
Under review as a conference paper at ICLR 2021

ON SIZE GENERALIZATION IN GRAPH NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) can process graphs of different sizes but their
capacity to generalize across sizes is still not well understood. Size generalization
is key to numerous GNN applications, from solving combinatorial optimization
problems to learning in molecular biology. In such problems, obtaining labels and
training on large graphs can be prohibitively expensive, but training on smaller
graphs is possible.
This paper puts forward the size-generalization question and characterizes impor-
tant aspects of that problem theoretically and empirically. We prove that even
for very simple tasks, such as counting the number of nodes or edges in a graph,
GNNs do not naturally generalize to graphs of larger size. Instead, their gen-
eralization performance is closely related to the distribution of local patterns of
connectivity and features and how that distribution changes from small to large
graphs. Specifically, we prove that for many tasks, there are weight assignments
for GNNs that can perfectly solve the task on small graphs but fail on large graphs,
if there is a discrepancy between their local patterns. We further demonstrate on
several tasks, that training GNNs on small graphs results in solutions which do not
generalize to larger graphs. We then formalize size generalization as a domain-
adaption problem and describe two learning setups where size generalization can
be improved. First, as a self-supervised learning problem (SSL) over the target
domain of large graphs. Second as a semi-supervised learning problem when few
samples are available in the target domain. We demonstrate the efficacy of these
solutions on a diverse set of benchmark graph datasets.

1 INTRODUCTION

Graphs are a flexible representation, widely used for representing diverse data and phenomena.
Graph neural networks (GNNs) – Deep models that operate over graphs – have emerged as a promi-
nent learning model (Bruna et al., 2013; Kipf and Welling, 2016; Veličković et al., 2017). They are
used in natural sciences (Gilmer et al., 2017), social network analysis (Fan et al., 2019), for solving
difficult mathematical problems (Luz et al., 2020) and for approximating solutions to combinatorial
optimization problems (Li et al., 2018).

In many domains, graphs data vary significantly in size. This is the case for molecular biology,
where molecules – represented as graphs over atoms as nodes – span from small compounds to
proteins with many thousands of nodes. It is even more severe in social networks, which can reach
billions of nodes. The success of GNNs for such data stems from the fact that the same GNN
model can process input graphs regardless of their size. Indeed, it has been proposed that GNNs
can generalize to graphs whose size is different from what they were trained on , but it is largely
unknown in what problems such generalization occurs. Empirically, several papers report good
generalization performance on specific tasks (Li et al., 2018; Luz et al., 2020). Other papers, like
Veličković et al. (2019), show that size generalization can fail on several simple graph algorithms,
and can be improved by using task-specific training procedures and specific architectures.

Given their flexibility to operate on variable-sized graphs, A fundamental question arises about
generalization in GNNs: ”When do GNNs trained on small graphs generalize to large graphs?”

Aside from being an intriguing theoretical question, this problem has important practical implica-
tions. In many domains, it is hard to label large graphs. For instance, in combinatorial optimization

1

Under review as a conference paper at ICLR 2021

problems, labeling a large graph boils down to solving large and hard optimization problems. In
other domains, it is often very hard for human raters to correctly label complex networks. One
approach to this problem could have been to resize graphs into a homogeneous size. This is the
strategy taken in computer vision, where it is well understood how to resize an image while keeping
its content. Unfortunately, there are no effective resizing procedures for graphs. It would therefore
be extremely valuable to develop techniques that can generalize from training on small graphs.

As we discuss below, a theoretical analysis of size generalization is very challenging because it
depends on several different factors, including the task, the architecture, and the data. For tasks,
we argue that it is important to distinguish two types of tasks, local and global. Local tasks can be
solved by GNNs whose depth does not depend on the size of the input graph. For example, the task
of finding a constant-size pattern. Global tasks require that the depth of the GNN grows with the
size of the input graph. For example, calculating the diameter of a graph. While there are a few
previous works that explore depth-dependant GNNs (e.g., Tang et al. (2020), constant depth GNNs
are by far the most widely used GNN models today and are therefore the focus of this paper.

In this paper, we focus on GNNs with constant depth and study the ability of the most expressive
message passing neural networks (Xu et al., 2018; Morris et al., 2019) to generalize to unseen
sizes. Our key observation is that generalization to graphs of different sizes is strongly related to the
distribution of patterns around nodes in the graphs of interest. These patterns, dubbed d-patterns
(where d is the radius of the local neighborhood), describe the local feature-connectivity structure
around each node, as seen by message-passing neural networks and are defined in Section 3.

We study the role of d-patterns both empirically and theoretically. First, we theoretically show
that when there is a significant discrepancy between the d-pattern distributions, GNNs have multiple
global minima for graphs of a specific size range, out of which only a subset of models can generalize
well to larger graphs. We complement our theoretical analysis with an experimental study and
show that GNNs tend to converge to non-generalizing global minima, when d-patterns from the
large graph distribution are not well-represented in the small graph distribution. Furthermore we
demonstrate that the size generalization problem is accentuated in deeper GNNs.

Following these observations, in the final part of this paper, we discuss two learning setups that help
improve size-generalization by formulating the learning problem as a domain adaptation problem:
(1) Training the GNNs on self-supervised tasks aimed at learning the d-pattern distribution of both
the target (large graphs) and source (small graphs) domains. We also propose a novel SSL task that
addresses over-fitting of d-patterns. (2) A semi-supervised learning setup with a limited number of
labeled examples from the target domain. The idea behind both setups is to promote convergence
of GNNs to local/global minima with good size generalization properties. We show that both setups
are useful in a series of experiments on synthetic and real data.

To summarize, this paper makes the following contributions. (1) We identify a size generalization
problem when learning local tasks with GNNs and analyze it empirically and theoretically. (2) We
link the size-generalization problem with the distribution of d-patterns and suggest to approach it
as a domain adaptation problem (3) We empirically show how several learning setups help improve
size generalization.

2 RELATED WORK

Size generalization in set and graph learning. Several papers observed successful generalization
across graph sizes, but the underlying reasons were not investigated (Li et al., 2018; Maron et al.,
2018; Luz et al., 2020). More recently, (Veličković et al., 2019) showed that when training GNNs
to perform simple graph algorithms step by step they generalize better to graphs of different sizes.
Unfortunately, such training procedures cannot be easily applied to general tasks. Knyazev et al.
(2019) studied the relationship between generalization and attention mechanisms. Tang et al. (2020)
observed two issues that can harm generalization: (1) There are tasks for which a constant number of
layers is not sufficient. (2) Some graph learning tasks are homogeneous functions. They then suggest
a new GNN architecture to deal with these issues. Our work is complementary to these works as it
explores another fundamental size generalization problem, focusing on constant depth GNNs. For
more details on the distinction between constant depth and variable depth tasks see Appendix A.
Several works also studied size generalization and expressivity when learning set-structured inputs
(Zweig and Bruna, 2020; Bueno and Hylton, 2020). On the more practical side, Joshi et al. (2019),

2

Under review as a conference paper at ICLR 2021

Joshi et al. (2020) study the combinatorial problem of traveling salesman and whether it is possible
to generalize to larger sizes. Corso et al. (2020) study several multitask learning problems on graphs
and evaluate how the performance changes as the size of the graphs change.

Expressivity and generalization in graph neural networks. (Xu et al., 2018; Morris et al., 2019)
established a fundamental connection between message-passing neural networks and the Weisfeiler-
Leman (WL) graph-isomorphism test. We use similar arguments to show that GNNs have enough
expressive power to solve a task on a set of small graphs and to fail on it on a set of large graphs.
Several works studied generalization bounds for certain classes of GNNs (Garg et al., 2020; Puny
et al., 2020; Verma and Zhang, 2019), but did not discuss size-generalization. Sinha et al. (2020)
proposed a benchmark for assessing the logical generalization abilities of GNNs.

3 THE SIZE GENERALIZATION PROBLEM

We now present the main problem discussed in the paper, that is, what determines if a GNN gener-
alizes well to graphs of sizes not seen during training. We start with a simple motivating example
showing the problem on single layer GNNs. We then show that the question of size generalization
actually depends on d-patterns, the local patterns of connectivity and features of the graphs, and not
only on their actual size.

Setup. We are given two distributions over graphs P1, P2 that contain small and large graphs ac-
cordingly, and a task that can be solved with 0 error for all graph sizes using a constant depth GNN.
We train a GNN on a training set S sampled i.i.d from P1 and study its performance on P2.

GNN model. We focus on the first order GNN (1-GNN) architecture from Morris et al. (2019)
defined in the following way:

h(t)
v = σ

W (t)
2 h(t−1)

v +
∑

u∈N (v)

W
(t)
1 h(t−1)

u + b(t)

 .

Here, h(t)
v is the feature vector of node v after t layers, W (t)

1 ,W
(t)
2 ∈ Rdt−1×dt , b(t) ∈ Rdt denotes

the parameters of the t-th layer of the GNN, and σ is some non-linear activation (e.g ReLU). It
was shown in Morris et al. (2019) that GNNs composed from these layers have maximal expressive
power with respect to all message-passing neural networks. In the experimental section we also
experiment with Graph Isomorphism Network (GIN) (Xu et al., 2018). For further details on GNNs
see Appendix A. In this work we use the most expressive GNN variants that use the ”sum” aggre-
gation function. Using a ”max” or ”mean” reduces the expressive power of the network, making
it not powerful enough to solve simple counting problems (e.g. counting edges or computing node
degrees). On the other hand, these networks give rise to slightly different definitions of patterns and
can generalize better in some cases as shown in (Veličković et al., 2019), yet still suffer from size
overfit. Exploring these networks is beyond the scope of this work.

3.1 SIZE GENERALIZATION IN SINGLE-LAYER GNNS

We start our discussion on size generalization with a theoretical analysis of a simple setup. We
consider a single-layer GNN and an easy task and show that: (1) The training objective has many
different solutions, but only a small subset of these solutions generalizes to larger graphs (2) Simple
regularization techniques cannot mitigate the problem. This subsection serves as a warm-up for the
next subsections that contain our main results.

Assume we train on a distribution of graphs with a fixed number of nodes n and a fixed num-
ber of edges m. Our goal is to predict the number of edges in the graph using a 1-GNN
with a single linear layer and additive readout function, for simplicity also consider the squared
loss. The objective boils down to the following function for any graph G in the training set::

L(w1, w2, b;G) =
(∑

u∈V (G)

(
w1 · xu +

∑
v∈N (u) w2 · xv + b

)
− y
)2

. Here, G is an input
graph, V (G) are the nodes of G, N (v) are all the neighbors of node v, w1, w2 and b are the train-
able parameters, y is the target (m in this case) and xv is the node feature for node v. Further,
assume that we have no additional information on the nodes, so we can just embed each node as a

3

Under review as a conference paper at ICLR 2021

one-dimensional feature vector with a fixed value of 1. In this simple case, the trainable parameters
are also one-dimensional. We note that the training objective can also be written in the follow-
ing form L(w1, w2, b;G) = (nw1 + 2mw2 + nb−m)

2, and that one can easily find its solutions
space, which is an affine subspace defined by w2 = m−n(w1+b)

2m . In particular, the solutions with
b+w1 = 0, w2 = 1/2 are the only ones which do not depend on the specific training set graph size
n, and generalize to graphs of any size. It can be readily seen that when training the model on graphs
of fixed size (fixed m,n), gradient descent will have no reason to favor one solution over another
and we will not be able to generalize. We also note that the generalizing solution is not always the
least norm solution (with respect to both L1 and L2 norms) so simple regularization will not help
here. On the other hand, it is easy to show that training on graphs with different number of edges
will favor the generalizing solution. As we will see next, the problem gets worse when considering
GNNs with multiple non-linear layers, and this simple solution will not help in this case: we can
train deeper GNNs on a wide variety of sizes and the solution will not generalize to other sizes.

3.2 d-PATTERNS

We wish to understand theoretically when does a GNN which was trained on on graphs with a small
number of nodes can generalize to graphs with a large number of nodes. To answer that question,
we first analyze what information is received by each node in the graph from its neighboring nodes
after a graph is processed by a GNN with T layers. It is easy to see that every node can receive
information about its neighbors which are at most T hops away. We also know that nodes do not
have full information about their order T environment. For example, GNNs cannot determine if a
triangle is present in a neighborhood of a given node Chen et al. (2020). In order to characterize
the exact information that can be found in each node after a T layer GNN, we use the definition of
the WL test, specifically its iteration structure, which has the same representational power as GNNs
(see Xu et al. (2018); Morris et al. (2019)), For more details on the WL test see Appendix A.
Definition 3.1 (d-patterns). Let C be a finite set of node features and N ∈ N. For d ≥ 0 we define
the set of d-patterns Pd on graphs with maximal degree N and node features from C. The definition
is recursive in the following way: For d = 0, P0 = C. We define Pd to be the set of all tuples (a, b)
where a ∈ Pd−1 and b is in multisets of size at most N consisting of elements from Pd−1.

Let G = (V,E) be a graph with maximal degree N and a node feature cv ∈ C for every node
v ∈ V . We define the d-pattern of a node v ∈ V for d ≥ 0 recursively: For d = 0, its 0-
pattern is cv . For d > 0 we say that v with ` neighboring d − 1 patterns has a d-pattern p =
(pv, {(pi1 ,mpi1

), . . . , (pi` ,mpi`
)}) iff node v has (d − 1)-pattern pv and for every j ∈ {1, . . . , `}

the number of neighbors of v with (d− 1)-pattern pij is exactly mpij
.

The d-pattern of a node is an encoding of the (d − 1)-patterns of itself and of its neighbors. For
example, assume a graph has a maximal degree of N and all the nodes start with the same node
feature. The 1-pattern of each node is its degree. The 2-pattern of each node is for each possible
degree i ∈ {1, . . . , N} the number of neighbors with degree i. In the same manner, the 3-pattern
of a node is for each possible 2-pattern, the number of its neighbors with this exact 2-pattern. The
definition of d-patterns can naturally be extended to the case of unbounded degrees. We have the
following theorem which connects the d-patterns with the expressive power of GNNs:
Theorem 3.2. Any function that can be represented by a d-layer GNN is constant on d-patterns.
In particular, the theorem shows that for any two graphs (of any size) and two nodes, one in each
graph, if the nodes have the exact same d-pattern, then any d-layer GNN will output the same result
for the two nodes. The full proof can be found in Appendix B, and follows directly from the analogy
between the WL algorithm (see Appendix A) and d-patterns. Thm. 3.2 implies that d-patterns don’t
represent more expressive power than GNN. In the next subsection, we prove that GNNs can exactly
compute d-patterns, and show that this capacity is tightly related to size generalization. It is also
easy to see from the definition of d-patterns and the proof of Theorem 2 from Morris et al. (2019)
that d-patterns exactly represent the expressive power of GNNs (with additive aggregation), thus this
definition is a natural tool to study the properties of GNNs, such as size generalization.

3.3 GNNS MAY OVERFIT d-PATTERNS

We can now connect the size generalization problem to the concept of d-patterns. We start with an
example: consider a node prediction task in which an output is specified for each node in an input

4

Under review as a conference paper at ICLR 2021

graph, and is solvable by a d-layer GNN. To perfectly solve this task, the model should produce the
correct output for the d-pattern of all the nodes in the training set. Testing this GNN on a different
set of graphs will succeed if the test set has graphs with similar d-patterns to those in the training
set. Note that this requirement is not related to the size of the graphs but to the distribution of the
d-patterns of the nodes in the test set.

In the following theorem we show rigorously, that given a set of d-patterns and output for each such
pattern, there is an assignment of weights to a GNN with O(d) layers that perfectly fits the output
for each pattern. We will then use this theorem in order to show that, under certain assumptions on
the distribution of d-patterns of the large graphs, GNNs can perfectly solve a task on a set of small
graphs, and completely fail on a set on large graphs. In other words, we show that there are multiple
global minima for the training objective that do not generalize to larger graphs.
Theorem 3.3. Let C be a finite set of node features, P be a finite set of d-patterns on graphs
with maximal degree N ∈ N, and for each pattern p ∈ P let yp ∈ [−1, 1] be some target label.

Then there exists a 1-GNN F with d + 2 layers, width bounded by max
{

(N + 1)d · |C|, 2
√
|P |
}

and ReLU activation such that for every graph G with nodes v1, . . . , vn, corresponding d-patterns
p1, . . . , pn ⊆ P and node features from C, the output of F on node vi is exactly ypi .

The full proof is in Appendix B. Note that the width of the required GNN from the theorem is not
very large if d is small, where d represents the depth of the 1-GNN. In practice, shallow GNNs are
very commonly used and are proven empirically successful, while training deep GNNs was shown
to be hard due to many problems like over-smoothing (Zhao and Akoglu, 2019).

Using the above theorem we can claim that there are assignments of weights to GNN that cannot
”size-generalize”, that is, given a specific task, the GNN succeeds on the task for small graphs (up
to some bound) and fails on larger graphs, as long as there is a notable discrepancy between their
d-patterns distributions:
Corollary 3.4. Let P1 and P2 be distributions of small and large graphs respectively with finite
support, and let P d−pat1 be the distribution of d-patterns over small graphs and similarly P d−pat2
for large graphs. For any node prediction task which is solvable by a 1-GNN with depth d and ε > 0
there exists a 1-GNN with depth at most d+ 2 that has 0-1 loss smaller then ε on P1 and 0-1 loss ∆
on P2, where

∆(ε) = max
A:Pd−pat

1 (A)<ε
P d−pat2 (A) . (1)

Here, A is a set of d-patterns and P (A) is the total probability mass for that set under P .

Intuitively, large ∆ means that there exists a set of d-patterns that have a low probability for small
graphs and high probability for large graphs. Corollary 3.4 implies that the major factor in the
success of GNN to generalize to larger graphs is not the graph size, but the distribution of the d-
patterns. Different distributions of d-patterns lead to large ∆ and thus to bad generalization to larger
graphs. On the other hand, from Thm. 3.2 we immediately get that similar distributions of d-patterns
imply that every GNN model that succeeds on small graphs will also succeed on large graphs, since
GNNs are constant on d-patterns:
Corollary 3.5. In the setting of Corollary 3.4, also assume that all the patterns that have a positive
probability in P d−pat2 also have a positive probability in P d−pat1 . Then, for any node prediction task
solvable by a depth d GNN, any 1−GNN that have 0 loss (w.r.t the 0−1 loss) on P1 will also have
0 loss on P2.

Examples. Corollary 3.4 shows that even for simple tasks, GNN may fail, here are two simple
examples. (i) Consider the task of calculating the node degree. From Corollary 3.4 there is a GNN
that successfully output the degree of nodes with max degree up to N and fails on nodes with larger
degrees. Note that this problem can easily be solved for any node degree with a 1-layer GNN. (ii)
Consider some node regression task, when the training set consists of graphs sampled i.i.d from an
Erdos-Renyi graph G(n, p) 1, and the test set contains graphs sampled i.i.d from G(2n, p). In this
case, a GNN trained on the training set will be trained on graphs with an average degree np, while
the test set contains graphs with an average degree 2np. This means that the d-patterns in the train
and test set are very different, and by Corollary 3.4 the GNN may overfit.

1Graphs with n nodes such that each edge exists with probability p.

5

Under review as a conference paper at ICLR 2021

Graph prediction tasks. Our theoretical results discuss node prediction tasks. We note that they
are also relevant for graph prediction tasks where there is a single output to each input graph. The
reason for that is that in order to solve graph prediction tasks, a GNN first calculates node features
and then pools them into a single global graph feature. Our analysis shows that the first part of the
GNN, which is responsible for calculating the node features, might not generalize to large graphs.
As a result, the GNN will generate an uninformative global graph feature and the GNN will fail on
the original graph prediction task. In the experimental sections, we show that the size generalization
problem is indeed relevant for both node and graph prediction tasks. Here is a formal statement
regarding graph prediction tasks, the full proof can be found in Appendix B.
Corollary 3.6. Let P1 and P2 be distributions of small and large graphs respectively with finite
support. Let P d−pat1 be the distribution of d-patterns over small graphs and similarly P d−pat2 for
large graphs, and assume that the supports of P d−pat1 and P d−pat2 are disjoint. For any graph
prediction task solvable by a 1-GNN with depth d and summation readout function, there exists a
1-GNN with depth at most d+ 3 that perfectly solves the task on P1 and fails on all graphs from P2.

Relation to Morris et al. (2019); Xu et al. (2018). We note that Theorem 3.3 and Corollary 3.4 are
somewhat related to the expressivity results in (Xu et al., 2018; Morris et al., 2019) that show that
GNNs can be as powerful as the WL test. Here, we show that the expressive power of GNNs can
cause negative effects when there is a discrepancy between the training and test sets.

3.4 EMPIRICAL VALIDATION

In the previous subsection we have shown that for any node task, and any two datasets of graphs
with different sizes that significantly differ in their d-patterns distributions, there is a 1-GNN that
successfully solves the task on one dataset but fails on the second. In this subsection, we show
empirically that reaching these ”overfitting” GNNs is actually very common. Specifically, the size-
overfit phenomenon is prevalent when the d-patterns of in the large graph distribution are not found
in the small graph distribution. We also show that GNNs can generalize to larger graphs if the
distribution of d-patterns remains similar to the distribution of patterns in the small graphs.

To show this, we use a controlled regression task in a student-teacher setting. In this setting, we
sample a ”teacher” GNN with random weights, freeze the network, and label each graph in the
dataset using the output of the ”teacher” network. Our goal is to train a ”student” network, which
has the same architecture as the ”teacher” network, to fit the labels of the teacher network. The
advantages of this setting are two-fold: (1) A solution is guaranteed to exist: We know that there is a
weight assignment of the student network which perfectly solve the task for graphs of any size. (2)
Generality: It includes all tasks solvable by constant depth GNNs. We discuss more settings below.

Architecture and training protocol. We use 1-GNN as defined in (Morris et al., 2019). The number
of GNN layers in the network we use is either 1, 2 or 3; the width of the teacher network is 32, and
of the student network 64, providing more expressive power to the student network. We obtained
similar results when testing with a width of 32, same as the teacher network. We use a summation
readout function followed by a two-layer fully connected suffix. We use ADAM with learning rate
10−3. We performed a hyper-parameters search on the learning rate and weight decay and use
validation-based early stopping on the source domain (small graphs). The results are averaged over
10 random seeds. All runs used Pytorch Geometric (Fey and Lenssen, 2019) on NVIDIA DGX-1.

Results. Fig. 1 compares the loss of GNNs as the distribution of d-patterns changes, for the task
of teacher-student graph level regression. The model was trained on graphs generated using the
G(n, p) model. We show the normalized L2 loss computed on test, where output is normalized by
the average test-set (target) output. The left panel shows the test loss when training on n ∈ [40, 50]
and p = 0.3 and testing on G(n, p) graphs with n = 100 and p varying from 0.05 to 0.5. In this
experiment, the expected node degree is np, hence the distribution of d-patterns is most similar to
the one observed in the training set when p = 0.15. Indeed, this is the value of p where the test
loss is minimized. The right panel is discussed in the caption. These results are consistent with
Corollary 3.4, since when the distributions of d-patterns are far the model is not able to generalize
well, and it does generalize well when these distributions are similar.

To give further confirmation to the effect of the local distributions on the generalization capabilities
of GNN we conducted the following two experiments: (1) We tested on the teacher-student setup
with a 3-layer GNN on graphs of sizes uniformly from n = 40, . . . , 50 and sampled fromG(n, 0.3).

6

Under review as a conference paper at ICLR 2021

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
p of test G(n,p)

3
2
1
0
1
2
3
4

Av
er

ag
e

lo
ss

 (l
og

 sc
al

e)

one layer
two layers
three layers

60 80 100 120 140
Train graph size

4

3

2

1

0

1

2

3

Av
er

ag
e

lo
ss

 (l
og

 sc
al

e)

one layer
two layers
three layers

Figure 1: The effect of graph size and d-pattern distribution on generalization in G(n,p) graphs.
(left) The effect of distribution of d-patterns. Train on n drawn uniformly from [40, 50] and
p = 0.3 test on n = 100 and varying p ; (right) The effect of train-graph size. Train on n drawn
uniformly from [40, x] where x varies and p = 0.3; test on n = 150, p = 0.3.

60 80 100 120 140
Test graph size

4

3

2

1

0

1

2

3

4

Av
er

ag
e

lo
ss

 (l
og

 sc
al

e)

50 75 100 125 150 175 200 225 250
Test graph size

4

3

2

1

0

1

2

3

4

Av
er

ag
e

lo
ss

 (l
og

 sc
al

e)

Figure 2: Constant training size and varying test size with and without normalization. Left: constant
p which leads to different d-patterns. Right: p is normalized to keep d-patterns distribution similar.

We tested on graphs sampled from G(N, 0.3) where N varies from 50 up to 150. It is evident that
as the graph size in the test set increases, the model performs worse. (2) We did the same test as in
(1), but this time we normalize p on the test set so that p · N = 15, which is the approximate ratio
for the training set. Here we even went further to train up to sizes N = 250. In this experiment, the
GNN successfully generalized to larger graphs, since the local distributions of the train and test set
are indeed very similar. For the results see Fig. 2.

We also tested on the tasks of finding the max clique in a graph, calculating the number of edges,
and the node prediction tasks of calculating the node degree, and the student-teacher task at the node
level. In addition, we tested on the popular GIN architecture (Xu et al., 2018), and show that the size
generalization problem also occurs there. We also tested on ReLU, Tanh, and sigmoid activations.
See additional experiments in Appendix C.

4 TOWARDS IMPROVING SIZE-GENERALIZATION

The results from the previous section show that the problem of size generalization is not only related
to the size of the graph in terms of the number of nodes or edges but to the distribution of d-patterns
induced by the distributions from which the graphs are sampled. Based on this observation, we now
formulate the size generalization problem as a domain adaptation (DA) problem. We then build on
techniques from domain adaptation and suggest two approaches to improve size generalization. (1)
Self-supervised learning on the target domain (large graphs) and (2) Semi-supervised learning with
a few labeled target samples. We consider the DA setting where we are given two distributions over
graphs: a source distribution DS (say, for small graphs) and a target distribution DT (say, for large
graphs). We consider two settings. First, the unlabeled DA setting, where we have access to labeled
samples from the source DS but the target data from DT is unlabeled. Our goal is to infer labels on

7

Under review as a conference paper at ICLR 2021

a test dataset sampled from the target DT . Second, we consider a semi-supervised setup, where we
also have access to a small number of labeled examples from the target DT .

Size generalization with Self-supervised learning. In Self-supervised learning (SSL) for DA,
a model is trained on unlabeled data to learn a pretext task, which is different from the main
task at hand. If the pretext task is chosen wisely, the model learns useful representations (Doer-
sch et al., 2015; Gidaris et al., 2018) that can help with the main task. Here, we train the pre-
text task on both the source and target domains, as was done for images and point clouds (Sun
et al., 2019; Achituve et al., 2020). The idea is that the pretext task aligns the representations
of the source and target domains leading to better predictions of the main task for target graphs.

Figure 3: Left: a graph with
node features represented by
colors. Right: A tree that rep-
resents the d-patterns for the
black node. The tree descrip-
tor is the number of nodes
from each class in each layer
of the tree.

{For a detailed review of the training procedures and the losses see
Appendix E. Given a pretext task we consider two different train-
ing procedures: (1) Multi-task learning (MTL): parallel training
of the main task on a source domain and a pretext task on both the
source of target domain (You et al., 2020). In this case, the architec-
ture consists of a main GNN that acts as a feature extractor and two
secondary networks (heads) that operate on the extracted features
and try to predict the main task and the pretext task. (2) Pretraining
(PT): in this procedure (Hu et al., 2019), the GNN feature extractor
is trained until convergence on the pretext task on both the source
and target examples. Then, the GNN part is frozen, and only the
head of the model is trained on labeled examples from the source.

Pattern-tree pretext task. We propose a novel pretext task which
is motivated by the definition of d-patterns. We do that by con-
structing a tree that fully represents the d-patterns of each node (see
e.g., Xu et al. (2018)). We then calculate a descriptor of the tree, which is a vector containing counts
of the number of nodes from each class in each layer of the tree. We treat this descriptor as the target
label to be reconstructed by the SSL task. For more details see Figure 3. Intuitively, in order to be
successful on a task on graphs, the GNN needs to correctly represent the pattern trees of the nodes
of the graphs. This means, that to generalize to the target domain Dt, the GNN needs to be forced
to represent pattern trees from both the source and the target distributions. For more details about
the construction of the pattern tree see Appendix D. In short, each tree corresponds to a d-pattern
in the following way: the d-pattern tree of a node can be seen as a multiset of the children of the
root, and each child is a multiset of its children, etc. The pattern tree is a different description of the
d-pattern of a node. This means that a GNN that successfully represent a pattern tree also represents
its corresponding d-pattern, thus connecting this SSL task to the theory from Sec. 3.

Semi-supervised setup. We also consider a case where a small number of labeled samples are
available for the target domain. A natural approach is to train an SSL pretext task on samples from
both the source and target domain, and train the main task on all the labeled samples available. We
tested this setup with 1, 5, or 10 labeled examples from the target domain.

4.1 EXPERIMENTS

Architecture and training protocol. The setup is the same as in Subsection 3.4 with the following
changes. We use a three-layer GNN in all experiments. Multi-task learning is used with equal weight
to the main and SSL tasks. In the semi-supervised setup, we used an equal weight for the main task
and the labeled examples from the target domain.

Baselines. We compare our new pretext task to the following baselines: (1) Vanilla: standard
training on the source domain; (2) HomoGNN (Tang et al., 2020) a homogeneous GNN without
the bias term trained on the source domain; (3) Graph autoencoder (GAE) pretext task (Kipf and
Welling, 2016); (4) Node masking (NM) pretext task from Hu et al. (2019) where at each training
iteration we mask 10% of the node features and the goal is to reconstruct them. In case the graph
does not have node features then the task was to predict the degree of the masked nodes. (5) Node
metric learning (NML): we use metric learning to learn useful node representations. We use a
corruption function that given a graph and corruption parameter p ∈ [0, 1], replaces p|E| of the
edges with random edges, and thus can generate positive (p = 0.1) and negative (p = 0.3) examples
for all nodes of the graph. we train with the triplet loss (Weinberger and Saul, 2009).

8

Under review as a conference paper at ICLR 2021

DATASETS DEEZER IMDB - B NCI1 NCI109 PROTEINS TWITCH DD AVERAGE

SMALL GRAPHS 56.5± 0.8 63.2± 3.3 75.5± 1.6 78.4± 1.4 75.4± 3.1 69.7± 0.2 71.1± 4.4 70.0%
VANILLA 41.1± 6.8 55.9± 7.8 65.9± 4.3 68.9± 3.8 76.0± 8.5 60.5± 3.6 76.3± 3.2 63.5%
HOMO-GNN 40.5± 6.6 56.3± 7.0 66.0± 3.7 68.8± 3.2 77.1± 10 60.8± 2.3 76.8± 376.8± 376.8± 3 63.8%
NM MTL 51.6± 8.551.6± 8.551.6± 8.5 55.6± 6.8 49.9± 7.8 61.7± 5.7 78.8± 8.4 49.5± 2.8 67.4± 5.4 59.2%
NM PT 50.1± 7.5 54.9± 6.7 51.7± 6.6 55.8± 5.0 78.2± 8.2 48.4± 4.0 60.3± 15.9 57.1%
GAE MTL 49.4± 11.0 55.5± 6.0 51.2± 9.9 57.6± 9.4 79.5± 11.7 62.5± 5.1 67.8± 10.0 60.5%
GAE PT 47.1± 10.0 54.1± 6.8 58.9± 7.6 67.2± 5.6 70.5± 9.4 53.6± 4.7 69± 7.1 60.1%
NML MTL 46.4± 9.5 54.4± 7.0 52.3± 6.3 56.2± 6.5 78.7± 6.8 57.4± 4.1 64.7± 11.9 58.6%
NML PT 48.4± 10.7 53.8± 6.1 54.6± 6.2 56.1± 8.1 76.3± 8.0 54.9± 4.7 61.4± 15.1 57.9%
PATTERN MTL 45.6± 8.8 56.8± 9.2 60.5± 7.5 67.9± 7.2 75.8± 11.1 61.6± 3.5 76.8± 376.8± 376.8± 3 63.6%
PATTERN PT 44± 7.7 61.9± 3.261.9± 3.261.9± 3.2 67.8± 11.767.8± 11.767.8± 11.7 74.8± 5.774.8± 5.774.8± 5.7 84.7± 5.184.7± 5.184.7± 5.1 64.5± 3.364.5± 3.364.5± 3.3 74.9± 5.2 67.5%

Table 1: Test accuracy of compared methods in binary classification tasks. The Pattern task with
pretraining achieves the highest accuracy in most tasks and has 4% higher average accuracy than the
second-best method. High variance is due to the domain shift between the source and target domain.

Datasets. We use datasets from Morris et al. (2020) and Rozemberczki et al. (2020) (Twitch
egos and Deezer egos). We selected datasets that have a sufficient number of graphs (more
than 1,000) and with a non-trivial split to small and large graphs as detailed in Appendix F.1.
In total we used 7 datasets, 4 in molecular biology (NCI1, NCI109, D&D, Proteins), and 3
of social networks (Twitch ego nets, Deezer ego nets, IMDB-Binary). In all datasets, 50%
smallest graphs were assigned to the training set, and the largest 10% of graphs assigned
to the test set. We further split a random 10% of the small graphs as a validation set.

0 1 5 10
Num of labeled large graph examples

60

62

64

66

68

70

72
Av

er
ag

e
ac

cu
ra

cy
 o

ve
r a

ll
da

ta
se

ts

67.03
67.5

68.9

70.47

63.57

66.47

68.74

70.62Pattern PT
Vanilla

Figure 4: Mean accuracy over all
datasets in Tab. 1 for d-pattern pre
training and no SSL (Vanilla).

Results. Table 1 compares the effect of using the Pattern-
tree pretext task to the baselines described above. The small
graphs row presents vanilla results on a validation set with
small graphs. The small graph accuracy on 5 out of 7
datasets is larger by 7.3%-15.5% than on large graphs, indi-
cating that the size-generalization problem is indeed preva-
lent in real datasets. Pretraining with the d-patterns pretext
task outperforms other baselines in 5 out 7 datasets, with
an average 4% improved accuracy on all datasets. HOMO-
GNN slightly improves over the vanilla while other pretext
tasks do not improve average accuracy. Naturally, the ac-
curacy here is much lower than SOTA on these datasets be-
cause the domain shift makes the problem much harder. In
Appendix F.2 we show the 1-pattern distribution discrep-
ancy between large and small graphs in two real datasets:
IMDB (large discrepancy) and D&D (small discrepancy). Correspondingly, the pattern tree SSL
task improved performance on the IMDB dataset, while not improving performance on the D& D
dataset. This gives further evidence that a discrepancy between the d-patterns leads to bad general-
ization, and that correctly representing the patterns of the test set can improve performance.

Figure 4 compares the performance of vanilla training versus pretraining with the pattern-tree pretext
task in the semi-supervised setup. The accuracy monotonically increases with respect to the number
of labeled examples in both cases. Moreover, pretraining with the pretext task yields better results in
the case of 0,1,5 labeled examples and comparable results in the case we use 10 labeled examples.
We additionally tested on the synthetic tasks discussed in Sec. 3, and show that the pattern-tree
pretext task improves in the student-teacher setting, while it does not solve the edge count or degree
prediction tasks. On the other hand, adding even a single labeled sample from the target distribution
significantly improves performance on the synthetic tasks we tested on. For more details see Sec. F.

5 CONCLUSION AND DISCUSSION

This paper is a first step towards understanding the size generalization problem in graph neural
networks. We showed that GNNs do not naturally generalize to larger graphs even on simple tasks,
characterized how this failure depends on d-patterns, and suggested two approaches that can improve
generalization. Our characterization of d-patterns is likely to have implications to other problems
where generalization is harmed by distribution shifts, and offer a way to mitigate those problems.

9

Under review as a conference paper at ICLR 2021

REFERENCES

[1] I. Achituve, H. Maron, and G. Chechik. Self-supervised learning for domain adaptation on
point-clouds. arXiv preprint arXiv:2003.12641, 2020.

[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[3] C. Bueno and A. G. Hylton. Limitations for learning from point clouds, 2020. URL https:
//openreview.net/forum?id=r1x63grFvH.

[4] Z. Chen, L. Chen, S. Villar, and J. Bruna. Can graph neural networks count substructures?
arXiv preprint arXiv:2002.04025, 2020.

[5] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković. Principal neighbourhood aggrega-
tion for graph nets. arXiv preprint arXiv:2004.05718, 2020.

[6] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context
prediction. In Proceedings of the IEEE international conference on computer vision, pages
1422–1430, 2015.

[7] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson. Benchmarking graph neural
networks. arXiv preprint arXiv:2003.00982, 2020.

[8] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural networks for social
recommendation. In The World Wide Web Conference, pages 417–426, 2019.

[9] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

[10] V. K. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits of graph
neural networks. arXiv preprint arXiv:2002.06157, 2020.

[11] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting
image rotations. arXiv preprint arXiv:1803.07728, 2018.

[12] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

[13] M. Grohe. Descriptive complexity, canonisation, and definable graph structure theory, vol-
ume 47. Cambridge University Press, 2017.

[14] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec. Strategies for pre-
training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

[15] C. K. Joshi, T. Laurent, and X. Bresson. An efficient graph convolutional network technique
for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

[16] C. K. Joshi, Q. Cappart, L.-M. Rousseau, T. Laurent, and X. Bresson. Learning tsp requires
rethinking generalization. arXiv preprint arXiv:2006.07054, 2020.

[17] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[18] T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

[19] B. Knyazev, G. W. Taylor, and M. Amer. Understanding attention and generalization in graph
neural networks. In Advances in Neural Information Processing Systems, pages 4202–4212,
2019.

[20] Z. Li, Q. Chen, and V. Koltun. Combinatorial optimization with graph convolutional networks
and guided tree search. In Advances in Neural Information Processing Systems, pages 539–
548, 2018.

10

https://openreview.net/forum?id=r1x63grFvH
https://openreview.net/forum?id=r1x63grFvH

Under review as a conference paper at ICLR 2021

[21] A. Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019.

[22] I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh. Learning algebraic multigrid using graph
neural networks. arXiv preprint arXiv:2003.05744, 2020.

[23] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman. Invariant and equivariant graph networks.
arXiv preprint arXiv:1812.09902, 2018.

[24] C. Morris and P. Mutzel. Towards a practical k-dimensional weisfeiler-leman algorithm. arXiv
preprint arXiv:1904.01543, 2019.

[25] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.
Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609, 2019.

[26] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. Tudataset: A
collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on Graph
Representation Learning and Beyond (GRL+ 2020), 2020. URL www.graphlearning.
io.

[27] E. Nachmani and L. Wolf. Molecule property prediction and classification with graph hyper-
networks. arXiv preprint arXiv:2002.00240, 2020.

[28] O. Puny, H. Ben-Hamu, and Y. Lipman. From graph low-rank global attention to 2-fwl ap-
proximation. arXiv preprint arXiv:2006.07846, 2020.

[29] B. Rozemberczki, O. Kiss, and R. Sarkar. Karate Club: An API Oriented Open-source Python
Framework for Unsupervised Learning on Graphs. In Proceedings of the 29th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’20), page 3125–3132.
ACM, 2020.

[30] K. Sinha, S. Sodhani, J. Pineau, and W. L. Hamilton. Evaluating logical generalization in graph
neural networks. arXiv preprint arXiv:2003.06560, 2020.

[31] Y. Sun, E. Tzeng, T. Darrell, and A. A. Efros. Unsupervised domain adaptation through self-
supervision. arXiv preprint arXiv:1909.11825, 2019.

[32] H. Tang, Z. Huang, J. Gu, B.-L. Lu, and H. Su. Towards scale-invariant graph-related problem
solving by iterative homogeneous graph neural networks. ICML 2020 Workshop on Graph
Neural Networks & Beyond, 2020.

[33] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[34] P. Veličković, R. Ying, M. Padovano, R. Hadsell, and C. Blundell. Neural execution of graph
algorithms. arXiv preprint arXiv:1910.10593, 2019.

[35] S. Verma and Z.-L. Zhang. Stability and generalization of graph convolutional neural networks.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1539–1548, 2019.

[36] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor
classification. Journal of Machine Learning Research, 10(2), 2009.

[37] B. Weisfeiler and A. A. Lehman. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

[38] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

[39] Y. You, T. Chen, Z. Wang, and Y. Shen. When does self-supervision help graph convolutional
networks? arXiv preprint arXiv:2006.09136, 2020.

11

www.graphlearning.io
www.graphlearning.io

Under review as a conference paper at ICLR 2021

[40] C. Yun, S. Sra, and A. Jadbabaie. Small relu networks are powerful memorizers: a tight
analysis of memorization capacity. In Advances in Neural Information Processing Systems,
pages 15558–15569, 2019.

[41] L. Zhao and L. Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint
arXiv:1909.12223, 2019.

[42] A. Zweig and J. Bruna. A functional perspective on learning symmetric functions with neural
networks. arXiv preprint arXiv:2008.06952, 2020.

A PRELIMINARIES

This section discusses two key concepts that we use throughout the paper: (1) Graph Neural Net-
works; (2) The Weisfeiler-Lehman graph isomorphism test. At the end of the section, we also discuss
the setup of constant GNN depth that we use in this paper.

Notation. We denote by {(a1,ma1), . . . , (an,man)} a multiset, that is a set where we allow multi-
ple instances of the same element. Here a1, . . . , an are distinct elements, and mai is the number of
times ai appears in the multiset. bold-face letters represent vectors.

A.1 GRAPH NEURAL NETWORKS

We consider the common message-passing GNN architecture (38) defined as follows: Let G =

(V,E) be a graph, and for each node v ∈ V let h(0)
v ∈ Rd0 be a node feature vector. Then for every

t > 0 we define:

h(t)
v = UPDATE

(
h(t−1)
v ,AGG

({
h(t−1)
u : u ∈ N (v)

}))
.

Here, AGG is an permutation invariant aggregation function such as summation, averaging or taking
max, UPDATE is an update function such as an MLP, andN (v) denotes the set of neighbors of node
v. In case the graph is directed then N (v) denotes the set of nodes with edges incoming to v. For
node prediction tasks, the output of a T -layer GNN for node v is h(T)

v , while for graph prediction
tasks an additional readout layer is used:

g(T) = READOUT
{
h(T)
v : v ∈ V

}
,

where READOUT is some invariant function such as summation, averaging or taking the max, pos-
sibly followed by a fully connected network.

In our theoretical results, we focus on the first order GNN architecture from (25) defined in the
following way:

h(t)
v = σ

W (t)
2 h(t−1)

v +
∑

u∈N (v)

W
(t)
1 h(t−1)

u + b(t)

 .

Here, W (t)
1 ,W

(t)
2 ∈ Rdt−1×dt , b(t) ∈ Rdt denotes the parameters of the t-th layer of the GNN,

and σ is some non-linear activation (e.g ReLU). It was shown in (25) that GNNs composed from
these layers have maximal expressive power with respect to all message passing neural networks.
In general, we focus on GNNs that use the popular sum aggregation as it has maximal expressive
power with respect to other aggregations used in message passing GNNs (38). We discuss other
aggregation functions and the trade-of they present in Section 5.

A.2 THE WEISFEILER-LEHMAN TEST

The definition of d-patterns, which are used frequently in this paper, is closely related to the
Weisfeiler-Lehman (WL) test (37; 13). The WL test is an algorithm to test whether two graphs
are isomorphic and was recently coupled with the expressive power of GNNs. (38; 25). It is easiest
to describe WL by using an equivalent algorithm called the color-refinement algorithm (13). The
color refinement algorithm is executed sequentially, wherein each stage the algorithm generates a

12

Under review as a conference paper at ICLR 2021

descriptor for each node according to the descriptors of its direct neighbors. The features in each
stage can be used to define equivalence classes of nodes and the process continues until these equiv-
alence classes cannot be refined anymore. The final graph descriptor is a histogram of the node
features, and is closely related to the definition of d-patterns.

A.3 CONSTANT DEPTH VS. ADAPTIVE DEPTH TASKS

As stated earlier, multiple factors control size generalization. One important factor is the type of
task: We make a distinction between two types of graph tasks. (1) Tasks that can be solved by
constant depth GNN; A good example for such task is determining whether a certain, constant size
connectivity pattern is found in the graph (2) Tasks that require the depth of the GNN to be related
to different parameters of the problem, such as the diameter of the graph. To exemplify, the task of
calculating the diameter of a graph can be solved with a GNN only if its depth depends on the size
of the graph (For more details see (32; 21)). On the other hand, tasks that require local information
about each node can be solved with a constant depth GNN. We note that although there are several
recent works about adaptive depth GNN, e.g. (32; 27), most currently used GNNs have constant and
relatively small depth (7)). In this paper, we focus on the first kind of tasks that require a constant
number of GNN layers. We note that the size-generalization problem we discuss in this paper is also
relevant for the second type of tasks, but we chose to discuss the problem in the simpler setup for
clarity.

B PROOFS FROM SEC. 3

Proof of Thm. 3.2. We show that from the definition of d-patterns, and the 1-WL algorithm (see
(37)), the color given by the WL algorithm to two nodes is equal iff their d-pattern is equal. For the
case of d = 0 it is clear. Suppose it is true for d − 1, the WL algorithm at iteration d give node v
a new color based on the colors given in iteration d − 1 to the neighbors of v. This means, that the
color of v at iteration d depends on the multiset of colors at iteration d−1 of its neighbors, which by
induction is the d−1-pattern of the neighbors of v. To conclude, we use Theorem 1 from (25) which
shows that GNNs are constant on the colors of WL, hence also constant on the d-patterns.

To prove Thm. 3.3 we will first need to following claim from (40) about the memorization power of
ReLU networks:

Theorem B.1. Let {xi, yi}Ni=1 ∈ Rd × R such that all the xi are distinct and yi ∈ [−1, 1] for all i.
Then there exists a 3-layer fully connected ReLU neural network f : Rd → R with width 2

√
N such

that f(xi) = yi for every i.

We will also need the following lemma which will be used in the construction of each layer of the
1-GNN:

Lemma B.2. Let N ∈ N and f : N → R be a function defined by f(n) = w>2 σ(w1n − b) where
w1,w2,b ∈ RN , and σ is the ReLU function. Then for every y1, . . . , yN ∈ R there exists w1,w2,b
such that f(n) = yn for n ≤ N and f(n) = (n−N + 1)yN − (n−N)yN−1 for n > N .

Proof. Define w1 =

1
...
1

, b =

0
1
...

N − 1

. Let ai be the i-th coordinate of w2, we will define

ai recursively in the following way: Let a1 = y1, suppose we defined a1, . . . , ai−1, then define
ai = yi − 2ai−1 − · · · − ia1. Now we have for every n ≤ N :

f(n) = w>2 σ(w1n− b) = na1 + (n− 1)a2 + · · ·+ an = yn .

13

Under review as a conference paper at ICLR 2021

For n > N we can write n = N + k for k ≥ 1, then we have:

f(n) = w>2 σ(w1(N + k)− b) = (N + k)a1 + (N + k − 1)a2 + · · ·+ (k + 1)aN

= yN + k(a1 + a2 + · · ·+ aN) = yN + k(yN − aN−1 − 2aN−2 − · · · − (N − 1)a1)

= (k + 1)yN − kyN−1

Now we are ready to prove the main theorem:

Proof of Thm. 3.3. We assume w.l.o.g that at the first iteration each node i is represented as a one-
hot vector h(0)

i of dimension |C|, with its corresponding node feature. Otherwise, since there are
|C| node features we can use one GNN layer that ignores all neighbors and only represent each node
as a one-hot vector. We construct the first d layers of the 1-GNN F by induction on d. Denote by
ai = |C| ·

(
N i +N i−1) the dimension of the i-th layer of the GNN for 1 ≤ i ≤ d, and a0 = |C|.

The mapping has two parts, one takes the neighbors information and maps it into a feature
representing the multiset of d-patterns, the other part is simply the identity saving information
regarding the d-pattern of the node itself.

The d layer structure is

h(d)
v = U (d+1)σ

W (d)
2 h(d−1)

v +
∑

u∈N (v)

W
(d)
1 h(d−1)

u − b(d)

We set W

(d)
2 = [0, I]T , W

(d)
1 = [W̃

(d)T
1 , 0]T and U (d+1) = [Ũ (d+1)T , 0]T with

W̃
(d)
1 ∈ RNad−1×ad−1 and Ũ (d+1) ∈ RNad−1×Nad−1 . For W̃ (d)

1 we set w
(1)
i , its i-th row,

to be equal to en where n =
⌈
i
N

⌉
. Let b(1)i be the i-th coordinate of b(d), be equal to

i − 1 (mod N) for i ≤ N · ad−1 and zero otherwise. What this does for the first ad−1 elements
of W (d)

2 h
(d)
v +

∑
u∈N (v)W

(d)
1 h

(d)
u is that each dimension i hold the number of neighbors with

a specific (d-1)-pattern. We then replicate this vector N times, and for each replica we subtract a
different bias integer ranging from 0 to N − 1. To that output we concatenate the original h(d−1)

v

Next we construct Ũ (d+1) ∈ RNad−1×Nad−1 in the following way: Let u(d+1)
i be its i-th row, and

u
(d+1)
i,j its j-th coordinate. We set u(d+1)

i,j = 0 for every j with j 6=
⌈
i
N

⌉
and the restN coordinates to

be equal to the vector w2 from Lemma B.2 with labels y` = 0 for ` ∈ {1, . . . , N}\{(i mod N)+1}
and y` = 1 for ` = (i mod N) + 1.

Using the above construction we encoded the output on node v of the first layer of F as a vector:

This encoding is such that the i-th coordinate of h(d+1)
v for 1 ≤ i ≤ N · ad−1 is equal to 1 iff node

v have (i mod N) + 1 neighbors with node feature
⌈
i
N

⌉
∈ {1, . . . , |C|}. The last ad−1 rows are a

copy of h(d−1)
v .

Construction of the suffix. Next, we construct the last two layers. First we note that for a node
v with d-pattern p there is a unique vector zp such that the output of the 1-GNN on node v, h(d)

v ,
is equal to zp. From our previous construction one can reconstruct exactly the (d-1)-pattern of
each node, and the exact number of neighbors with each (d-1)-pattern and therefore can recover the
d-pattern correctly from the h

(d)
v embedding.

Finally, we use Thm. B.1 to construct the 3-layer fully connected neural network with width at most
2
√
|P | such that for every pattern pi ∈ P with corresponding unique representation zpi and label yi,

the output of the network on zpi is equal to yi. We construct the last two layers of the 1-GNN such
that W (d+1)

1 ,W
(d)
1 = 0, and W (d+1)

2 ,b(d+1),W
(d+2)
2 ,b(d+2),W (d+3) are the matrices produced

from Thm. B.1. Note that W (d+3) is the linear output layer constructed from the theorem, thus the

14

Under review as a conference paper at ICLR 2021

final output of the 1-GNN for node v is W (d+3) · h(d+2)
v , where h(d+2)

v is the output after d + 2
layers.

Proof of Corollary 3.4. By the assumption, the output of the task is determined by the d-patterns of
the nodes. For each node with pattern pi let yi be the output of the node prediction task. Define

A = arg max
A′:Pd−pat

1 (A′)<ε
P d−pat2 (A′) (2)

By Thm. 3.3 there exists a 1-GNN such that for any d-pattern pi ∈ A gives a wrong label and for
every pattern outside A, pj ∈ Ac gives the correct label. Note that we can use Thm. 3.3 since both
A and Ac are finite, because we assumed that distributions on the graphs have finite supports. The
0-1 loss for small and large graphs is exactly P d−pat1 (A) and P d−pat2 (A) respectively.

Proof of Corollary 3.6. Let D1 and D2 be all the d-patterns that appear in graphs from P1 and P2

respectively. By the assumption that the task is solvable by a d-layer GNN, and the same reasoning
as in the proof of Corollary 3.4, the output of the GNN which solves the task depends only on the
d-patterns. Thus, by Thm. 3.3 there exists a d+2-layer GNN that perfectly solves the task on graphs
with patterns from D1 and in addition sends every pattern from D2 to zero. If zero is not a solution
of the task for any graph from P2 we are finished. Otherwise, if zero is a solution of a graph from P2

but not for a graph from P1 we can add an MLP after the summation readout function that outputs
the identity on every input except zero, for which it outputs a value which is not a solution for the
task for any graph in P2. Note that this is possible since P2 has finite support. In the case that zero
is also a solution of the task on a graph from P1, let n1, . . . , n` be the sizes of graphs from P2. We
pick some y ∈ R such that y · ni is not an output of any graph from P1 and P2, there is such y
since the distributions have a finite support. Now, we can change the proof so that the output of the
GNN on all patterns from D2 is equal to y. Note that now the output of any graph from P2 after
the summation readout function is not the correct output. In case there is an MLP after the readout
function, the proof can be readily changed to account for that.

Proof or Corollary 3.5. Let h be a 1-GNN that have 0 loss on P1. In particular, for any pattern
in P d−pat1 , h successfully predict the correct label. By the assumption, the patterns that appear in
P d−pat2 are contained in the pattern that appear in P d−pat1 . Using Thm. 3.2, that any 1-GNN is
constant on d-patterns, we get that h will also succeed on the pattern from P d−pat2 , hence will have
0 loss on P2.

C ADDITIONAL EXPERIMENTS FROM SEC. 3.4

First, we consider the max-clique problem. The goal of this problem is given a graph, to output the
size of the maximal clique. This is in general an NP-hard problem, hence a constant depth GNN
will not be able to solve it for graphs of all sizes. For this task we sampled both the train and test
graphs from a geometrical distribution defined as follows: given a number of nodes n and radius ρ
we draw n points uniformly in [0, 1]2, each point correspond to a node in the graph, and two nodes
are connected if their corresponding points have a distance less than ρ. We further analyzed the
effects of how the network depth and architecture affect size generalization.

Table 2 presents the test loss on the max-clique problem. Deeper networks are substantially more
stricken due to the domain shift. If the test domain has a similar pattern distribution, increasing the
neural network depth from one layer to three layers results in a small decrement of at most 20%
to the loss. However, if the pattern distribution is different than the train pattern distribution, such
change may increase the loss by more than 2.5×. We also show that the problem is consistent in
both 1-GNN and GIN architectures.

15

Under review as a conference paper at ICLR 2021

1-GNN GIN
ρtrain/ρtest 1-layer 2-layers 3-layers 1-layer 2-layers 3-layers

1 22.5± 3.2 41.6± 7.9 50.7± 70.4 25.9± 3.6 60.6± 15.6 134.2± 217.1√
2 9.6± 0.4 10.8± 0.6 11.7± 1.2 9.2± 0.5 10.5± 0.3 11.3± 0.5

Table 2: The difference is the predicted max clique size under size generalization domain shift. The
train domain graphs were constructed by drawing n ∈ [40, 50] points uniformly in the unit square,
and connecting two point if their distance is less than ρtrain = 0.3. The test set domain graphs
contain n = 100 nodes, effectively increasing their density by 2. We tested with two different
values of ρtrain/ρtest, the ratio between the train and test connectivity radius. A proper scaling that
keeps the expected degree of each node is ρ =

√
2. Here, although proper scaling does not help

solve the problem completely, it does improve performance.

Node regression Graph regression
p Student - Teacher Degree Student - Teacher Edge count

1-GNN 0.3 187± 392 11.9± 19.4 60.4± 91.8 (1.2± 1.6) · 103

0.15 (3.7 ± 5.1) · 10−2 (7.2 ± 3.7) · 10−5 (9 ± 10) · 10−4 (6.9 ± 3.3) · 10−3

GIN 0.3 125± 370 2.57± 2.88 33.8± 84.9 284± 286

0.15 1.35± 4.5 (2.2± 0.3) · 10−2 (5± 17) · 10−2 (9.1± 7.1) · 10−3

Table 3: Comparing performance on different local distributions (a) A student-teacher graph re-
gression task; (b) A graph regression task, where the graph label is the number of edges; (c) A
student-teacher node regression task; (d) A node regression task, where the node label is its degree.
In the edge count/degree tasks the loss is the mean difference from the ground-truths, divided by the
average degree/number of edges. In the student-teacher tasks the loss is the mean L2 loss between
the teacher’s value and the student’s prediction, divided by the averaged student’s prediction. Both
the student and teacher share the same 3-layer architecture

Next, we tested on the student-teacher task, on both graph and node levels, on the degree prediction
task of each node, and the task of predicting the number of edges in the graph. The goal of these
experiments is to show that the size generalization problem persists on different tasks, different
architectures, and its intensity is increased for deeper GNN. In all the experiments we draw the
graphs from G(n, p) distribution, wherein the test set n is drawn uniformly between 40 and 50, and
p = 0.3, and in the test set n = 100 and p is either 0.3 or 0.15. We note that when p = 0.15, the
average degree of the test graph is equal to (approximately) the average degree of the train graph,
while when p = 0.3 it is twice as large. We would expect that the model will generalize better when
the average degree in the train and test set is similar, because then their d-patterns will also be more
similar.

Table 3 compares the performance of these tasks when changing the graph size of the test data. We
tested the performance with normalized test loss, where we normalized the output by the average
output of the test set. This metric allows us to estimate the percentage of mistakes from the average
output.

D SSL TASK ON WL TREE

First, we will need the following definition which constructs a tree out of the d-pattern introduced in
the previous section. This tree enables us to extract certain properties for each node which can, later
on, be learned using a GNN. This definition is similar to the definition of ”unrolled tree” from (24).

Definition D.1 (d-pattern tree). Let G = (V,E) a graph, C a finite set of node features, where
each v ∈ V have a corresponding feature cv , and d ≥ 0. For a node v ∈ V , its d-pattern tree
T

(d)
v = (V

(d)
v , E

(d)
v) is directed tree where each node corresponds to some node in G. It is defined

recursively in the following way: For d = 0, V (0)
v = u(0,v), and E(0)

v = ∅. Suppose we defined

T
(d−1)
v , and let Ṽ (d−1)

v be all the leaf nodes in V (d−1)
v (i.e. nodes without incoming edges). We

define:

16

Under review as a conference paper at ICLR 2021

V (d)
v = V (d−1)

v ∪
{
u(d,v′) : v′ ∈ N (v′′), u′(d−1,v′′) ∈ Ṽ

(d−1)
v

}
E(d)
v = E(d−1)

v ∪
{

(u(d,v′), u
′
(d−1,v′′)) : v′ ∈ N (v′′), u′(d−1,v′′) ∈ Ṽ

(d−1)
v

}
and for every node u(d,v′) ∈ V

(d)
v , its node feature is cv′ - the node feature of v′

The main advantage of pattern trees is that they encode all the information that a GNN can produce
for a given node by running the same GNN on the pattern tree.

This tree corresponds to the local patterns in the following way: the d-pattern tree of a node can be
seen as a multiset of the children of the root, and each child is a multiset of its children, etc. This
completely describes the d-pattern of a node. In other words, there is a one-to-one correspondence
between d-patterns and pattern trees of depth d. Thus, a GNN that successfully represents the pattern
trees of the target distribution will also successfully represent the d-patterns of the target distribution.

Using the d-pattern tree we construct a simple regression SSL task where its goal is for each node
to count the number of nodes in each layer of its d-pattern tree. This is a simple descriptor of the
tree, which although loses some information about connectivity, does hold information about the
structure of the layers.

For example, in Fig. 3 the descriptor for the tree would be that the root (zero) layer has a single black
node, the first layer has two yellow nodes, the second layer has two yellow, two gray, and two black
nodes, and the third layer has ten yellow, two black and two gray nodes.

E TRAINING PROCEDURE

In this section we explain in details the training procedure used in the experiments of Sec. 4. Let
XMain and XSSL be two labeled datasets, the first contains the labeled examples for the main task
from the source distribution, and the second contains examples labeled by the SSL task from both
the source and target distributions. Let ` : R× R→ R be a loss function, in all our experiments we
use cross entropy loss for classification tasks and squared loss for regression tasks. We construct the
following models:

(1) fGNN is a GNN feature extractor. Its input is a graph and its output is a feature vector for each
node in the graph. (2) hMain is a head (a small neural network) for the main task. Its inputs are
the node feature and it outputs a prediction (for graph prediction tasks this head contains a global
pooling layer). (3) hSSL is the head for the SSL task. Its inputs are node features, and it outputs a
prediction for each node of the graph, depending on the specific SSL used.

Pretraining. Here, there are two phases for the learning procedure. In the first phase, at each
iteration we sample a batch (x1,y1) from XSSL, and train ny minimizing the objective: `(hSSL ◦
fGNN (x1),y1). In this phase both hSSL and fGNN are trained. In the second phase, at each
iteration we sample (x2,y2) from Xmain and train on the loss `(hMain ◦ fGNN (x2),y2), where
we only train the head hMain, while the weights of fGNN are fixed.

Multitask training. Here we train all the functions at the same time. At each iteration we sample a
batch (x1,y1) from XSSL and a batch (x2,y2) from XMain and train by minimizing the objective:

α`(hSSL ◦ fGNN (x1),y1) + (1− α)`(hMain ◦ fGNN (x2),y2).

Here α ∈ [0, 1] is the weight for the SSL task, in all our experiments we used α = 1/2.

For an illustration of the training procedures see Fig. 5. These procedures are common practices for
training with SSL tasks (see e.g. (39)).

We additionally use a semi-supervised setup in which we are given a dataset XFS of few-shot
examples from the target distribution with their correct label. In both training procedures, at each
iteration we sample a batch (x3,y3) from XFS and add a loss term β`(hMain ◦ fGNN (x3),y)
where β ∈ [0, 1] is the weight of the few-shot loss. In pretraining this term is only added to the

17

Under review as a conference paper at ICLR 2021

Figure 5: Two training procedures for learning with SSL tasks. Left: Learning with pretraining:
Here, a GNN is trained on the SSL task with a specific SSL head. After training, the weights of the
GNN are fixed, and only the main head is trained on the main task. Right: Multitask learning: Here,
there is a shared GNN and two separate heads, one for the SSL task and one for the main task. The
GNN and both heads are trained in simultaneously.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
p of test G(n,p)

2

1

0

1

2

3

4

Av
er

ag
e

lo
ss

 (l
og

 sc
al

e)
Vanilla
Pattern tree

Figure 6: Teacher-student setup with a 3-layer GNN. Training is on graphs drawn i.i.d from G(n, p)
with n ∈ {40, ..., 50} uniformly and p = 0.3. Testing is done on graphs with n = 100 and p vary (x-
axis). The ”Pattern tree” plot represent training with our pattern tree SSL task, using the pretraining
setup.

second phase, with weight 1/2 and adjust the weight of the main task to 1/2 as well (equal weight
to the main task). In the multitask setup, we add this term with a weight 1/3 and adjust the weights
of the two other losses to 1/3 as well, so all the losses have the same weight.

F MORE EXPERIMENTS FROM SEC. 4

For synthetic datasets, we used the setting of Section 3.4. Source graphs were generated withG(n, p)
with n sampled uniformly in [40, 50] and p = 0.3. Target graphs were sampled from G(n, p) with
n = 100 and p = 0.3.

Table 4 depicts the results of using the d-patterns SSL tasks, in addition to using the semi-supervised
setting. It can be seen that adding the d-patterns SSL task significantly improves the performance
on the teacher-student task, although it does not completely solve it. We also observe that adding
labeled examples from the target domain significantly improves the performance of all tasks. Note
that adding even a single example significantly improves performance. In all the experiments, the
network was successful at learning the task on the source domain with less than 0.15 averaged error,
and in most cases much less.

Fig. 6 depicts a side-by-side plot of the 3-layer case of Fig. 2 (left), where training is done on graphs
sampled from G(n, p) with 40 to 50 nodes and p = 0.3, and testing on graphs with 100 nodes and p
varies. We compare Vanilla training, and our pattern tree SSL task with pretraining. It is clear that
for all values of p our SSL task improves over vanilla training.

F.1 DATASETS STATISTICS

Table F.1 shows the statistics of the datasets that were used in the paper. In particular the table
presents the split that was used in the experiments, we trained on graphs with sizes smaller or equal
to the 50-th percentile and tested on graphs with sizes larger or equal to the 90-th percentile. In all

18

Under review as a conference paper at ICLR 2021

TASKS # TARGET EDGE DEGREE TEACHER TEACHER STUDENT
SAMPLES COUNT STUDENT PER NODE

VANILLA

0 1318± 1398 12.22± 15.35 43.1± 38.1 30.47± 64.85
1 0.46± 0.68 0.01± 0.01 0.13± 0.22 0.06± 0.15
5 0.06± 0.07 <1E-3 0.08± 0.28 0.02± 0.05
10 0.03± 0.03 <1E-3 0.01± 0.01 0.01± 0.03

d-PATTERN PT

0 1293± 918 53.24± 60.26 2.6± 3.96 0.39± 0.9
1 1.7± 1.05 0.07± 0.04 <1E-3 <1E-4
5 0.09± 0.19 0.02± 0.005 <1E-3 <1E-4
10 0.05± 0.05 0.02± 0.01 <1E-3 <1E-4

Table 4: Test results est of synthetic datasets. Values are the loss divided by the mean over the test
set of target output.

Table 5: Dataset statistics.
NCI1 NCI109 DD

all Smallest 50% Largest 10% all Smallest 50% Largest 10% all Smallest 50% Largest 10%
Class A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37% 58.65% 35.47% 79.66%
Class B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62% 41.34% 64.52% 20.33%
Num of graphs 4110 2157 412 4127 2079 421 1178 592 118
Avg graph size 29 20 61 29 20 61 284 144 746

Twitch egos Deezer egos IMDB-binary
all Smallest 50% Largest 10% all Smallest 50% Largest 10% all Smallest 50% Largest 10%

Class A 46.23% 39.05% 58.07% 56.80% 44.78% 64.97% 50.00% 48.98% 55.55%
Class B 53.76% 60.94% 41.92% 43.19% 55.21% 35.02% 50.00% 51.01% 44.44%
Num of graphs 127094 65016 14746 9629 4894 968 1000 543 108
Avg graph size 29 20 48 23 13 68 19 13 41

PROTEINS
all Smallest 50% Largest 10%

Class A 59.56% 41.97% 90.17%
Class B 40.43% 58.02% 9.82%
Num of graphs 1113 567 112
Avg graph size 39 15 138

the datasets there is a significant difference between the graph sizes in the train and test sets, and in
some datasets there is also a difference between the distribution of the output class in the small and
large graphs.

F.2 DEGREE DISCREPANCY CORRESPONDS TO SIZE DISCREPANCY

In this subsection we calculated the degree histogram of two of the real datasets that we tested on:
IMDB-Binary and D & D. For the degree histogram see Fig. 7. Recall the the degree is the 1-pattern
of a node. It is clear from the plots that for the IMDB dataset there is a difference in the distribution
of degrees between small and large graphs, while in D & D the distributions look almost the same.
Correspondingly, In our experiments the pattern tree SSL task significantly improved performance
on the IMDB dataset, while not improving performance on the D& D dataset. This gives further
evidence that a discrepancy between the d-patterns leads to bad generalization, and that correctly
representing the patterns of the test set can improve performance. While in this simple experiment
we only considered 1-patterns it is worth mentioning that the discrepancy is can only be accentuated
when considering deeper patterns.

19

Under review as a conference paper at ICLR 2021

5 10 15 20 25 30
Node Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pe
rc

en
ta

ge

IMDB-BINARY
large graphs
small graphs

2 4 6 8 10 12 14
Node Degree

0.00

0.05

0.10

0.15

0.20

Pe
rc

en
ta

ge

DD
large graphs
small graphs

Figure 7: Histogram in percentage of degrees of graphs. We used the 10% smallest and largest
graphs in each dataset.

20

	Introduction
	Related work
	The size generalization problem
	Size generalization in Single-layer GNNs
	d-patterns
	GNNs may overfit d-patterns
	Empirical Validation

	Towards improving size-generalization
	Experiments

	Conclusion and Discussion
	Preliminaries
	Graph neural networks
	The Weisfeiler-Lehman test
	Constant depth vs. adaptive depth tasks

	Proofs from Sec. 3
	Additional experiments from Sec. 3.4
	SSL task on WL tree
	Training Procedure
	More experiments from Sec. 4
	Datasets statistics
	Degree Discrepancy Corresponds to Size Discrepancy

