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ABSTRACT

Predict-and-search is increasingly becoming the predominant framework for solv-
ing Mixed-Integer Linear Programming (MILP) problems through the applica-
tion of ML algorithms. Traditionally, MILP problems are represented as bipartite
graphs, wherein nodes and edges encapsulate critical information pertaining to
the objectives and constraints. However, existing ML approaches have primarily
concentrated on extracting features from nodes while largely ignoring those as-
sociated with edges. To bridge this gap, we propose a novel framework named
SHARP which leverages a graph neural network SKEGAT that integrates both
node and edge features. Furthermore, we design an adaptive Regret-Greedy algo-
rithm to break the barriers of the problem scale and hand-crafted tuning. Experi-
ments across a variety of combinatorial optimization problems show that SHARP
surpasses current SOTA algorithms, delivering notable enhancements in both so-
lution accuracy and computational efficiency.

1 INTRODUCTION

Mixed Integer Linear Programming (MILP) has seen a surge of interest in many practical applica-
tions spanning from production planning (Pochet & Wolsey, 2006; Wu et al., 2013), supply chain
scheduling (Sawik, 2011), and resource allocation (Liu & Fan, 2018; Watson & Woodruff, 2011).
As a discrete extension of linear programming, MILP often faces both integer and continuous vari-
ables, thereby leading to the NP-hard complexity. As a well-established topic, the significant suc-
cesses of traditional algorithms over the past decades, such as branch-and-bound (Land & Doig,
2010; 1960) and cutting plane algorithm (Gomory, 1960), have made it possible to near-optimal
solutions for MILP. Besides, these algorithms consist of the core of commercial solvers, such as
Gurobi (Gurobi Optimization, 2022). However, these algorithms adhere to an iterative paradigm
which heavily lacks parallelism, often making them unsuitable for handling large-scale problems in
industrial scenarios.

Recently, there has been significant interest in machine learning (ML) algorithms as a viable alter-
native to solve MILP in a data-centric fashion. The potential advantage lies in developing faster
algorithms in practice by exploiting typical patterns found through the analysis of large training in-
stances. They could automatically discover variable assignment strategies to speed up the similar
instance from the same distribution. Specifically, the attempts by several well-studied algorithms to
solve MILPs are shifting towards two major categories: the former involves ML-based algorithms
learning branch and bound strategies for exact solving, while the latter adopts ML-based methods
to learn heuristic rules for approximate solving. We will discuss these methods respectively in Sec-
tion A.1 and Section A.2 in detail.

Most notably, the pioneering work in approximate solving involves the Neural Diving approach
(Nair et al., 2020), which formulates the MILP problem as a bipartite graph and treats the problem
solving as the prediction of integer variable assignments. However, previous studies have high-
lighted challenges associated with insufficient representation for MILP problems and the inaccuracy
of a single prediction from the model. To address the issue of inadequate representation, numer-
ous strategies have been employed to compensate for this, such as generating higher-quality initial
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solutions (Nair et al., 2020), enhancing representational capacity through additional modules (Nair
et al., 2020), and adopting more complicated models like SelectiveNet (Geifman & El-Yaniv, 2019).
To tackle the issue of inaccurate model predictions, the post-searching process is applied after the
Neural Diving method. For instance, a confidence threshold is used to control which variables to
assign. Building on the aforementioned successes, the Predict-and-Search framework (Han et al.,
2022) is proposed to consider feasibility by introducing a trust-region-like algorithm that allows
the algorithms to change certain fixed variables. However, the bipartite graph representation of the
MILP contains rich information about constraint coefficients and objective function coefficients,
which can potentially compromise solution quality. Previous works draws much attention on the
node representation while ignoring the edge representation. Additionally, algorithms that directly
predict variable assignments often struggle to satisfy the constraints, whereas most post-searching
algorithms rely on the specific structure of the problem to determine the neighborhood search range,
which limits their applicability beyond the initial designed scope and requires hand-crafted parame-
ter tuning.

To tackle above challenges, We propose a nevel framework named SHARP (Sinkhorn-regularized
Edge Attention with Adaptive Regret-based Procedure). In terms of insufficient representation chal-
lenge, we innovatively integrate EGAT (Gong & Cheng, 2019) with probability distribution learning
to provide a finer-grained representation of nodes and edges. Besides, we use the Sinkhorn al-
gorithm (Sinkhorn & Knopp, 1967) for feature normalization, which accelerates computation and
stabilizes the training process. In terms of prediction inaccuracy challenge, we propose a confidence
threshold-based greedy regret search method. Specifically, we fix variables greedily on the basis
of the variable assignment probability in proportion, and then allow for the adaptation of the last
variable assignment in a flexible manner. This strategy not only enhances solution feasibility and
improves solving accuracy but also captures subtle differences in problem structures, demonstrating
robust generalization capabilities.

We conducted comprehensive experiments on Combinatorial Auction (CA) and Item Placement (IP)
problems, evaluating SHARP against other methods using three metrics: Primal Gap (PG), Survival
Rate (SR), and Primal Integral (PI).

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to propose the EGAT with Sinkhorn normal-
ization, which more accurately captures node and edge information, thereby enhancing the
expressive power of the model and accelerating training while improving learning stability.

• Our proposed adaptive variable assignment strategy enhances solution feasibility and over-
comes the limitations of previous work that are bound by scale.

• The SHARP respectively achieves average 24.88% and 5.86% performance improvements
to the modern solvers the Gurobi and SCIP on primal gaps, and exceed the performance of
the SOTA ML-based algorithm by 17.19%.

2 PRELIMINARIES

2.1 MIXED INTEGER LINEAR PROGRAMMING

A mixed integer linear programming (MILP) problem is a type of the combinatorial optimization
problem. In these problems, some or all of the variables are constrained to take integer values.
Formally, a mixed integer linear programming problem M can be defined as

min c⊤x s.t. Ax ≤ b and x ∈ {0, 1}q × Rn−q, (1)

where x = (x1, . . . ,xn)
⊤ represents the q binary variables and the n − q continuous variables to

be optimized. The vector c ∈ Rn is the objective coefficient vector, and A ∈ Rm×n and b ∈ Rm

specify the m linear constraints. A solution x is called feasible if and only if it satisfies all the
constraints. In this paper, we focus on the aforementioned mixed binary form because, according
to the theory introduced by (Nair et al., 2020), mixed integer linear programming involving general
integers can be reduced to the above form.
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2.2 BIPARTITE GRAPH REPRESENTATION OF MILP

The bipartite graph representation of mixed integer linear programming was first proposed by Gasse
et al. In 2019, Gasse implemented a lossless bipartite graph representation of mixed integer linear
programming as an input for neural embedding networks, as shown in Figure 1. The n decision
variables in mixed integer linear programming can be represented as the set of right-side variable
nodes in the bipartite graph, while the m linear constraints can be represented as the set of left-side
constraint nodes. An edge connecting variable node i and constraint node j indicates the presence
of the corresponding variable i in constraint j, with the edge weight being the coefficient of variable
i in constraint j.

Figure 1: The bipartite graph representation of MILP.

2.3 EDGE-ENHANCED GRAPH ATTENTION NETWORK (EGAT)

(Gong & Cheng, 2019) proposed EGAT, which introduces an attention mechanism on graph neigh-
borhoods and fully exploits edge information. This approach is beneficial for learning neural em-
beddings and model-based initial solution predictions.

Before going into the EGAT, we recall that doubly stochastic normalization. Assuming Ê as the
original edge features, the generation process of doubly stochastic normalized features Ê can be
described as

Ẽij =
Êij∑N
k=1 Êik

,Eij =

N∑
k=1

ẼikẼjk∑N
v=1 Ẽvk

, (2)

where all elements in Ê must be non-negative. It can be easily verified that the normalized edge
feature vector E satisfies the following properties:

Furthermore, for an EGAT layer, it can be expressed as follows:

X l = σ[αl(X l−1,El−1)g(X l−1)], (3)

where σ is a non-linear activation function; α is an attention function that returns an N ×N matrix;
W l is a linear transformation; g is a transformation that maps node features from the input space to
the output space, typically using linear mapping.

The attention function α can be represented in the form of equation

α̂l
ij = exp

{
L
(
aT

[
X l−1

i. W l∥X l−1
j. W l

])}
El−1

ij ,

αl = DSN
(
α̂l
)
,

(4)

where || represents the tensor concatenation operation; DSN is the double stochastic normalization
operator described in Equation (2); L represents the LeakyReLU activation function; W l is the same
mapping as in equation Equation (3).
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2.4 SINKHORN ALGORITHM

The Sinkhorn algorithm is commonly used to compute doubly stochastic matrices, which are non-
negative square matrices where both rows and columns sum to 1. (Sinkhorn & Knopp, 1967) stated
that a simple iterative method to approach the double stochastic matrix is to alternately rescale all
rows and all columns of A to sum to 1. Sinkhorn and Knopp presented this algorithm and analyzed
its convergence.

The Sinkhorn algorithm plays a crucial role in various fields such as machine learning, computer
vision, and natural language processing, and is frequently applied in graph matching (Wang et al.,
2019), image registration (Sander et al., 2022), and optimal transport problems (Groueix et al.,
2019). In terms of its functionality for computing doubly stochastic matrices, the Sinkhorn algorithm
can be used to accelerate matrix calculations and improve numerical stability.

3 METHOD

In this section, we propose a solution framework called SHARP in order to address the problem
mentioned in Section 1, which is based on Edge-enhanced Graph Attention Network (EGAT) and
mixed-integer programming solver. Subsequently, we conducts a comprehensive computational
study comparing this framework with mainstream solvers and existing learning-enhanced methods
to demonstrate the superiority of the SHARP framework, which gives an overview in Fig 2.
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Figure 2: Our framework initially employs a Multi-layer Edge-enhanced Graph Attention Network
to encode MILP into embeddings. Subsequently, we utilize Distribution Learning to map each
variables into marginal probability distributions. These distributions are then employed in the final
stage, where we harness an adaptive Confidence Threshold-Based Regret Greedy Search algorithm
to iteratively search for an approximately optimal solution.

3.1 SINKHORN NORMALIZATION FOR BIPARTITE GRAPH DOUBLY STOCHASTIC EDGE
NORMALIZATION

In EGAT, double random edge normalization is an important component. However, according to
Equation (2), it requires E to be an N×N edge matrix, which poses a challenge for bipartite graphs:
for bipartite graphs, the typical edge matrix size is N ×M , where N and M are the sizes of the
left and right vertex sets, respectively. This makes it impossible to perform calculations according
to Equation (2) using the conventional bipartite graph edge matrix. An improved approach is to
construct the bipartite graph edge matrix in the form of a general undirected graph, i.e., with an edge
matrix size of (N + M) × (N + M), which can solve the problem of being unable to calculate
according to Equation (2). However, this brings another problem: adopting this approach would
double the computational cost in terms of both time and space.

To address this problem, we propose introducing the Sinkhorn algorithm, commonly used in fields
such as computer vision, to calculate the double random edge normalization for bipartite graphs.
Formally, Equation (4) are replaced with the following

α̂l
ij = L(aT [X l−1

i. W l∥X l−1
j. W l])El−1

ij ,

αl = Sinkhorn(αl),
(5)
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The Sinkhorn(x) function internally executes the Sinkhorn algorithm, as shown in Algorithm 1.
This approach not only significantly reduces the time complexity from O((N +M)3) to O(kNM)
but also limits the space complexity bottleneck to the size of the edge matrix. Notably, following
the application of the Sinkhorn algorithm in graph matching, to handle cases where the two sets of
nodes in the bipartite graph to be matched have different numbers of nodes, the common practice is
to add padding rows to construct a square matrix. After row and column normalization, the padding
rows or columns will be discarded.

The specific process of the Sinkhorn algorithm is shown in Algorithm 1.

Algorithm 1 Sinkhorn Algorithm
Input: Matrix M of size n1 × n2

Parameter: Iteration count k, temperature parameter τ
Output: Doubly stochastic matrix S(k)

1: S
(0)
i,j = exp(

Mi,j

τ )
2: for i = 1 to k do
3: S′(k) = S(k−1) ⊘ (1n1

1⊤
n2
· S(k−1))

4: S(k) = S′(k) ⊘ (S′(k) · 1n1
1⊤
n2
)

5: end for
6: return S(k)

where ⊘ denotes element-wise division, and 1n represents a column vector of length n with all
elements equal to 1.

3.2 SKEGAT: EGAT WITH SINKHORN NORMALIZATION

Inspired by Ye et al. (2024), we propose a multi-layer half-convolutional Sinkhorn-normalized edge-
enhanced graph attention network. This network combines the advantages of graph convolutional
networks with half-convolutions (Gasse et al., 2019) and edge-enhanced graph attention networks
(see 2.3), thereby further improving the utilization of edge information. Formally, based on Equa-
tion (2) and Equation (5), let E represents the edges in a bipartite graph. The k-layer edge-enhanced
graph attention network with a multi-layer half-convolutional structure can be expressed as

αk
xiδj

= Sinkhorn(L(αT [Whk−1
xi
∥Whk−1

δj
])Ek−1

xiδj
),

hk
xi

= σ(αk(hk−1
xi

,Ek−1)gk(hk−1
xi

)),

hk
δj

= σ(αk(hk
δj
,Ek−1)gk(hk−1

δj
)),

Ek = αk,

(6)

where hk
δ and hk

x represent the hidden state vectors of constraint nodes and variable nodes in the
k-th layer, respectively; αk

xiδj
denotes the attention coefficient of the edge connecting variable node

xi and constraint node δj in the k-th layer; Ek represents the k-th layer; σ is a non-linear activation
function; gk is a transformation that maps node features from the input space to the output space,
typically implemented as a linear transformation.

3.3 DISTRIBUTION LEARNING

We use a supervised learning to predict the conditional distribution for MILP instances, following
the approach of previous work (Han et al., 2022; Nair et al., 2020). Given a set of MILP instances
M for training, we define the dataset D = {(M,SM ) |M ∈M}, where SM is the set of solutions
for instance M . Formally, let p̂i ≡ pθ(xi = 1;M) denote the predicted probability that the i-th
variable is 1 in instance M , parameterized by θ. We define the loss function L(θ) as:

L(θ) =
∑

M∈M

nM∑
i=1

yM
i log p̂M

i + (1− yM
i ) log(1− p̂M

i ),

5
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where nM is the number of variables in instance M . The target probability yM
i is defined as:

yM
i ≡

∑
j∈IM

i

exp
(
−cM⊤

xM,j
)

∑
x̃∈SM exp

(
−cM⊤

x̃
) ,

where cM denotes the objective coefficient vector for instance M , xM,j denotes the j-th solution
in SM , and IMi ⊆ {1, 2, ..., |SM |} denotes the set of indices in SM where the i-th component is 1.
This formulation ensures that yM

i is normalized by the total number of solutions in SM .

3.4 CONFIDENCE THRESHOLD-BASED REGRET GREEDY SEARCH

We introduce a novel confidence threshold-based regret greedy search method that leverages
marginal probabilities as input. The core concept of this approach is to strategically fix the val-
ues of certain variables based on the marginal probabilities generated by a neural network. This
technique effectively reduces the problem sizes, consequently mitigating the exponential time com-
plexity bottleneck inherent in the solver. The comprehensive framework of the proposed method is
illustrated in Algorithm 2.

The theoretical foundation of our approach lies on the premise that in an optimal solution, variables
with a value of 1 should, after neural network processing, exhibit marginal probabilities closer to 1,
and conversely, closer to 0. Leveraging this insight to reduce problem size and accelerate the solving
process, we employ a strategy to force certain binary variables to take specific values.

Assuming we have determined which variables are to be fixed, we formally define the set of variables
to be fixed to 0 as X0, while the set of variables to be fixed to 1 is represented as X1. We define a
function ϕ(x) as follows:

ϕ(x) ≡
{
0, if x ∈ X0,

1, if x ∈ X1.
(7)

A naive approach would be to directly subject these variables to the constraint∑
x∈X0∪X1

|ϕ(x)− x| = 0, resulting in the following problem formulation:

min c⊤x,

s.t. Ax ≤ b and x ∈ {0, 1}q × Rn−q,∑
x∈X0∪X1

|ϕ(x)− x| = 0.

However, this approach still has limitations. If there exists a variable x ∈ X0 ∪ X1 such that
ϕ(x) ̸= x∗, i.e., there are variable fixation errors, it will lead to deterioration of the solution or
even infeasibility. Han et al. (2022) observed that there exists a relatively small ∆ > 0 such that∑

x∈X0∪X1
|ϕ(x)− x ∗ | ≤ ∆. To utilize this property, Han et al. (2022) proposed a trust-region-

based search method. However, for different problem sizes and structures, this trust-region-based
search method lacks generalizability and requires more extensive manual parameter tuning.

Inspired by Yoon (2022), we propose a more generalizable and robust confidence threshold-based
regret greedy search method. In the regret greedy idea, undoing previous operations is also consid-
ered within the scope of the greedy strategy. In this method, we initially fix certain variables using
a greedy approach, while maintaining the flexibility to modify a subset of these fixed variables in
subsequent iterations. Introducing a regret mechanism to fix decision errors makes the search pro-
cess ”softer”. Formally, A regret coefficient 0 < λ < 1 is introduced, allowing λ|X0 ∪X1| variables
to have fixed values different from their corresponding values in the optimal solution during the
variable fixation process.

Formally, we define the set of variable which should be fixed to 0 as X0 = {xi | pθ(xi = 1;M) <
1 − β, 1 ≤ i ≤ q}, and the the set of variable which should be fixed to 1 as X1 = {xi | pθ(xi =

6
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1;M) > β, i = 1, 2, . . . , q}. The original MILP problem should be subject to the following
additional constraint:

∑
x∈X0∪X1

|ϕ(x)− x| ≤ λ|X0 ∪ X1|. (8)

Consider X0 and X1 separately:

∑
x∈X0

x+
∑
x∈X1

(1− x) ≤ λ|X0 ∪ X1| (9)

Consequently, the original MILP problem can be transformed as follows:

min c⊤x,

s.t. Ax ≤ b and x ∈ {0, 1}q × Rn−q,∑
x∈X0

x+
∑
x∈X1

(1− x) ≤ λ|X0 ∪ X1|.

As a result, we proceed to solve the new MILP problem described above.

Algorithm 2 Confidence Threshold-Based Regret Greedy Search Algorithm
Input: MILP instance M , neural network probability distribution prediction result pθ (xi = 1;M).
Parameter: Confidence threshold β, regret coefficient λ.
Output: Solution x of the MILP instance M .

1: M ′ ←M
2: X0 ← ∅
3: X1 ← ∅
4: for i = 1 to q do
5: if pθ (xi = 1;M) < 1− β then
6: X0 ← X0 ∪ xi

7: else if pθ (xi = 1;M) > β then
8: X1 ← X1 ∪ xi

9: end if
10: end for
11: create constraint

∑
x∈X0

x+
∑

x∈X1
(1− x) ≤ λ|X0 ∪ X1| to M ′

12: x = solve(M ′)
13: return x

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET

We evaluate our approach on three MILP benchmark problems: Set Covering (SC), Minimum Ver-
tex Cover (MVC), and one non-graph problem, Combinatorial Auction (CA). For SC, we generate
instances with . For CA, we generate instances with 300 items and 1500 bids . These problem
types were selected as our benchmarks due to their widespread recognition (Gasse et al., 2019; Han
et al., 2022; Ye et al., 2024) and the significant challenges they pose to current off-the-shelf solvers.
Besides, We do not use Maximum Independent Set (MIS) and Workload Balance as our benchmark
problem following Han et al. (2022) since these two problem is too easy for our proposed approach.
The details of the four problems will be provided in Appendix C.

7
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4.1.2 BASELINE

In this paper, we conduct comprehensive computational experiments to evaluate the effectiveness
and efficiency of our proposed SHARP framework. Our experiments compare our method against a
range of established baselines, including 1. traditional MILP solvers such as SCIP and Gurobi, and
2. a state-of-the-art machine learning-based approach, specifically the Predict-and-Search frame-
work proposed by Han et al. (2022).

4.1.3 EVALUATION METRIC

Primal Gap The Primal Gap γ(t) at time t is the relative difference between the optimization ob-
jective value achieved by the algorithm being evaluated at time t and the pre-computed known best
objective value f(x∗) (Berthold, 2006). Formally, it can be expressed as

γ(t) =

1,
if no feasible solution

at time t,
|f(xt)−f(x∗)|

max{|f(xt)|,|f(x∗)|} , otherwise.

Survival Rate The Survival Rate S(t) at time t refers to the proportion of instances where the Primal
Gap is below a specified Primal Gap threshold at time t, among all instances (Sonnerat et al., 2021).

Primal Integral The Primal Integral at time T refers to the integral of the Primal Gap over the
interval [0, T ] at time T (Achterberg et al., 2012). It reflects both the quality and speed of finding
a solution. This metric measures the area under the Primal Gap curve during the solver’s solution
process, which is equivalent to the integral over time of the Primal Gap of the best feasible solution
found so far. Formally, it can be described as

P (T ) =

∫ T

t=0

p(t)dt =

I∑
i=1

γ(ti−1) · (ti − ti−1).

4.2 RESULTS
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(a) Combinatorial Auction (CA)
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Figure 3: Performance comparison across SCIP, Gurobi, PaS and SHARP, where the y-axis indicates
the average relative primal gap based on 50 instances about CA and IP.

Since our method is a Predict and Search strategy similarity to Han et al. (2022), we also utilized
Gurobi and SCIP as the benchmark solvers. Figure 3 exhibits the progress of average gap on 50
instances as the solving process proceeds, and Figure 4 show the progress of survival rate with
specific primal gap threshold on 50 instances when solving MILPs. In Figure 3a and Figure 4a,
we observe that our proposed SHARP outperforms PaS and off-shelf solvers, regardless of whether
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Gurobi or SCIP is used as solver. In Figure 3b and Figure 4b, our , even though our proposed
SHARP surpass PaS and off-shell solver, combined with whether Gurobi or SCIP.
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(a) Combinatorial Auction (CA)
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(b) Item Placement (IP)

Figure 4: Survival Rate of performance comparison across PaS, Sharp, Gurobi and SCIP based on
50 instances about CA and IP.

Besides, we also evaluate SHARP on the primal integral on all datasets across different combinato-
rial optimization problems, which refer to Table 1 in detail. The primal integral in Table 1 is more
smaller more better. Similar to the primal gap to the optimal solution, it also shows the trend that
SHARP achieves powerful results to the SOTA ML-based algorithms and the modern MILP solver
like Gurobi and SCIP.

Table 1: Average Primal Integral on each dataset.

Solver Method CA IP

SCIP
SCIP 1.0351 438.4543
PaS 1.0835 418.1390

SHARP 1.0173 394.5655

Gurobi
Gurobi 0.2934 93.1101

PaS 0.2765 120.5288
SHARP 0.2355 69.6635

4.3 ABLATION STUDY
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Figure 5: Average primal gap slot
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To further instigate the superiority of our proposed SKEGAT in MILP solving, we also conduct ex-
periments against other common GNN. The results are presented in Figure 5, where SHARP+GAT,
SHARP+GCN, and SHARP+SKEGAT represent the performance of our proposed method using
GAT, GCN, and SKEGAT as neural network, respectively.

5 CONCLUSION

This paper introduces SHARP, a novel framework that addresses the limitations of existing ap-
proaches by integrating EGAT with Sinkhorn normalization to enhance the representation of both
nodes and edges within MILP problems. This combination not only provides a richer and more
accurate representation of the problem space but also facilitates faster convergence and improved
stability during the training phase. Furthermore, the proposed adaptive variable assignment strat-
egy, which incorporates a confidence threshold-based greedy regret search method, significantly en-
hances the feasibility of the solutions generated by the model. However, the SHARP still has some
shortcomings, such as further integrating with the pos-search search algorithm to inversely optimize
the parameters. Nevertheless, the SHARP represents a significant step forward in the application of
machine learning techniques to MILP problems.
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David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Finding cuts in the TSP (A
preliminary report), volume 95. Citeseer, 1995.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch. In
International conference on machine learning, pp. 344–353. PMLR, 2018.

Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière, and Olivier
Vincent. Experiments in mixed-integer linear programming. Mathematical programming, 1:76–
94, 1971.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(ZIB), 2006.
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A RELATED WORK

In general, ML-based algorithms typically follow two primary strategies: those that rely on branch
and bound algorithms for exact solutions, and those that use heuristic algorithms for approximate
solutions. Zhang et al. (2023) provides a comprehensive survey of solving MILP via machine learn-
ing.

A.1 BRANCH AND BOUND

As a famous topic in operation research, the branch and bound (BnB) algorithm (Land & Doig, 2010;
1960) aims to iteratively partition the solution space through branching and pruning until an exact
solution is built. These algorithms form the foundation of most modern MIP solvers (Gurobi Opti-
mization, 2022; Bolusani et al., 2024), typically alongside with cutting plane algorithms (Gomory,
1960).

Most ML-based methods focus on locally improving the selection strategies within the BnB algo-
rithm, such as branching variable selection, node selection, and cutting plane selection. These meth-
ods frame the selection strategies as decision-making problems (Khalil et al., 2016; Balcan et al.,
2018) and develop heuristic selection rules by learning from extensive sets of training instances.

Branching variable selection has been drawn much attention due to its significant impact on BnB
performance. There has been developed various branching rules for variable selection, including
strong branching (SB) (Applegate et al., 1995), pseudo-cost (Bénichou et al., 1971), and hybrid
branching (Achterberg & Berthold, 2009). Recent approaches have employed imitation learning
(Ho & Ermon, 2016) to approximate these branching rules. Marcos Alvarez et al. (2014) and Khalil
et al. (2016) learned branching policies by imitating the strong branching rule. To mitigate the
complexity of feature calculation, Gasse et al. (2019) proposed encoding the MILP into a lossless
bipartite graph, which serves as input to a graph convolutional network (GCN) (Kipf & Welling,
2016). Building upon this bipartite graph model, Nair et al. (2020) employed a GCN to encode
MIPs as bipartite graphs and train it to imitate an ADMM-based policy for branching. Gupta et al.
(2020) introduced a hybrid architecture that combines GNN and MLP models. Deviating from the
bipartite representation, Ding et al. (2020) generated a tripartite graph from MIP formulation and
train a GCN for variable solution prediction. Additionally, Zarpellon et al. (2021) proposed a novel
neural network design that incorporates the global BnB tree state.

Compared to the branching variable selection, other strategies receive less attention. He et al. (2014)
employed imitation learning to train both node selection and node pruning policies, while Yilmaz &
Yorke-Smith (2021) focused more on learning a policy to select only the most promising children of
a given node. And for cutting plane selection, Tang et al. (2020) introduced an MDP formulation and
trains a reinforcement learning agent using evolutionary strategies. Huang et al. (2022) proposed a
cut ranking method using neural networks in a multiple instance learning setting.

A.2 ML-BASED APPROXIMATE MILP SOLVING

While BnB can solve MILP instances exactly, its NP-hard nature makes it impractical for large-
scale problems. Therefor, researchers have explored heuristic-based methods to find approximate
solutions efficiently.

One promising direction in this field is the application of machine learning to generate initial so-
lutions or partial assignments for MILP problems. Nair et al. (2020) introduced Neural Diving, a
learning-based approach that uses GCN to generate promising partial assignments for integer vari-
ables. They then trained an additional network called SelectiveNet (Geifman & El-Yaniv, 2019)
to determine which variable assignments to keep. Yoon (2022) simplified this framework by in-
troducing a confidence threshold concept. Building on these efforts, Han et al. (2022) proposed a
Predict-and-Search framework, incorporating a trust region-like algorithm to enhance feasibility by
allowing the solver to modify certain fixed variables. In our paper, we primarily follow this line of
research due to its promising potential.

Inspired by the success of Neural Diving, researchers have applied similar machine learning tech-
niques to enhance traditional heuristics for MILPs, particularly Large Neighborhood Search (LNS)
and Feasibility Pump (FP). LNS iteratively explores neighborhoods of the current solution, while
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FP alternates between finding rounded solutions to the continuous relaxation and nearby feasible in-
teger solutions. The effectiveness of these methods depends crucially on aspects like initial solution
generation and search strategy. For LNS, Song et al. (2020) leveraged the ideas from Neural Div-
ing and used imitation and reinforcement learning for neighborhood selection. Similarly, Sonnerat
et al. (2021) adapted the neural diving concept for both initial solution and neighborhood selection
in LNS. In the FP domain, Qi et al. (2021) employed reinforcement learning to guide non-integer
solution selection during the algorithm’s execution, further demonstrating the potential of machine
learning in improving MILP heuristics.

Recent studies have increasingly concentrated on developing predictive models to intelligently se-
lect and utilize existing MILP solvers or methodologies for optimal performance. For instance, Ding
et al. (2020) developed a prediction-based method to choose between heuristic algorithms and ex-
act branching approaches for specific variables. Similarly, Grover et al. (2018) proposed an online
learning framework using reinforcement learning to select predefined heuristics in CPLEX based on
instance features. Taking a data-driven approach, Xavier et al. (2021) trained a k-Nearest Neighbors
(KNN) model to predict redundant constraints, good initial feasible solutions, and promising affine
subspaces for optimal solutions. Moreover, the concept of early stopping, widely employed in hy-
perparameter optimization (Makarova et al., 2022), exhibits substantial promise for MILP solvers
by predicting the optimal termination point of the BnB process.

B HYPERPARAMETER SETTINGS

The hyperparameter settings for each baseline method in this paper are detailed in Table 2.

Table 2: Hyperparameter settings for PaS and SHARP

dataset PaS SHARP
k0 k1 ∆ β λ

CA 400 0 10 0.95 0.05
SC 1500 0 100 0.96 0.02
IP 400 5 1 0.92 0.02

C DATASET DETAILS

The statistical data of the datasets for each problem are presented in Table 3, including the number
of constraints, the number of integer variables, and the number of continuous variables.

Table 3: Maximum problem sizes of each dataset

dataset # constr. # binary var. # continuous var.
CA 6,396 1,500 0
SC 5000 4000 0
IP 195 1,083 33
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