uses the entire dataset for policy updates. Many
popular RL code baselines, such as Stable Baselines3 (Raffin et al., 2021), RL4LMs (Ramamurthy
et al., 2023), TRL (von Werra et al., 2020), and TRLX (Havrilla et al., 2023) use PPO advantage
normalization by default, whereas A2C does not. Our experiments on the usefulness of advantage
normalization also show that the performance increase in IMDB is greater than the performance
decrease in TL;DR (Appendix 14).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Percentage improvement of SPPO over PPO. The percentage improvements are computed
across 22 Atari games. We simply fix α = 0.5 to reduce the total loss magnitude and vary β to
control the impact of the reverse RL loss. We exclude very large improvements (e.g., 2000%) from
calculating the average. This large improvements result from PPO’s significant learning failures.

α = 0.5 is fixed β = 0.5 β = 1.0 β = 5.0 β = 10.0 β = 25.0
SPPO under 0% noise 7.83% 10.15% 24.98% 21.52% 18.92%
SPPO under 10% noise 1.74% 21.89% 148.46% 166.73% 136.50%

We examine the ratio of advantage sign changes before and after normalization for PPO in Atari
games and MuJoCo tasks (Figure 2). This ratio varies across different environments. The advantage
sign changes usually exceed 5% for Atari games and 10% for MuJoCo and Box2D environments.
These changes introduce the confusion, which makes the reverse RL loss more effective for PPO.
This observation aligns with our motivation for using symmetric RL loss to handle noisy data, sim-
ilar to how it is addressed in noisy classification tasks in supervised learning.

Additionally, since A2C uses the entire dataset (rather than using advantage normalization with
small batches) for the policy updates, it introduces less confusion in advantage prediction. As a
result, SA2C demonstrates performance comparable to A2C in settings without reward noise (Ta-
ble 8 and 9), and improvements in settings with reward noise (Table 8 and 10), where advantage
estimation is more likely to be confused.

5.5 HYPERPARAMETERS AND TRAINING COST

Although the symmetric RL loss introduces three additional hyperparameters (Equation 4.2): α, β,
and Z, we simply fix α = 0.5 in all experiments to reduce the overall magnitude of the symmetric
loss. Additionally, since β and Z are constants that are multiplied together, we can fix one and adjust
the other. For example, (β = 1.0, Z = −1.0) and (β = 10.0, Z = −0.1) yield the same results. In
our experiments, we fix Z = −1 and adjust β to determine the influence of the reverse RL loss.

We test the sensitivity of β for SPPO on Atari games with and without noise in the rewards. Table
5 presents the percentage improvements compared to PPO. We exclude excessively large improve-
ments (e.g., 2000%) to avoid skewing the average. These significant improvements typically result
from PPO’s training failure, while SPPO remains stable (Gopher and WizardOfWor in Figure C.3).
Fixing α = 0.5 and Z = −1, we vary β and observe consistent improvements, demonstrating
SPPO’s robustness across hyperparameters. Also, we use the default values of Stable Baselines3
(Raffin et al., 2021) for the other RL hyperparameters; more details can be found in Appendix C.1.

The symmetric RL loss introduces the reverse RL loss term, which is essentially another form of
cross-entropy that does not significantly increase training time. In practice, there is no increase in
training time for the continuous tasks discussed in Section 5.2 and the LLM tasks in Section 5.3,
and a 10–20% increase for the Atari games in Section 5.1.

6 CONCLUSION AND FUTURE WORK

We present Symmetric RL loss, inspired by Symmetric Cross Entropy (SCE) (Wang et al., 2019)
from supervised learning, to enhance the robustness of RL. SCE leverages reverse information to
handle noisy data, which we adapt to RL algorithms like A2C and PPO, resulting in SA2C and
SPPO. We test SA2C and SPPO on various discrete and continuous action space tasks and further
evaluate SPPO on RLHF tasks, including IMDB positive sentiment and TL;DR summarization.
Our results show that SPPO consistently outperforms PPO. We aregue this is mainly due to PPO’s
off-policy parts and advantage normalization with small batch sizes, which lead to advantage sign
changes (confusion). The Symmetric RL loss for SPPO alleviates this training difficulty.

While we only propose the Symmetric RL loss specifically for A2C and PPO, exploring its integra-
tion into other RL algorithms, such as DQN or SAC, is an intriguing future direction. Additionally,
developing more diverse reverse RL loss functions, like the Normalized Loss Functions (Ma et al.,
2020) proposed after SCE, is also an interesting direction for future work.
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Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016. URL http://arxiv.org/abs/1602.01783.

Johan Obando-Ceron, Marc G. Bellemare, and Pablo Samuel Castro. Small batch deep reinforce-
ment learning, 2023. URL https://arxiv.org/abs/2310.03882.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

12

https://aclanthology.org/2023.emnlp-main.530
https://aclanthology.org/2023.emnlp-main.530
https://arxiv.org/abs/2106.09685
https://www.nejm.org/doi/full/10.1056/NEJMsr2214184
https://www.nejm.org/doi/full/10.1056/NEJMsr2214184
https://arxiv.org/abs/2006.13554
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
https://arxiv.org/abs/2201.01666
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1602.01783
https://arxiv.org/abs/2310.03882
https://arxiv.org/abs/2303.08774


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2023.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
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A GRADIENT OF RL LOSS AND REVERSE RL LOSS

Suppose there exist k actions, and a(i) indicates the ith action. Let π(i)
θ = πθ(a

(i)|s) denote the
policy for a state s. The set πθ(s) = {π(1)

θ , π
(2)
θ , . . . , π

(k)
θ } represents the possible action probabil-

ities set for s. A(i) indicates the corresponding advantage of the sampled action a(i) for s. Z < 0
is a constant used in the reverse RL loss to handle the computational issue where log 0 = −∞. For
simplicity of notation, we drop θ, s, and a from the policy π. Note that A(i) and Z are not involved
with the gradient as they are constants with respect to θ.

A.1 A2C LOSS

The derivation of the A2C loss La2c with respect to logits z is presented as follows:

For i = y,

∂π(i)

∂zy
=

∂

∂zy

ezi∑k
w=1 e

zw

=
ezi

∑k
w=1 e

zw − eziezi

(
∑k

w=1 e
zw)2

= π(i)(1− π(i))

(14)
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For i ̸= y,
∂π(i)

∂zy
=

∂

∂zy

ezi∑k
w=1 e

zw

= − eziezy

(
∑k

w=1 e
zw)2

= −π(i)π(y)

(15)

The sample-wise A2C loss is:
La2c(π

(i), A(i)) = −A(i) log π(i) (16)

For i = y,
∂La2c

∂zy
=

∂

∂zy
−A(i) log π(i)

= −A(i) ∂

∂zy
log π(i)

= −A(i)

π(i)

∂π(i)

∂zy

= A(i)(π(i) − 1) by (14)

(17)

For i ̸= y,
∂La2c

∂zy
=

∂

∂zy
−A(i) log π(i)

= −A(i) ∂

∂zy
log π(i)

= −A(i)

π(i)

∂π(i)

∂zy

= A(i)π(y) by (15)

(18)

In summary, we have the following form for La2c(π
(i), A(i)):

∂La2c(π
(i), A(i))

∂zy
=

{
A(i)(π(i) − 1), if i = y

A(i)π(y), if i ̸= y
(19)

A.2 REVERSE A2C LOSS

The derivation of the reverse A2C loss Lra2c with respect to logits z is presented as follows:

Lra2c(π
(i), A(i)) =

{∑
j∈[k]\{i} −π(j)A(i)Z, if A(i) > 0∑
j∈[k]\{i} π

(j)A(i)Z, if A(i) < 0
(20)

For i = y and A(i) > 0,
∂Lra2c

∂zy
=

∂

∂zy

∑
j∈[k]\{i}

−π(j)A(i)Z

= −A(i)Z
∑

j∈[k]\{i}

∂π(j)

∂zy

= −A(i)Z
∑

j∈[k]\{i}

−π(j)π(y) by (15)

= A(i)Zπ(y)(1− π(i))

= −A(i)Zπ(y)(π(y) − 1)

(21)
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For i ̸= y and A(i) > 0,

∂Lra2c

∂zy
=

∂

∂zy

∑
j∈[k]\{i}

−π(j)A(i)Z

= −A(i)Z
∑

j∈[k]\{i}

∂π(j)

∂zy

= −A(i)Z

∑
j∈[k]

∂π(j)

∂zy
− ∂π(i)

∂zy


= A(i)Z

∑
j∈[k]

−π(j)π(y) + π(y)π(y) + π(y)(1− π(y))− π(i)π(y)

 by (14) and (15)

= −A(i)Zπ(y)π(i)

(22)

For i = y and A(i) < 0, the only difference from Equation 21 is the negative sign, thus:

∂Lra2c

∂zy
= A(i)Zπ(y)(π(y) − 1) by (21) (23)

For i ̸= y and A(i) < 0, the only difference from Equation 22 is the negative sign, thus:

∂Lra2c

∂zy
= A(i)Zπ(y)π(i) by (22) (24)

In summary, we have the following form for La2c(π
(i), A(i)):

∂Lra2c(π
(i), A(i))

∂zy
=


−A(i)Zπ(y)(π(y) − 1), if i = y and A(i) > 0

−A(i)Zπ(y)π(i), if i ̸= y and A(i) > 0

A(i)Zπ(y)(π(y) − 1), if i = y and A(i) < 0

A(i)Zπ(y)π(i), if i ̸= y and A(i) < 0

(25)

A.3 PPO LOSS

The derivation of the PPO loss Lppo with respect to the logits z is presented as follows. The PPO
loss includes a clipping function and a minimum operation. When these conditions are not satisfied,
there is no gradient.

The sample-wise PPO loss is:

Lppo(π
(i), A(i), π

(i)
old) = − π(i)

π
(i)
old

A(i) (26)

For i = y,

∂Lppo

∂zy
=

∂

∂zy
− π(i)

π
(i)
old

A(i)

= −A(i)

π
(i)
old

∂π(i)

∂zy

=
A(i)π(i)(π(i) − 1)

π
(i)
old

by (14)

(27)
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For i ̸= y,

∂Lppo

∂zy
=

∂

∂zy
− π(i)

π
(i)
old

A(i)

=
A(i)

π
(i)
old

∂π(i)

∂zy

=
A(i)π(i)π(y)

π
(i)
old

by (15)

(28)

A.4 REVERSE PPO LOSS

The derivation of the reverse PPO loss Lrppo with respect to logits z is presented as follows. As with
PPO, the reverse PPO loss only considers samples that pass the clipping function and the minimum
operation.

From Section A.2, we have the following form for Lrppo(π
(i), A(i), π

(i)
old):

∂Lrppo(π
(i), A(i), π

(i)
old)

∂zy
=



−A(i)Zπ(y)(π(y)−1)

π
(i)
old

, if i = y and A(i) > 0

−A(i)Zπ(y)π(i)

π
(i)
old

, if i ̸= y and A(i) > 0

A(i)Zπ(y)(π(y)−1)

π
(i)
old

, if i = y and A(i) < 0

A(i)Zπ(y)π(i)

π
(i)
old

, if i ̸= y and A(i) < 0

(29)

B GRADIENT ANALYSIS OF RL LOSS AND REVERSE RL LOSS

B.1 SYMMETRIC A2C GRADIENT ANALYSIS

The gradient analysis of the symmetric RL loss follows the SCE analysis. We adopt their analysis
and extend it to cover the RL loss analysis. We set α and β to 1 for simplicity and evaluate the
gradient direction of both RL and reverse RL losses with respect to the logits z. We show that the
gradient directions for both types are the same and that the reverse RL loss helps deviate ambiguous
predictions where the probability is around 0.5. We first show how the symmetric A2C (SA2C) loss
behaves. Note that Z < 0 is a constant used in the reverse RL loss to handle log 0 = −∞.

Lsa2c = La2c + Lra2c (30)

For i = y and A(i) > 0,

∂Lsa2c

∂zy
=

∂La2c

∂zy
+

∂Lra2c

∂zy

= A(i)(π(i) − 1)︸ ︷︷ ︸
∇La2c < 0

−A(i)Zπ(i)(π(i) − 1)︸ ︷︷ ︸
∇Lra2c < 0

by (17) and (21)
(31)

For i ̸= y and A(i) > 0,

∂Lsa2c

∂zy
=

∂La2c

∂zy
+

∂Lra2c

∂zy

= A(i)π(y)︸ ︷︷ ︸
∇La2c > 0

−A(i)Zπ(y)π(i)︸ ︷︷ ︸
∇Lra2c > 0

by (18) and (22)
(32)
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For i = y and A(i) < 0,
∂Lsa2c

∂zy
=

∂La2c

∂zy
+

∂Lra2c

∂zy

= A(i)(π(i) − 1)︸ ︷︷ ︸
∇La2c > 0

−A(i)Zπ(y)(π(y) − 1)︸ ︷︷ ︸
∇Lra2c > 0

by (17) and (21)
(33)

For i ̸= y and A(i) < 0,
∂Lsa2c

∂zy
=

∂La2c

∂zy
+

∂Lra2c

∂zy

= A(i)π(y)︸ ︷︷ ︸
∇La2c < 0

−A(i)Zπ(y)π(i)︸ ︷︷ ︸
∇Lra2c < 0

by (18) and (22)
(34)

For the above cases, the gradient directions of the RL (A2C) loss and the reverse RL (RA2C) loss
are the same as SCE gradients. Essentially, the RA2C loss acts as an accelerator. In the case of
i = y and A(i) > 0, the gradient of the RA2C loss is −A(i)Zπ(y)(π(y) − 1), with the largest
gradient magnitude at π(y) = 0.5 as a parabolic function. In other words, the accelerator helps the
probability π(i) increase most quickly when it is ambiguous which action to take. In the case of
i ̸= y and A(i) > 0, the probability of other actions except a(i) is reduced, and this reduction is
influenced by the confidence of both π(i) and π(y). Specifically, the gradient of the RA2C loss is
−A(i)Zπ(y)π(i). When both π(i) and π(y) are 0.5, indicating the most ambiguous predictions, the
accelerator helps the A2C loss reduce π(y) most aggressively.

When A(i) < 0, the gradient direction is simply reversed. The behavior of the gradient itself remains
the same as when A(i) > 0. In the case of i = y, RA2C decreases the probability π(y) more
when π(y) is around 0.5. For i ̸= y, RA2C helps increase π(y) more when both π(i) and π(y) are
ambiguous (both around 0.5).

B.2 SYMMETRIC PPO GRADIENT ANALYSIS

Lsppo = Lppo + Lrppo (35)

For i = y and A(i) > 0,
∂Lsppo

∂zy
=

∂Lppo

∂zy
+

∂Lrppo

∂zy

=
A(i)π(i)(π(i) − 1)

π
(i)
old︸ ︷︷ ︸

∇Lppo < 0

−A(i)Zπ(y)(π(y) − 1)

π
(i)
old︸ ︷︷ ︸

∇Lrppo < 0

by (27) and (29) (36)

For i ̸= y and A(i) > 0,
∂Lsppo

∂zy
=

∂Lppo

∂zy
+

∂Lrppo

∂zy

=
A(i)π(i)π(y)

π
(i)
old︸ ︷︷ ︸

∇Lppo > 0

−A(i)Zπ(y)π(i)

π
(i)
old︸ ︷︷ ︸

∇Lrppo > 0

by (28) and (29) (37)

For i = y and A(i) < 0,
∂Lsppo

∂zy
=

∂Lppo

∂zy
+

∂Lrppo

∂zy

=
A(i)π(i)(π(i) − 1)

π
(i)
old︸ ︷︷ ︸

∇Lppo < 0

+
A(i)Zπ(y)(π(y) − 1)

π
(i)
old︸ ︷︷ ︸

∇Lrppo < 0

by (27) and (29) (38)
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For i ̸= y and A(i) < 0,

∂Lsppo

∂zy
=

∂Lppo

∂zy
+

∂Lrppo

∂zy

=
A(i)π(i)π(y)

π
(i)
old︸ ︷︷ ︸

∇Lppo > 0

+
A(i)Zπ(y)π(i)

π
(i)
old︸ ︷︷ ︸

∇Lrppo > 0

by (28) and (29) (39)

Basically, the mechanism of RPPO is the same as RA2C, except for π(i)
old, which does not change

the gradient sign. Therefore, RPPO also helps PPO deviate from ambiguous predictions, acting as
an accelerator.
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C EXPERIMENTAL SETUPS AND RESULTS

C.1 HYPERPARAMETERS

Atari games: We primarily follow the hyperparameter settings of RL Baselines3 Zoo (Raffin, 2020).
Most hyperparameter values remain unchanged across environments. Only α and β are adjusted for
the reverse RL loss. For SA2C without noise, we use (α = 0.5, β = 5.0) for all environments. For
SA2C with noise, we use (α = 0.5, β = 1.0) for (Alien, MsPacman, Qbert, TimePilot, VideoPin-
ball, Assault, Gravitar, StarGunner, UpNDown), and (α = 0.5, β = 1.0) for others. For SPPO
without noise, we use (α = 0.5, β = 1.0) for all environments. For SPPO with noise, we use
(α = 0.5, β = 10.0) for all environments. We do not use any GPU for Atari games.

Table 5: Hyperparameters for Atari games

Without Noise ϵ ∼ BSC(0.1)

SA2C
- (α = 0.5, β = 1.0) - (Alien, Assault, Gravitar, MsPacman, Qbert,

StarGunner, TimePilot, UpNDown, VideoPinball)
- (α = 0.5, β = 5.0) All environments All others except those mentioned above

SPPO
- (α = 0.5, β = 1.0) All environments -
- (α = 0.5, β = 10.0) - All environments

MuJoCo and Box2D: We use n envs = 4 and n steps = 8 for A2C and SA2C. We follow Stable-
Baselines3’s default hyperparameters (Raffin et al., 2021) for other settings. Only α and β are
adjusted for the reverse RL loss. For table visibility, let {Ant = 1, BipedalWalker = 2, HalfCheetah
= 3, Hopper = 4, HumanoidStandup = 5, InvertedDoublePendulum = 6, LunarLanderContinuous
= 7, Swimmer = 8, Walker2d = 9}. We do not use any GPU for these tasks.

Table 6: Hyperparameters for MuJoCO and Box2D environments

Without Noise ϵ ∼ N (0, 0.052)

SA2C
- (α = 0.5, β = 0.2) (1, 4, 8, 9) (1)
- (α = 0.5, β = 0.5) (2, 5) -
- (α = 0.5, β = 5.0) (3, 6, 7) (7)
- (α = 0.5, β = 10.0) - (2, 3, 4, 5, 6, 8, 9)
- Z = −1 All environments All environments
- (timesteps= 2e6) All environments All environments
- (Number of bins= 11) All environments All environments

SPPO
- (α = 0.5, β = 20.0) All environments (1, 7)
- (α = 0.5, β = 25.0) - (2, 3, 5, 6, 9)
- (α = 0.5, β = 50.0) - (4, 8)
- Z = −1 All environments All environments
- (timesteps= 1e6) (2, 6) (2, 6)
- (timesteps= 2e6) (1, 3, 4, 8, 9) (1, 3, 4, 8, 9)
- (timesteps= 5e6) (9) (9)
- (timesteps= 1e7) (5) (5)
- (Number of bins= 11) All environments All environments

IMDB and TL;DR: We basically use the provided implementation (Chang et al., 2023) and follow
their hyperparameters, with the addition of the advantage normalization step for PPO. The scripts
used in our experiments are available in the code repository for further detail. We use a single Nvidia
A100 (80GB) for our experiments.
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Table 7: Hyperparameters for IMDB positive sentiment and TL;DR summarization

IMDB Box2D
PPO
- model: GPT-2 GPT-J
- updates: 60 100
- trajectories per update: 112 64
- epochs per update 5 4
- batch size 28 32
- learning rate 5e-6 5e-6
- discount factor 0.99 1.0
- GAE lambda 0.95 0.95
- clip range 0.2 0.2

SPPO (α = 0.5, β = 0.4) (α = 0.5, β = 0.2)

C.2 EXPERIMENTAL RESULTS: A2C AND SA2C

Table 8: Mean final scores and standard errors (over the last 10 episodes) of A2C and SA2C on Atari
games, without and with binary symmetric channel (BSC) noise with a crossover probability of 0.1
across 5 seeds.

Without Noise ϵ ∼ BSC(0.1)

A2C SA2C A2C SA2C
Alien 913 ± 100 771 ± 51 481 ± 72 496 ± 37
Assault 1538 ± 199 1061 ± 41 287 ± 226 399 ± 133
Asterix 2308 ± 86 2377 ± 164 1403 ± 305 1430 ± 208
BeamRider 1121 ± 61 1335 ± 43 1087 ± 339 902 ± 196
Centipede 3588 ± 430 3574 ± 295 3108 ± 243 3540 ± 194
CrazyClimber 98774 ± 2516 99330 ± 4371 93042 ± 8711 97058 ± 6251
DemonAttack 4309 ± 325 5017 ± 625 30 ± 21 19 ± 3
Frostbite 255 ± 2 257 ± 3 241 ± 9 286 ± 48
Gopher 960 ± 80 1036 ± 138 947 ± 91 996 ± 114
Gravitar 143 ± 18 201 ± 16 279 ± 48 183 ± 36
Krull 6387 ± 267 7672 ± 819 7564 ± 486 6337 ± 754
MsPacman 1175 ± 43 1495 ± 104 926 ± 44 916 ± 100
NameThisGame 5945 ± 102 5614 ± 166 2280 ± 257 2372 ± 141
Qbert 1646 ± 240 2103 ± 261 620 ± 96 641 ± 77
Riverraid 4368 ± 582 5461 ± 456 1609 ± 65 2511 ± 190
RoadRunner 14971 ± 1396 18624 ± 1812 5606 ± 1788 3830 ± 1517
Seaquest 836 ± 7 988 ± 92 650 ± 22 653 ± 22
StarGunner 2222 ± 114 1766 ± 120 1194 ± 645 622 ± 54
TimePilot 3992 ± 198 3116 ± 137 2232 ± 259 3288 ± 106
UpNDown 8313 ± 1544 1638 ± 761 4228 ± 1187 7093 ± 2772
VideoPinball 24948 ± 3038 19618 ± 1888 20319 ± 2157 25035 ± 3914
WizardOfWor 824 ± 136 674 ± 125 496 ± 87 752 ± 156
Wins (SA2C) 12 / 22 15 / 22
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Table 9: Mean final scores and standard errors (over the last 10 episodes) of A2C and SA2C on
MuJoCo benchmark tasks and Box2D environments without Gaussian noise across 30 seeds.

Without Noise Ant Hopper HalfCheetah HumanoidStandup
A2C 757 ± 116 1410 ± 112 1393 ± 163 121850 ± 4264

DA2C 2220 ± 96 1944 ± 116 2325 ± 209 152135 ± 3937

DSA2C 2287 ± 94 1797 ± 139 2266 ± 203 159142 ± 129
Walker2d Swimmer BipedalWalker LunarLanderContinuous

A2C 1348 ± 130 95.8 ± 19.0 124 ± 23 79.0 ± 20.2

DA2C 2131 ± 154 142.4 ± 17.0 234 ± 22 176.7 ± 20.9

DSA2C 1662 ± 164 128.5 ± 16.2 274 ± 16 221.2 ± 10.7
InvertedDoublePendulum

A2C 1670 ± 500

DA2C 9139 ± 94

DSA2C 9145 ± 93

Table 10: Mean final scores and standard errors (over the last 10 episodes) of A2C and SA2C
on MuJoCo benchmark tasks and Box2D environments with Gaussian noise (mean 0 and standard
deviation 0.05) across 30 seeds.

ϵ ∼ N (0, 0.052) Ant Hopper HalfCheetah HumanoidStandup
A2C 673 ± 108 1083 ± 92 1610 ± 163 101064 ± 4933

DA2C 1296 ± 80 1323 ± 87 1510 ± 126 126241 ± 3973

DSA2C 1520 ± 83 1307 ± 102 1696 ± 163 128064 ± 4391
Walker2d Swimmer BipedalWalker LunarLanderContinuous

A2C 786 ± 86 28.9 ± 4.4 158 ± 20 -3.7 ± 15.9

DA2C 1599 ± 138 36.8 ± 4.6 210 ± 21 106 ± 20

DSA2C 1423 ± 129 53.1 ± 7.0 222 ± 20 179 ± 12
InvertedDoublePendulum

A2C 3852 ± 634

DA2C 7900 ± 364

DSA2C 8323 ± 217
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C.3 EXPERIMENTAL RESULTS: PPO AND SPPO

Table 11: Mean final scores and standard errors (over the last 10 episodes) of PPO and SPPO on
Atari games, without and with binary symmetric channel (BSC) noise with a crossover probability
of 0.1 across 5 seeds.

Without Noise ϵ ∼ BSC(0.1)

PPO SPPO PPO SPPO
Alien 1128 ± 105 1081 ± 79 525 ± 26 713 ± 26
Assault 3134 ± 193 3385 ± 214 2327 ± 401 3698 ± 363
Asterix 2599 ± 101 2976 ± 150 1272 ± 106 1739 ± 329
BeamRider 2176 ± 251 1635 ± 404 1828 ± 130 1580 ± 96
Centipede 2961 ± 379 3694 ± 224 4759 ± 257 7525 ± 769
CrazyClimber 86764 ± 3568 103588 ± 2871 71144 ± 11060 99810 ± 2487
DemonAttack 7872 ± 302 7901 ± 455 161 ± 24 132 ± 13
Frostbite 268 ± 5 286 ± 6 509 ± 108 23 ± 16
Gopher 787 ± 48 875 ± 78 478 ± 38 7765 ± 3366
Gravitar 371 ± 47 442 ± 67 269 ± 39 332 ± 61
Krull 6628 ± 417 7578 ± 588 5602 ± 481 9015 ± 381
MsPacman 837 ± 62 1204 ± 86 704 ± 41 1011 ± 52
NameThisGame 5665 ± 280 5423 ± 63 2681 ± 143 5187 ± 247
Qbert 4352 ± 128 4412 ± 282 2827 ± 1927 4020 ± 2415
Riverraid 6128 ± 272 6343 ± 219 2460 ± 127 3998 ± 248
RoadRunner 28382 ± 2254 22562 ± 2875 1204 ± 157 3830 ± 1230
Seaquest 902 ± 2 888 ± 6 652 ± 16 814 ± 15
StarGunner 11848 ± 722 14746 ± 1876 1514 ± 110 23250 ± 6292
TimePilot 3850 ± 151 3548 ± 220 3506 ± 318 3936 ± 420
UpNDown 58289 ± 21226 126830 ± 27534 8815 ± 1395 73490 ± 33553
VideoPinball 22408 ± 4292 29485 ± 2851 31680 ± 2318 37048 ± 6989
WizardOfWor 3186 ± 256 3762 ± 387 940 ± 158 4442 ± 1332
Wins (SPPO) 16 / 22 19 / 22
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Figure 3: Result of training plots for SPPO and PPO for Atari games. The blue line indicates the
original PPO without any added noise, while the orange line represents SPPO without added noise.
The green line indicates PPO with 10% noise, and the red line represents SPPO with 10% noise. We
fix α = 0.5 for all environments, with β = 1.0 for the experiments without noise and β = 10.0 for
the noise environments.
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Table 12: Mean final scores and standard errors (over the last 10 episodes) of PPO and SPPO on
MuJoCo benchmark tasks and Box2D environments without Gaussian noise across 30 seeds.

Without Noise Ant Hopper HalfCheetah HumanoidStandup
PPO 2068 ± 166 2875 ± 137 2282 ± 191 93763 ± 3402

DPPO 2735 ± 109 2154 ± 119 3478 ± 279 176320 ± 6538

DSPPO 2885 ± 100 2299 ± 115 4104 ± 258 189301 ± 5915
Walker2d Swimmer BipedalWalker LunarLanderContinuous

PPO 2793 ± 199 112 ± 5.0 247 ± 8.3 134 ± 10.9

DPPO 4443 ± 119 131 ± 0.3 265 ± 15.5 241 ± 7.7

DSPPO 4587 ± 154 130 ± 0.6 274 ± 6.2 250 ± 6.9
InvertedDoublePendulum

PPO 7454 ± 394

DPPO 8928 ± 136

DSPPO 9015 ± 101

Table 13: Mean final scores and standard errors (over the last 10 episodes) of PPO and SPPO on
MuJoCo benchmark tasks and Box2D environments with Gaussian noise (mean 0 and standard
deviation 0.05) across 30 seeds.

ϵ ∼ N (0, 0.052) Ant Hopper HalfCheetah HumanoidStandup
PPO 601 ± 47 1936 ± 147 2068 ± 208 80945 ± 2130

DPPO 1897 ± 86 2153 ± 106 2722 ± 188 146038 ± 1841
DSPPO 2095 ± 102 2333 ± 109 3118 ± 195 145974 ± 2520

Walker2d Swimmer BipedalWalker LunarLanderContinuous
PPO 1270 ± 107 44 ± 3.0 158 ± 15.2 181 ± 13.8

DPPO 3419 ± 100 57 ± 3.6 274 ± 7.1 281 ± 5.7

DSPPO 3523 ± 129 72 ± 5.1 267 ± 8.8 294 ± 3.3
InvertedDoublePendulum

PPO 8050 ± 244

DPPO 8963 ± 100

DSPPO 9147 ± 61
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C.4 ON AND OFF ADVANTAGE NORMALIZATION

Table 14: Comparison with and without advantage normalization over 4 different random seeds.

PPO IMDB TL;DR
Without A Normalization 0.77 ± 0.01 6.06 ± 0.02
With A Normalization 0.89 ± 0.02 5.94 ± 0.08

D EXAMPLES OF REWARD MODEL ERRORS

Warning: This section contains harmful language.

Table 15: Example showing a trained reward model with errors that are not consistent for empty
outputs, and the reward for an empty output is greater than that for a non-empty summarization. [...]
indicates omitted content for brevity.

Subreddit: r/relationships (Sample ID: 37)
TITLE: I’m a dumb [21] male and so I’m having a lot of trouble interpreting the signals that this
[21] girl may or may not be sending me. A little help please?
Post: So okay, I’m from New York but I study in Oregon for most of the year. Recently a friend
of mine who I was not really close started facebook messaging me, that was about 3 months ago,
since then we’ve talked almost everyday. [...] Is she trying to play hard to get? Am I looking
way too into this and maybe she was just occupied that weekend? I really have no idea how to
evaluate this. Do any of you guys have any suggestions/ideas?
Generated Summary: <empty>
Reward Model Output: 6.66
Subreddit: r/relationship advice (Sample ID: 60)
TITLE: My bf [23] doesn’t speak of his childhood, but I[f22] know he’s traumatized.
Post: We were friends for 10 years, before we got together. He than told me once about his
terrible childhood. (He told only 3 of his friends his story) Now we’re a couple for quite a few
months and well, sometimes there’s stuff I know that reminds him of his childhood, but it’s like
he’s forgotten that he had told me. [...] (But striking, the things he thinks are important are always
the things his parents should have done, to save him from the traumatizing stuff.)I know he likes
to put his problems far away. But on the other hand, I’m his girlfriend now and we’re pretty
serious, isn’t it good to speak about it maybe just once, so he knows I know his secret/won’t tell,
and most of all, I’m always there for him? What do you think?
Generated Summary: <empty>
Reward Model Output: 3.14
Subreddit: r/AskReddit (Sample ID: 27)
TITLE: Dear Reddit, What silly/irrelevant/rediculous family miscommunications have lead to
feuds lasting years?
Post: My Grandma and my aunt (her daugher-in-aw) haven’t spoken to each other in years over
a phone that didn’t get hung up. My aunt and uncle screen their calls and frequently do not return
them– one time, my grandma called and left a message then thought she hung up the phone. [...]
Why continue to hold a silly grudge? To complicate matters further, my grandma has a daughter
who lives with her and likes to be in other peoples business– I think she is also part of the problem
here as she won’t drop it either. Grandma is innocent but has a daughter and daughter-in-law who
won’t grow up and drop it
Generated Summary: Grandma and Aunt haven’t spoken in years over a phone that didn’t get
hung up. Grandma wants to reconcile and clear the air, but Aunt won’t go near her, won’t let her
husband and kids go there, and avoids.
Reward Model Output: 5.40
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