
Published as a conference paper at ICLR 2022

MULTI-TASK NEURAL PROCESSES

Donggyun Kim, Seongwoong Cho, Wonkwang Lee, Seunghoon Hong
School of Computing, KAIST
{kdgyun425, seongwoongjo, wonkwang.lee, seunghoon.hong}@kaist.ac.kr

ABSTRACT
Neural Processes (NPs) consider a task as a function realized from a stochastic
process and flexibly adapt to unseen tasks through inference on functions. However,
naive NPs can model data from only a single stochastic process and are designed
to infer each task independently. Since many real-world data represent a set of
correlated tasks from multiple sources (e.g., multiple attributes and multi-sensor
data), it is beneficial to infer them jointly and exploit the underlying correlation to
improve the predictive performance. To this end, we propose Multi-Task Neural
Processes (MTNPs), an extension of NPs designed to jointly infer tasks realized
from multiple stochastic processes. We build MTNPs in a hierarchical way such
that inter-task correlation is considered by conditioning all per-task latent variables
on a single global latent variable. In addition, we further design our MTNPs so that
they can address multi-task settings with incomplete data (i.e., not all tasks share the
same set of input points), which has high practical demands in various applications.
Experiments demonstrate that MTNPs can successfully model multiple tasks jointly
by discovering and exploiting their correlations in various real-world data such as
time series of weather attributes and pixel-aligned visual modalities. We release our
code at https://github.com/GitGyun/multi_task_neural_processes.

1 INTRODUCTION
Neural Processes (NPs) (Garnelo et al., 2018b) are a class of meta-learning methods that model a
distribution of functions (i.e. a stochastic process). By considering a task as a function realized
from the underlying stochastic process, they can flexibly adapt to various unseen tasks through
inference on functions. The adaptation requires only one forward step of a trained neural network
without any costly retraining or fine-tuning, and has linear complexity to the data size. NPs can
also quantify their prediction uncertainty, which is essential in risk-sensitive applications (Gal &
Ghahramani, 2016). Thanks to such appealing properties, there have been increasing attempts to
improve NPs in various domains, such as image regression (Kim et al., 2019; Gordon et al., 2020),
image classification (Requeima et al., 2019; Wang & Van Hoof, 2020), time series regression (Qin
et al., 2019; Norcliffe et al., 2021), and spatio-temporal regression (Singh et al., 2019).
In this paper, we explore extending NPs to a multi-task setting where correlated tasks are realized
simultaneously from multiple stochastic processes. Many real-world data represent multiple correlated
functions, such as different attributes or modalities. For instance, medical data (Johnson et al., 2016;
Harutyunyan et al., 2019) or climate data (Wang et al., 2016) contain various correlated attributes
on a patient or a region that need to be inferred simultaneously. Similarly, in multi-task vision
data (Lin et al., 2014; Zhou et al., 2017; Zamir et al., 2018), multiple labels of different visual
modalities are associated with an image. In such scenarios, it is beneficial to exploit functional
correlation by modeling the functions jointly rather than independently, in terms of performance and
efficiency (Caruana, 1997). Unfortunately, naive NPs lack mechanisms to jointly handle a set of
multiple functions and cannot capture their correlations either. This motivates us to extend NPs to
model multiple tasks jointly by exploiting the inter-task correlation.
In addition to extending NPs to multi-task settings, we note that handling multi-task data often faces a
practical challenge where observations can be incomplete (i.e. not all the functions share the common
sample locations). For example, when we collect multi-modal signals from different sensors, the
sensors may have asynchronous sampling rates, in which case we can observe signals from only an
arbitrary subset of sensors at a time. To fully utilize such incomplete observations, the model should
be able to associate functions observed in different inputs such that it can improve the predictive
performance of all functions using their correlation. A multivariate extension of Gaussian Processes
(GPs) (Álvarez et al., 2012) can handle incomplete observations to infer multiple functions jointly.
However, naive GPs suffer from cubic complexity to the data size and needs approximations to reduce
the complexity. Also, their behaviour depend heavily on the kernel choice (Kim et al., 2019).

1

https://github.com/GitGyun/multi_task_neural_processes

Published as a conference paper at ICLR 2022

To address these challenges, we introduce Multi-Task Neural Processes (MTNPs), a new family
of stochastic processes that jointly models multiple tasks given possibly incomplete data. We first
design a combined space of multiple functions, which allows not only joint inference on the functions
but also handling incomplete data. Then we define a Latent Variable Model (LVM) of MTNP that
theoretically induces a stochastic process over the combined function space. To exploit the inter-task
correlation, we introduce a hierarchical LVM consists of (1) a global latent variable that captures
knowledge about all tasks and (2) task-specific latent variables that additionally capture knowledge
specific to each task conditioned on the global latent variable. Inducing each task conditioned on
the global latent, the hierarchical LVM allows MTNP to effectively learn and exploit functional
correlation in multi-task inference. MTNP also inherits advantages of NP, such as flexible adaptation,
scalable inference, and uncertainty-aware prediction. Experiments in synthetic and real-world datasets
show that MTNPs effectively utilize incomplete observations from multiple tasks and outperform
several NP variants in terms of accuracy, uncertainty estimation, and prediction coherency.

2 PRELIMINARY

2.1 BACKGROUND: NEURAL PROCESSES

We consider a task f t : X → Yt as a realization of a stochastic process over a function space (Yt)X
that generates a data Dt = (XD, Y

t
D) = {(xi, yti)}i∈I(Dt), where I(Dt) denotes a set of data index.

Neural Processes (NPs) use a conditional latent variable model to learn the stochastic process. Given
a set of observations Ct = (XC , Y

t
C) = {(xi, yti)}i∈I(Ct), NP infers the target task f t through a

latent variable z and models the data Dt by a factorized conditional distribution p(Y tD|XD, z):

p(Y tD|XD, C
t) =

∫
p(Y tD|XD, z)p(z|Ct)dz =

∫ ∏
i∈I(Dt)

p(yti |xi, z)p(z|Ct)dz. (1)

We refer to the set of observations Ct as a context data and the modeling data Dt as a target data.

NP models the generative model p(Y tD|XD, z) and the conditional prior p(z|Ct) by two neural
networks, a decoder pθ and an encoder qφ, respectively. Since the direct optimization of Eq.1 is
intractable, the networks are trained by maximizing the following variational lower-bound.

log pθ(Y
t
D|XD, C

t) ≥ Eqφ(z|Dt)[log pθ(Y
t
D|XD, z)]−DKL(qφ(z|Dt)||qφ(z|Ct)). (2)

Note that the decoder network qφ is also used as a variational posterior qφ(z|D). The parameter
sharing between model prior and variational posterior gives us an intuitive interpretation of the loss
function: the KL term acts as a regularizer for the encoder qφ such that the summary of the context
is close to the summary of the target. This reflects the assumption that the context and target are
generated by the same underlying data-generating process and aids effective test-time adaptation.
After training, NP infers the target function according to the latent variable model (Eq.1).

2.2 EXTENDING TO MULTIPLE TARGET FUNCTIONS

Now we extend the setting to multi-task learning problems where multiple tasks f1, · · · , fT are
realized from T stochastic processes simultaneously, each of which has its own function space
(Yt)X ,∀t ∈ T = {1, 2, · · · , T}. Let D = (XD, Y

1:T
D) =

⋃
t∈T D

t be a multi-task target data,
where each Dt corresponds to the data of task f t. Then the learning objective for the set of T
realized tasks is to model the conditional probability p(Y 1:T

D |XD, C) given the multi-task context
C = (XC , Y

1:T
C) =

⋃
t∈T C

t, where each Ct is a set of observations of task f t. The sets C and D
can be arbitrarily chosen, but we assume C ⊂ D for simplicity.
However, assuming the complete context C for all tasks is often challenged by many practical
issues, such as asynchronous sampling across multiple sensors or missing labels in multi-attribute
data. To address such challenges, we relax the assumptions on context C and let I(Ct) be different
across t ∈ T . In this case, an input point xi can be associated with a partial set of output values
{yti}t∈Ti , Ti (T , which is referred incomplete observation. Next, we present two ways to use NPs
to model the multi-task data and discuss their limitations.
Single-Task Neural Processes (STNPs) A straightforward application of NPs to the multi-task
setting is assuming independence across tasks and define independent NPs over the function spaces
(Y1)X , · · · , (YT)X . We refer to this approach as Single-Task Neural Processes (STNPs). Specifically,
a STNP has T independent latent variables v1, · · · , vT , where each vt implicitly represents a task f t.

p(Y 1:T
D |XD, C) =

T∏
t=1

∫
p(Y tD|XD, v

t)p(vt|Ct)dvt. (3)

2

Published as a conference paper at ICLR 2022

(a) STNP (b) JTNP (c) MTNP

Figure 1: Graphical models of three different stochastic processes for multiple functions. Gray and
white circles represent observable and latent variables, respectively.

Thanks to the independence assumption, STNPs can handle incomplete context by conditioning
on each task-specific data Ct independently. However, this approach can only model the marginal
distributions for each task, ignoring complex inter-task correlation within the joint distribution of the
tasks. Note that this is especially impractical for multi-task settings under the incomplete data since
each task f t can be learned only from Ct, ignoring rich contexts available in other data Ct

′
, ∀t′ 6= t.

Joint-Task Neural Process (JTNP) An alternative approach is to combine output spaces to a
product space Y1:T =

∏
t∈T Yt and define a single NP over the function space (Y1:T)X . We refer to

this approach as Joint-Task Neural Processes (JTNPs). In this case, a single latent variable z governs
all T tasks jointly.

p(Y 1:T
D |XD, C) =

∫
p(Y 1:T

D |XD, z)p(z|C)dz. (4)

JTNPs are amenable to incorporate correlation across tasks through the shared variable z. However,
by definition, they require complete context and target for both training and inference. This is because
any incomplete set of output values {yti}t∈Ti for an input point xi such that Ti 6= T is not a valid
element of the product space Y1:T . In addition, it relies solely on a single latent variable to explain
all tasks, ignoring per-task stochastic factors in each function f t.

In what follows, we propose an alternative formulation for jointly handling multiple tasks on in-
complete data, which (1) enables a probabilistic inference on the incomplete data and (2) is more
amenable for learning both task-specific and task-agnostic functional representations.

3 MULTI-TASK NEURAL PROCESSES

In this section, we describe Multi-Task Neural Processes (MTNPs), a family of stochastic processes
to model multiple functions jointly and handle incomplete data. We first formulate MTNPs using a
hierarchical LVM. Then we propose the training objective and a neural network model.

3.1 FORMULATION

Our objective is to extend NPs to jointly infer multiple tasks from incomplete context. Discussions
in Section 2.2 suggest that direct modeling of a distribution over functions of form f : X →∏
t∈T Yt is achievable via JTNP (Eq. 4), yet it requires complete data in both training and inference.

To circumvent this problem, we reformulate the functional form by h : X × T →
⋃
t∈T Yt.

Note that this functional form allows us to model the same set of functions as JTNP by f(xi) =
(h(xi, 1), · · · , h(xi, T)). However, by using the union form we can exploit incomplete data since
any partial set of output values {yti}t∈Ti now becomes a set of valid output values at different input
points (xi, t), t ∈ Ti. For notational convenience, we denote xti = (xi, t) and assume input points in
the context C and the target D are embedded by the task indices, i.e., C = (X1:T

C , Y 1:T
C) =

⋃
t∈T C

t

where Ct = (Xt
C , Y

t
C) = {(xti, yti)}i∈I(Ct) and the same for D.

Next, we present a latent variable model that induces a stochastic process over functions of form
h. To make use of both task-agnostic and task-specific knowledge, we define a hierarchical latent
variable model (Figure 1(c)). In this model, the global latent variable z captures shared stochastic
factors across tasks using the whole context C, while per-task stochastic factors are captured by the
task-specific latent variable vt using Ct and z. It induces the predictive distribution on the target by:

p(Y 1:T
D |X1:T

D , C) =

∫ ∫ [T∏
t=1

p(Y tD|Xt
D, v

t)p(vt|z, Ct)

]
p(z|C)dv1:T dz, (5)

where v1:T := (v1, · · · , vT). Similar to Eq. 1, we assume the conditional independence on
p(Y tD|Xt

D, v
t). Note that this hierarchical model can capture and leverage the inter-task corre-

lation by sharing the same z across v1:T . Also, it is amenable to fully utilize the incomplete data:

3

Published as a conference paper at ICLR 2022

since the global variable z is inferred from the entire context data C =
⋃
t∈T C

t and is conditioned
to infer task-specific latent variable vt, each function f t induced by vt exploits the observations
available for not only itself Ct, but also for other tasks Ct

′
,∀t′ 6= t. Next, we show that Eq. 5 induces

a stochastic process over the functions of form h : X × T →
⋃
t∈T Yt.

Proposition 1. Consider the following generative process on data D and context C, which is a
generalized form of Eq. 5.

z ∼ p(z|C), vt ∼ p(vt|z, t, C), yti ∼ p(yti |xti, vt), ∀t ∈ T , ∀i ∈ I(D). (6)
Then under some mild assumptions, there exists a stochastic process over functions of form h :
X × T →

⋃
t∈T Yt, where the data D is generated.

Proof. We leave the proof in Appendix A.2.
We refer to the resulting stochastic processes as Multi-Task Neural Processes (MTNPs). In the
perspective of stochastic process, Eq. 5 allows us to learn functional posterior not only on each task
via vt, but also across the tasks via z. Then optimizing Eq. 5 can be interpreted as learning to learn
each task captured by vt together with the functional correlation captured by z.

3.2 LEARNING AND INFERENCE

We use an encoder network qφ and a decoder network pθ to approximate the conditional prior and
generative model in Eq. 5, respectively. Since the direct optimization of Eq. 5 is intracable, we train
the networks via the following variational lower bound, where we use the same network qφ for both
conditional prior and variational posterior as in NP:

log pθ(Y
1:T
D |X1:T

D , C)

≥ Eqφ(z|D)

[T∑
t=1

Eqφ(vt|z,Dt)[log pθ(Y
t
D|Xt

D, v
t)]]−DKL

(
qφ(vt|z,Dt) || qφ(vt|z, Ct)

)]
−DKL

(
qφ(z|D) || qφ(z|C)

)
, (7)

We leave the derivation in Appendix A.3. The above objective reflects several desirable behaviors for
our model. Similar to NP, the KL divergences encourage that both latent variables z and vt inferred
from the context data are consistent with those inferred from the entire target data. On the other hand,
we observe that minimizing the KL divergence on task-specific variables forces the global latent z to
be informative across all tasks, such that it can induce the task-specific factors vt from the limited
context Ct. This makes the model encode correlated information across tasks in z and use it for
inferring each task with vt, which is critically important for joint inference with incomplete context
data. After training, MTNP infers the target functions according to the latent variable model (Eq. 5).

3.3 NEURAL NETWORK MODEL FOR MTNP
This section presents an implementation of MTNPs composed of an encoder qφ and a decoder pθ
(Eq. 7). While our MTNP formulation is not restricted to a specific architecture, we adopt ANP (Kim
et al., 2019) as our backbone, which implements the encoder by attention layers (Vaswani et al., 2017)
and the decoder by a MLP. Figure 2 illustrates the overall architecture.
In the following, we denote a stacked multi-head attention block (Parmar et al., 2018) by
Attn(Q,K, V) and a MLP by ψ(x). Also, we denote et by a learnable task embedding for t ∈ T
which is used to condition on the task index t.

Latent Encoder The latent encoder samples global and per-task latent variables by aggregating
the context C. For each context example (xti, y

t
i) ∈ Ct, we first project it to a hidden representation

sti = ψs(xi, y
t
i) + et. Then we aggregate them to a task-specific representation st via self-attention

followed by a pooling operation, which is further aggregated to a global representation s.
st = pool(Attn({sti}i∈I(Ct), {sti}i∈I(Ct), {sti}i∈I(Ct))), ∀t ∈ T , (8)

s = pool(Attn({st}t∈T , {st}t∈T , {st}t∈T)). (9)
Note that the first attention is applied along the example axis (per-task) to encode information of each
task, while the second one is applied along the task axis (across-task) to aggregate the information
across the tasks. Then, we get the global and task-specific latent variables via ancestral sampling.

z ∼ qφ(z|C) = N (ψ(z,1)(s), ψ(z,2)(s)), (10)

vt ∼ qφ(vt|z, Ct) = N (ψ(vt,1)(s
t, z), ψ(vt,2)(s

t, z)), ∀t ∈ T . (11)

4

Published as a conference paper at ICLR 2022

... sT
1

sT
n

Cross-Attn

dT
1

dT
n

...

... uT
*

sT

Per-task inference 1

Value

Key Query

x1 xn x*
...

Self-Attn
& Pool

...

Task 1

x1 y1
1 e1

xn yT
n eT

...
...

Per-task decoding 1

x*

MLP y1
*

v1

r1
*

e1

sT
1

sT
n

Cross-Attn

dT
1

dT
n

...

... uT
*

sT

Per-task inference T

Value

Key Query

x1 xn x*
...

Self-Attn
& Pool

...

...

Task T

x1 yT
1 eT

xn yT
n eT

vT

z... Self-Attn
& Pool

v1

sT

s1

...

Across-task inference

... Self-Attn ...

uT
*

u1
*

rT
*

r1
*

~

~

~

x*

MLP yT
*

vT

rT
*

eT

Per-task decoding T

~

...

...

...

...

Concat

Deterministic path
Latent path

~ Sampling

x1 xn x*...

Context Target

yt
1 yt

n yt
*

Figure 2: Architecture of the neural network model for MTNP.

Deterministic Encoder To further improve the expressiveness of model, we extend the determinis-
tic encoder of Kim et al. (2019) that produces local representation specific to both target example
and task via attention mechanism. As in the latent encoder, we first project each context example
(xti, y

t
i) ∈ Ct to a hidden representation dti = ψd(xi, y

t
i) + et that serves as value embedding in

cross-attention. Also, we use context and target input xti as key and query embeddings for the cross-
attention, respectively. Then we apply cross-attention along the example axis (per-task) followed by
self-attention along the task axis (across-task).

{uti}i∈I(Dt) = Attn({xti}i∈I(Ct), {xti}i∈I(Ct), {dti}i∈I(Dt)), ∀t ∈ T , (12)

{rti}t∈T = Attn({uti}t∈T , {uti}t∈T , {uti}t∈T), ∀i ∈ I(D). (13)

Decoder Finally, the decoder produces predictive distributions for the target output yti ∈ Y tD for
each target input xti. We first project the input to wti = ψw(xi) + et, then concatenate it with
the corresponding latent variable vt and determinstic representation rti . The output distribution is
computed by MLPs, whose output depends on the type of the task.

yti ∼
{
N (ψ(y,1)(w

t
i , v

t, rti), ψ(y,2)(w
t
i , v

t, rti)), if yti is continuous,
Categorical(ψ(y,1)(w

t
i , v

t, rti)), if yti is discrete,
∀i ∈ I(Dt),∀t ∈ T . (14)

4 RELATED WORK

Stochastic Processes for Multi-Task Learning There exist several stochastic processes related to
MTNPs that consider learning multiple tasks. Multi-Output Gaussian Processes (MOGPs) (Álvarez
et al., 2012) extend Gaussian Processes (GPs) to infer multiple tasks together, and also handle
incomplete data. However, MOGPs are usually trained on a single set of tasks, thus require a lot of
observations to produce accurate predictions. Recently there have been some attempts to combine
meta-learning and GPs (Fortuin et al., 2019; Titsias et al., 2020), while they do not consider multi-
task settings. Sequential Neural Processes (SNPs) (Singh et al., 2019; Yoon et al., 2020) treat a
sequence of tasks using a sequence of NPs. While SNPs are designed to model temporal dynamics
underlying a sequence of homogeneous tasks, MTNPs can capture arbitrary correlation across a
set of heterogeneous tasks. Finally, Conditional Neural Adaptive Processes (CNAPs) (Requeima
et al., 2019; Bateni et al., 2020) consider a general classification model for different sets of classes.
However, like NPs, they infer each task independently and do not explicitly consider inter-task
correlation during inference. Also, CNAPs are designed specifically to classification tasks, while
MTNPs are generally applicable to various tasks including classification and regression.
Hierarchical Models in Neural Process Family Since the pioneering work by Garnelo et al.
(2018b), several variants of NP introduced the concept of hierarchical modeling. Attentive Neural
Processes (ANPs) (Kim et al., 2019) incorporate attention mechanism to a deterministic variable,
which is additional context information for each target example to improve the expressive power of
the model and prevent the underfitting issues of vanilla NPs. Similarly, Wang & Van Hoof (2020)
introduce local latent variables to incorporate example-specific stochasticity, which extends the
graphical model of NPs to the hierarchical one. Our MTNP formulation also involves a hierarchical
latent variable model but has a different structure orthogonal to the prior works. MTNPs use a
global latent variable to jointly model multiple task functions while using per-task latent variables
to capture task-specific stochasticity. Although extending the model to contain example-level local
latent variables is possible, we adopt the deterministic local representation as in ANPs for simplicity.

5

Published as a conference paper at ICLR 2022

5 EXPERIMENTS

We evaluate MTNP on three datasets, including both synthetic and real-world tasks. In all experiments,
we construct incomplete context data by selecting a complete subset C ⊂ D of size m = |I(C)|
from the target, then randomly drop the output points independently according to the missing rate
γ ∈ [0, 1] (γ = 0 means complete data). We repeat the procedure with five different random seeds
and report the mean values of each evaluation metric.

Baselines In each experiment, we compare MTNP with two NP variants, STNP and JTNP. We
adopt ANP (Kim et al., 2019) as a backbone architecture for STNP and JTNP, which is a strong NP
baseline. Since JTNP cannot handle incomplete data, we build a stronger baseline by the combination
of STNP and JTNP (S+JTNP), where missing labels are imputed by STNP and then used to jointly
infer the tasks by JTNP. In 1D regression tasks, we additionally compare two Multi-Output Gaussian
Processes baselines, CSM (Ulrich et al., 2015) and MOSM (Parra & Tobar, 2017), and two meta-
learning baselines, MAML (Finn et al., 2017) and Reptile (Nichol et al., 2018), where we slightly
modify the meta-learning baselines to learn multiple tasks jointly from incomplete data. At training
time, we set γ = 0.5 for all models but keeping γ = 0 for JTNP. At test time, we evaluate the models
in various missing rates γ ∈ {0, 0.25, 0.5, 0.75}. We provide architectural and training details in
Appendix B. We also provide ablation studies on architectural designs such as self-attentions and
pooling, parameter sharing and task embedding, latent and deterministic encoders in Appendix H.

5.1 1D CURVE REGRESSION ON SYNTHETIC DATA

Dataset and Metric We begin with 1D synthetic regression tasks where the target functions are
correlated by shared parameters (e.g., scale, bias, phase) but have different shapes. Inspired by Guo
et al. (2020b), we first randomly sample global parameters a, b, c, w ∈ R shared across the tasks, then
generate four correlated tasks using different activation functions as follows.

yti = a · actt(wxi + b) + c, actt ∈ {Sine,Tanh,Sigmoid,Gaussian}, xi ∼ U(−5, 5). (15)

To simulate task-specific stochasticity, we perturb the parameters (a, b, c, w) with small i.i.d. Gaussian
noises per task. In this setting, the model has to learn per-task functional characteristics imposed by
different activation functions and per-task noises, as well as how to share the underlying parameters
unseen during training among the tasks. For evaluation, we generate training and testing sets via
non-overlapping splits of the parameters, then measure mean squared error (MSE) normalized by the
scale parameter a to aggregate results on functions with different scales. See Appendix C for details.

Results Table 1 shows the quantitative results with γ = 0.5. More comprehensive results with
different missing rates and standard deviations for the metrics are provided in Appendix D. As it
shows, MTNP outperforms all baselines in all tasks and context sizes. This can be attributed to the
ability of MTNP to (1) exploit all available context examples to infer inter-task general knowledge
(i.e. a, b, c, w) and (2) translate it back to functional representations for each task. In contrast, STNP
fails to predict multiple tasks accurately due to the independent task assumption. Although JTNP
is designed to discover and utilize inter-task correlations, its performances do not show dramatic
improvement over STNP since its observations are largely based on noisy imputations from STNP. We
also observe that GP baselines (MOSM, CSM) perform even worse than STNP when the context size
is small, despite their inherent ability to joint inference on incomplete data. We conjecture that it is
because GPs lack a meta-training mechanism that allows NPs (and MTNPs) to quickly learn the tasks
using a few examples. Gradient-based meta-learning baselines (MAML, Reptile) are also comparable
to STNP and JTNP but perform worse than MTNP. This could be due to the lack of global inference
on function space, which leads them to overfit the context points. As an illustrating example, we also
plot predicted distributions from the models in a highly incomplete scenario (m = 10 and γ = 0.5)
in Figure 3 (a). We observe that STNP generally suffers from inaccurate predictions due to limited
context, while MTNP successfully exploits incomplete observations from different tasks to improve
the predictive performance. The qualitative results for all baselines are provided in Appendix D.

We also perform an ablation study on the latent variable model to justify the effectiveness of our
hierarchical formulation. We consider two variants of MTNP that consist of the global latent variable
only (MTNP-G) and the task-specific latent variables only (MTNP-T). Then we evaluate the models
in three synthetic datasets generated with different levels of inter-task correlation. Specifically, we
construct partially correlated tasks as described before, totally correlated tasks by removing the
task-specific noises, and independent tasks by sampling the parameters a, b, c, w independently for

6

Published as a conference paper at ICLR 2022

Table 1: Average normalized MSE on synthetic tasks, with varying context size (m) and γ = 0.5.

task Sine Tanh Sigmoid Gaussian

m 5 10 20 5 10 20 5 10 20 5 10 20

MAML 0.2962 0.1582 0.0701 0.0991 0.0342 0.0131 0.0321 0.0119 0.0069 0.0696 0.0353 0.0174
Reptile 0.5164 0.2886 0.1414 0.1656 0.0557 0.0291 0.0619 0.0220 0.0181 0.1371 0.0679 0.0374

MOSM 0.7852 0.4410 0.0298 0.4912 0.1444 0.1618 0.0720 0.0127 0.0013 0.3329 0.0857 0.0190
CSM 0.8529 0.3587 0.1537 0.6884 0.3669 0.0726 0.2437 0.0730 0.0137 0.1525 0.0961 0.0407

STNP 0.5212 0.2609 0.0993 0.1307 0.0468 0.0159 0.0203 0.0067 0.0025 0.0799 0.0409 0.0222
S+JTNP 0.3848 0.2340 0.1114 0.1015 0.0418 0.0168 0.0163 0.0065 0.0032 0.0613 0.0318 0.0161
MTNP 0.2636 0.1137 0.0485 0.0435 0.0115 0.0040 0.0066 0.0014 0.0006 0.0360 0.0132 0.0069

(a) (b)

ST
N

P
M

TN
P

S+
 J

TN
P

Tanh SigmoidSine Gaussian

Figure 3: (a) Predictions from NP baselines and MTNP. Black line: true function. Black dots: context
points. Black crosses: imputed points from STNP. Lighter colored lines: posterior predictive samples
where different colors used for different tasks. Darker colored line: mean of the samples. (b) Relative
performance of MTNP variants on synthetic tasks with different levels of inter-task correlation. Top:
on totally correlated tasks. Middle: on partially correlated tasks. Bottom: on independent tasks.

each task. Figure 3 (b) shows the result in m = 10 and γ = 0.5. When the tasks are correlated (first
and second rows of the figure), we can see introducing global latent improves the overall performance,
which is further improved by the hierarchical formulation. When the tasks are independent (third
row of the figure), sharing all knowledge through a single global latent degrades the performance
(MTNP-G). On the other hand, MTNP and MTNP-T do not suffer from such a negative transfer
since each of the independent tasks can be addressed by per-task latent variables separately. The
overall results demonstrate that incorporating both global and task-specific information is the most
effective and robust against various levels of inter-task correlation.

5.2 1D TIME-SERIES REGRESSION ON WEATHER DATA

Dataset and Metric To demonstrate our method in a practical, real-world domain, we perform an
experiment on weather data. Weather attributes are physically correlated with each other, and the
observations are often incomplete due to different sensor configurations or coverage per station. Also,
the observed attributes are highly stochastic, making MTNP’s stochastic process formulation fits it
well. We use a dataset gathered by Dark Sky API 1, consisting of 12 daily weather attributes collected
at 266 cities for 258 days. We choose six attributes, namely low and high temperatures (TempMin,
TempMax), humidity (Humidity), precipitation probability (Precip), cloud cover (Cloud), and dew
point (Dew), which forms six correlated tasks. We normalize each attribute to be standard Gaussian
and the time to be in [0, 1]. We divide the data into 200 training, 30 valid, and 33 test sets of time
series, where each set corresponds to a unique city. We evaluate the prediction performance by MSE.
Since the data is noisy, we also report negative log-likelihood as a metric of uncertainty estimation.

Results Table 2 summarizes quantitative results. More comprehensive results with different missing
rates, context sizes, and standard deviations for the metrics are provided in Appendix E. MTNP
outperforms all baselines in both accuracy and uncertainty estimation, which demonstrates that it
generalizes well to real-world stochastic data. More interestingly, Figure 4 illustrates how MTNP

1https://github.com/imantsm/COVID-19

7

Published as a conference paper at ICLR 2022

Table 2: Average MSE and NLL on weather tasks, with m = 10 and γ = 0.5.

task TempMin TempMax Humidity Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL MSE NLL MSE NLL MSE NLL

MAML 0.0067 - 0.0094 - 0.0705 - 0.3041 - 0.2987 - 0.0106 -
Reptile 0.0060 - 0.0078 - 0.0691 - 0.3160 - 0.3047 - 0.0096 -

MOSM 0.0091 -0.0194 0.0124 -0.0259 0.0827 1.3831 0.3021 4.1009 0.3170 2.0663 0.0128 -0.0255
CSM 0.0069 -0.8839 0.0123 -0.8522 0.0906 0.6640 0.2895 3.1897 0.2983 1.2655 0.0118 -0.7243

STNP 0.0046 -1.1514 0.0069 -1.0390 0.0632 0.1273 0.2607 1.1242 0.2631 0.8563 0.0086 -0.9815
S+JTNP 0.0045 -1.1703 0.0068 -1.0681 0.0607 0.0169 0.2348 0.6792 0.2376 0.6812 0.0084 -0.9946
MTNP 0.0037 -1.1832 0.0054 -1.1049 0.0546 -0.1006 0.2276 0.6557 0.2215 0.6660 0.0073 -1.0331

Figure 4: Visualization of MTNP’s internal knowledge transfer. By observing additional data from
Cloud task (at red triangles) given upon a few context points (at blue dots), the predicted mean and
variance of Precip task improve at the additionally observed region.

transfer its knowledge from one task (Cloud) to another (Precip) given the incomplete observations.
When the observation is sparse (Figure 4(a)), the model produces an inaccurate prediction with high
uncertainty for unobserved input domains. However, when the additional observations are available
for the other attribute (Figure 4(b),(c)), MTNP successfully transfers the knowledge to improve
the prediction. It shows that MTNP can effectively learn to exploit the incomplete observation by
transferring knowledge across tasks.

5.3 2D IMAGE COMPLETION ON FACE DATA

Dataset and Metric We further demonstrate our approach to more challenging 2D structured
function regression tasks. Following Garnelo et al. (2018a), we interpret an RGB image as a function
that maps a 2D pixel location xi ∈ [0, 1]2 to its RGB values yi ∈ [0, 1]3, and extend its concept to
pixel-aligned 2D spatial data for the multi-task setting. Specifically, we consider four pixel-aligned
visual modalities with a resolution of 32 × 32 on celebrity faces as a set of tasks, namely RGB
image (RGB) (Liu et al., 2015), semantic segmentation map (Segment) (Lee et al., 2020), Sobel
edge (Edge) (Kanopoulos et al., 1988), and Projected Normalized Coordinate Code (PNCC) (Zhu
et al., 2016). We then construct training and testing sets with non-overlapping splits of face images.
To evaluate the Segment task, we report mean Intersection-over-Union (mIoU). For the other tasks,
we report MSE. We also measure prediction coherency across tasks to evaluate the task correlation
captured by models. To measure the coherency between the predictions, we generate pseudo-labels
by translating the RGB prediction into the other three modalities using image-to-image translation
methods (Kanopoulos et al., 1988; Guo et al., 2020a; Chen et al., 2018), then measure errors (MSE or
1 - mIoU) between the pseudo-labels and predictions. Additional details are provided in Appendix F.

Results Table 3 summarizes the quantitative comparison results. More comprehensive results with
different missing rates are provided in Appendix G. Overall, we observe similar results with the 1D
regression experiments where MTNP generates more accurate predictions over STNP and S+JTNP by
effectively exploiting the incomplete data. We also observe that the MTNP produces more coherent
predictions over the baselines, which shows that it indeed learns to exploit the correlation across tasks
effectively. To further validate the results, we present qualitative comparison results in Figure 5. We
observe that STNP and S+JTNP produce inaccurate (red boxes) or incoherent (green box) outputs
when the number of contexts is extremely small. On the other hand, MTNP (1) consistently regresses
coherent functions regardless of the number of observable contexts, and (2) its predictions are more
accurate than the baselines given the same number of contexts (green box).
Finally, we investigate the discovery and exploitation of task correlations achieved by MTNP. We first
partition tasks into source and target tasks. Then, we measure relative performance improvement on
the target tasks before and after the model observes data from source tasks. We summarize the results
in Table 4, where we average performance gains coming from all possible combinations of source
tasks for each target task. By observing which task is the most beneficial to each of the other tasks, we
observe that there are two groups of highly correlated tasks (RGB-Edge) and (Segment-PNCC). These

8

Published as a conference paper at ICLR 2022

Table 3: Quantitative results on 2D function regression (γ = 0.5). Upper rows show prediction per-
formance and lower rows show prediction coherency, reported by MSE and (1-mIoU) for continuous
and categorical data, respectively (lower-the-better).

Tasks RGB Edge Segment PNCC

m 10 100 512 10 100 512 10 100 512 10 100 512

STNP 0.0440 0.0154 0.0054 0.0359 0.0256 0.0116 0.6637 0.4669 0.2958 0.0102 0.0015 0.00061
S+JTNP 0.0421 0.0129 0.0046 0.0338 0.0190 0.0090 0.6316 0.4341 0.3171 0.0105 0.0021 0.00088
MTNP 0.0400 0.0114 0.0032 0.0323 0.0166 0.0060 0.6073 0.4013 0.2882 0.0082 0.0012 0.00058

STNP - - - 0.0314 0.0261 0.0174 0.6632 0.5863 0.5361 0.0362 0.0267 0.0231
S+JTNP - - - 0.0187 0.0124 0.0143 0.5298 0.5110 0.5140 0.0106 0.0139 0.0194
MTNP - - - 0.0184 0.0089 0.0053 0.5161 0.4923 0.4963 0.0104 0.0115 0.0134

STNP MTNP

m
=
10

GT S+JTNP

m
=
51
2

m
=
10
0

Figure 5: Qualitative results on 2D function regression. Performances of all models improve as the
number of observable contexts (m) increases. However, under the limited number of observable
contexts (e.g. m = 10), STNP and S+JTNP produce inaccurate outputs (e.g. mis-predicting hairs and
poses as in the green box) or incoherent outputs (e.g. different head poses as in the red box).

results demonstrate that MTNP successfully captured dependence among tasks considering that (1)
RGB and Edge are composed of two correlated low-level signals (e.g. color intensity and its gradients)

Table 4: Relative performance gain (%).

Source \ Target RGB Edge Segment PNCC

RGB - 53.02 8.73 18.57
Edge 6.35 - 8.18 15.70

Segment 5.13 33.30 - 29.24
PNCC 5.58 31.88 15.88 -

(2) while both Segment and PNCC contain high-level se-
mantic information on facial landmarks. Note that discov-
ering inter-task correlations is one of the actively studied
topics in the machine learning literature, where the efforts
often come at the cost of extra computations and resources
due to hard-coded (Zamir et al., 2018; Standley et al., 2020)
or hand-crafted (Pal & Balasubramanian, 2019) algorithms.

6 CONCLUSION

We propose Multi-Task Neural Processes (MTNPs), a new family of stochastic processes designed to
infer multiple functions jointly from incomplete data, along with a hierarchical latent variable model.
Through extensive experiments, we demonstrate that the proposed MTNPs can leverage incomplete
data to solve multiple heterogenous tasks by learning to discover and exploit task-agnostic and
task-specific knowledge. Scaling up our method to large-scale datasets will be a promising research
direction. To this end, our method can be improved in several aspects by (1) generalizing to unseen
task space T and (2) allowing empty context data for some tasks such that we can generalize MTNPs
in more diverse real-world scenarios such as zero-shot inference and semi-supervised learning.

9

Published as a conference paper at ICLR 2022

Acknowledgements This work was supported by the Institute of Information & communications
Technology Planning & Evaluation (IITP) (No. 2021-0-00537 and 2019-0-00075) and the National
Research Foundation of Korea (NRF) (No. 2021R1C1C1012540) funded by the Korea government
(MSIT).

Ethics Statement Recently, detecting and removing data bias have become essential problems
towards producing fair machine learning models. We believe that our work can contribute to detect
unintentional data bias present in multi-attribute data. MTNP can be seen as a universal correlation
learner who learns arbitrary correlation across tasks purely data-driven way. Therefore, given
potentially biased multi-attribute data (e.g., multiple personal attributes), MTNP may detect any
biased relationship by learning the correlation between them. For example, we may perform the
task-to-task transfer analysis on a trained MTNP as discussed in Section 5.2 and Section 5.3, then see
which task (or attribute) has a high correlation with another task (or attribute).

Reproducibiltiy Statement In this work, we present two major theoretical results (Proposition 1
and Eq. 7), a neural network model (Section 3.3), and experiments on three datasets (Section 5).
We give a complete proof of Proposition 1 in Appendix A.2 and the ELBO derivation for Eq. 7 in
Appendix A.3. We provide architectural details and training hyper-parameters of the models used in
the experiments in Appendix B. Finally, details on the experimental settings and datasets are provided
in Appendix C and Appendix F.

10

Published as a conference paper at ICLR 2022

REFERENCES

Mauricio A Álvarez, Lorenzo Rosasco, and Neil D Lawrence. Kernels for vector-valued functions: A
review. Found. Trends Mach. Learn., 2012.

Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood, and Leonid Sigal. Improved few-shot
visual classification. In CVPR, 2020.

John Canny. A computational approach to edge detection. PAMI, 1986.

Rich Caruana. Multitask learning. Machine learning, 1997.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In ECCV, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, 2017.

Vincent Fortuin, Heiko Strathmann, and Gunnar Rätsch. Meta-learning mean functions for gaussian
processes. arXiv preprint arXiv:1901.08098, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In ICML, 2016.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
ICML, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. In ICML Workshop, 2018b.

Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, and
Richard E. Turner. Convolutional conditional neural processes. In ICLR, 2020.

Jianzhu Guo, Xiangyu Zhu, Yang Yang, Fan Yang, Zhen Lei, and Stan Z Li. Towards fast, accurate
and stable 3d dense face alignment. In ECCV, 2020a.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning. In
ICML, 2020b.

Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg, and Aram Galstyan. Multitask
learning and benchmarking with clinical time series data. Scientific data, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In ICLR, 2017.

Kiyosi Itô et al. An Introduction to Probability Theory. Cambridge University Press, 1984.

Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
freely accessible critical care database. Scientific data, 2016.

Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. Design of an image edge detection
filter using the sobel operator. JSSC, 1988.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. In ICLR, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. NeurIPS, 2012.

11

Published as a conference paper at ICLR 2022

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive
facial image manipulation. In CVPR, 2020.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In ICML,
2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
ICCV, 2015.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, and Pietro Liò. Neural ode processes.
In ICLR, 2021.

Arghya Pal and Vineeth N Balasubramanian. Zero-shot task transfer. In CVPR, 2019.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In ICML, 2018.

Gabriel Parra and Felipe Tobar. Spectral mixture kernels for multi-output gaussian processes. In
NeurIPS, 2017.

Shenghao Qin, Jiacheng Zhu, Jimmy Qin, Wenshuo Wang, and Ding Zhao. Recurrent attentive neural
process for sequential data. In NeurIPS Workshop, 2019.

James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E Turner. Fast
and flexible multi-task classification using conditional neural adaptive processes. In NeurIPS,
2019.

Gautam Singh, Jaesik Yoon, Youngsung Son, and Sungjin Ahn. Sequential neural processes. In
NeurIPS, 2019.

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In ICML, 2020.

Michalis K Titsias, Francisco JR Ruiz, Sotirios Nikoloutsopoulos, and Alexandre Galashov. In-
formation theoretic meta learning with gaussian processes. arXiv preprint arXiv:2009.03228,
2020.

Kyle Ulrich, David E Carlson, Kafui Dzirasa, and Lawrence Carin. Gp kernels for cross-spectrum
analysis. In NeurIPS, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Qi Wang and Herke Van Hoof. Doubly stochastic variational inference for neural processes with
hierarchical latent variables. In ICML, 2020.

Tongli Wang, Andreas Hamann, Dave Spittlehouse, and Carlos Carroll. Locally downscaled and
spatially customizable climate data for historical and future periods for north america. PloS one,
2016.

Pavel Yakubovskiy. Segmentation models pytorch. https://github.com/qubvel/
segmentation_models.pytorch, 2020.

Jaesik Yoon, Gautam Singh, and Sungjin Ahn. Robustifying sequential neural processes. In ICML,
2020.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In CVPR, 2018.

12

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch

Published as a conference paper at ICLR 2022

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In CVPR, 2017.

Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan Z. Li. Face alignment across large poses:
A 3d solution. In CVPR, 2016.

13

Published as a conference paper at ICLR 2022

APPENDIX

A THEORETICAL JUSTIFICATIONS

In this section, we give a proof of Proposition 1 with a brief introduction of the Kolmogorov Extension
Theorem (Itô et al., 1984), and derive training objectives of STNP, JTNP, and MTNP.

A.1 STOCHASTIC PROCESSES AND THE KOLMOGOROV EXTENSION THEOREM

A stochastic process F : X × Ω→ Y is a collection of random variables {Yx : Ω→ Y}x∈X which
is indexed by an index set X . Also, all the random variables are defined on a single probability space
(Ω,F ,P) and a value space Y . This can be interpreted as a distribution over a function space YX ,
such that sampling a function f corresponds to f(·) = F (·, ω), ω ∈ Ω. Another interpretation of F
is a random function, since F (x, ·) = Yx is a random variable.

Suppose we have observed input and output sequences X = (x1, x2, · · · , xn) and Y =
(yx1 , yx2 , · · · , yxn) of a function f : X → Y . With a slight abuse of a notation, let p(Y |X) = ρX(Y)
be the marginal distribution of Y on a product space

∏n
i=1 Y , where each i-th space of the product is

the output space of Yxi , 1 ≤ i ≤ n. Then by the Kolmogorov Extension Theorem, the data (X,Y)
induces a stochastic process F such that ∃ ω ∈ Ω s.t. yxi = F (xi, ω) for all i = 1, 2, · · · , n, if the
distribution p(Y |X) satisfies two conditions: consistency and exchangability.

1. (Consistency) For any m such that 1 ≤ m < n,∫
p(Y |X)dYm+1:n = p(Y1:m|X1:m), (16)

where Xi1:i2 = (xi1 , xi1+1, · · · , xi2) and Yi1:i2 = (yi1 , yi1+1, · · · , yi2) for all i1 ≤ i2.
2. (Exchangability) For any permutation π on X1:n (a permutation π on set S is a bijection
π : S → S),

p(π ◦ Y |π ◦X) = p(Y |X), (17)
where X1:n = {x1, · · · , xn}, π ◦ X = (π(x1), π(x2), · · · , π(xn)), and π ◦ Y =
(yπ(x1), yπ(x2), · · · , yπ(xn)).

A.2 MTNP IS A STOCHASTIC PROCESS

In the case of MTNP, we observe input and output sequences X = ((x1, t1), (x2, t2), · · · , (xn, tn))
and Y = (y(x1,t1), y(x2,t2), · · · , y(xn,tn)) of a function h : X ×T →

⋃
t∈T Yt. Note that in the main

text, we abbreviate xti = (xi, t) and yti = y(xi,t) for visibility. Now we want to show the existence of
a stochastic process H : X × T × Ω →

⋃
t∈T Yt, where the data D = (X,Y) is generated. This

can be done by showing the following conditions.

1. (Consistency) For any m such that 1 ≤ m < n,∫
p(Y |X,C)dYm+1:n = p(Y1:m|X1:m, C), (18)

where Xi1:i2 = ((xi1 , ti1), · · · , (xi2 , ti2)) and Yi1:i2 = (y(xi1 ,ti1), · · · , y(xi2 ,ti2)).

2. (Exchangability) For any permutation π on X1:n × T ,

p(π ◦ Y |π ◦X,C) = p(Y |X,C), (19)

where X1:n = {x1, · · · , xn}, π ◦ X = (π((x1, t1)), · · · , π((xn, tn))), and π ◦ Y =
(yπ((x1,t1)), · · · , yπ((xn,tn))).

Here p(Y |X,C) = ρX(Y |C) is the conditional distribution of Y given any context C. Note that C
is conditioned since we are modeling functional posterior of h, rather than prior.

Now we provide the proof of Proposition 1, which states that the following generative model defines
a stochastic process.

z ∼ p(z|C), vt ∼ p(vt|z, t, C), y(xi,t) ∼ p(y(xi,t)|xi, t, v
t) ∀t ∈ T , ∀xi ∈ X1:n, (20)

14

Published as a conference paper at ICLR 2022

To show the conditions of Kolmogorov Extension Theorem, we need two assumptions on the data
generating process (Eq. 20). First, we assume the distribution defined by the data generating process
is finite so that the order of integral can be swapped. Also, we assume that the conditional distribution
p(y(xi,t)|xi, t, vt) can implicitly select the per-task latent variable vt among v1:T using the given
task index t, i.e., there exists a distribution p̃ such that p̃(y(xi,t)|xi, t, v1:T) = p(y(xi,t)|xi, t, vt).
This means no more than that the latent variables v1:T are indeed task-specific, such that each vt
corresponds to task f t. Note that our neural-network model of MTNP (Figure 2) indeed satisfies the
second assumption, since the decoder selects the corresponding per-task latent variable vt given the
task index t ∈ T .

Proof. We first show the consistency condition. From the data generating process (Eq. 20),∫
p(Y |X,C)dYm+1:n (21)

=

∫ ∫ ∫ (n∏
i=1

p(y(xi,ti)|xi, ti, v
ti)

)(
T∏
t=1

p(vt|z, t, C)

)
p(z|C)dv1:T dzdYm+1:n (22)

=

∫ ∫ (m∏
i=1

p(y(xi,ti)|xi, ti, v
ti)

)
(∫ n∏

i=m+1

p(y(xi,ti)|xi, ti, v
ti)dYm+1:n

)(
T∏
t=1

p(vt|z, t, C)

)
p(z|C)dv1:T dz (23)

=

∫ ∫ (m∏
i=1

p(y(xi,ti)|xi, ti, v
ti)

)(
T∏
t=1

p(vt|z, t, C)

)
p(z|C)dv1:T dz (24)

= p(Y1:m|X1:m, C). (25)

Next, we show the exchangability condition. Let π1, π2 be the values of first and second coordinate
of π, such that π((xi, ti)) = (π1((xi, ti)), π2((xi, ti))). Then

p(π ◦ Y |π ◦X,C) (26)

=

∫ ∫ (n∏
i=1

p̃(yπ((xi,ti))|π((xi, ti)), v
1:T)

)(
T∏
t=1

p(vt|z, t, C)

)
p(z|C)dv1:T dz (27)

=

∫ ∫ (n∏
i=1

p(yπ((xi,ti))|π((xi, ti)), v
π2((xi,ti)))

)(
T∏
t=1

p(vt|z, t, C)

)
p(z|C)dv1:T dz (28)

=

∫ ∫ (n∏
i=1

p(y(xi,ti)|xi, ti, v
ti)

)(
T∏
t=1

p(vt|z, t, C)

)
p(z|C)dv1:T dz (29)

= p(Y |X,C). (30)

Here we used the assumption about p(y(xi,t)|xi, t, vt) such that p̃(yπ((xi,ti))|π((xi, ti)), v
1:T) =

p(yπ((xi,ti))|π((xi, ti)), v
π2((xi,ti))). Since 1 ≤ m < n and π are arbitrarily chosen, the data

generating process (Eq. 20) satisfies the conditions of the Kolmogorov Extension Theorem. Thus
there exists a stochastic process H : X × T × Ω→

⋃
t∈T Yt, whose realizations are functions of

the form h : X × T →
⋃
t∈T Yt.

Note that the latent variable model of MTNP (Eq. 5) is a special case of the data generating process
(Eq. 20), where p(vt|z, t, C) = p(vt|z, Ct). Thus MTNP is a stochastic process over the functions
of form h : X × T →

⋃
t∈T Yt.

15

Published as a conference paper at ICLR 2022

A.3 ELBO DERIVATION FOR MTNP

We derive the evidence lower bound (ELBO) for log pθ(Y
1:T
D |X1:T

D , C). Recall that C =
(X1:T

C , Y 1:T
C) =

⋃
t∈T C

t where Ct = (Xt
C , Y

t
C) = {(xti, yti)}i∈I(Ct) and D = (X1:T

D , Y 1:T
D) =⋃

t∈T D
t where Dt = (Xt

D, Y
t
D) = {(xti, yti)}i∈I(Dt). For simplicity, we assume Ct ⊂ Dt for all

t so that C ⊂ D as well. Also, to avoid confusion, for this derivation we denote the conditional
prior networks as pθ(z|Ct) and pθ(vt|z, Ct) and then replace them with qφ(z|Ct) and qφ(vt|z, Ct)
respectivelly, when we introduce parameter-sharing between prior and variational posterior networks.

First, the conditional log-likelihood has a lower bound

log pθ(Y
1:T
D |X1:T

D , C) (31)

= Eqφ(z|D)

[
log

pθ(Y
1:T
D , z|X1:T

D , C)

pθ(z|X1:T
D , Y 1:T

D , C)

]
(32)

= Eqφ(z|D)

[
log

pθ(Y
1:T
D |X1:T

D , C, z)pθ(z|X1:T
D , C)

pθ(z|D)

]
(33)

= Eqφ(z|D)

[
log

pθ(Y
1:T
D |X1:T

D , C, z)pθ(z|C)

pθ(z|D)

]
(34)

= Eqφ(z|D)

[
log pθ(Y

1:T
D |X1:T

D , C, z)
]

+DKL

(
qφ(z|D) || pθ(z|D)

)
−DKL

(
qφ(z|D) || pθ(z|C)

)
(35)

≥ Eqφ(z|D)

[
log pθ(Y

1:T
D |X1:T

D , C, z)
]
−DKL

(
qφ(z|D) || pθ(z|C)

)
, (36)

where pθ(Y 1:T
D |X1:T

D , C, z) in Eq. 36 can be further expanded by

log pθ(Y
1:T
D |X1:T

D , C, z) (37)

= E∏T
t=1 qφ(v

t|z,Dt)

[
log

pθ(Y
1:T
D , v1:T |X1:T

D , C, z)

pθ(v1:T |X1:T
D , Y 1:T

D , C, z)

]
(38)

= E∏T
t=1 qφ(v

t|z,Dt)

[
log

pθ(Y
1:T
D |X1:T

D , C, z, v1:T)pθ(v
1:T |X1:T

D , C, z)

pθ(v1:T |z,D)

]
(39)

= E∏T
t=1 qφ(v

t|z,Dt)

[T∑
t=1

log
pθ(Y

t
D|Xt

D, v
t)pθ(v

t|z, Ct)
pθ(vt|z,Dt)

]
(40)

=

T∑
t=1

Eqφ
[

log
pθ(Y

t
D|Xt

D, v
t)pθ(v

t|z, Ct)
pθ(vt|z,Dt)

]
(41)

=

T∑
t=1

Eqφ
[

log pθ(Y
t
D|Xt

D, v
t)
]

+DKL

(
qφ(vt|z,Dt) || pθ(vt|z,Dt)

)
−DKL

(
qφ(vt|z,Dt) || pθ(vt|z, Ct)

)
(42)

≥
T∑
t=1

Eqφ
[

log pθ(Y
t
D|Xt

D, v
t)
]
−DKL

(
qφ(vt|z,Dt) || pθ(vt|z, Ct)

)
. (43)

On Eq. 34 and Eq. 40, we use the conditional independence relation follows from the latent
variable model (Eq. 5) By combining Eq. 36 and Eq. 43, and also by sharing the parameters of
conditional priors pθ(z|C) and pθ(vt|z, Ct) with variational posteriors qφ(z|C) qφ(vt|z, Ct), we get

16

Published as a conference paper at ICLR 2022

the following lower bound.

log pθ(Y
1:T
D |X1:T

D , C) (44)

≥ Eqφ

[
T∑
t=1

Eqφ
[

log pθ(Y
t
D|Xt

D, v
t)
]
−DKL

(
qφ(vt|z,Dt) || pθ(vt|z, Ct)

)]
−DKL

(
qφ(z|D) || pθ(z|C)

)
(45)

= Eqφ

[
T∑
t=1

Eqφ
[

log pθ(Y
t
D|Xt

D, v
t)
]
−DKL

(
qφ(vt|z,Dt) || qφ(vt|z, Ct)

)]
−DKL

(
qφ(z|D) || qφ(z|C)

)
. (46)

17

Published as a conference paper at ICLR 2022

A.4 ELBO FOR STNP AND JTNP

STNP is no more than a collection of independent Neural Processes (NPs), where each NP corresponds
to each task. Using T encoders and decoders {(pθt , qφt)}Tt=1, the objective for STNP can be derived
by summing up the NP objectives (Eq. 2). We omit the ELBO derivation for NP. Note that the
parameter sharing is used for the conditional prior network pθt(v

t|Ct) and the variational posterior
network qφt(v

t|Dt).

log pθ(Y
1:T
D |XD, C) (47)

≥
T∑
t=1

Eqφt (vt|Dt)
[

log pθt(Y
t
D|XD, v

t)
]
−DKL

(
qφt(v

t|Dt) || pθt(vt|Ct)
)

(48)

=

T∑
t=1

Eqφt (vt|Dt)
[

log pθt(Y
t
D|XD, v

t)
]
−DKL

(
qφt(v

t|Dt) || qφt(vt|Ct)
)
. (49)

On the other hand, JTNP is a single NP that models all tasks jointly, by concatenating the output
variables into a single vector. Using an encoder qφ and a decoder pθ, the objective for JTNP is the
same as the NP objective. Again, the encoder qφ serves as both conditional prior and variational
posterior.

log pθ(Y
1:T
D |XD, C) (50)

≥ Eqφ(z|D)

[
log pθ(Y

1:T
D |XD, z)

]
−DKL

(
qφ(z|D) || pθ(z|C)

)
(51)

= Eqφ(z|D)

[
log pθ(Y

1:T
D |XD, z)

]
−DKL

(
qφ(z|D) || qφ(z|C)

)
. (52)

Note that STNP and JTNP model functions with input space X , so there is no superscript t in the
input variables.

18

Published as a conference paper at ICLR 2022

B ARCHITECTURAL AND TRAINING DETAILS

In this section, we provide architectural and training details about models used in the experiments
(Section 5).

B.1 ATTENTIVE NEURAL PROCESS

As a strong NP baseline, we adopt Attentive Neural Processes (ANPs) (Kim et al., 2019) architecture
for STNP and JTNP. The encoder of ANP consists of a latent path and a deterministic path, each
computes a latent variable z and a deterministic representation ri specific to each target example xi.
Then the decoder produces a distribution for the target output yi, which is assumed to be Normal.

The general architecture of ANP follows Kim et al. (2019), while two major modifications have
made as follows. First, we replace the average pooling operation in stochastic path by a Pooling by
Multihead Attention (PMA) layer which is introduced in Lee et al. (2019). Next, since we have a
categorical task (Segment) in 2D experiment, we modify the decoder for each Segment task to output
logits for the Categorical distribution it models.

B.2 ANP MODEL FOR JTNP

This section presents a detailed description of the JTNP architecture used in the experiments. The
JTNP consists of a single ANP, which consists of a latent encoder, a deterministic encoder, and a
decoder. Then JTNP produces target output distribution by conditioning on the context set C =
{(xi, y1:Ti)}i∈I(C) where y1:Ti = (y1i , · · · , yTi).

Latent Encoder The latent encoder samples a global latent z. For each context example
(xi, y

1:T
i) ∈ C, we first project it to a hidden representation s1:Ti = ψs(xi, y

1:T
i) using a single

MLP ψs. Then we aggregate them to a global representation s via self-attention followed by a
pooling operation.

s = pool(Attn({s1:Ti }i∈I(C), {s1:Ti }i∈I(C), {s1:Ti }i∈I(C)). (53)

Then the global latent is sampled via two MLPs.

z ∼ qφ(z|C) = N (ψ(z,1)(s), ψ(z,2)(s)). (54)

Deterministic Encoder The deterministic encoder produces local representation ri for each i ∈ D.
We first project each context example (xi, y

1:T
i) ∈ Ct to a hidden representation d1:Ti = ψd(xi, y

1:T
i)

that serves as value embedding in cross-attention. Then by using the context and target input xi as
key and query embeddings, we apply a cross-attention along the example axis (per-task).

{r1:Ti }i∈I(D) = Attn({xi}i∈I(D), {xi}i∈I(C), {d1:Ti }i∈I(D)). (55)

Decoders Finally, the decoder produces predictive distribution for each joint target output y1:Ti .
We first project the input to wi = ψw(xi), then concatenate it with the global latent variable z and
deterministic representation r1:Ti . To compute the output distribution, we first apply two MLPs on
the triple (wi, z, r

1:T
i).

µi = ψ(y,1)(wi, z, r
1:T
i) (56)

σ2
i = ψ(y,2)(wi, z, r

1:T
i)). (57)

Then for each dimension, we construct the predictive distributions as Normal or Categorical, depend-
ing on the corresponding task type.

yti ∼
{
N ((µi)Yt , (σ

2
i)Yt), if yti is continuous,

Categorical((µi)Yt), if yti is discrete,
(58)

where (µi)Yt (or (σ2
i)Yt)) denotes the projection of µi (or σ2

i) into the task-specific output space Yt,
by indexing the corresponding dimension from µi. For example, if all tasks are one-dimensional,
then this corresponds to selecting t-th coordinate of µi.

19

Published as a conference paper at ICLR 2022

B.3 ANP MODEL FOR STNP

This section presents a detailed description of the STNP architecture used in the experiments. The
STNP consists of T independent ANPs, which consists of T latent encoders, T deterministic encoders,
and T decoders. Then STNP produces target output distribution by conditioning on the context
set C =

⋃
t∈T C

t where Ct = {(xi, yti)}t∈T . In the following, we deonte a stacked multi-head
attention block (Parmar et al., 2018) by Attn(Q,K, V) and a MLP by ψ(x), as in Section 3.3.

Latent Encoders The latent encoders sample per-task latents v1:T = (v1, · · · , vT). For each
context example (xi, y

t
i) ∈ Ct, we first project it to a hidden representation sti = ψts(xi, y

t
i) using

a MLP ψts specific to task f t. Then we aggregate them to a task-specific representation st via
self-attention followed by a pooling operation.

st = pool(Attn({sti}i∈I(Ct), {sti}i∈I(Ct), {sti}i∈I(Ct))), ∀t ∈ T . (59)

Note that each attention is applied along the example axis (per-task) and independent to each task.
Then the per-task latent variables are sampled independently, via MLPs.

vt ∼ qφ(vt|Ct) = N (ψ(vt,1)(s
t), ψ(vt,2)(s

t)), ∀t ∈ T . (60)

Deterministic Encoders The deterministic encoders produce local representation rti for each
i ∈ D and t ∈ T . We first project each context example (xi, y

t
i) ∈ Ct to a hidden representation

dti = ψtd(xi, y
t
i) that serves as value embedding in cross-attention. Then by using the context and

target input xi as key and query embeddings, we apply T independent cross-attention along the
example axis (per-task).

{rti}i∈I(Dt) = Attn({xti}i∈I(Dt), {xti}i∈I(Ct), {dti}i∈I(Dt)), ∀t ∈ T . (61)

Decoders Finally, the decoders produce predictive distributions for each target output yti . We first
project the input to wti = ψtw(xi), then concatenate it with the corresponding latent variable vt and
deterministic representation rti . The output distribution is computed similar to MTNP described in
Section 3.3.

yti ∼
{
N (ψ(yt,1)(w

t
i , v

t, rti), ψ(yt,2)(w
t
i , v

t, rti)), if yti is continuous,
Categorical(ψ(yt,1)(w

t
i , v

t, rti)), if yti is discrete,
∀i ∈ I(Dt),∀t ∈ T .

(62)

We use the hidden dimension d = 128 for all models in synthetic and CelebA experiments and
d = 64 and in weather experiments.

B.4 ARCHITECTURAL HYPER-PARAMETERS

Table 5 summarizes the number of layers for each module in three models (STNP, JTNP, MTNP)
used in the experiments. We use the same number of layers in all experiments.

Module STNP JTNP MTNP

ψs (or ψts) 3 3 3
ψd (or ψtd) 3 3 3
ψw (or ψtw) 1 1 1
ψy (or ψty) 5 5 5

per-task Attn (in STNP, MTNP) 3 - 3
global Attn (in JTNP) - 3 -

across-task Attn (in MTNP) - - 2

Table 5: Number of layers of each module in STNP, JTNP, and MTNP used in the experiments.

Table 6 summarizes the hidden dimension dimhidden of all models used in each experiment. In our
implementation, all layers (including the positional embedding) except the input and output layers
have the dimension dimhidden.

20

Published as a conference paper at ICLR 2022

Dataset STNP JTNP MTNP

Synthetic 128 128 128
Weather 64 64 64

Face 128 128 128

Table 6: Hidden dimensions of the models used in the experiments.

B.5 TRAINING DETAILS

For all three models, we schedule learning rate lr by

lr = base_lr× 10000.5 ×min(n_iters× 1, 000−1.5, n_iters−0.5), (63)

where n_iters is the number of total iterations and base_lr is the base learning rate. We also introduce
beta coefficient on the ELBO objective following Higgins et al. (2017), which is multiplied by each
KL term. The beta coefficient is scheduled to be linearly increased from 0 to 1 during the first 10000
iters, then fixed to 1. We summarize the training hyper-parameters of models used in the experiments
in Table 7.

Dataset n_iters base_lr batch size

Synthetic 300000 0.00025 24
Weather 50000 0.00025 16

Face 300000 0.0005 16

Table 7: Training hyper-parameters used in the experiments.

B.6 PARAMETER SHARING IN MTNP

The overall description of our neural network model for MTNP is provided in Section 3.3. We
use different parameter sharing techniques in the datasets, depending on whether the tasks are
homogeneous or not. In synthetic and weather tasks, all output values are one-dimensional. Thus
we tie the parameters of the per-task paths in encoder and decoder, which makes more efficient
parametrization compared to per-task encoders and decoders. In visual tasks, however, the tasks have
different output dimensionalities. Thus in this case, we separate the parameters of all per-task paths.
As task identity is implicitly encoded by the separation of task-specific paths, we do not employ task
embeddings

B.7 OTHER BASELINES

We include two Multi-Output Gaussian Process (MOGP) baselines, MOSM (Parra & Tobar, 2017)
and CSM (Ulrich et al., 2015). To make use of training set of tasks, we consider pretraining MOGPs
with respect to the kernel parameters using the same meta-training dataset with MTNP, and transfer
the learned kernel parameters as prior in meta-testing. This allows both MOGPs and MTNPs to be
trained and evaluated under the same setting. To prevent overfitting, we early-stopped the pretraining
based on NLL. We observe that such pretraining is effective in synthetic tasks but not in weather
tasks, thus we report the pretrained version for results on synthetic tasks and non-pretrained version
for results on weather tasks.

We also include two gradient-based meta-learning baselines, MAML (Finn et al., 2017) and Rep-
tile (Nichol et al., 2018) that use the same meta-train/meta-test data with our method. We chose
these models as they are model-agnostic meta-learning methods that can be applied to our multi-task
regression setting with incomplete data. Applied to our problem, the meta-training involves bi-level
optimization where the inner loop optimizes the loss for context data and the outer loop optimizes the
loss for target data. We employ a similar architecture to MTNP for the baselines that consists of a
4-layer MLP encoder network shared by all tasks and task-specific 4-layer MLP decoder networks.
For fair comparisons, we controlled the total number of parameters of the models similar to NP
baselines (STNP, JTNP, MTNP).

21

Published as a conference paper at ICLR 2022

C EXPERIMENTAL DETAILS OF 1D SYNTHETIC FUNCTION REGRESSION

In this section, we describe details of the data generating process and experimental settings of 1D
function regression on synthetic tasks.

C.1 SYNTHETIC DATASET

As discussed in the paper, we simulate synthetic tasks which are correlated by a set of parameters
a, b, c, w ∈ R as follow:

f t(xi) = a · actt(wxi + b) + c, actt ∈ {Sine,Tanh,Sigmoid,Gaussian}, (64)

where Sine, Tanh, Sigmoid are sine, hyperbolic tangent, logistic sigmoid function, respectively, and
Gaussian(x) is defined as exp(−x2). Rather than sharing the exactly same parameters a, b, c, w
across tasks, we add a task-specific noise to each parameter, to control the amount of correlation
across tasks as follow:

αt = α+ ε, ε ∼ N (0, 0.1), ∀t ∈ T , ∀α ∈ {a, b, c, w}. (65)

Thus in fact the input-output pairs of each task is generated as follow:

f t(xi) = at · actt(wtxi + bt) + ct, actt ∈ {Sine,Tanh,Sigmoid,Gaussian}, (66)

We split the 1,000 functions into 800 training, 100 validation, and 100 test sets of four correlated tasks.
Then we construct a training dataset, a validataion dataset, and a test dataset using the corresponding
set of generated tasks. For each training and validation data, we sample 200 input points uniformly
within the interval [−5, 5], and applied the corresponding tasks to generate multi-task output values.
For each test data, we choose 1000 input points in the uniform grid of the interval [−5, 5], and
generate the multi-task output values similarly. Finally, simulating the incomplete data is achieved by
randomly dropping each output value yti with probability γ ∈ [0, 1].

C.2 EVALUATION PROTOCOL

For evaluation, we average the normalized MSE MSE = 1
n

∑n
i=1(yti − ŷti)2/a2 on test dataset. 2

For prediction Ŷ 1:4, we approximate the predictive posterior mean with Monte Carlo sampling. For
example in MTNP,

p(yti |xi, C) =

∫ ∫
p(yti |xi, vt)p(vt|z, Ct)p(z|C)dvtdz (67)

≈ 1

NM

N∑
k=1

M∑
l=1

p(yti |xi, vtk,l), where vtk,l
i.i.d.∼ p(vt|zk, Ct), zk

i.i.d.∼ p(z|C). (68)

We use N = M = 5, resulting total 25 samples. For STNP (or JTNP), we sample each latent
vt (or z) 5 times, since there is no hierarchy. Since all the output distributions are Gaussian, the
posterior predictive mean can be computed by averaging the means of each sample distribution
p(yti |xi, vtk,l). To plot the predictions in Figure 3 (a), we use the posterior means for both z and vt
(which corresponds to the Maximum A Posteriori estimation) and plot the mean and variance of
resulting p(yti |xi, vt).

2We normalize the MSE for fair consideration of difference in amplitude a across different functions.

22

Published as a conference paper at ICLR 2022

D ADDITIONAL RESULTS ON SYNTHETIC 1D FUNCTION REGRESSION

D.1 ADDITIONAL RESULTS ON COMPLETE AND PARTIALLY INCOMPLETE DATA

In this section, we provide additional results on the synthetic experiment, with various missing rates
γ and also with standard deviation from 5 different random seeds. When the data is incomplete and
missing some task labels (i.e., γ = 0.25, 0.5, 0.75), we can see that MTNP clearly outperforms the
baselines in almost all cases. When the complete data (γ = 0) is given, MTNP still outperforms
almost all baselines while achieves at least competitive performance to JTNP. Figure 6 and 7 shows
that MTNP is the most robust against both context size and quality (incompleteness).

5 10 20
context size

0.0

0.2

0.4

0.6

0.8

M
SE

sine
MAML
Reptile
MOSM
CSM
STNP
S+JTNP
MTNP

5 10 20
context size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
M

SE
tanh

MAML
Reptile
MOSM
CSM
STNP
S+JTNP
MTNP

5 10 20
context size

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

sigmoid
MAML
Reptile
MOSM
CSM
STNP
S+JTNP
MTNP

5 10 20
context size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

gaussian
MAML
Reptile
MOSM
CSM
STNP
S+JTNP
MTNP

Figure 6: Performance (normalized MSE) of models against various context sizes (m). Missing rate
(γ) is fixed to 0.5.

0.00 0.25 0.50 0.75
missing rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
SE

sine
MAML
Reptile
MOSM
CSM
STNP
S+JTNP
MTNP

0.00 0.25 0.50 0.75
missing rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
SE

tanh
MAML
Reptile
MOSM
CSM
STNP
S+JTNP
MTNP

0.00 0.25 0.50 0.75
missing rate

0.00

0.05

0.10

0.15

0.20

M
SE

sigmoid
MAML
Reptile
MOSM
CSM
STNP
S+JTNP
MTNP

0.00 0.25 0.50 0.75
missing rate

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

gaussian
MAML
Reptile
MOSM
CSM
STNP
S+JTNP
MTNP

Figure 7: Performance (normalized MSE) of models against various missing rates (γ). Context size
(m) is fixed to 10.

23

Published as a conference paper at ICLR 2022

Table 8: Average normalized MSE on synthetic tasks, with varying context size (m) and γ = 0.

task Sine Tanh

m 5 10 20 5 10 20

MAML 0.1943± 0.0194 0.0786± 0.0049 0.0342± 0.0034 0.0569± 0.0063 0.0190± 0.0007 0.0117± 0.0008
Reptile 0.3443± 0.0161 0.1362± 0.0172 0.0534± 0.0043 0.0918± 0.0074 0.0288± 0.0020 0.0163± 0.0019

MOSM 0.4609± 0.0571 0.0204± 0.0125 0.0002± 0.0001 0.1509± 0.0362 0.0966± 0.0460 0.0212± 0.0113
CSM 0.3124± 0.0233 0.0956± 0.0149 0.0095± 0.0029 0.1678± 0.0263 0.0396± 0.0107 0.0068± 0.0034

STNP 0.2562± 0.0114 0.0910± 0.0104 0.0200± 0.0020 0.0502± 0.0071 0.0104± 0.0023 0.0024± 0.0004
JTNP 0.1213± 0.0095 0.0560± 0.0039 0.0291± 0.0011 0.0210± 0.0038 0.0079± 0.0004 0.0057± 0.0004

MTNP 0.1793± 0.0191 0.0705± 0.0063 0.0186± 0.0027 0.0287± 0.0027 0.0060± 0.0017 0.0015± 0.0002

task Sigmoid Gaussian

m 5 10 20 5 10 20

MAML 0.0239± 0.0029 0.0122± 0.0010 0.0102± 0.0006 0.0473± 0.0035 0.0221± 0.0029 0.0112± 0.0007
Reptile 0.0391± 0.0043 0.0179± 0.0019 0.0125± 0.0013 0.0879± 0.0039 0.0365± 0.0034 0.0171± 0.0016

MOSM 0.0090± 0.0022 0.0008± 0.0005 0.0001± 0.0001 0.1200± 0.0098 0.0263± 0.0097 0.0012± 0.0005
CSM 0.0366± 0.0114 0.0045± 0.0020 0.0006± 0.0007 0.0948± 0.0114 0.0502± 0.0145 0.0064± 0.0008

STNP 0.0064± 0.0029 0.0017± 0.0002 0.0008± 0.0000 0.0393± 0.0048 0.0179± 0.0030 0.0071± 0.0006
JTNP 0.0041± 0.0008 0.0020± 0.0002 0.0016± 0.0001 0.0170± 0.0015 0.0093± 0.0007 0.0072± 0.0004

MTNP 0.0030± 0.0010 0.0006± 0.0001 0.0003± 0.0000 0.0197± 0.0008 0.0092± 0.0015 0.0043± 0.0009

Table 9: Average normalized MSE on synthetic tasks, with varying context size (m) and γ = 0.25.

task Sine Tanh

m 5 10 20 5 10 20

MAML 0.2448± 0.0167 0.1047± 0.0069 0.0438± 0.0006 0.0746± 0.0095 0.0213± 0.0007 0.0109± 0.0009
Reptile 0.4222± 0.0304 0.2015± 0.0347 0.0737± 0.0030 0.1244± 0.0096 0.0329± 0.0012 0.0153± 0.0012

MOSM 0.6531± 0.0973 0.1514± 0.0562 0.0038± 0.0028 0.2490± 0.0505 0.1104± 0.0251 0.0701± 0.0766
CSM 0.5096± 0.0688 0.2387± 0.0524 0.0516± 0.0159 0.4401± 0.1387 0.1179± 0.0265 0.0163± 0.0033

STNP 0.3768± 0.0152 0.1547± 0.0145 0.0492± 0.0060 0.0711± 0.0077 0.0191± 0.0033 0.0070± 0.0013
S+JTNP 0.2906± 0.0241 0.1481± 0.0049 0.0738± 0.0066 0.0531± 0.0073 0.0169± 0.0008 0.0098± 0.0004
MTNP 0.1871± 0.0211 0.0705± 0.0027 0.0297± 0.0026 0.0300± 0.0029 0.0055± 0.0011 0.0023± 0.0002

task Sigmoid Gaussian

m 5 10 20 5 10 20

MAML 0.0255± 0.0033 0.0116± 0.0012 0.0087± 0.0011 0.0563± 0.0018 0.0283± 0.0033 0.0134± 0.0007
Reptile 0.0498± 0.0076 0.0175± 0.0019 0.0116± 0.0004 0.1112± 0.0072 0.0502± 0.0044 0.0217± 0.0022

MOSM 0.0243± 0.0056 0.0044± 0.0016 0.0002± 0.0002 0.1566± 0.0310 0.0459± 0.0147 0.0059± 0.0036
CSM 0.1315± 0.0736 0.0154± 0.0011 0.0010± 0.0004 0.1213± 0.0228 0.0737± 0.0071 0.0180± 0.0063

STNP 0.0121± 0.0038 0.0036± 0.0004 0.0013± 0.0001 0.0532± 0.0072 0.0260± 0.0037 0.0150± 0.0021
S+JTNP 0.0097± 0.0017 0.0038± 0.0002 0.0022± 0.0001 0.0403± 0.0055 0.0181± 0.0005 0.0112± 0.0006
MTNP 0.0040± 0.0017 0.0008± 0.0001 0.0004± 0.0000 0.0234± 0.0025 0.0087± 0.0012 0.0048± 0.0003

24

Published as a conference paper at ICLR 2022

Table 10: Average normalized MSE on synthetic tasks, with varying context size (m) and γ = 0.5.

task Sine Tanh

m 5 10 20 5 10 20

MAML 0.2962± 0.0140 0.1582± 0.0052 0.0701± 0.0055 0.0991± 0.0085 0.0342± 0.0032 0.0131± 0.0023
Reptile 0.5164± 0.0167 0.2886± 0.0254 0.1414± 0.0431 0.1656± 0.0142 0.0557± 0.0033 0.0291± 0.0191

MOSM 0.7852± 0.1127 0.4410± 0.1269 0.0298± 0.0172 0.4912± 0.0706 0.1444± 0.0386 0.1618± 0.1999
CSM 0.8529± 0.2216 0.3587± 0.0395 0.1537± 0.0310 0.6884± 0.0841 0.3669± 0.0799 0.0726± 0.0251

STNP 0.5212± 0.0157 0.2609± 0.0382 0.0993± 0.0182 0.1307± 0.0134 0.0468± 0.0074 0.0159± 0.0028
S+JTNP 0.3848± 0.0203 0.2340± 0.0169 0.1114± 0.0084 0.1015± 0.0160 0.0418± 0.0066 0.0168± 0.0026
MTNP 0.2636± 0.0105 0.1137± 0.0078 0.0485± 0.0034 0.0435± 0.0047 0.0115± 0.0021 0.0040± 0.0002

task Sigmoid Gaussian

m 5 10 20 5 10 20

MAML 0.0321± 0.0053 0.0119± 0.0014 0.0069± 0.0006 0.0696± 0.0033 0.0353± 0.0013 0.0174± 0.0024
Reptile 0.0619± 0.0089 0.0220± 0.0016 0.0181± 0.0148 0.1371± 0.0087 0.0679± 0.0039 0.0374± 0.0202

MOSM 0.0720± 0.0160 0.0127± 0.0049 0.0013± 0.0005 0.3329± 0.1578 0.0857± 0.0105 0.0190± 0.0064
CSM 0.2437± 0.0753 0.0730± 0.0413 0.0137± 0.0167 0.1525± 0.0402 0.0961± 0.0151 0.0407± 0.0079

STNP 0.0203± 0.0034 0.0067± 0.0013 0.0025± 0.0005 0.0799± 0.0098 0.0409± 0.0041 0.0222± 0.0042
S+JTNP 0.0163± 0.0024 0.0065± 0.0015 0.0032± 0.0004 0.0613± 0.0045 0.0318± 0.0021 0.0161± 0.0019
MTNP 0.0066± 0.0019 0.0014± 0.0001 0.0006± 0.0001 0.0360± 0.0018 0.0132± 0.0008 0.0069± 0.0012

Table 11: Average normalized MSE on synthetic tasks, with varying context size (m) and γ = 0.75.

task Sine Tanh

m 5 10 20 5 10 20

MAML 0.3972± 0.0122 0.2501± 0.0133 0.1401± 0.0104 0.1544± 0.0255 0.0722± 0.0054 0.0258± 0.0047
Reptile 0.6289± 0.0200 0.4404± 0.0175 0.2672± 0.0283 0.2200± 0.0391 0.1172± 0.0167 0.0426± 0.0053

MOSM 0.9726± 0.0788 0.8189± 0.0861 0.4288± 0.1540 0.7753± 0.1060 0.3867± 0.0620 0.1464± 0.0373
CSM 0.8747± 0.1166 0.7057± 0.0750 0.4091± 0.0384 0.9140± 0.1262 0.6870± 0.0831 0.3036± 0.0649

STNP 0.7329± 0.0581 0.5053± 0.0289 0.2770± 0.0286 0.1975± 0.0256 0.1128± 0.0111 0.0443± 0.0116
S+JTNP 0.5807± 0.0573 0.4115± 0.0348 0.2521± 0.0218 0.1654± 0.0195 0.0989± 0.0127 0.0426± 0.0115
MTNP 0.3784± 0.0395 0.2432± 0.0230 0.1295± 0.0172 0.0838± 0.0085 0.0340± 0.0020 0.0118± 0.0027

task Sigmoid Gaussian

m 5 10 20 5 10 20

MAML 0.0520± 0.0045 0.0227± 0.0031 0.0088± 0.0022 0.1045± 0.0050 0.0617± 0.0036 0.0332± 0.0031
Reptile 0.0857± 0.0078 0.0436± 0.0126 0.0191± 0.0037 0.1777± 0.0154 0.1215± 0.0119 0.0695± 0.0045

MOSM 0.1704± 0.0362 0.0658± 0.0132 0.0131± 0.0037 0.2663± 0.0440 0.2461± 0.0512 0.1005± 0.0116
CSM 0.3252± 0.0741 0.2176± 0.0392 0.0832± 0.0384 0.2413± 0.0461 0.1624± 0.0074 0.1066± 0.0176

STNP 0.0303± 0.0038 0.0191± 0.0030 0.0067± 0.0008 0.1232± 0.0037 0.0800± 0.0094 0.0469± 0.0037
S+JTNP 0.0260± 0.0044 0.0165± 0.0021 0.0070± 0.0005 0.0970± 0.0101 0.0608± 0.0035 0.0334± 0.0023
MTNP 0.0136± 0.0024 0.0059± 0.0004 0.0019± 0.0004 0.0643± 0.0048 0.0323± 0.0016 0.0155± 0.0018

25

Published as a conference paper at ICLR 2022

ST
N

P
M

TN
P

 J
TN

P

Tanh SigmoidSine Gaussian

M
O

SM
C

SM
R

ep
ti

le
M

A
M

L

Figure 8: Qualitative results on synthetic task with γ = 0, m = 10. For latent variable models (STNP,
JTNP, MTNP), we sample the latents 25 times and plot the mean prediction from each sample. For
the other models, we plot the mean prediction.

26

Published as a conference paper at ICLR 2022

ST
N

P
M

TN
P

S+
 J

TN
P

Tanh SigmoidSine Gaussian

M
O

SM
C

SM
R

ep
ti

le
M

A
M

L

Figure 9: Qualitative results on synthetic task with γ = 0.25, m = 10. For latent variable models
(STNP, JTNP, MTNP), we sample the latents 25 times and plot the mean prediction from each sample.
For the other models, we plot the mean prediction.

27

Published as a conference paper at ICLR 2022

ST
N

P
M

TN
P

S+
 J

TN
P

Tanh SigmoidSine Gaussian

M
O

SM
C

SM
R

ep
ti

le
M

A
M

L

Figure 10: Qualitative results on synthetic task with γ = 0.5, m = 10. For latent variable models
(STNP, JTNP, MTNP), we sample the latents 25 times and plot the mean prediction from each sample.
For the other models, we plot the mean prediction.

28

Published as a conference paper at ICLR 2022

ST
N

P
M

TN
P

S+
 J

TN
P

Tanh SigmoidSine Gaussian

M
O

SM
C

SM
R

ep
ti

le
M

A
M

L

Figure 11: Qualitative results on synthetic task with γ = 0.75, m = 10. For latent variable models
(STNP, JTNP, MTNP), we sample the latents 25 times and plot the mean prediction from each sample.
For the other models, we plot the mean prediction.

29

Published as a conference paper at ICLR 2022

Tanh Sigmoid

STNP
(mean & std)

GaussianSine

STNP
(std only)

S+JTNP
(mean & std)

S+JTNP
(std only)

MTNP
(mean & std)

MTNP
(std only)

Figure 12: Predicted mean and standard deviation of STNP, S+JTNP, and MTNP with MAP estima-
tions.

30

Published as a conference paper at ICLR 2022

D.2 ADDITIONAL RESULTS ON TOTALLY INCOMPLETE DATA

In this section, we explore the totally incomplete setting where no two task output values are observed
at the same input point (I(Ct) ∩ I(Ct

′
) = ∅,∀t 6= t′), to further validate the practical effectiveness

of our method. To generate the totally incomplete dataset, we randomly sample context input points
for each task independently, then compute the corresponding output points according to the Eq. 65
and Eq. 66. Note that in this case we do not drop any output points, so that the context size is
m = |I(C)| =

∑
t∈T |I(Ct)|.

We evaluate the baselines and ours in two different scenarios: (1) training on partially incomplete or
complete dataset then testing on totally incomplete dataset and (2) both training and testing on totally
incomplete dataset. We observe that in both scenarios, MTNP outperforms the baselines.

Table 12: Average normalized MSE on synthetic tasks in totally incomplete scenario (1), with varying
context size (m). All models are trained on partially incomplete data with γ = 0.5 but JTNP is
trained with γ = 0.

task Sine Tanh

m 5 10 20 5 10 20

MAML 0.6123± 0.0221 0.3715± 0.0231 0.1930± 0.0175 0.4117± 0.0413 0.1230± 0.0143 0.0308± 0.0068
Reptile 0.8089± 0.0378 0.5702± 0.0500 0.3482± 0.0447 0.4495± 0.0340 0.1557± 0.0197 0.0487± 0.0116

MOSM 1.0718± 0.0854 0.6073± 0.0297 0.3728± 0.1461 1.5199± 0.2179 0.9601± 0.0750 0.5937± 0.0805
CSM 1.0887± 0.0703 0.6557± 0.0794 0.3462± 0.0759 1.4156± 0.0876 1.1087± 0.1469 0.8813± 0.1811

STNP 0.6491± 0.2299 0.4228± 0.2466 0.2116± 0.1539 0.1753± 0.0890 0.0843± 0.0572 0.0344± 0.0262
S+JTNP 0.5162± 0.2061 0.3472± 0.1789 0.1976± 0.1154 0.1411± 0.0751 0.0772± 0.0544 0.0327± 0.0222
MTNP 0.3777± 0.1947 0.2045± 0.1290 0.1007± 0.0688 0.0890± 0.0685 0.0293± 0.0248 0.0089± 0.0064

task Sigmoid Gaussian

m 5 10 20 5 10 20

MAML 0.2220± 0.0288 0.0456± 0.0066 0.0112± 0.0027 0.2281± 0.0147 0.0911± 0.0096 0.0365± 0.0071
Reptile 0.3012± 0.0328 0.0630± 0.0108 0.0210± 0.0053 0.3734± 0.0255 0.1435± 0.0194 0.0725± 0.0141

MOSM 0.4798± 0.1020 0.2471± 0.0184 0.3070± 0.1893 0.3245± 0.1298 0.2190± 0.0163 0.2023± 0.0318
CSM 0.5256± 0.0344 0.6013± 0.1190 0.4581± 0.0706 0.2086± 0.0420 0.1815± 0.0391 0.1456± 0.0151

STNP 0.0271± 0.0133 0.0136± 0.0092 0.0050± 0.0034 0.0962± 0.0325 0.0608± 0.0297 0.0366± 0.0198
S+JTNP 0.0236± 0.0129 0.0122± 0.0078 0.0053± 0.0028 0.0819± 0.0353 0.0470± 0.0240 0.0263± 0.0137
MTNP 0.0152± 0.0133 0.0049± 0.0045 0.0014± 0.0010 0.0535± 0.0268 0.0246± 0.0149 0.0113± 0.0058

31

Published as a conference paper at ICLR 2022

Table 13: Average normalized MSE on synthetic tasks in totally incomplete scenario (2), with varying
context size (m). All models are trained on totally incomplete data but JTNP is trained with γ = 0.

task Sine Tanh

m 5 10 20 5 10 20

MAML 0.5906± 0.0249 0.3967± 0.0265 0.2347± 0.0205 0.3366± 0.0322 0.1018± 0.0133 0.0317± 0.0058
Reptile 0.7461± 0.0473 0.5945± 0.0616 0.3798± 0.0504 0.3690± 0.0318 0.1202± 0.0164 0.0412± 0.0089

MOSM 0.9080± 0.3979 0.6939± 0.4823 0.6504± 0.5446 0.7423± 0.5953 0.6695± 0.5833 0.6132± 0.5515
CSM 0.9501± 0.1520 0.7644± 0.2126 0.6486± 0.2249 0.7902± 0.3731 0.7175± 0.3494 0.7691± 0.2691

STNP 0.7683± 0.0064 0.5112± 0.0322 0.3111± 0.0086 0.2649± 0.0089 0.1642± 0.0103 0.0679± 0.0065
S+JTNP 0.7591± 0.0407 0.5058± 0.0202 0.2848± 0.0258 0.2348± 0.0278 0.1486± 0.0164 0.0593± 0.0070
MTNP 0.4860± 0.0129 0.3391± 0.0281 0.1808± 0.0176 0.1596± 0.0191 0.0563± 0.0074 0.0188± 0.0021

task Sigmoid Gaussian

m 5 10 20 5 10 20

MAML 0.1999± 0.0296 0.0396± 0.0056 0.0148± 0.0029 0.1995± 0.0175 0.0862± 0.0061 0.0451± 0.0060
Reptile 0.2431± 0.0281 0.0474± 0.0072 0.0177± 0.0039 0.3176± 0.0261 0.1239± 0.0147 0.0694± 0.0124

MOSM 0.6438± 0.6566 0.6054± 0.6225 0.6009± 0.6179 0.7974± 0.6765 0.7498± 0.6541 0.7201± 0.6529
CSM 0.6620± 0.4619 0.6454± 0.4349 0.7356± 0.3281 0.9119± 0.4539 0.8470± 0.4587 0.9381± 0.3498

STNP 0.0482± 0.0014 0.0270± 0.0024 0.0088± 0.0019 0.0745± 0.0009 0.0589± 0.0024 0.0449± 0.0031
S+JTNP 0.0412± 0.0025 0.0235± 0.0055 0.0089± 0.0033 0.1136± 0.0099 0.0669± 0.0044 0.0367± 0.0035
MTNP 0.0302± 0.0022 0.0092± 0.0010 0.0028± 0.0004 0.0668± 0.0041 0.0367± 0.0018 0.0191± 0.0003

32

Published as a conference paper at ICLR 2022

E ADDITIONAL RESULTS ON WEATHER TIME-SERIES REGRESSION

In this section, we provide additional results on the time-series regression experiment on weather
data, with various missing rates γ and also with standard deviation from 5 different random seeds. In
this section, we provide additional results on the synthetic experiment, with various missing rates γ
and also with standard deviation from 5 different random seeds. When the data is highly incomplete
(i.e., γ = 0.5, 0.75), we can see that MTNP clearly outperforms the baselines in general. When the
complete or less incomplete data (γ = 0, 0.25) is given, MTNP still outperforms the gradient-based
meta-learning baselines and MOSM while achieves at least competitive performance to CSM, STNP
and JTNP.

Table 14: Average MSE and NLL on weather tasks, with m = 10 and γ = 0.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MAML 0.0044± 0.0003 - 0.0059± 0.0004 - 0.0517± 0.0020 -
Reptile 0.0038± 0.0002 - 0.0053± 0.0003 - 0.0510± 0.0023 -

MOSM 0.0056± 0.0005 -1.0074± 0.1020 0.0106± 0.0021 -0.4788± 0.1607 0.0735± 0.0096 0.7877± 0.1929
CSM 0.0056± 0.0019 -1.4274± 0.0863 0.0064± 0.0009 -1.1762± 0.0755 0.0572± 0.0052 0.0482± 0.1332

STNP 0.0034± 0.0002 -1.2159± 0.0113 0.0051± 0.0002 -1.1340± 0.0098 0.0487± 0.0013 -0.0937± 0.0760
JTNP 0.0034± 0.0002 -1.2128± 0.0076 0.0050± 0.0001 -1.1310± 0.0088 0.0461± 0.0021 -0.2421± 0.0455

MTNP 0.0032± 0.0002 -1.2169± 0.0123 0.0048± 0.0002 -1.1389± 0.0067 0.0487± 0.0015 -0.1999± 0.0376

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MAML 0.2576± 0.0068 - 0.2576± 0.0086 - 0.0089± 0.0005 -
Reptile 0.2599± 0.0077 - 0.2618± 0.0109 - 0.0080± 0.0004 -

MOSM 0.2957± 0.0131 4.1621± 1.0855 0.2997± 0.0203 1.5618± 0.1822 0.0113± 0.0017 -0.3663± 0.1571
CSM 0.2708± 0.0130 2.6255± 0.7511 0.2664± 0.0151 0.9500± 0.0802 0.0098± 0.0022 -1.0495± 0.1330

STNP 0.2411± 0.0041 2.1338± 0.2856 0.2415± 0.0062 0.8888± 0.0356 0.0071± 0.0004 -1.0475± 0.0210
JTNP 0.2166± 0.0031 0.6014± 0.0200 0.2202± 0.0023 0.6446± 0.0469 0.0069± 0.0006 -1.0568± 0.0230

MTNP 0.2194± 0.0019 0.6642± 0.0331 0.2144± 0.0066 0.6451± 0.0240 0.0068± 0.0004 -1.0672± 0.0142

Table 15: Average MSE and NLL on weather tasks, with m = 10 and γ = 0.25.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MAML 0.0052± 0.0006 - 0.0070± 0.0005 - 0.0558± 0.0044 -
Reptile 0.0042± 0.0002 - 0.0059± 0.0003 - 0.0555± 0.0050 -

MOSM 0.0056± 0.0009 -0.9333± 0.1774 0.0106± 0.0020 -0.1676± 0.2981 0.0719± 0.0073 0.8968± 0.2437
CSM 0.0057± 0.0010 -1.3140± 0.0921 0.0087± 0.0027 -0.9624± 0.0974 0.0589± 0.0032 0.0951± 0.1031

STNP 0.0036± 0.0001 -1.1995± 0.0055 0.0055± 0.0002 -1.1124± 0.0116 0.0516± 0.0031 -0.0911± 0.0907
S+JTNP 0.0038± 0.0002 -1.1976± 0.0054 0.0056± 0.0004 -1.1118± 0.0133 0.0491± 0.0017 -0.1976± 0.0593
MTNP 0.0033± 0.0002 -1.2103± 0.0094 0.0051± 0.0003 -1.1252± 0.0143 0.0504± 0.0021 -0.1766± 0.0523

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MAML 0.2759± 0.0058 - 0.2713± 0.0148 - 0.0097± 0.0012 -
Reptile 0.2801± 0.0092 - 0.2755± 0.0154 - 0.0087± 0.0010 -

MOSM 0.3058± 0.0252 4.8069± 0.9710 0.3034± 0.0102 1.6875± 0.2039 0.0108± 0.0017 -0.2865± 0.0982
CSM 0.2737± 0.0171 3.3485± 0.8053 0.2842± 0.0239 1.0663± 0.0729 0.0105± 0.0016 -0.9097± 0.1864

STNP 0.2459± 0.0077 1.3797± 0.3219 0.2436± 0.0127 0.8129± 0.0471 0.0076± 0.0006 -1.0168± 0.0316
S+JTNP 0.2221± 0.0047 0.6164± 0.0352 0.2289± 0.0050 0.6632± 0.0427 0.0074± 0.0004 -1.0430± 0.0272
MTNP 0.2216± 0.0037 0.6729± 0.0574 0.2177± 0.0058 0.6461± 0.0195 0.0072± 0.0005 -1.0563± 0.0193

33

Published as a conference paper at ICLR 2022

Table 16: Average MSE and NLL on weather tasks, with m = 10 and γ = 0.5.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MAML 0.0067± 0.0009 - 0.0094± 0.0017 - 0.0705± 0.0083 -
Reptile 0.0060± 0.0007 - 0.0078± 0.0004 - 0.0691± 0.0092 -

MOSM 0.0091± 0.0015 -0.0194± 0.6391 0.0124± 0.0022 -0.0259± 0.2832 0.0827± 0.0093 1.3831± 0.2993
CSM 0.0069± 0.0015 -0.8839± 0.2680 0.0123± 0.0053 -0.8522± 0.1301 0.0906± 0.0288 0.6640± 0.5221

STNP 0.0046± 0.0004 -1.1514± 0.0181 0.0069± 0.0004 -1.0390± 0.0106 0.0632± 0.0072 0.1273± 0.1898
S+JTNP 0.0045± 0.0006 -1.1703± 0.0144 0.0068± 0.0003 -1.0681± 0.0112 0.0607± 0.0053 0.0169± 0.1437
MTNP 0.0037± 0.0001 -1.1832± 0.0165 0.0054± 0.0001 -1.1049± 0.0154 0.0546± 0.0021 -0.1006± 0.0696

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MAML 0.3041± 0.0049 - 0.2987± 0.0132 - 0.0106± 0.0010 -
Reptile 0.3160± 0.0087 - 0.3047± 0.0152 - 0.0096± 0.0008 -

MOSM 0.3021± 0.0161 4.1009± 0.5731 0.3170± 0.0152 2.0663± 0.3535 0.0128± 0.0023 -0.0255± 0.2011
CSM 0.2895± 0.0103 3.1897± 0.7841 0.2983± 0.0130 1.2655± 0.2538 0.0118± 0.0016 -0.7243± 0.2799

STNP 0.2607± 0.0082 1.1242± 0.2362 0.2631± 0.0044 0.8563± 0.0637 0.0086± 0.0008 -0.9815± 0.0283
S+JTNP 0.2348± 0.0038 0.6792± 0.0314 0.2376± 0.0041 0.6812± 0.0231 0.0084± 0.0007 -0.9946± 0.0161
MTNP 0.2276± 0.0028 0.6557± 0.0433 0.2215± 0.0043 0.6660± 0.0141 0.0073± 0.0003 -1.0331± 0.0147

Table 17: Average MSE and NLL on weather tasks, with m = 10 and γ = 0.75.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MAML 0.0094± 0.0018 - 0.0141± 0.0031 - 0.0830± 0.0083 -
Reptile 0.0083± 0.0014 - 0.0122± 0.0032 - 0.0851± 0.0057 -

MOSM 0.0137± 0.0028 0.4165± 0.7186 0.0212± 0.0055 0.5358± 0.3826 0.0890± 0.0126 1.3986± 0.2961
CSM 0.0106± 0.0011 -0.3791± 0.5254 0.0174± 0.0064 -0.0270± 0.2872 0.0908± 0.0185 0.9146± 0.1250

STNP 0.0072± 0.0013 -1.0291± 0.0498 0.0104± 0.0029 -0.8627± 0.1556 0.0776± 0.0094 0.3167± 0.1057
S+JTNP 0.0073± 0.0017 -1.0810± 0.0558 0.0103± 0.0023 -0.9165± 0.0893 0.0803± 0.0095 0.3243± 0.1008
MTNP 0.0047± 0.0004 -1.1272± 0.0166 0.0075± 0.0010 -1.0004± 0.0566 0.0644± 0.0040 0.0454± 0.0473

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MAML 0.3903± 0.0621 - 0.3482± 0.0154 - 0.0147± 0.0026 -
Reptile 0.4059± 0.0720 - 0.3662± 0.0189 - 0.0143± 0.0022 -

MOSM 0.3297± 0.0333 5.5436± 0.5968 0.3256± 0.0216 2.0465± 0.5114 0.0182± 0.0019 0.4010± 0.2871
CSM 0.3095± 0.0376 5.1712± 0.7329 0.3144± 0.0171 1.2520± 0.1105 0.0145± 0.0039 -0.4852± 0.2178

STNP 0.2877± 0.0082 1.3884± 0.2007 0.2884± 0.0117 0.8719± 0.0649 0.0122± 0.0007 -0.8116± 0.0539
S+JTNP 0.2702± 0.0145 0.8052± 0.0799 0.2587± 0.0131 0.7621± 0.0380 0.0106± 0.0011 -0.9028± 0.0447
MTNP 0.2433± 0.0105 0.7368± 0.1119 0.2339± 0.0053 0.7009± 0.0316 0.0090± 0.0009 -0.9388± 0.0656

34

Published as a conference paper at ICLR 2022

Table 18: Average MSE and NLL on weather tasks, with m = 20 and γ = 0.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MAML 0.0040± 0.0002 - 0.0055± 0.0003 - 0.0449± 0.0017 -
Reptile 0.0033± 0.0001 - 0.0047± 0.0002 - 0.0438± 0.0014 -

MOSM 0.0035± 0.0002 -1.4556± 0.0625 0.0057± 0.0006 -1.0477± 0.0962 0.0494± 0.0013 0.3296± 0.0594
CSM 0.0033± 0.0002 -1.6792± 0.0131 0.0049± 0.0004 -1.4526± 0.0338 0.0458± 0.0032 -0.2356± 0.0377

STNP 0.0030± 0.0001 -1.2349± 0.0038 0.0045± 0.0000 -1.1615± 0.0022 0.0418± 0.0013 -0.2829± 0.0509
JTNP 0.0031± 0.0001 -1.2255± 0.0060 0.0045± 0.0001 -1.1564± 0.0060 0.0431± 0.0007 -0.3034± 0.0238

MTNP 0.0029± 0.0001 -1.2309± 0.0039 0.0042± 0.0001 -1.1636± 0.0047 0.0452± 0.0014 -0.2809± 0.0205

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MAML 0.2316± 0.0043 - 0.2231± 0.0013 - 0.0080± 0.0001 -
Reptile 0.2337± 0.0055 - 0.2252± 0.0021 - 0.0068± 0.0001 -

MOSM 0.2638± 0.0073 2.6499± 0.4487 0.2520± 0.0065 1.0786± 0.0817 0.0073± 0.0004 -0.9203± 0.0998
CSM 0.2482± 0.0057 1.2779± 0.3799 0.2434± 0.0161 0.7473± 0.0361 0.0072± 0.0010 -1.2782± 0.0584

STNP 0.2195± 0.0055 1.0330± 0.1193 0.2156± 0.0054 0.6765± 0.0339 0.0062± 0.0002 -1.0897± 0.0101
JTNP 0.2116± 0.0020 0.5441± 0.0298 0.2133± 0.0024 0.5956± 0.0106 0.0064± 0.0001 -1.0772± 0.0078

MTNP 0.2134± 0.0018 0.5728± 0.0286 0.2084± 0.0052 0.5992± 0.0079 0.0065± 0.0003 -1.0939± 0.0064

Table 19: Average MSE and NLL on weather tasks, with m = 20 and γ = 0.25.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MAML 0.0043± 0.0002 - 0.0057± 0.0003 - 0.0467± 0.0014 -
Reptile 0.0037± 0.0002 - 0.0049± 0.0002 - 0.0457± 0.0011 -

MOSM 0.0036± 0.0003 -1.3658± 0.1010 0.0064± 0.0016 -0.9779± 0.1294 0.0509± 0.0014 0.4595± 0.1306
CSM 0.0044± 0.0017 -1.6228± 0.0354 0.0057± 0.0007 -1.3557± 0.0260 0.0471± 0.0020 -0.1404± 0.1129

STNP 0.0032± 0.0001 -1.2247± 0.0050 0.0047± 0.0001 -1.1530± 0.0090 0.0439± 0.0017 -0.2663± 0.0519
S+JTNP 0.0033± 0.0001 -1.2175± 0.0064 0.0047± 0.0001 -1.1488± 0.0046 0.0450± 0.0005 -0.2727± 0.0277
MTNP 0.0030± 0.0001 -1.2257± 0.0036 0.0043± 0.0002 -1.1591± 0.0057 0.0465± 0.0013 -0.2713± 0.0175

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MAML 0.2379± 0.0079 - 0.2287± 0.0018 - 0.0084± 0.0003 -
Reptile 0.2397± 0.0098 - 0.2306± 0.0019 - 0.0071± 0.0002 -

MOSM 0.2673± 0.0110 2.6371± 0.6555 0.2691± 0.0091 1.3464± 0.0967 0.0075± 0.0008 -0.8713± 0.0673
CSM 0.2554± 0.0034 1.4961± 0.3189 0.2464± 0.0096 0.8126± 0.0324 0.0076± 0.0009 -1.2384± 0.0567

STNP 0.2208± 0.0032 0.6287± 0.0876 0.2193± 0.0036 0.6448± 0.0227 0.0064± 0.0002 -1.0780± 0.0129
S+JTNP 0.2128± 0.0028 0.5581± 0.0376 0.2167± 0.0032 0.6086± 0.0134 0.0067± 0.0001 -1.0695± 0.0095
MTNP 0.2147± 0.0028 0.5722± 0.0251 0.2098± 0.0047 0.5980± 0.0125 0.0067± 0.0003 -1.0874± 0.0053

35

Published as a conference paper at ICLR 2022

Table 20: Average MSE and NLL on weather tasks, with m = 20 and γ = 0.5.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MAML 0.0046± 0.0002 - 0.0058± 0.0003 - 0.0505± 0.0028 -
Reptile 0.0041± 0.0003 - 0.0053± 0.0001 - 0.0495± 0.0025 -

MOSM 0.0048± 0.0009 -1.0919± 0.1379 0.0083± 0.0012 -0.4804± 0.1996 0.0600± 0.0035 0.7389± 0.2151
CSM 0.0050± 0.0010 -1.4484± 0.0377 0.0069± 0.0012 -1.1374± 0.1509 0.0584± 0.0087 0.0686± 0.1651

STNP 0.0034± 0.0002 -1.2122± 0.0098 0.0051± 0.0002 -1.1368± 0.0092 0.0477± 0.0020 -0.2018± 0.0608
S+JTNP 0.0037± 0.0001 -1.2060± 0.0081 0.0051± 0.0003 -1.1320± 0.0017 0.0480± 0.0019 -0.2149± 0.0316
MTNP 0.0031± 0.0002 -1.2210± 0.0054 0.0045± 0.0001 -1.1538± 0.0058 0.0475± 0.0012 -0.2483± 0.0232

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MAML 0.2585± 0.0080 - 0.2450± 0.0073 - 0.0089± 0.0009 -
Reptile 0.2609± 0.0072 - 0.2491± 0.0115 - 0.0077± 0.0004 -

MOSM 0.2904± 0.0177 3.5379± 0.7060 0.2883± 0.0166 1.5341± 0.2511 0.0089± 0.0010 -0.5127± 0.1146
CSM 0.2699± 0.0058 2.1170± 0.4957 0.2689± 0.0152 0.9841± 0.1305 0.0101± 0.0014 -0.9491± 0.1008

STNP 0.2387± 0.0086 0.7083± 0.1090 0.2371± 0.0081 0.7121± 0.0782 0.0070± 0.0003 -1.0455± 0.0112
S+JTNP 0.2211± 0.0022 0.5761± 0.0341 0.2224± 0.0082 0.6393± 0.0206 0.0071± 0.0003 -1.0577± 0.0064
MTNP 0.2169± 0.0022 0.5811± 0.0283 0.2129± 0.0039 0.6175± 0.0212 0.0066± 0.0003 -1.0834± 0.0080

Table 21: Average MSE and NLL on weather tasks, with m = 20 and γ = 0.75.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MAML 0.0060± 0.0009 - 0.0087± 0.0012 - 0.0623± 0.0051 -
Reptile 0.0056± 0.0008 - 0.0082± 0.0016 - 0.0615± 0.0055 -

MOSM 0.0077± 0.0014 -0.1015± 0.3970 0.0107± 0.0030 0.1338± 0.1958 0.0727± 0.0056 1.3645± 0.1313
CSM 0.0068± 0.0020 -1.0450± 0.2197 0.0098± 0.0027 -0.7641± 0.0976 0.0663± 0.0062 0.3055± 0.1080

STNP 0.0043± 0.0005 -1.1555± 0.0317 0.0070± 0.0010 -1.0324± 0.0627 0.0576± 0.0070 -0.0438± 0.0543
S+JTNP 0.0051± 0.0007 -1.1630± 0.0350 0.0069± 0.0005 -1.0567± 0.0248 0.0598± 0.0041 -0.0294± 0.0833
MTNP 0.0036± 0.0002 -1.1960± 0.0115 0.0053± 0.0006 -1.1052± 0.0184 0.0533± 0.0047 -0.1471± 0.0571

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MAML 0.3091± 0.0224 - 0.2715± 0.0071 - 0.0108± 0.0010 -
Reptile 0.3231± 0.0310 - 0.2816± 0.0075 - 0.0105± 0.0014 -

MOSM 0.2947± 0.0173 5.7383± 0.5086 0.3100± 0.0171 1.8804± 0.3589 0.0122± 0.0021 0.2336± 0.3153
CSM 0.2833± 0.0070 4.3286± 1.1360 0.2896± 0.0138 1.2055± 0.2523 0.0116± 0.0028 -0.5992± 0.3012

STNP 0.2602± 0.0080 0.9782± 0.2730 0.2590± 0.0146 0.7367± 0.0436 0.0093± 0.0007 -0.9411± 0.0460
S+JTNP 0.2377± 0.0100 0.6721± 0.0671 0.2354± 0.0052 0.6888± 0.0249 0.0086± 0.0004 -1.0001± 0.0183
MTNP 0.2248± 0.0081 0.6188± 0.0566 0.2193± 0.0041 0.6403± 0.0262 0.0078± 0.0008 -1.0210± 0.0187

36

Published as a conference paper at ICLR 2022

F EXPERIMENTAL DETAILS OF IMAGE 2D FUNCTION REGRESSION

In this section, we describe details of the data generating process and experimental settings of the
image function regression experiment.

F.1 DATASET

We use 30,000 RGB images from CelebA HQ dataset (Liu et al., 2015) for RGB task and the
corresponding semantic segmentation masks among 19 semantic classes from CelebA Mask-HQ
dataset (Lee et al., 2020) for Segment task. For Edge task, we apply the Sobel filter (Kanopoulos
et al., 1988) on the RGB images to generate continuous-valued edges. This corresponds to the
Canny edge (Canny, 1986) without non-maximum suppression, which is also used in Zamir et. al.
(2018) (Zamir et al., 2018). For PNCC task, we apply a pretrained 3D face reconstruction model on
the RGB images to generate PNCC label maps (Guo et al., 2020a). At each pixel, the PNCC label
consists of the (x, y, z) coordinate of the facial keypoint located at the pixel. In summary, labels
for RGB are 3-dimensional, Edge are 1-dimensional, Segment are 19-dimensional, and PNCC are
3-dimensional vectors. We split the 30,000 images into 27,000 train, 1,500 valid, and 1,500 test
images.

F.2 EVALUATION PROTOCOL

To evaluate the accuracy of the multi-task prediction, we average MSE MSE = 1
n

∑n
i=1(yti − ŷti)2

on the test images for continuous tasks (RGB, Edge, PNCC), and average mean IoU on the test
images for discrete task (Segment). The predictive posterior mean is computed by Monte Carlo
sampling, the same as in the 1D experiment. For categorical outputs, we discretize the prediction
with the argmax operator ŷit = argmaxk p(y

t
i = k|xi, vt).

To evaluate the consistency of predictions across tasks (coherency), we translate each RGB prediction
to other task labels. For Edge and PNCC, we use the ground-truth label generation algorithm and
the pretrained model used to generate the ground-truth labels for the translation, respectively. For
Segment, we fine-tuned DeeplabV3+ (Chen et al., 2018) with ImageNet (Krizhevsky et al., 2012)
pretrained ResNet-50 (He et al., 2016) backbone. We refer to the github repository of Yakubovskiy
(2019) (Yakubovskiy, 2020) for the DeeplabV3+ model. After the translation, we measure MSE and
1 - mIoU for continuous and discrete tasks respectively, to evaluate the disagreement (as oppose to
the coherency) between the predictions.

To examine the learned correlation across tasks by MTNP (Table 3 in the main paper), we compare
the performance before and after MTNP observes a set of source data. The source data consist of
all examples labeled with the source tasks. For example, if the target task is RGB and the source
tasks are Edge and Segment, we give Edge and Segment labels for all pixels, while no RGB or PNCC
labels are given. Since MTNP requires at least one labeled example for each task, we give a single
completely labeled example which is chosen randomly to MTNP as a base context, before MTNP
observes the source data. There are total

(
4
1

)
+
(
4
2

)
+
(
4
3

)
= 14 different combinations of source

tasks exist. By excluding the case where target task is in the set of source tasks, total 7 different
combinations of source tasks remain for each target task. To measure the performance gain from
task f1 to f2, we average the performance gain of f2 from all sets of source tasks that containing f1.
For example, the performance gain from Edge to RGB is computed by averaging performance gains
δEdge→RGB, δEdge,Segment→RGB, δEdge,PNCC→RGB, and δEdge,Segment,PNCC→RGB, where we denote δA→B
by the performance gain from source tasks A to target task B.

37

Published as a conference paper at ICLR 2022

G ADDITIONAL RESULTS ON IMAGE 2D FUNCTION REGRESSION

In this section, we provide additional results on the image regression experiment, with various missing
rates γ and also with standard deviation from 5 different random seeds.

Table 26: Relative performance gain with 5 different random seeds (%).

Source \ Target RGB Edge Segment PNCC

RGB - 53.02 ± 4.71 8.73 ± 6.50 18.57 ± 12.94
Edge 6.35 ± 1.95 - 8.18 ± 6.63 15.70 ± 13.11

Segment 5.13 ± 2.04 33.30 ± 23.94 - 29.24 ± 2.62
PNCC 5.58 ± 2.53 31.88 ± 23.64 15.88 ± 2.21 -

38

Published as a conference paper at ICLR 2022

Table 22: Average reconstruction errors (performance) and disagreement of predictions (coherency)
on 2D function regression, with varying context size (m) and γ = 0.

task RGB (performance)

m 10 100 512

STNP 0.0344± 0.0002 0.0101± 0.0000 0.0034± 0.0000
JTNP 0.0304± 0.0002 0.0073± 0.0000 0.0021± 0.0000

MTNP 0.0295± 0.0001 0.0066± 0.0000 0.0015± 0.0000

task Edge (performance) Edge (coherency)

m 10 100 512 10 100 512

STNP 0.0342± 0.0001 0.0198± 0.0000 0.0066± 0.0000 0.0307± 0.0002 0.0238± 0.0001 0.0128± 0.0001
JTNP 0.0297± 0.0001 0.0124± 0.0000 0.0041± 0.0000 0.0175± 0.0002 0.0120± 0.0001 0.0138± 0.0000

MTNP 0.0283± 0.0001 0.0108± 0.0000 0.0025± 0.0000 0.0160± 0.0001 0.0067± 0.0000 0.0040± 0.0000

task Segment (performance) Segment (coherency)

m 10 100 512 10 100 512

STNP 0.6155± 0.0024 0.3961± 0.0014 0.2072± 0.0012 0.6503± 0.0026 0.5609± 0.0012 0.5197± 0.0009
JTNP 0.5746± 0.0031 0.3800± 0.0011 0.2339± 0.0024 0.5256± 0.0009 0.4959± 0.0016 0.5055± 0.0007

MTNP 0.5399± 0.0019 0.3413± 0.0017 0.1889± 0.0011 0.5033± 0.0014 0.4866± 0.0016 0.4928± 0.0006

task PNCC (performance) PNCC (coherency)

m 10 100 512 10 100 512

STNP 0.0068± 0.0001 0.0009± 0.0000 0.0005± 0.0000 0.0317± 0.0005 0.0260± 0.0003 0.0209± 0.0002
JTNP 0.0073± 0.0001 0.0017± 0.0000 0.0007± 0.0000 0.0116± 0.0002 0.0146± 0.0001 0.0174± 0.0001

MTNP 0.0052± 0.0000 0.0007± 0.0000 0.0004± 0.0000 0.0098± 0.0001 0.0120± 0.0001 0.0136± 0.0001

STNP MTNP

m
=
10

GT JTNP

m
=
51
2

m
=
10
0

Figure 13: Qualitative results on 2D function regression. (γ = 0)

39

Published as a conference paper at ICLR 2022

Table 23: Average reconstruction errors (performance) and disagreement of predictions (coherency)
on 2D function regression, with varying context size (m) and γ = 0.25.

task RGB (performance)

m 10 100 512

STNP 0.0378± 0.0002 0.0121± 0.0001 0.0041± 0.0000
S+JTNP 0.0342± 0.0003 0.0094± 0.0001 0.0031± 0.0000
MTNP 0.0329± 0.0002 0.0084± 0.0000 0.0021± 0.0000

task Edge (performance) Edge (coherency)

m 10 100 512 10 100 512

STNP 0.0349± 0.0001 0.0223± 0.0001 0.0085± 0.0000 0.0309± 0.0002 0.0254± 0.0002 0.0146± 0.0001
S+JTNP 0.0312± 0.0001 0.0152± 0.0000 0.0061± 0.0000 0.0184± 0.0002 0.0119± 0.0001 0.0139± 0.0000
MTNP 0.0298± 0.0001 0.0133± 0.0000 0.0040± 0.0000 0.0176± 0.0001 0.0079± 0.0001 0.0046± 0.0000

task Segment (performance) Segment (coherency)

m 10 100 512 10 100 512

STNP 0.6315± 0.0040 0.4243± 0.0021 0.2463± 0.0017 0.6587± 0.0012 0.5766± 0.0014 0.5246± 0.0011
S+JTNP 0.5940± 0.0024 0.4013± 0.0013 0.2741± 0.0018 0.5303± 0.0011 0.5037± 0.0008 0.5076± 0.0013
MTNP 0.5615± 0.0022 0.3677± 0.0009 0.2374± 0.0014 0.5103± 0.0028 0.4910± 0.0011 0.4935± 0.0010

task PNCC (performance) PNCC (coherency)

m 10 100 512 10 100 512

STNP 0.0079± 0.0001 0.0011± 0.0000 0.0005± 0.0000 0.0334± 0.0003 0.0267± 0.0001 0.0218± 0.0002
S+JTNP 0.0082± 0.0001 0.0018± 0.0000 0.0008± 0.0000 0.0109± 0.0001 0.0141± 0.0001 0.0181± 0.0001
MTNP 0.0061± 0.0000 0.0009± 0.0000 0.0005± 0.0000 0.0098± 0.0001 0.0117± 0.0001 0.0135± 0.0002

STNP MTNP

m
=
10

GT S+JTNP

m
=
51
2

m
=
10
0

Figure 14: Qualitative results on 2D function regression. (γ = 0.25)

40

Published as a conference paper at ICLR 2022

Table 24: Average reconstruction errors (performance) and disagreement of predictions (coherency)
on 2D function regression, with varying context size (m) and γ = 0.5.

task RGB (performance)

m 10 100 512

STNP 0.0446± 0.0005 0.0154± 0.0001 0.0054± 0.0000
S+JTNP 0.0422± 0.0004 0.0129± 0.0001 0.0046± 0.0000
MTNP 0.0407± 0.0005 0.0113± 0.0000 0.0032± 0.0000

task Edge (performance) Edge (coherency)

m 10 100 512 10 100 512

STNP 0.0359± 0.0001 0.0256± 0.0001 0.0116± 0.0000 0.0317± 0.0002 0.0271± 0.0002 0.0173± 0.0001
S+JTNP 0.0337± 0.0001 0.0191± 0.0000 0.0090± 0.0000 0.0200± 0.0002 0.0122± 0.0001 0.0142± 0.0001
MTNP 0.0324± 0.0001 0.0167± 0.0000 0.0060± 0.0000 0.0196± 0.0001 0.0097± 0.0002 0.0053± 0.0000

task Segment (performance) Segment (coherency)

m 10 100 512 10 100 512

STNP 0.6641± 0.0021 0.4669± 0.0009 0.2969± 0.0019 0.6710± 0.0021 0.5966± 0.0027 0.5353± 0.0012
S+JTNP 0.6322± 0.0024 0.4347± 0.0013 0.3176± 0.0018 0.5317± 0.0015 0.5169± 0.0019 0.5126± 0.0006
MTNP 0.6095± 0.0025 0.4010± 0.0016 0.2891± 0.0019 0.5224± 0.0021 0.4956± 0.0011 0.4948± 0.0004

task PNCC (performance) PNCC (coherency)

m 10 100 512 10 100 512

STNP 0.0102± 0.0002 0.0015± 0.0000 0.0006± 0.0000 0.0382± 0.0005 0.0271± 0.0003 0.0232± 0.0002
S+JTNP 0.0104± 0.0002 0.0022± 0.0000 0.0009± 0.0000 0.0104± 0.0002 0.0134± 0.0001 0.0192± 0.0002
MTNP 0.0082± 0.0001 0.0012± 0.0000 0.0006± 0.0000 0.0098± 0.0001 0.0112± 0.0001 0.0132± 0.0001

STNP MTNP

m
=
10

GT S+JTNP

m
=
51
2

m
=
10
0

Figure 15: Qualitative results on 2D function regression. (γ = 0.5)

41

Published as a conference paper at ICLR 2022

Table 25: Average reconstruction errors (performance) and disagreement of predictions (coherency)
on 2D function regression, with varying context size (m) and γ = 0.75.

task RGB (performance)

m 10 100 512

STNP 0.0512± 0.0005 0.0224± 0.0001 0.0086± 0.0000
S+JTNP 0.0496± 0.0005 0.0203± 0.0001 0.0079± 0.0000
MTNP 0.0483± 0.0002 0.0178± 0.0001 0.0058± 0.0000

task Edge (performance) Edge (coherency)

m 10 100 512 10 100 512

STNP 0.0366± 0.0001 0.0302± 0.0001 0.0176± 0.0000 0.0323± 0.0003 0.0294± 0.0001 0.0222± 0.0001
S+JTNP 0.0356± 0.0001 0.0251± 0.0001 0.0145± 0.0000 0.0214± 0.0002 0.0138± 0.0000 0.0157± 0.0001
MTNP 0.0344± 0.0001 0.0223± 0.0001 0.0103± 0.0000 0.0202± 0.0001 0.0130± 0.0001 0.0069± 0.0000

task Segment (performance) Segment (coherency)

m 10 100 512 10 100 512

STNP 0.6907± 0.0018 0.5351± 0.0021 0.3712± 0.0014 0.6804± 0.0015 0.6297± 0.0023 0.5601± 0.0014
S+JTNP 0.6611± 0.0013 0.4916± 0.0024 0.3778± 0.0031 0.5361± 0.0016 0.5385± 0.0004 0.5298± 0.0009
MTNP 0.6485± 0.0029 0.4573± 0.0025 0.3472± 0.0017 0.5307± 0.0012 0.5031± 0.0014 0.4962± 0.0010

task PNCC (performance) PNCC (coherency)

m 10 100 512 10 100 512

STNP 0.0123± 0.0001 0.0030± 0.0001 0.0008± 0.0000 0.0453± 0.0005 0.0283± 0.0003 0.0255± 0.0001
S+JTNP 0.0126± 0.0001 0.0036± 0.0001 0.0011± 0.0000 0.0114± 0.0002 0.0121± 0.0001 0.0195± 0.0003
MTNP 0.0103± 0.0001 0.0023± 0.0000 0.0007± 0.0000 0.0091± 0.0001 0.0102± 0.0001 0.0126± 0.0001

STNP MTNP

m
=
10

GT S+JTNP

m
=
51
2

m
=
10
0

Figure 16: Qualitative results on 2D function regression. (γ = 0.75)

42

Published as a conference paper at ICLR 2022

H ABLATION STUDY

In this section, we provide results of ablation study on the implementations of MTNP. We conduct
experiments on synthetic and weather datasets to analyze the effect of various design choices we
made for MTNP.

H.1 ABLATION STUDY ON SELF-ATTENTION LAYERS AND PARAMETRIC POOLING

In this study, we explore the effect of using self-attention layers before pooling operations and using
PMA layer for pooling in MTNP. The variants of MTNP are as follows. (1) MTNP-A: MTNP without
self-attention and using average pooling, (2) MTNP-P: MTNP without self-attention and using PMA,
(3) MTNP-SA: MTNP with self-attention and using average pooling, (4) MTNP-SP: MTNP with
self-attention and using PMA. The results are summarized below. Note that we consistently use
MTNP-SP architecture for the experiments in Section 5. As shown in the result, MTNP with self-
attention outperforms the one without self-attention by a large margin, implying that self-attention is
critical in MTNP.

Table 27: Average normalized MSE on synthetic tasks, with varying context size (m) and γ = 0.5.

task Sine Tanh

m 5 10 20 5 10 20

MTNP-A 0.4157± 0.0174 0.2855± 0.0259 0.1913± 0.0148 0.1121± 0.0219 0.0549± 0.0108 0.0320± 0.0017
MTNP-P 0.3568± 0.0208 0.2090± 0.0088 0.1185± 0.0066 0.0780± 0.0131 0.0296± 0.0035 0.0153± 0.0013

MTNP-SA 0.2668± 0.0107 0.1299± 0.0118 0.0543± 0.0120 0.0452± 0.0085 0.0103± 0.0020 0.0033± 0.0003
MTNP-SP 0.2636± 0.0105 0.1137± 0.0078 0.0485± 0.0034 0.0435± 0.0047 0.0115± 0.0021 0.0040± 0.0002

task Sigmoid Gaussian

m 5 10 20 5 10 20

MTNP-A 0.0158± 0.0028 0.0082± 0.0012 0.0050± 0.0002 0.0711± 0.0054 0.0454± 0.0042 0.0321± 0.0018
MTNP-P 0.0119± 0.0021 0.0052± 0.0005 0.0033± 0.0003 0.0519± 0.0029 0.0270± 0.0031 0.0161± 0.0008

MTNP-SA 0.0071± 0.0018 0.0015± 0.0003 0.0005± 0.0001 0.0345± 0.0048 0.0132± 0.0007 0.0065± 0.0010
MTNP-SP 0.0066± 0.0019 0.0014± 0.0001 0.0006± 0.0001 0.0360± 0.0018 0.0132± 0.0008 0.0069± 0.0012

Table 28: Average MSE and NLL on weather tasks, with m = 10 and γ = 0.5.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MTNP-A 0.0067± 0.0007 -1.0773± 0.0231 0.0119± 0.0012 -0.8658± 0.0405 0.0745± 0.0033 -0.0471± 0.0278
MTNP-P 0.0046± 0.0003 -1.1614± 0.0129 0.0071± 0.0002 -1.0166± 0.0145 0.0581± 0.0029 -0.1463± 0.0232

MTNP-SA 0.0039± 0.0001 -1.1881± 0.0074 0.0058± 0.0005 -1.0990± 0.0203 0.0542± 0.0024 -0.2083± 0.0283
MTNP-SP 0.0037± 0.0001 -1.1832± 0.0165 0.0054± 0.0001 -1.1049± 0.0154 0.0546± 0.0021 -0.1006± 0.0696

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MTNP-A 0.2514± 0.0049 0.6655± 0.0212 0.2578± 0.0070 0.7186± 0.0369 0.0114± 0.0012 -0.9103± 0.0316
MTNP-P 0.2400± 0.0072 0.6205± 0.0210 0.2360± 0.0070 0.6532± 0.0166 0.0083± 0.0001 -1.0183± 0.0039

MTNP-SA 0.2262± 0.0041 0.6270± 0.0288 0.2242± 0.0042 0.6825± 0.0280 0.0074± 0.0004 -1.0409± 0.0200
MTNP-SP 0.2276± 0.0028 0.6557± 0.0433 0.2215± 0.0043 0.6660± 0.0141 0.0073± 0.0003 -1.0331± 0.0147

43

Published as a conference paper at ICLR 2022

4 2 0 2 4

sine

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

4 2 0 2 4

tanh

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.08

0.10

0.12

0.14

0.16

4 2 0 2 4

sigmoid
0.0

0.2

0.4

0.6

0.8

1.0

0.08

0.10

0.12

0.14

0.16

4 2 0 2 4

gaussian

0.0

0.2

0.4

0.6

0.8

1.0

0.10

0.12

0.14

0.16

0.18

Figure 17: Visualization of per-task attention weights of MTNP assigned on different context points
in synthetic tasks. Size and color of markers represent the amount of attention weight assigned on
each point.

To investigate whether the self-attention modules operate as desired in per-task attention stage, we
visualize the attention weights assigned to each context point. For each task, we compute an averaged
attention weight placed on a set of context points by averaging dimensions of the attention map of
shape (nL, nH, nQ, nK) to (1, 1, 1, nK) where nL and nH denote the number of self-attention
layers and heads in each layer, and nQ = nK refer to the number of query (Q) and key (K) vectors
and Q = K. Note that this averaged attention weight can be interpreted as the averaged importance
put on each of the context points by the self-attention module. Results are visualized in Figure 17. As
shown in the figure, points located at representative positions or at sparse regions are attended more
than others. This shows that self-attention in per-task paths operates as desired.

44

Published as a conference paper at ICLR 2022

H.2 EFFECT OF PARAMETER-SHARING IN PER-TASK BRANCHES

In this study, we explore the effect of parameter-sharing the per-task encoder networks and decoder
networks in STNP and MTNP. The variants of STNP and MTNP are as follows. (1) STNP-S: STNP
with shared encoder and decoder, (2) STNP-TS: STNP with task-specific encoders and decoders, (3)
MTNP-S: MTNP with shared encoder and decoder in per-task branches, (4) MTNP-TS: MTNP with
task-specific encoders and decoders in per-task branches. Note that we consistently use STNP-TS and
MTNP-S architectures for the 1D experiments (synthetic and weather) and STNP-TS and MTNP-TS
architectures for the 2D experiments (CelebA) in Section 5

As can be seen in the tables, in the weather dataset, we observe that the models with parameter sharing
(STNP-S & MTNP-S) show comparable performances to their respective non-sharing baselines
(STNP-TS & MTNP-TS). On the other hand, the parameter sharing technique slightly improves the
performances of the models in the 1-D synthetic case. We conjecture that the utilization of the same
architecture and its parameter for all tasks acts as a good inductive bias to the models considering that
all tasks share the same global parameter a,b,c,w. Nonetheless, we still find that MTNPs consistently
outperform STNPs regardless of whether the parameters are shared or not, validating the effectiveness
of MTNP to capture and exploit functional correlation for multi-task learning problems.

Table 29: Average normalized MSE on synthetic tasks, with varying context size (m) and γ = 0.5.

task Sine Tanh

m 5 10 20 5 10 20

STNP-S 0.5387± 0.0270 0.2596± 0.0351 0.0845± 0.0216 0.1255± 0.0143 0.0459± 0.0095 0.0123± 0.0019
STNP-TS 0.5212± 0.0157 0.2609± 0.0382 0.0993± 0.0182 0.1307± 0.0134 0.0468± 0.0074 0.0159± 0.0028
MTNP-S 0.2636± 0.0105 0.1137± 0.0078 0.0485± 0.0034 0.0435± 0.0047 0.0115± 0.0021 0.0040± 0.0002

MTNP-TS 0.2901± 0.0164 0.1297± 0.0079 0.0532± 0.0050 0.0618± 0.0069 0.0172± 0.0041 0.0063± 0.0006

task Sigmoid Gaussian

m 5 10 20 5 10 20

STNP-S 0.0177± 0.0034 0.0050± 0.0009 0.0012± 0.0003 0.0801± 0.0124 0.0371± 0.0048 0.0181± 0.0028
STNP-TS 0.0203± 0.0034 0.0067± 0.0013 0.0025± 0.0005 0.0799± 0.0098 0.0409± 0.0041 0.0222± 0.0042
MTNP-S 0.0066± 0.0019 0.0014± 0.0001 0.0006± 0.0001 0.0360± 0.0018 0.0132± 0.0008 0.0069± 0.0012

MTNP-TS 0.0093± 0.0015 0.0031± 0.0010 0.0014± 0.0001 0.0426± 0.0025 0.0173± 0.0019 0.0100± 0.0006

Table 30: Average MSE and NLL on weather tasks, with m = 10 and γ = 0.5.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

STNP-S 0.0049± 0.0003 -1.1381± 0.0223 0.0066± 0.0006 -1.0527± 0.0241 0.0621± 0.0069 0.0240± 0.1210
STNP-TS 0.0046± 0.0004 -1.1514± 0.0181 0.0069± 0.0004 -1.0390± 0.0106 0.0632± 0.0072 0.1273± 0.1898
MTNP-S 0.0037± 0.0001 -1.1832± 0.0165 0.0054± 0.0001 -1.1049± 0.0154 0.0546± 0.0021 -0.1006± 0.0696

MTNP-TS 0.0036± 0.0002 -1.1818± 0.0076 0.0053± 0.0003 -1.0885± 0.0246 0.0519± 0.0013 -0.0662± 0.0828

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

STNP-S 0.2675± 0.0104 0.9537± 0.1347 0.2629± 0.0043 0.7847± 0.0503 0.0084± 0.0007 -0.9877± 0.0312
STNP-TS 0.2607± 0.0082 1.1242± 0.2362 0.2631± 0.0044 0.8563± 0.0637 0.0086± 0.0008 -0.9815± 0.0283
MTNP-S 0.2276± 0.0028 0.6557± 0.0433 0.2215± 0.0043 0.6660± 0.0141 0.0073± 0.0003 -1.0331± 0.0147

MTNP-TS 0.2187± 0.0043 0.7213± 0.0953 0.2253± 0.0100 0.6663± 0.0283 0.0071± 0.0003 -1.0232± 0.0144

45

Published as a conference paper at ICLR 2022

H.3 EFFECT OF LATENT AND DETERMINISTIC ENCODERS

In this study, we compare STNP, JTNP, and MTNP without using deterministic encoder, each
corresponds to STNP-L, JTNP-L, and MTNP-L in the table. Note that these variants correspond to
the direct NP implementations of STNP/JTNP/MTNP rather than ANP. The results are provided in
the tables below. The overall trends are the same as the models with deterministic encoder, which
demonstrates that the effectiveness of MTNP does not depend on a specific choice of architecture
(vanilla NP or ANP).

Table 31: Average normalized MSE on synthetic tasks, with varying context size (m) and γ = 0.5.

task Sine Tanh

m 5 10 20 5 10 20

STNP-L 0.5615± 0.0199 0.3006± 0.0407 0.1254± 0.0159 0.1362± 0.0119 0.0585± 0.0109 0.0234± 0.0020
S+JTNP-L 0.4151± 0.0273 0.2560± 0.0184 0.1395± 0.0106 0.1055± 0.0171 0.0506± 0.0054 0.0224± 0.0023
MTNP-L 0.3003± 0.0147 0.1543± 0.0130 0.0755± 0.0080 0.0563± 0.0069 0.0162± 0.0020 0.0067± 0.0003

task Sigmoid Gaussian

m 5 10 20 5 10 20

STNP-L 0.0213± 0.0025 0.0086± 0.0008 0.0045± 0.0006 0.0809± 0.0101 0.0405± 0.0063 0.0234± 0.0026
S+JTNP-L 0.0201± 0.0030 0.0106± 0.0008 0.0061± 0.0003 0.0687± 0.0056 0.0376± 0.0014 0.0227± 0.0019
MTNP-L 0.0096± 0.0022 0.0027± 0.0005 0.0012± 0.0002 0.0417± 0.0037 0.0169± 0.0010 0.0091± 0.0007

Table 32: Average MSE and NLL on weather tasks, with m = 10 and γ = 0.5.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

STNP-L 0.0065± 0.0010 -1.0783± 0.0207 0.0102± 0.0008 -0.9202± 0.0205 0.0828± 0.0067 0.0341± 0.0401
S+JTNP-L 0.0085± 0.0016 -1.0632± 0.0252 0.0136± 0.0021 -0.8601± 0.0236 0.0966± 0.0108 0.0737± 0.0699
MTNP-L 0.0046± 0.0005 -1.1580± 0.0167 0.0072± 0.0005 -1.0203± 0.0171 0.0596± 0.0027 -0.1554± 0.0274

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

STNP-L 0.3381± 0.0026 0.8792± 0.0008 0.3411± 0.0049 0.8798± 0.0066 0.0106± 0.0005 -0.8804± 0.0118
S+JTNP-L 0.2832± 0.0095 0.7347± 0.0179 0.2851± 0.0123 0.7692± 0.0111 0.0127± 0.0007 -0.8827± 0.0220
MTNP-L 0.2432± 0.0046 0.6267± 0.0220 0.2372± 0.0056 0.6659± 0.0163 0.0085± 0.0003 -1.0006± 0.0065

46

Published as a conference paper at ICLR 2022

We also compare MTNP with deterministic encoder only, which corresponds to MTNP-D in the table
below. To emphasize the benefits of generative modeling of MTNPs, we include MTNP evaluated
on the best sample among 25 predictive samples, which corresponds to MTNP-best in the table.
We observe that MTNP and MTNP-D are comparable in synthetic and weather datasets, which
seems reasonable as we designed the deterministic encoder to mimic the latent encoder of MTNP
(e.g., they employ both per-task and across-task inferences). However, we can see that MTNP-best
clearly outperforms MTNP-D, which implies that MTNP can generate more accurate samples while
MTNP-D cannot.

Table 33: Average normalized MSE on synthetic tasks, with varying context size (m) and γ = 0.5.

task Sine Tanh

m 5 10 20 5 10 20

MTNP-D 0.1963± 0.0039 0.0985± 0.0059 0.0447± 0.0034 0.0423± 0.0079 0.0110± 0.0015 0.0042± 0.0007
MTNP 0.2636± 0.0105 0.1137± 0.0078 0.0485± 0.0034 0.0435± 0.0047 0.0115± 0.0021 0.0040± 0.0002

MTNP-best 0.1239± 0.0087 0.0491± 0.0068 0.0176± 0.0032 0.0169± 0.0028 0.0032± 0.0009 0.0009± 0.0001

task Sigmoid Gaussian

m 5 10 20 5 10 20

MTNP-D 0.0073± 0.0011 0.0015± 0.0004 0.0006± 0.0002 0.0281± 0.0018 0.0127± 0.0015 0.0073± 0.0012
MTNP 0.0066± 0.0019 0.0014± 0.0001 0.0006± 0.0001 0.0360± 0.0018 0.0132± 0.0008 0.0069± 0.0012

MTNP-best 0.0025± 0.0007 0.0004± 0.0001 0.0002± 0.0000 0.0146± 0.0021 0.0046± 0.0006 0.0021± 0.0005

Table 34: Average MSE and NLL on weather tasks, with m = 10 and γ = 0.5.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MTNP-D 0.0039± 0.0001 -1.1892± 0.0079 0.0059± 0.0002 -1.0944± 0.0168 0.0535± 0.0023 -0.2142± 0.0359
MTNP 0.0037± 0.0001 -1.1832± 0.0165 0.0054± 0.0001 -1.1049± 0.0154 0.0546± 0.0021 -0.1006± 0.0696

MTNP-best 0.0032± 0.0001 -1.2143± 0.0118 0.0047± 0.0001 -1.1441± 0.0111 0.0489± 0.0019 -0.2320± 0.0460

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MTNP-D 0.2257± 0.0035 0.6034± 0.0315 0.2260± 0.0038 0.6536± 0.0130 0.0077± 0.0003 -1.0434± 0.0150
MTNP 0.2276± 0.0028 0.6557± 0.0433 0.2215± 0.0043 0.6660± 0.0141 0.0073± 0.0003 -1.0331± 0.0147

MTNP-best 0.2160± 0.0026 0.5491± 0.0269 0.2091± 0.0041 0.6044± 0.0090 0.0065± 0.0003 -1.0763± 0.0102

47

Published as a conference paper at ICLR 2022

H.4 EFFECT OF TASK EMBEDDINGS

In this study, we compare to different types of task embeddings for MTNP. MTNP-Onehot uses
one-hot encoded vector for task embedding et while MTNP-learnable uses learnable vector for the
task embedding. Note that we consistently use MTNP-learnable for the 1D experiments in Section 5

Table 35: Average normalized MSE on synthetic tasks, with varying context size (m) and γ = 0.5.

task Sine Tanh

m 5 10 20 5 10 20

MTNP-Onehot 0.2507± 0.0174 0.1047± 0.0123 0.0426± 0.0075 0.0440± 0.0050 0.0110± 0.0014 0.0036± 0.0005
MTNP-Learnable 0.2636± 0.0105 0.1137± 0.0078 0.0485± 0.0034 0.0435± 0.0047 0.0115± 0.0021 0.0040± 0.0002

task Sigmoid Gaussian

m 5 10 20 5 10 20

MTNP-Onehot 0.0067± 0.0013 0.0014± 0.0003 0.0005± 0.0001 0.0338± 0.0017 0.0130± 0.0009 0.0062± 0.0008
MTNP-Learnable 0.0066± 0.0019 0.0014± 0.0001 0.0006± 0.0001 0.0360± 0.0018 0.0132± 0.0008 0.0069± 0.0012

Table 36: Average MSE and NLL on weather tasks, with m = 10 and γ = 0.5.

task TempMin TempMax Humidity

metric MSE NLL MSE NLL MSE NLL

MTNP-Onehot 0.0036± 0.0002 -1.1975± 0.0088 0.0055± 0.0001 -1.1046± 0.0090 0.0526± 0.0014 -0.0835± 0.1149
MTNP-Learnable 0.0037± 0.0001 -1.1832± 0.0165 0.0054± 0.0001 -1.1049± 0.0154 0.0546± 0.0021 -0.1006± 0.0696

task Precip Cloud Dew

metric MSE NLL MSE NLL MSE NLL

MTNP-Onehot 0.2265± 0.0034 0.7003± 0.0482 0.2244± 0.0044 0.6909± 0.0264 0.0070± 0.0004 -1.0479± 0.0155
MTNP-Learnable 0.2276± 0.0028 0.6557± 0.0433 0.2215± 0.0043 0.6660± 0.0141 0.0073± 0.0003 -1.0331± 0.0147

We observe that MTNP with one-hot embedding is comparable to MTNP with learnable embedding.
To further investigate the effect of learnable embedding, we visualize the learned task embedding
by MTNP using the t-SNE algorithm. We include the visualization results in Figure 18 and 19.
As shown in the figure, we find that the learned task embeddings are well-separated from each
other and uniformly distributed on the embedding space. From the observations, we conjecture that
well-separated task embeddings are sufficient task information for MTNP.

48

Published as a conference paper at ICLR 2022

100 80 60 40 20 0
40

20

0

20

40

60 sine
tanh
sigmoid
gaussian

Figure 18: t-SNE plot (with 2 components) of the learned task embeddings of MTNP in synthetic
tasks.

10 5 0 5 10 15 20
20

15

10

5

0

5

10 tMin_Global
tMax_Global
humidity_Global
precip_Global
cloud_Global
dew_Global

Figure 19: t-SNE plot (with 2 components) of the learned task embeddings of MTNP in weather
tasks.

49

	Introduction
	Preliminary
	Background: Neural Processes
	Extending to Multiple Target Functions

	Multi-Task Neural Processes
	Formulation
	Learning and inference
	Neural Network model for MTNP

	Related Work
	Experiments
	1D Curve Regression on Synthetic Data
	1D Time-Series Regression on Weather Data
	2D Image Completion on Face Data

	Conclusion
	Theoretical Justifications
	Stochastic Processes and the Kolmogorov Extension Theorem
	MTNP is a Stochastic Process
	ELBO Derivation for MTNP
	ELBO for STNP and JTNP

	Architectural and Training Details
	Attentive Neural Process
	ANP Model for JTNP
	ANP Model for STNP
	Architectural Hyper-Parameters
	Training Details
	Parameter Sharing in MTNP
	Other Baselines

	Experimental Details of 1D Synthetic Function Regression
	Synthetic Dataset
	Evaluation Protocol

	Additional Results on Synthetic 1D Function Regression
	Additional Results on Complete and Partially Incomplete Data
	Additional Results on Totally Incomplete Data

	Additional Results on Weather Time-Series Regression
	Experimental Details of Image 2D Function Regression
	Dataset
	Evaluation Protocol

	Additional Results on Image 2D Function Regression
	Ablation Study
	Ablation Study on Self-Attention layers and Parametric Pooling
	Effect of Parameter-Sharing in Per-Task Branches
	Effect of Latent and Deterministic Encoders
	Effect of Task Embeddings

