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Abstract

Enhancing the reasoning capabilities of large language models effectively using
reinforcement learning (RL) remains a crucial challenge. Existing approaches
primarily adopt two contrasting advantage estimation granularities: token-level
methods (e.g., PPO) aim to provide fine-grained advantage signals but suffer
from inaccurate estimation due to difficulties in training an accurate critic model.
On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a
coarse-grained advantage signal from the final reward, leading to imprecise credit
assignment. To address these limitations, we propose Segment Policy Optimization
(SPO), a novel RL framework that leverages segment-level advantage estimation at
an intermediate granularity, achieving a better balance by offering more precise
credit assignment than trajectory-level methods and requiring fewer estimation
points than token-level methods, enabling accurate advantage estimation based on
Monte Carlo (MC) without a critic model. SPO features three components with
novel strategies: (1) flexible segment partition; (2) accurate segment advantage
estimation; and (3) policy optimization using segment advantages, including a novel
probability-mask strategy. We further instantiate SPO for two specific scenarios:
(1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based
partition and chain-based advantage estimation, achieving 6-12 percentage point
improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long
CoT, featuring novel tree-based advantage estimation, which significantly reduces
the cost of MC estimation, achieving 7-11 percentage point improvements over
GRPO on MATH500 under 2K and 4K context evaluation. We make our code
publicly available at https://github.com/AIFrameResearch/SPO.

1 Introduction
Reinforcement learning (RL) has become the cornerstone for training state-of-the-art reasoning
large language models (LLMs), such as OpenAI o1 [11], DeepSeek R1 [7], Kimi K1.5 [31], and
Qwen3 [34]. These models demonstrate RL’s unique ability to cultivate advanced reasoning capa-
bilities, particularly in complex, STEM-related tasks. However, achieving both effectiveness and
efficiency in RL training hinges on addressing a fundamental challenge: credit assignment, i.e.,
accurately attributing success or failure to individual actions within a sequence [30]. In the context
of LLMs, where actions correspond to generated tokens, this challenge is even greater due to sparse
and delayed rewards that are typically only available at the end of the response. Advantage estimation
is the common approach for credit assignment in RL, and existing methods differ in the granularity
of advantage estimation, typically operating at two extremes, each with its own limitations.
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Fine-grained token-level methods like Proximal Policy Optimization (PPO) [26] use a critic model to
estimate advantages for each token. However, accurately predicting state values poses a particular
challenge in LLM training, due to the significant variability among states conditioned on different
prompts and the limited per-prompt data to effectively train the critic model. Empirical findings by
[12] provide extensive evidence that this difficulty causes the critic model to produce unreliable value
predictions, leading to suboptimal credit assignment in practice. Additionally, PPO employs either
a separate critic model or an additional critic head to predict the value function, leading to extra
memory and computation overhead. At the other extreme, coarse-grained trajectory-level methods
such as Group Relative Policy Optimization (GRPO) [28] bypass the critic model and compute a
single advantage for the entire generated sequence based solely on the final outcome. While this
approach is computationally efficient and unbiased, it leads to imprecise credit assignment over long
sequences [12]. Applying a single advantage signal to a large number of tokens makes it challenging
for the model to identify which specific tokens contribute positively or negatively, resulting in the
model failing to reward partial progress or learning redundant solution paths [22]. Moreover, our
experimental results, consistent with a concurrent work [35], find that GRPO can rapidly overfit on
a fixed training set, with the number of unique responses decreasing and the performance on the
validation set saturating early (see Figure 8).

To overcome the limitations of both token-level and trajectory-level methods, we propose Segment
Policy Optimization (SPO), a novel RL framework focusing on mid-grained, segment-level advantage
estimation. Instead of assigning credit for each token or only at the end of a trajectory, SPO partitions
the generated sequence into contiguous segments and estimates advantages at this intermediate granu-
larity. This segment-level estimation offers several key benefits: (1) Improved credit assignment:
Segment-level feedback provides more localized information than trajectory-level methods, allowing
credit assignment to shorter segments. This finer granularity enables the model to reward partial
progress even for ultimately unsuccessful responses and penalize redundancy or unnecessary portions
within successful responses. (2) More accurate advantage estimation: Compared to token-level
advantages, segment-level advantages involve fewer estimation points. This enables SPO to leverage
effective Monte Carlo (MC) sampling, yielding accurate and unbiased advantage estimation directly
from the policy, thus eliminating the need for an additional, unstable critic model. (3) Flexibility and
adaptability: Our segment partition method can be arbitrarily defined without requiring semantic
completeness, offering flexible adjustment of granularity from token-level to trajectory-level, also
making it adaptable to a wide range of tasks.

Our SPO framework contains three key components: (1) Flexible segment partition, (2) Segment
advantage estimation via MC, and (3) Policy optimization using segment advantages. This
modular design allows for various strategies to be implemented within each component, making the
framework highly adaptable to different tasks and scenarios. We further instantiate SPO with two
specialized instances tailored for different reasoning scenarios. For short chain-of-thought (CoT), we
introduce SPO-chain, which employs a cutpoint-based segment partition strategy and chain-based
segment advantage estimation. For long CoT, we introduce SPO-tree, featuring a novel tree-based
segment advantage estimation strategy specifically designed to significantly improve MC sampling
efficiency. Additionally, we propose a novel probability-mask optimization strategy that selectively
compute the loss for key tokens instead of all tokens within a segment, which can be applied to
either SPO-chain or SPO-tree to further enhance credit assignment. Our experimental evaluations
demonstrate the effectiveness of the SPO framework and its specialized instantiation. For short CoT,
SPO-chain achieves 6–12 percentage point accuracy improvements over PPO and GRPO on GSM8K.
For long CoT, SPO-tree achieves 7–11 percentage point accuracy improvements over GRPO on
MATH500 under 2K and 4K context evaluation. Our major contributions are summarized as follows:

1. We propose Segment Policy Optimization (SPO), a novel segment-level RL training frame-
work for LLMs. SPO introduces mid-grained advantage estimation to overcome the limita-
tions of token-level and trajectory-level methods, and features a modular architecture.

2. We introduce several novel techniques integrated within the SPO framework, including
cutpoint-based segment partition, tree-based segment advantage estimation, and a policy
optimization strategy utilizing probability masks.

3. Building on the proposed SPO framework, we introduce two specialized instantiations:
SPO-chain and SPO-tree, for short and long CoT scenarios, respectively, and demonstrate
their effectiveness through extensive experiments on mathematical reasoning benchmarks,
GSM8K and MATH.
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2 Background
Language Generation as an MDP. Language generation tasks can be modeled as a Markov Decision
Process (MDP) defined by a tuple (S,A,P,R), where S is the state space, A is the action space, P
represents transition dynamics, and R is the reward function. Specifically, at each time step t, the state
st ∈ S consists of the prompt tokens x along with previously generated tokens y<t = [y1, . . . , yt−1],
that is, st = [x,y<t]. The action at ∈ A corresponds to selecting the next token yt. The decision-
making process follows a policy πθ(at|st), parameterized by θ, which defines the probability of the
next token conditioned on the current state. The transition dynamics P are deterministic: given state st
and action (token) at, the next state st+1 is obtained by concatenating the selected token to the current
state: st+1 = P(st, at) = [st, at]. The reward function assigns 0 intermediate rewards, providing
only a sparse binary rewardR(x,y) = 1 or 0 at episode termination, where y = [y1, y2, . . . , yT ] is
the full generated response, indicating whether the generated response matches the ground truth or
not. The value function V (s) represents the expected cumulative reward from state s. The state-action
value function Q(s, a) corresponds to the expected cumulative reward from choosing action a at state
s. The advantage function A(s, a), defined as Q(s, a)−V (s), measures the improvement in expected
reward realized by taking an action a at state s. Under deterministic transition dynamics and sparse
binary rewards, the advantage function simplifies to A(s, a) = V (s′)− V (s), where s′ = P(s, a) is
the next state reached deterministically from state s after taking action a.

RL for LLMs. PPO [26, 21] and GRPO [28] are two widely adopted reinforcement learning
algorithms for optimizing large language models. PPO introduces a clipped surrogate objective to
stabilize training by constraining policy updates near the previous policy:

JPPO(θ) = Ex∼D,y∼πθold (·|x)

[
1

|y|

|y|∑
t=1

min
(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (1)

where rt(θ) is defined as πθ(at|st)
πθold (at|st) , and ϵ is a small hyperparameter that limits excessively large

updates. PPO estimates token-level advantages Ât via GAE [25], requiring a critic model to predict
token-level values. Compared to PPO, GRPO eliminates the need for the critic model and instead
estimates the trajectory-level advantages by normalizing each response’s reward within the sampled
group. These trajectory-level advantages are then assigned uniformly to all tokens in the correspond-
ing trajectory to obtain Ât. Similar to PPO, GRPO adopts a clipped objective, together with a directly
imposed KL penalty term. Recent work [12] highlights that accurately training the critic in PPO is
challenging, and proposes VinePPO, a critic-free alternative that partitions the reasoning trajectory
into discrete steps using heuristic rules (e.g., line breaks) and estimates step-level advantages through
Monte Carlo (MC).

Compared to VinePPO, our proposed segment-level framework, SPO, adopts a more general concept
of segmentation, allowing arbitrary partitions without enforcing semantic coherence. This enables us
to freely adjust the granularity anywhere between token-level and trajectory-level, and also facilitates
adaptation to broader and less structured tasks such as code generation. Moreover, we introduce
a novel tree-based sampling method, where segment advantages are estimated concurrently with
trajectory generation. This obviates the need for VinePPO’s costly resampling to estimate advantages,
thereby substantially improving efficiency and making our approach effective in long CoT scenarios.
Notably, VinePPO can be viewed as a special case within our more general SPO framework. More
related work is provided in Appendix A.

3 Segment Policy Optimization
In this section, we introduce our segment policy optimization (SPO) framework. Effective credit
assignment is crucial for training LLMs in reasoning tasks. Trajectory-level methods such as GRPO
rely solely on sparse final rewards, making credit assignment challenging. Token-level methods
like PPO heavily depend on the critic model, whose value estimation is often inaccurate. The
SPO framework aims to balance these extremes by operating at the segment granularity, enabling
richer feedback signals compared to GRPO and allowing more accurate Monte Carlo estimates of
segment-level advantages, thereby bypassing the need for a critic model.

We develop the SPO framework guided by the following three challenging problems: (1) How to
partition the generated sequence into multiple segments? (2) How to accurately and efficiently
estimate the advantage for each segment? (3) How to update the policy by using the segment-level
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Figure 1: Overview of SPO framework. Our framework consists of three components: segment
partition, segment advantage estimation, and policy optimization, each of which can be implemented
in different ways. This figure illustrates the cutpoint-based partition strategy used in SPO-chain,
where partitioning occurs after a predetermined number of cutpoints. It also illustrates our probability-
mask policy optimization method, which assigns the corresponding segment advantages specifically
to the cutpoints instead of all tokens within a segment.
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Figure 2: (a) Chain-based advantage estimation method. For each segment, we independently sample
N trajectories to estimate its value V . The advantage for segment k is estimated as V̂ (stk+1

)−V̂ (stk).
(b) Tree-based advantage estimation method. Trajectories are organized in a tree structure, where
nodes sharing the same parent form a group with identical prompts and token counts (except for leaf
nodes, whose token lengths may vary). This hierarchical organization facilitates the calculation of
advantages within each group.

advantage? The proposed SPO framework, as illustrated in Figure 1, adopts a modular architecture,
where each of its components can be implemented using various strategies, allowing the framework
to be tailored to diverse tasks and scenarios. In what follows, we introduce three key components of
SPO to answer the above questions and further instantiate SPO with two instances, tailored for short
and long CoT scenarios.

(1) Flexible Segment Partition. A segment is defined as a contiguous sequence of generated
tokens, denoted as segk = [ytk , ytk+1, . . . , ytk+1−1], where tk is the starting token index of the
k-th segment. Formally, given a full generated trajectory y = [y1, y2, . . . , yT ], the partition can be
expressed as y = [y1, y2, . . . , yT ] = [seg1, seg2, · · · , segK ]. The SPO framework supports arbitrary
partition strategies, allowing flexible definition of segment boundaries, without requiring semantic
completeness. This flexibility enables us to choose partition granularity between token-level and
trajectory-level, allowing a trade-off between computational cost and credit assignment. In this work,
we consider two main partition strategies, designed for different scenarios: (a) Fixed Token Count
Partition: A straightforward strategy that divides the sequence into segments of a predetermined
fixed number of tokens. (b) Adaptive Cutpoint-based Partition: An advanced strategy (see Section
4) that defines segments by accumulating a fixed number of low probability tokens (i.e., tokens
whose probabilities πθ(yt|st) are less than a threshold ρ). This strategy places segment boundaries
at positions where V values are more likely to change, avoiding the issue in the fixed token count
partition strategy where V values may remain unchanged between segment boundaries when each
segment is short.

(2) Segment Advantage Estimation via Monte Carlo. After obtaining each segment segk =
[ytk , ytk+1, . . . , ytk+1−1], we define the segment advantage in the following way:

Aseg
k := V (stk+1

)− V (stk) = V ([x, seg1, . . . , segk])− V ([x, seg1, . . . , segk−1]), (2)
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which measures the incremental improvement in expected reward resulting from generating the
tokens in segk. The core challenge lies in accurately estimating the value function V (s). A common
approach is to train a critic model. However, in the LLM scenario, critic-based methods struggle to
produce accurate state-value estimates due to large variations across prompts and limited trajectory
data per prompt, as empirically illustrated by [12]. Given these considerations, we propose to bypass
the critic entirely and instead adopt Monte Carlo (MC) estimation to compute unbiased estimates
of segment values directly from sampled trajectories. While high variance is often a concern with
MC estimation, in the LLM setting, rewards are typically sparse and binary, significantly mitigating
the variance issue. Specifically, we can view V as a Bernoulli variable, and the MC variance is at
most 0.25. We find that the accuracy obtained with a small number of samples (N = 4 or N = 9)
is sufficient for effective policy optimization. Our SPO framework supports various MC sampling
strategies: (a) Chain-based Advantage Estimation: Independently roll out N trajectories from state
s, and estimate V (s) as the average reward of these trajectories, further yielding the estimation of
the advantage Aseg

k following Equation (2). (b) Tree-based Advantage Estimation: An advanced
strategy of advantage estimation for improved sample efficiency (see details in Section 5). Unlike
the chain-based advantage estimation, which discards MC samples after estimating the V values,
this strategy organizes MC samples into a tree structure and computes the V values via bottom-up
aggregation of rewards along the tree. Nodes sharing the same parent have identical prompts and
token counts, forming segment groups, enabling advantage computations within each group. This
tree structure allows the reuse of MC samples for policy optimization, significantly enhancing sample
efficiency in the long CoT scenario.

(3) Policy Optimization Using Segment Advantages. Given a set of generated segments {segk} and
their corresponding advantages {Aseg

k }, we now focus on effectively leveraging training samples to
update the policy πθ. Specifically, we can adapt various policy optimization approaches into our SPO
framework: (a) Policy Gradient: We can assign Aseg

k to all tokens contained within the k-th segment
segk and then optimize using the PPO loss; (b) Policy Gradient with Token-Probability Masks:
An improved version of policy gradient (see details in Section 4), incorporating probability masks.
Instead of uniformly assigning Aseg

k to all tokens within the segment, this strategy exclusively assigns
Aseg

k only to low-probability tokens, based on the intuition that these tokens primarily contribute to
the segment’s advantage. This refined approach further enhances the credit assignment to critical
tokens; (c) Other Strategies: Our framework can also be adapted to other policy optimization
methods such as policy iteration-based approach (see discussions in Appendix B) and potentially
GFlowNet-based optimization [2].

4 SPO-Chain for Short CoT
For short Chain-of-Thought (CoT) scenarios, where the computational overhead of MC sampling is
low and segments typically involve a small number of tokens, we designed a tailored instance of SPO
by taking into account these characteristics, which we refer to as SPO-chain. The core features of
SPO-chain lie in its cutpoint-based segment partition, chain-based segment advantage estimation,
and policy optimization via policy gradient with probability masks.

(1) Adaptive Cutpoint-based Segment Partition. The fixed token count partition strategy faces
a critical issue in short CoT scenarios that the number of tokens in each segment is not very large.
If the token probabilities πθ(yt|st) within a segment are high (close to 1), the V values estimated
at the beginning and end of the segment will not differ significantly. This can lead to unnecessary
partitioning, ultimately resulting in a waste of sampling budget. To address this, we propose an
adaptive cutpoint-based partition strategy. Specifically, we first identify the cutpoints, defined as
positions where token probabilities drop below a pre-defined threshold ρ, so that we have the set of all
cutpoints defined as Uθ = {t < T | πθ(yt|st) < ρ}. These cutpoints represent positions where the
model’s reasoning trajectory could diverge, thus potentially inducing changes in V values. For better
credit assignment, we prefer each segment to contain fewer cutpoints. Then, given a fixed segment
count K, we find a partition that reflects this principle by solving the following optimization problem:
min{tk}K

k=1

∑K
k=1 |Uθ ∩ [tk, tk+1)|2. It can be shown that the optimal solution evenly distributes

cutpoints across segments (assuming |Uθ| is divisible by K for simplicity), that is,

|Uθ ∩ [tk, tk+1)| =
|Uθ|
K

, ∀k ≤ K

which corresponds to partitioning the trajectory such that each segment contains the same number of
cutpoints, as shown in Figure 1. A practical example is provided in Appendix I. Our experiments
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further show that this partition strategy would lead to a superior performance (see our comparison of
different segment partition strategies in Section 6).

(2) Chain-based Segment Advantage Estimation. In the short CoT scenario, the computational
overhead of MC estimation is generally manageable. Thus, we adopt a simple, chain-based MC
sampling approach as shown in Figure 2(a). Specifically, at each segment boundary state stk =

[x,y<tk
], we independently sample N trajectories from the policy πθ, i.e. τ (j)

tk
∼ πθ(·|stk), j =

1, . . . , N and then estimate the value of such a state by averaging the returns from these sampled
trajectories, i.e., V̂ (stk) = 1

N

∑N
j=1R(x, [y<tk

, τ
(j)
tk

]). The estimated advantage Âseg
k of each

segment k is computed by taking the difference between the state values at consecutive segment
boundaries Âseg

k = V̂ (stk+1
)− V̂ (stk) following Equation (2).

(3) Policy Gradient with Token-Probability Masks. Policy gradient methods have become main-
stream for training LLMs using RL. Accordingly, we adopt a policy gradient-based approach to
optimize the policy. For example, once we have computed the segment advantage Aseg

k , we can assign
it to all tokens within the segment and obtain the token-level advantage At, then adopt the PPO loss
in Equation (1) to optimize the policy. However, since the changes in V values between segments are
primarily caused by tokens at cutpoints, we assign the segment advantage Aseg

k only to these critical
tokens. Formally, our policy is trained by minimizing the following loss:

J chain
SPO (θ) = Ex∼D, [seg1,...,segK ]∼πθold{
1

Z

K∑
k=1

tk+1−1∑
t=tk

[
Mt ·min

(
rt(θ)Â

seg
k , clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Âseg

k

)
− βDKL(πθ∥πref)

]}
,

(3)

where Mt is the token probability mask whose value is 1 if πθold(at|st) < ρ and 0 otherwise, i.e.,
Mt := I

(
πθold(at|st) < ρ

)
. In addition, Z is a normalization term that equals the total number of

tokens where the mask Mt is 1: Z =
∑T

t=1 Mt. This approach further enhances credit assignment
within each segment by concentrating the advantage signals on fewer critical tokens. Our experiments
demonstrate that this method improves the accuracy (refer to our ablation study on the probability-
mask optimization strategy in Section 6).

5 SPO-Tree for Long CoT
For long Chain-of-Thought (CoT) scenarios, where the sampling cost of chain-based MC estimation in
SPO-chain becomes prohibitively high, we propose a novel tree-based segment advantage estimation
method. This approach drastically reduces sampling overhead, making it feasible to apply our
framework effectively in long CoT settings. We refer to this instantiation of our SPO framework
as SPO-tree. In particular, SPO-tree features the fixed token count partition, tree-based segment
advantage estimation, and policy gradient with probability masks.

(1) Fixed Token Count Segment Partition. In long CoT scenarios, each segment typically contains
a large number of tokens. As a result, it is unlikely that all token transitions within an entire segment
will have probabilities close to 1. Thus, we employ a partition strategy where segment boundaries
are made at fixed token intervals, which allows us to generate segments with equal token count,
supporting our tree-based segment advantage estimation method proposed in the following subsection.

(2) Tree-based Segment Advantage Estimation. The core drawback of the chain-based segment
advantage estimation strategy studied in Section 4 is that it discards samples used for estimating the
values (e.g., τ (1), τ (2), τ (3) in Figure 2(a)), leading to substantial waste of samples in scenarios
involving long reasoning trajectories. To address this issue, we propose a tree-based segment
advantage estimation strategy, which reuses the samples employed for value estimation in policy
optimization, significantly improving the sample efficiency.

As illustrated in Figure 2(b), we model the trajectory sampling process as a tree structure. We define
hist(n) as the full history sequence corresponding to node n, including the initial prompt x and all
tokens generated along the path from the root node to node n. Each node n represents a segment
seg(n), which is generated by extending the sequence of its parent node, Pa(n), with M newly
sampled tokens, i.e.,

seg(n) =
[
y
(n)
1 , . . . , y

(n)
M

]
, y

(n)
t ∼ π

(
·
∣∣ [ hist(Pa(n)),y(n)

<t

])
.
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Each node n generates a set of child nodes, denoted as Ch(n), and has a set of siblings, denoted as
Sib(n). Nodes among siblings share the same prompts and sequence lengths (except for leaf nodes),
ensuring fair comparison under the same token budget. The value of the state represented by node n
is denoted as V (n), which can be estimated recursively from leaves to root as follows:

V̂ (n) =

{
R(x, hist(n)), if n is a leaf node

1
|Ch(n)|

∑
n′∈Ch(n) V̂ (n′), otherwise

.

We denote the advantage of the segment represented by node n as A(n). The estimated advantage
Â(n) for node n, relative to its siblings, is computed either in unnormalized or normalized form as:

Â(n) = V̂ (n)− meann′∈Sib(n)V̂ (n′) or
V̂ (n)− meann′∈Sib(n)V̂ (n′)

stdn′∈Sib(n)V̂ (n′)
.

More details about the tree construction are presented in Appendix E. In contrast to the chain-based
segment advantage estimation strategy, each node (segment) in the tree can be used as a training
example, substantially improving sample efficiency. In addition, due to extensive node-sharing among
trajectories, the actual number of tokens we need to sample is significantly less than the sum of
tokens across all trajectories, greatly reducing sampling overhead. Within each training iteration,
sampling a large number of trajectories from a single question can lead to the model overfitting to
specific samples. To address this, we introduce a replay buffer mechanism that distributes sampled
trajectories across multiple iterations in Appendix D.

The width of the tree determines the number of sibling nodes in each group, with a larger width
providing more nodes for comparison and thus more nuanced advantage estimates. The depth of
the tree controls the granularity of partitions; deeper trees yield finer-grained signals. Furthermore,
the hierarchical tree structure naturally aligns with the varying uncertainty along the reasoning
trajectory. Earlier segments (closer to the root), which have higher uncertainty, aggregate more
samples for estimating their V values, while later segments (closer to the leaves), which are more
certain, aggregate fewer samples.

(3) Policy Gradient with Token-Probability Masks. To focus model training on segments with
discriminative signals, we extract segments with non-zero advantages from the tree for training. We
also note that such filtering of non-zero advantage samples aligns with practices in several concurrent
works [35, 15]. Thus, we propose to minimize J tree

SPO below for policy optimization:

J tree
SPO (θ) = Ex∼D, tree∼πθold

{
1

Z

∑
n∈tree:Â(n)̸=0

| seg(n)|∑
t=1[

Mn,t ·min
(
rn,t(θ)Â(n), clip(rn,t(θ), 1− ϵ, 1 + ϵ)Â(n)

)
− βDKL(πθ∥πref)

]}
,

(4)

where Mn,t is the token-probability mask whose value is 1 if πθ(y
(n)
t | [hist(Pa(n)),y(n)

<t ]) < ρ

and 0 otherwise, i.e., Mn,t := I
(
πθ(y

(n)
t | [hist(Pa(n)),y(n)

<t ]) < ρ
)
. The ratio term rn,t(θ)

is then defined as πθ(y
(n)
t |[hist(Pa(n)),y(n)

<t ])

πθold (y
(n)
t |[hist(Pa(n)),y(n)

<t ])
, and the normalization term Z is given by Z =∑

n∈Tree: Â(n)̸=0

∑| seg(n)|
t=1 Mn,t.

6 Experiments on SPO-chain

Experimental Setups. We evaluate SPO-chain with the RhoMath 1.1B model [14] on the GSM8K
dataset [5] using Pass@1 (accuracy) as our primary evaluation metric. Following [12], we first
finetune the base model on the GSM8K training set, and then use the obtained SFT model for
subsequent RL training. We compare against baseline methods including RestEM, DPO, PPO, GRPO,
RLOO, and VinePPO. The experimental hyperparameters largely follow [12], with detailed settings
provided in Appendix H. For SPO-chain, we set the number of MC samples to N = 9 and partitioned
the model output at intervals of every 5 cutpoints, which is referred to as SPO-chain (int5). We also
evaluate our SPO-tree method in the short CoT scenario. We adopt a 6-6-6 tree structure, meaning
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[12]. (b) Episode generation time comparison between SPO-chain (int5) and VinePPO during training.
(c) Validation accuracy of SPO-chain (int5) and GRPO during training.
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Figure 4: (a) Variations of segment partition granularity (different cutpoint intervals). (b) Variations
of segment partition strategies. (c) Ablation on probability-mask policy optimization strategy.

the tree consists of three layers and each internal node expands into six child nodes, which is referred
to as SPO-tree (6-6-6). For the first two layers, we segment the model output every 30 tokens, while
for the final layer, we let the model complete the entire reasoning trajectory.

Comparison with Baseline Methods. As shown in Figure 3(a), our method, SPO-chain (int5),
achieves the highest accuracy on the GSM8K test set, outperforming PPO and GRPO by 6-12
percentage points. Furthermore, compared to VinePPO, our method not only delivers higher accuracy
but also requires less time for episode generation, as demonstrated in Figure 3(b). This is due to our
SPO-chain (int5) method uses fewer advantage estimation points per trajectory compared to VinePPO.
Additionally, our SPO-tree (6-6-6) method achieves the second-highest accuracy on the GSM8K test
set, validating its effectiveness and making it an efficient alternative. We also compared our method
with GRPO in terms of validation performance under the same wall-clock time2 (Figure 3(c)). The
results show that our algorithm significantly outperforms GRPO and ultimately converges to a much
better solution. We further conduct experiments with additional models, including DeepSeekMath 7B
[28], Qwen base and instruct models [34], as well as on the non-mathematical Knights-and-Knaves
dataset [33]. The detailed results of these experiments are presented in Appendix F.

Impact of Segmentation Granularity. To investigate how the segment granularity affects model
performance, we conducted experiments using various segment intervals, as shown in 4(a). When
comparing validation accuracy under the same wall-clock time, interval 5 achieves the highest
performance, followed by interval 2, while interval 100 performs the worst. In terms of final accuracy,
interval 2 slightly surpasses interval 5, whereas interval 100 lags significantly behind both. These
results indicate that a moderate interval (e.g., 5) provides a more favorable trade-off, yielding better
accuracy given the same training time, while excessively fine-grained intervals (e.g., 2) bring only
marginal improvements and overly coarse intervals severely harm the accuracy. This supports the
design of our segment-level advantage method, which strikes an effective balance between efficiency
and accuracy, achieving substantially better performance than trajectory-level advantage without the
high computational cost of token-level estimation.

Comparison of Different Segment Partition Strategies. We compare different trajectory partition
methods, including the naive fixed token count partition, the heuristic rules (e.g. line breaks) for
partitioning as in VinePPO, and the cutpoint-based segment partition in SPO-chain. The results are
presented in Figure 4(b). For the naive fixed token count partitioning method, we explicitly set each
trajectory’s segment count at 3, making it higher than the total sampling budget of the SPO-chain

2Evaluation time is also included in the reported wall-clock time. The model is evaluated every 10 iterations.
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(int5). Remarkably, despite having the smallest sampling budget, SPO-chain (int5) achieves the best
test accuracy, validating the effectiveness of our cutpoint-based segment partition strategy.

Ablation Study on Probability-Mask Optimization Strategy. We conduct an ablation study on
our proposed probability-mask optimization technique. As shown in Figure 4(c), removing the
probability-mask technique leads to a decreased accuracy for SPO-chain (int5), from 56.7% to 55.0%.
Surprisingly, applying the probability-mask technique to GRPO results in a significant improvement,
boosting its accuracy from 45.7%3 to 53.6%. We hypothesize that employing the probability-mask
technique enables more precise credit assignment to tokens that are most likely to influence the
model’s reasoning trajectory. Meanwhile, the losses associated with tokens whose probabilities are
close to 1 are masked out and thus excluded from the overall loss function, which potentially helps
reduce overfitting.

7 Experiments on SPO-tree

Experimental Setups. To evaluate our method in long CoT scenario, we utilize DeepSeek-R1-Distill-
Qwen-1.5B model as our base model, which has been fine-tuned on huge amount of long CoT data,
demonstrating complex reasoning strategies and typically generating long outputs. Given the strong
capability of these models, we select the competition-level MATH [10] dataset for our training and
evaluation. We mainly focus on comparing our proposed SPO-tree method against GRPO, as GRPO
is the mainstream training approach adopted for reasoning models, particularly favored for long CoT
scenarios due to its efficiency. We do not compare with VinePPO because its efficiency issue, making
it impractical to apply in long CoT settings. For our SPO-tree method, the structure remains identical
to the SPO-tree used in the short CoT scenario, as described in Section 6. Detailed hyper-parameters
can be found in Appendix H.

Comparison with Baseline Methods. We initially limit the training context window size to 2K and
evaluate model accuracy (Pass@1) on MATH500 every 10 iterations. For evaluation, we follow the
implementation provided by [12], setting the evaluation context window also to 2K and using greedy
decoding (temperature = 0). Figure 5(a) shows the training curves of SPO-tree, vanilla GRPO, and
GRPO with probability mask. We observe that GRPO with probability-mask outperforms vanilla
GRPO to some extent, demonstrating the effectiveness of this technique in long CoT scenarios.
However, SPO-tree still achieves significantly higher accuracy under the same wall-clock time. This
validates the effectiveness of SPO-tree and highlights that introducing segment advantage values is
crucial for achieving better performance.

To further assess our method, we continue training from the 2K checkpoint and expand the model’s
context length to 4K. The corresponding model performance is presented in Table 1. We adopt the
evaluation script provided by [8] to conduct evaluation on the obtained model checkpoints. As shown
in the results, the SPO-tree consistently outperforms GRPO across all context sizes and achieves
superior performance under 2K and 4K contexts, which are the context lengths it was trained on. We
hypothesize that our segment-level advantage method significantly increases token efficiency due to
more precise credit assignment, enabling the model to arrive at correct answers more straightforwardly
(see Appendix J). This improvement leads to considerably better performance under limited context
sizes. Interestingly, even though our model is trained under context windows up to 4K, it still achieves
improved performance under 32K context evaluation, surpassing the base model. We also compared
our approach against the most recent works, including DeepScaleR [18] and STILL-3 [4], both of
which were trained on DeepSeek-R1-Distill-Qwen-1.5B using GRPO. Notably, DeepScaleR and
STILL-3 adopted larger training datasets and extended context windows for training. Specifically,
DeepScaleR progressively increased the context length from 8K to 16K and finally to 24K, whereas
our training scales only from 2K to 4K. While DeepScaleR performs best at 32K, we observe the
opposite trend in lower-context settings, where DeepScaleR exhibits the worst performance at 2K and
4K. This finding suggests that GRPO-based training might not optimize token efficiency, potentially
leading to redundancy in the generated outputs, and thus negatively affecting the model’s performance
when evaluated under limited context size.

3Our GRPO implementation achieves a slightly higher test accuracy (45.7%) compared to the 44.6% reported
in [12].
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Figure 5: (a) Comparison of SPO-tree (6-6-6) and GRPO on MATH500 with a context size of 2K. (b)
Variations of tree structures on GSM8K. (c) SPO-tree with different advantage methods on GSM8K.

Dataset Eval Context Size Base GRPO SPO-tree DeepScaleR* STILL-3*

MATH500
2K 0.566 0.62 0.736 0.538 0.662
4K 0.74 0.752 0.828 0.744 0.794

32K 0.838 0.84 0.848 0.878 0.846

AIME24
2K 0.067 0.033 0.1 0 0.067
4K 0.167 0.2 0.2 0.167 0.133

32K 0.267 0.333 0.333 0.333 0.233
* These models were trained using larger datasets and longer context windows. Specifically,

DeepScaleR uses 8K→16K→24K context and STILL-3 sets ‘generate_max_len’ to 29000
during training, while our GRPO and SPO-tree use a maximum context of 4K during training.

Table 1: Accuracy comparison among methods with various context sizes on MATH500 and AIME24.

Comparison of Different Tree Structures and Advantage Computation Methods. To investigate
the impact of different tree structures, we compared the performance4 of various tree structures (4-4-4,
6-6-6, 8-8-8) on the GSM8K test set (Figure 5(b)). When using a larger tree structure, each iteration
generates a greater number of segments with non-zero advantage. Therefore, we set different values
of the hyperparameter "num_episodes_per_iteration" for different tree structures: specifically, we set
it to 1024 for SPO-tree (8-8-8), 512 for SPO-tree (6-6-6), and 384 for SPO-tree (4-4-4). We found
that the performance differences among these tree structures were not substantial under the same
wall-clock time, indicating the robustness of the tree structure. Smaller tree structures achieve higher
accuracy initially, possibly because they can process more data examples within the same time frame.
However, larger tree structures eventually outperform smaller ones at later training stages, as they
enable more accurate value estimation and benefit from having more segments within each group,
leading to more reliable and nuanced advantage estimates. We also compared the performance of
different advantage calculation methods with and without standard deviation normalization. As shown
in Figure 5(c), both methods perform similarly, while the variant without normalization performs
slightly better.

8 Conclusion

In this work, we propose Segment Policy Optimization (SPO), a novel RL training framework for large
language models (LLMs) that effectively addresses the limitations of existing RL approaches. SPO
provides feedback at the segment level, offering finer granularity than trajectory-level methods for
more precise credit assignment, while reducing the number of advantage estimation points compared
to token-level approaches. This enables us to leverage Monte Carlo methods to obtain unbiased
advantage estimates. Our experiments demonstrate that a small number of segment-level advantages
can significantly outperform coarse trajectory-level advantages, validating the effectiveness of our
framework. Due to limited computational resources, our current experiments in the long CoT scenario
are limited to a maximum context size of 4K tokens. In the future, we plan to conduct additional
experiments with larger context sizes. Additionally, our current experiments focus primarily on
mathematical tasks. We plan to test the effectiveness of SPO in broader application scenarios, such as
code generation and RLHF.

4Evaluation time is also included in the reported wall-clock time. The model is evaluated every 10 iterations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly state the paper’s key claims and
contributions. These claims are clearly supported by experimental results and discussions
provided in Section 6, Section 7, and Appendix F.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of in Section 8 and Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results. We will include our code in the supplementary material and provide
detailed instructions for reproducing our experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our code along with detailed instructions in supplementary material
to reproduce all major experimental results presented in our paper. Our experiments are
conducted using publicly available datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental setup in Section 6 and 7, and listed important
hyperparameters in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to limited computational resources, we were unable to provide error bars,
as our reinforcement learning experiments require dozens of hours per run.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computational resource in Appendix H. In Section 6 and 7,
we include training dynamics that show the training time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research fully complies with all specified guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work presents a fundamental reinforcement learning framework and has
no direct societal impact.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks as it does not release any models or datasets
with high potential for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use the widely adopted GSM8K and MATH datasets, clearly cite their
original sources, and respect their terms of use and licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Related Work

Boosting LLM’s Reasoning Capacity. Various approaches have been explored to strengthen the
reasoning abilities of LLMs. Several methods focus on using high-quality data for training. For
instance, RFT [36, 37] fine-tunes the pretrained base model using correct samples generated by
a supervised fine-tuned model. Similarly, RestEM [29] adopts an iterative self-training strategy,
repeatedly retraining the base model on high-quality reasoning traces produced by previously obtained
checkpoints. Preference-based methods like DPO [24, 23] optimize models by contrasting correct
and incorrect reasoning outputs. Search-guided approaches, like Monte Carlo Tree Search (MCTS)
[38, 3], help models discover improved reasoning paths during inference. Another significant direction
involves RL frameworks, which typically adopt policy gradient-based methods and differ mainly in
advantage estimation granularity. For example, GRPO [28] and RLOO [1] estimate trajectory-level
advantages, while PPO [26, 21] estimates token-level advantages using a dedicated critic model.
Recent work [12] highlights that accurately training the critic in PPO is challenging, and proposes
VinePPO, a critic-free alternative that partitions the reasoning trajectory into discrete steps using
heuristic rules (e.g., line breaks) and estimates step-level advantages through Monte Carlo (MC)
sampling. PRIME [6] simultaneously trains a process reward model using outcome rewards during
policy training, providing process rewards to better guide policy optimization, while our work does
not rely on reward models. Most recently, several works have proposed improvements upon the
original GRPO method, like DAPO [35] and Dr. GRPO [16], based on the trajectory-level advantage
estimation.

Fine-Grained Reward Signals. A common approach in prior work assigns a single binary reward
to the final output of LLMs by comparing it against the ground truth. However, this sparse reward
provides limited guidance, resulting in the difficulty of credit assignment during training. To address
this challenge, [13] initially proposed “Process Reward”, which involves manually judging correctness
at every intermediate reasoning step. Subsequent works, such as [32], [17], and [19], automated
the process reward generation without manual labeling through rollouts. These methods focus
on training an external Process Reward Model (PRM) to provide intermediate rewards for policy
optimization and enable Best-of-N (BoN) selection during inference. In practice, when applying
PRM for policy optimization, existing approaches typically combine step-level rewards with the
final binary correctness rewards and still employ standard RL algorithms such as PPO or GRPO for
training. In contrast, our approach differs fundamentally by improving the RL optimization algorithm
itself, rather than relying on external reward models. We introduce an MC-based estimation method
to directly compute segment-level advantages from the current policy, aiming at potentially reducing
gradient estimation variance and enabling finer-grained credit assignment during optimization. This
strategy helps stabilize training and leads to more effective policy updates compared to using sparse,
trajectory-level rewards alone. Notably, our MC advantage estimation framework remains fully
compatible with the PRM approach: intermediate process reward signals generated via PRMs could
be integrated with our trajectory evaluations. Such integration may combine the strengths of both
methodologies, providing further potential improvements in overall model performance. In Appendix
C, we provide an analysis of integrating the process reward into our framework.

B Policy Learning via Policy Iteration

We can alternatively adopt a policy iteration-based approach formulated in the following way for
policy learning. The objective of training LLMs via RL can be written as a KL-constrained policy
optimization problem:

J(π) = Eπ

[
H∑

h=1

(
r(sh, ah)− β log

π(ah|sh)
πref(ah|sh)

)]
.

By defining the modified reward r̄(s, a) = r(s, a) + β log πref(a|s), we arrive at an equivalent
maximum-entropy RL formulation:

J(π) = Eπ,s0∼d0

[
H∑

h=1

(r̄(sh, ah) + βH(π(·|sh)))
]
.

Under this formulation, the Q-function and value function satisfy the soft Bellman equation:
Q(sh, ah) = r̄(sh, ah) + V (sh+1).
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Given the above relationships, we can optimize the Q-function via the loss:

LQ(θ) = E(sh,ah,sh+1)∼D

[
(Qθ(sh, ah)− r̄(sh, ah)− Vϕ(sh+1))

2
]
.

Given the estimates of Q-function and value function, the optimal policy satisfies:
Qθ(sh, ah) = Vϕ(sh) + β log πθ(ah|sh).

Substituting this optimal policy relationship back into the Bellman equation results in the following
policy optimization objective:

Lπ(θ) = E(sh,ah,sh+1)∼D

[
(Vϕ(sh) + β log πθ(ah|sh)− r̄(sh, ah)− Vϕ(sh+1))

2
]
.

Since we have estimated the advantages A(sh, ah) = V (sh+1)− V (sh), explicit estimation of value
function V is not necessary. Thus, the policy optimization objective further simplifies to:

Lπ(θ) = E(sh,ah)∼D

[(
β log

πθ(ah|sh)
πref(ah|sh)

−A(sh, ah)

)2
]
.

Each iteration of this procedure corresponds to a policy improvement step, and after updating the
policy, newly sampled trajectories can be employed to update the Q-function estimation.

We conduct preliminary experiments using this objective function, where we adopt our SPO-tree (6-6-
6) method and introduce an importance weight πθ

πold
to alleviate the off-policy influence. The results,

shown in Figure 6, demonstrate that our approach enables steady policy improvement. However,
it does not reach the performance achieved by policy gradient with probability masks described in
Section 5), which achieves a validation accuracy slightly above 0.7.
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Figure 6: Validation accuracy on GSM8K using policy iteration optimizing method.

C Incorporate Process Reward

Our framework is compatible with the process reward. Inspired by the work in [27], we adopt
the current policy’s BoN as the prover policy µ and utilize its advantage as the process reward.
Specifically, the gradient is computed as follows:

∇πℓ(π) =

H∑
h=1

∇π log π(ah | sh) · (Qπ(sh, ah) + α ·Aµ(sh, ah))

Unlike the aforementioned work, our method does not require training a separate reward model (PAV).
Given that the adopted prover policy µ is the current policy’s BoN, we can compute its value function
V µ(sh) from the value function of the current policy V π(sh):

V µ(sh) = 1− (1− V π(sh))
N ,

where N is the number of MC samples. Then, the prover policy’s advantage Aµ(sh, ah) can be easily
computed as follows:

Aµ(sh, ah) = V µ(sh+1)− V µ(sh).

Thus, we can directly integrate process rewards into our framework using MC samples generated
from the current policy, simplifying the overall algorithm and effectively circumventing potential
issues that arise from introducing a separate reward model, such as fitting errors and reward hacking.
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Figure 7: Illustration of the replay buffer. In this example, in each iteration, we sample two questions,
with each question generating four trajectories. These trajectories are distributed across four iterations
for optimization. The trajectories used in the i-th iteration are selected in the blue box. In total, there
are 8 different questions, each with 4 trajectories, ensuring a balanced distribution of samples.

D Replay Buffer

Within each iteration, sampling a large number of trajectories from a single question can lead to
imbalanced training, causing the model to overfit to specific samples. To address this issue, we
introduce a replay buffer mechanism that distributes sampled trajectories across multiple iterations,
ensuring a more balanced question distribution, as shown in Figure 7. Additionally, PPO’s clip
mechanism helps maintain stable optimization when using these trajectories from previous iterations.
Specifically, in our experiments, we use a 6-6-6 tree structure for sampling, generating 6×6×6 = 216
trajectories per question. In each iteration, we sample 16 distinct questions to generate trajectories,
and these trajectories are then distributed across the following 8 iterations, with at most 32 trajectories
per question processed in each iteration. As a result, each iteration covers 128 distinct questions (8 ×
16), ensuring a well-balanced sample distribution. We observe that the clip ratio remains around 0.1,
validating the effectiveness of our replay buffer strategy.

Our replay buffer mechanism leads to a certain degree of off-policy learning, enabling our framework
to be compatible with the asynchronous RL setting, which was first explored by [20]. Leveraging
asynchronous RL can further parallelize data collection and policy optimization, potentially leading
to additional efficiency improvements.

E Pseudo-code of Tree-Structured Advantage Estimation Method

We efficiently construct the tree using Python’s asyncio library. For the detailed algorithm procedure,
please refer to Algorithm 1 below.
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Algorithm 1 Tree-structured Advantage Estimation Method

1: procedure CONSTRUCTTREE(prompt, max_depth, structure, M , instance, adv_method)
2: create root node:
3: root.text← prompt
4: root.full_text← prompt
5: root.depth← 0
6: await BUILD(root, prompt, 0, max_depth, structure, M, instance)
7: COMPUTEADVANTAGE(root, None, adv_method)
8: return root
9: end procedure

10: procedure BUILD(node, prefix, depth, max_depth, structure, M, instance)
11: if depth ≥ max_depth then
12: node.reward← REWARD_FUNCTION(prefix, node.text, instance)
13: return
14: end if
15: K ← structure[depth]
16: if depth < max_depth− 1 then
17: max_tokens←M
18: else
19: max_tokens← None
20: end if
21: children← await EXPAND(prefix, depth, K, max_tokens)
22: node.children← children
23: initialize empty list expansion_tasks
24: for each child in children do
25: if child.finish_reason ̸= "length" then
26: child.reward← REWARD_FUNCTION(prefix, child.text, instance)
27: else
28: create async task t← BUILD(child, child.full_text, depth+ 1, max_depth,

structure, M, instance)
29: append t to expansion_tasks
30: end if
31: end for
32: await GATHER(expansion_tasks)
33: node.reward← mean(rewards of node.children)
34: node.reward_std← std(rewards of node.children)
35: end procedure
36: procedure EXPAND(prefix, depth, K, max_tokens)
37: construct LLM prompt from template using prefix
38: create async task calling LLM API requesting K responses, each limited to max_tokens
39: responses← await task
40: initialize empty list children
41: for each response in responses do
42: create new node child:
43: child.text← response.text
44: child.finish_reason← response.finish_reason
45: child.full_text← concatenate_texts(prefix, child.text)
46: append child to children
47: end for
48: return children
49: end procedure
50: procedure COMPUTEADVANTAGE(node, parent, adv_method)
51: if parent is not None then
52: if adv_method = "RLOO" then
53: node.advantage← node.reward− parent.reward
54: else if adv_method = "GRPO" then
55: node.advantage← (node.reward− parent.reward)/parent.reward_std
56: end if
57: end if
58: end procedure
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(b) Train Num Unique Responses.
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Figure 8: GRPO on GSM8K exhibits rapid overfitting: while training accuracy improves steadily (Fig.
8a), but the unique response number constantly drops (Fig. 8b), and validation accuracy saturates
early (Fig. 8c).

F Additional Experiment Results

We also evaluate our SPO-chain method using DeepSeekMath 7B on the MATH dataset, as shown
in Figure 9. Our approach achieves performance comparable to VinePPO and surpasses all other
baselines. Due to computational constraints, we initially train with an interval of 10 and later switch
to 5. After switching from the interval of 10 to 5, the model performance continues to improve,
suggesting that using a finer-grained advantage is beneficial for model training. Notably, as shown
in Figure 10, our method uses significantly fewer segments than VinePPO while attaining similar
performance.
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Figure 9: Performance of SPO-chain on
DeepSeekMath 7B evaluated on the MATH500.
Baseline results are from [12].
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Figure 10: Comparison of the number sampling
points between our method and VinePPO. Ac-
cording to [9], there are approximately 8 reason-
ing steps on average for MATH.

In addition, We conduct experiments on instruct and base models. Specifically, we evaluate Qwen2.5-
1.5B-Instruct and Qwen2.5-0.5B-Instruct on the GSM8K dataset, and Qwen2.5-Math-1.5B on the
MATH dataset. The results are presented in Figure 11 (a)–(c). Across all these settings, our method
consistently outperforms GRPO, achieving higher test accuracy.

We further extend our evaluation beyond mathematical reasoning to the Knights-and-Knaves dataset
[33], a classic logic puzzle benchmark where each character is either a knight (who always tells
the truth) or a knave (who always lies), and the task is to deduce each character’s identity from
their statements. For this experiment, we use the 3-people (3ppl) subset and train models based on
Qwen2.5-1.5B-Instruct. The corresponding results are reported in Figure 11 (d). On this dataset
as well, our method outperforms GRPO, demonstrating its generality and effectiveness beyond the
MATH dataset.
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Figure 11: Experimental results across different models and datasets. (a) Qwen2.5-0.5B-Instruct on
GSM8K. (b) Qwen2.5-1.5B-Instruct on GSM8K. (c) Qwen2.5-1.5B-Math on MATH. (d) Qwen2.5-
1.5B-Instruct on Knights-and-Knaves (3ppl).

G Limitations and Future Work

In long CoT scenario, we propose a tree-based advantage estimation strategy that can deliver fine-
grained reward signals with lower sampling costs. However, for a single problem, constructing a tree
requires sampling a large number of trajectories. We use a replay buffer to distribute these trajectories
across several future iterations. However, this approach is still constrained by on-policy algorithms,
which cannot distribute trajectories too far into future iterations. In the future, we may explore more
off-policy algorithms, to achieve more efficient sample utilization. This would allow us to reuse the
high-quality samples obtained from SPO-chain methods and alleviate the issue of sample imbalance
caused by tree-based sampling.

H Hyperparameters and Compute Resources

Our code base is based on [12]. Most hyperparameters are the same as theirs. Here we list important
hyperparameters in the following five tables. We perform SPO-chain and SPO-tree experiments with
RhoMath 1.1B using a single A100 GPU (40GB). For the long-CoT experiments (2K and 4K context)
using DeepSeek-R1-Distill-Qwen-1.5B, we use a single A100 GPU (80GB).
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SPO-chain (int5) Rho
1.1B on GSM8K

Hyperparameter Value

Target train batch size 64
Num episodes per iteration 512
Dataset samples per iteration 64
Samples (per prompt) 8
Cutpoint interval 5
K (MC samples) 9
M (Tokens per level) -
Branch factors -
Train policy temperature 0.6
Train policy top-p 0.9
Train context size 2047
Initial KL coef 0.0001
Learning rate 1× 10−6

Epochs per iteration 2
Prob mask threshold 0.9
Eval. context size 2047
Eval. temperature 0.35
Eval. top-p 0.9
Eval. samples 16

SPO-tree (6-6-6) Rho
1.1B on GSM8K

Hyperparameter Value

Target train batch size 128
Num episodes per iteration 512
Dataset samples per iteration 16
Samples (per prompt) -
Cutpoint interval -
K (MC samples) -
M (Tokens per level) 30
Branch factors [6,6,6]
Train policy temperature 0.6
Train policy top-p 0.9
Train context size 2047
Initial KL coef 0.0001
Learning rate 1× 10−6

Epochs per iteration 1
Prob mask threshold 0.9
Eval. context size 2047
Eval. temperature 0.35
Eval. top-p 0.9
Eval. samples 16

GRPO DeepSeek-R1-Distill-Qwen
1.5B on MATH

Hyperparameter Value

Target train batch size 128
Num episodes per iteration 512
Dataset samples per iteration 64
Samples (per prompt) 8
Cutpoint interval -
K (MC samples) -
M (Tokens per level) -
Branch factors -
Train policy temperature 0.6
Train policy top-p 1
Train context size 2048 => 4096
Initial KL coef 0.0001
Learning rate 1× 10−6

Epochs per iteration 1
Prob mask threshold No prob mask
Eval. context size 2048 => 4096
Eval. temperature 0
Eval. top-p 0.9
Eval. samples 1

SPO-tree (6-6-6) DeepSeek-R1-Distill-Qwen
1.5B on MATH

Hyperparameter Value

Target train batch size 128
Num episodes per iteration 1024
Dataset samples per iteration 16
Samples (per prompt) -
Cutpoint interval -
K (MC samples) -
M (Tokens per level) 600
Branch factors [6,6,6]
Train policy temperature 0.6
Train policy top-p 1
Train context size 2048 => 4096
Initial KL coef 0.0001
Learning rate 1× 10−6

Epochs per iteration 1
Prob mask threshold 0.9
Eval. context size 2048 => 4096
Eval. temperature 0
Eval. top-p 0.9
Eval. samples 1
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SPO-chain (int5=>10) DeepSeekMath
7B on MATH

Hyperparameter Value

Target train batch size 64
Num episodes per iteration 512
Dataset samples per iteration 64
Samples (per prompt) 8
Cutpoint interval 10 => 5
K (MC samples) 9
M (Tokens per level) -
Branch factors -
Train policy temperature 0.6
Train policy top-p 0.9
Train context size 4095
Initial KL coef 0.0001
Learning rate 1× 10−6

Epochs per iteration 2
Prob mask threshold 0.9
Eval. context size 4095
Eval. temperature 0.35
Eval. top-p 0.9
Eval. samples 16

I Segment Partition Example

Prompt: [MATH_TASK] Problem: Gloria wants to buy the $129,000 mountain cabin that her friend Alfonso is selling. She only has $150
in cash. She intends to raise the remaining amount by selling her mature trees for lumber. She has 20 cypress trees, 600 pine trees, and
24 maple trees. She will get $100 for each cypress tree, $300 for a maple tree, and $200 per pine tree. After paying Alfonso for the
cabin, how much money will Gloria have left? Solution:

The total value of the cypress trees  that she will | sell is 20 * $100 = $2000 .

The total value of the  maple trees that she will sell is  | 600 * $300 = $18000.

The total value of the pine trees that she will sell is 24 * $200 = $4800.

The total value of all the trees that she will sell is $2000 + $18000 + $4800 = $2 4800.

| After selling all the trees, she will have $24800 - $150 = $23300 left.

#### 23300

Figure 12: Segment partition based on fixed cutpoint interval. Each row corresponds to a single step.
Tokens marked in red indicate cutpoints (tokens with probability lower than 0.9). The blue vertical
lines represent SPO segment boundaries.

Figure 12 shows a practical segment partition example. As we can see, many of the cutpoints (tokens
whose probability is below a threshold) correspond to the places where the model makes mistakes.
For instance, in the second step, the total value of the maple trees should be 24 * $300, but the model
outputs 600 * 300 and shows low confidence at the digit 6. If it had output 2 in this position, this step
might have been correct. Similarly, in the final step, the calculation should be 24800 - 12900, but the
model instead outputs 24800 - 150 and is uncertain at the digit 5. Had it produced a 2 at this point, the
equation might have been correct. This case shows that cutpoints are the locations where the model’s
reasoning trajectory can shift, and they are the main drivers behind “segment advantage”. Therefore,
identifying and accurately assigning credit to these cutpoints is essential, which is consistent with our
segment partition method (Section 4) and probability mask technique (Section 4).

It is also worth noting that partitioning by line breaks, as in VinePPO, is not the most effective
approach. For example, in step three, none of the tokens have probabilities below 0.9, indicating that
the transition probabilities for all tokens in this step are very high. As a result, the estimated V value
at the beginning and end of this step will not differ significantly, thus the advantage for this segment
will be close to zero. Allocating sampling budget to this step is likely to result in wasted samples.
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Moreover, partitioning by step boundaries can lead to an uneven distribution of cutpoints, i.e., some
segments may contain too many, while others include too few. Our goal in segment partition is to
have each segment contain roughly the same number of potential “turning points”, so that we can
assign credit as efficiently as possible within a limited sampling budget. Step-based partition does not
achieve this balance. This may help explain why our SPO-chain method can outperform VinePPO,
even with fewer sampling points.

J Model Output Example

Compared to DeepSeek-R1-Distill-Qwen-1.5B, our optimized model demonstrates greater token
efficiency, requiring fewer tokens to arrive at the correct answer (both models use greedy decod-
ing). When the model’s context length is limited, increased token efficiency significantly enhances
performance.

Problem

What is the smallest positive integer n such that 17n ≡ 1234 (mod 7)?

SPO-tree

Okay, so I need to find the smallest positive integer n such that 17n ≡ 1234 (mod 7). Hmm,
let me think about how to approach this. I remember that when dealing with congruences
modulo a number, it’s often helpful to simplify the coefficients modulo that number first. So,
maybe I should start by reducing 17 and 1234 modulo 7.
Let me recall that to find a number modulo 7, I can divide by 7 and find the remainder. So,
let’s start with 17. Dividing 17 by 7, 7 goes into 17 twice with a remainder. 2 times 7 is 14,
and 17 minus 14 is 3. So, 17 is congruent to 3 modulo 7. That means 17 ≡ 3 (mod 7). So,
the equation 17n ≡ 1234 (mod 7) simplifies to 3n ≡ 1234 (mod 7).
Now, I need to find 1234 modulo 7. Let me do that. 1234 divided by 7. Hmm, 7 times 176 is
1232 because 176 times 7 is 1232. So, 1234 minus 1232 is 2. Therefore, 1234 ≡ 2 (mod 7).
So, now the equation is 3n ≡ 2 (mod 7).
Alright, so I have 3n ≡ 2 (mod 7). I need to solve for n. To do that, I think I need to find
the multiplicative inverse of 3 modulo 7. The multiplicative inverse of 3 is a number x such
that 3x ≡ 1 (mod 7). Once I have that, I can multiply both sides of the equation by x to get
n ≡ 2x (mod 7).
So, let me find the inverse of 3 modulo 7. Let’s try numbers from 1 upwards:
- 3 × 1 = 3 ≡ 3 (mod 7) → Not 1. - 3 × 2 = 6 ≡ 6 (mod 7) → Not 1. - 3 × 3 = 9 ≡ 2
(mod 7) → Not 1. - 3× 4 = 12 ≡ 5 (mod 7) → Not 1. - 3× 5 = 15 ≡ 1 (mod 7) → Yes!
So, 5 is the inverse because 3*5=15, which is 1 mod 7.
Great, so the inverse of 3 mod 7 is 5. Therefore, multiplying both sides of 3n ≡ 2 (mod 7)
by 5 gives:
5× 3n ≡ 5× 2 (mod 7)
Simplifying, 15n ≡ 10 (mod 7). But 15 mod 7 is 1, because 7*2=14, so 15-14=1. Similarly,
10 mod 7 is 3, because 7*1=7, 10-7=3. So, this simplifies to:
1n ≡ 3 (mod 7)
Which means n ≡ 3 (mod 7). So, the smallest positive integer n that satisfies this is 3. Let
me just verify that.
Calculating 17 ∗ 3 = 51. Then, 51 mod 7: 7*7=49, so 51-49=2. And 1234 mod 7 is 2, as we
found earlier. So, 51 mod 7 is 2, which matches 1234 mod 7. So, yes, 3 is the correct answer.
**Final Answer** The smallest positive integer n is 3 .
To find the smallest positive integer n such that 17n ≡ 1234 (mod 7), we start by simplifying
the coefficients modulo 7.
First, we reduce 17 modulo 7:

17÷ 7 = 2 remainder 3 =⇒ 17 ≡ 3 (mod 7)

Thus, the equation 17n ≡ 1234 (mod 7) simplifies to:

3n ≡ 1234 (mod 7)

30



Next, we reduce 1234 modulo 7:

1234÷ 7 = 176 remainder 2 =⇒ 1234 ≡ 2 (mod 7)

So, the equation becomes:
3n ≡ 2 (mod 7)

To solve for n, we need the multiplicative inverse of 3 modulo 7. Testing values, we find that:

3× 5 = 15 ≡ 1 (mod 7)

Thus, the inverse of 3 modulo 7 is 5. Multiplying both sides of 3n ≡ 2 (mod 7) by 5:

5× 3n ≡ 5× 2 (mod 7) =⇒ 15n ≡ 10 (mod 7)

Simplifying, since 15 ≡ 1 (mod 7) and 10 ≡ 3 (mod 7):

n ≡ 3 (mod 7)

The smallest positive integer n is 3. Verifying, 17 × 3 = 51 ≡ 2 (mod 7) and 1234 ≡ 2
(mod 7), confirming the solution.

3

DeepSeek-R1-Distill-Qwen-1.5B

Okay, so I have this problem here: find the smallest positive integer n such that 17n ≡ 1234
(mod 7). Hmm, modular arithmetic, right? I remember that congruences modulo 7 mean
that when you divide 17n − 1234 by 7, there’s no remainder. So, basically, 17n and 1234
leave the same remainder when divided by 7.
First, maybe I should simplify both sides of the congruence modulo 7. That is, find what 17
is equivalent to modulo 7, and what 1234 is equivalent to modulo 7. That should make the
equation easier to handle.
Starting with 17 modulo 7. Let me divide 17 by 7. 7 goes into 17 twice, which is 14, and the
remainder is 3. So, 17 ≡ 3 (mod 7). That simplifies the left side of the congruence to 3n.
Now, the right side is 1234 modulo 7. Hmm, 1234 is a big number, so I need a systematic
way to find its remainder when divided by 7. Maybe I can break it down digit by digit or use
some divisibility rules. Alternatively, I can use the fact that 10 is congruent to 3 modulo 7, so
powers of 10 can be simplified.
Wait, another approach: I can divide 1234 by 7 and find the remainder. Let me do that. 7
goes into 12 once, with a remainder of 5. Bring down the 3 to make 53. 7 goes into 53 seven
times, which is 49, leaving a remainder of 4. Bring down the 4 to make 44. 7 goes into 44 six
times, which is 42, leaving a remainder of 2. So, 1234 divided by 7 is 176 with a remainder
of 2. Therefore, 1234 ≡ 2 (mod 7).
So now, the congruence simplifies to 3n ≡ 2p mod 7. Okay, so I need to solve for n in this
equation. That is, find the smallest positive integer n such that when multiplied by 3 and then
divided by 7, the remainder is 2.
To solve 3n ≡ 2 (mod 7), I think I need to find the multiplicative inverse of 3 modulo 7.
The multiplicative inverse of 3 is a number x such that 3x ≡ 1 (mod 7). Once I have that, I
can multiply both sides of the congruence by x to isolate n.
So, let’s find the inverse of 3 modulo 7. I can test numbers from 1 upwards to see which one
satisfies 3x ≡ 1 (mod 7).
- 3 × 1 = 3 ≡ 3 (mod 7) → Not 1. - 3 × 2 = 6 ≡ 6 (mod 7) → Not 1. - 3 × 3 = 9 ≡ 2
(mod 7) → Not 1. - 3× 4 = 12 ≡ 5 (mod 7) → Not 1. - 3× 5 = 15 ≡ 1 (mod 7) → Yes!
That works.
So, the inverse of 3 modulo 7 is 5. Therefore, multiplying both sides of the congruence
3n ≡ 2 (mod 7) by 5 gives:
5× 3n ≡ 5× 2 (mod 7)
Simplifying the left side: 15n ≡ 2 (mod 7). But 15 modulo 7 is 1, since 15 divided by 7 is
2 with a remainder of 1. So, this simplifies to:
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1n ≡ 2 (mod 7), which is just n ≡ 2 (mod 7).
Therefore, the smallest positive integer n that satisfies this congruence is 2. Let me double-
check to make sure I didn’t make a mistake.
Plugging n = 2 back into the original equation: 17× 2 = 34. Now, 34 divided by 7 is 4 with
a remainder of 6. Wait, but 1234 modulo 7 was 2, so 34 modulo 7 is 6, which is not equal to
2. Hmm, that’s a problem. Did I do something wrong?
Wait, hold on. Let me check my steps again. Maybe I messed up the inverse or the simplifica-
tion.
Starting over: 17n ≡ 1234 (mod 7). I found that 17 ≡ 3 (mod 7) and 1234 ≡ 2 (mod 7).
So, 3n ≡ 2 (mod 7). Then, I found the inverse of 3 modulo 7 is 5 because 3× 5 = 15 ≡ 1
(mod 7). So, multiplying both sides by 5: n ≡ 10 (mod 7). But 10 modulo 7 is 3, so n ≡ 3
(mod 7). Wait, so earlier I thought it was 2, but that was a mistake.
Wait, no, let me recast that. If n ≡ 10 (mod 7), then 10 divided by 7 is 1 with a remainder
of 3, so n ≡ 3 (mod 7). So, the smallest positive integer n is 3. Let me check that.
Plugging n = 3 into 17n: 17× 3 = 51. 51 divided by 7 is 7 with a remainder of 2. So, 51
modulo 7 is 2, which matches the right side of the congruence. So, that works.
Wait, so earlier I thought the inverse was 5, but that led me to n ≡ 10 (mod 7), which is 3.
So, the correct answer is 3, not 2. I must have made a mistake in my initial calculation.
Let me go through the inverse part again. So, to find the inverse of 3 modulo 7, I need a
number x such that 3x ≡ 1 (mod 7). Testing:
- 3 × 1 = 3 ≡ 3 (mod 7) - 3 × 2 = 6 ≡ 6 (mod 7) - 3 × 3 = 9 ≡ 2 (mod 7) -
3× 4 = 12 ≡ 5 (mod 7) - 3× 5 = 15 ≡ 1 (mod 7)
Yes, so 5 is the inverse. So, multiplying both sides by 5: 5× 3n ≡ 5× 2 (mod 7), which is
15n ≡ 10 (mod 7). But 15 modulo 7 is 1, so n ≡ 10 (mod 7). 10 divided by 7 is 1 with a
remainder of 3, so n ≡ 3 (mod 7). So, the smallest positive integer is 3.
Wait, so why did I get confused earlier? Because I thought 10 modulo 7 is 3, but I thought
10 was 3, but when I first thought of 10, I thought it was 3, but when I first thought of 10, I
thought it was 3, but when I thought of 10, I thought it was 3, but when I thought of 10, I
thought it was 3, but when I thought of 10, I thought it was 3, but when I thought of 10, I
thought it was 3. Wait, no, that’s not right.
Wait, 10 divided by 7 is 1 with a remainder of 3, so 10 modulo 7 is 3. So, n ≡ 3 (mod 7).
So, the smallest positive integer is 3.
Let me verify again: 17× 3 = 51. 51 divided by 7 is 7 with a remainder of 2. So, 51 modulo
7 is 2, which is equal to 1234 modulo 7, which is 2. So, that works.
Wait, so earlier, when I thought I had 10 modulo 7, I thought it was 3, but I think I confused
myself. So, the correct answer is 3.
But just to make sure, let me try n = 3: 17× 3 = 51. 51 divided by 7 is 7*7=49, so 51-49=2.
So, 51 mod7=2, which is equal to 1234 mod7=2. So, yes, that works.
Wait, but earlier, when I thought of 10 modulo7, I thought it was 3, but that was a miscalcula-
tion. So, the correct inverse is 5, leading to n ≡ 10 (mod 7), which is 3.
So, the smallest positive integer is 3.
But just to make sure, let me try n = 3 in the original equation: 17× 3 = 51. 51 mod7 is 2,
which is equal to 1234 mod7, which is 2. So, yes, that works.
Wait, but let me also check n = 3− 7 = −4. But since we’re looking for positive integers, 3
is the smallest.
Alternatively, if I had a different inverse, but no, 5 is the inverse.
Wait, but just to make sure, let me try n = 3 + 7 = 10. 17× 10 = 170. 170 divided by 7 is
24*7=168, so 170-168=2. So, 170 mod7=2, which is equal to 1234 mod7=2. So, that also
works, but 10 is larger than 3, so 3 is the smallest.
Therefore, the answer is 3.
Wait, but hold on, in my initial calculation, I thought I had 10 modulo7=3, but I thought 10
was 3, but that was a confusion. So, the correct answer is 3.
But just to make sure, let me try another approach. Maybe I can solve 3n ≡ 2 (mod 7) by
testing n=1,2,3,... until I find the smallest n that satisfies the equation.
n=1: 3 ∗ 1 = 3 ≡ 3 ̸= 2 (mod 7) n=2: 3 ∗ 2 = 6 ≡ 6 ̸= 2 (mod 7) n=3: 3 ∗ 3 = 9 ≡ 2
(mod 7). Yes! So, n=3 is the smallest positive integer.
So, that confirms it. So, the answer is 3.
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Wait, but in my initial thought process, I thought I had 10 modulo7=3, but that was a
miscalculation. So, the correct answer is 3.
Therefore, the smallest positive integer n is 3.
**Final Answer** The smallest positive integer n is 3 .
To find the smallest positive integer n such that 17n ≡ 1234 (mod 7), we start by simplifying
both sides of the congruence modulo 7.
First, we simplify 17 mod 7:

17÷ 7 = 2 remainder 3

Thus, 17 ≡ 3 (mod 7).
Next, we simplify 1234 mod 7. We can do this by dividing 1234 by 7 and finding the
remainder:

1234÷ 7 = 176 remainder 2
Thus, 1234 ≡ 2 (mod 7).
This reduces our original congruence to:

3n ≡ 2 (mod 7)

To solve for n, we need the multiplicative inverse of 3 modulo7 . We find this by testing
values:

3× 5 = 15 ≡ 1 (mod 7)

Thus, the inverse of 3 modulo 7 is 5.
Multiplying both sides of the congruence 3n ≡ 2 (mod 7) by 5:

5× 3n ≡ 5× 2 (mod 7)

15n ≡ 10 (mod 7)

Since 15 ≡ 1 (mod 7), this simplifies to:

n ≡ 10 (mod 7)

10÷ 7 = 1 remainder 3
Thus, n ≡ 3 (mod 7).
The smallest positive integer n is 3. Verifying, we find:

17× 3 = 51

51÷ 7 = 7 remainder 2
Thus, 51 ≡ 2 (mod 7), confirming our solution.
The smallest positive integer n is 3 .
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