
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EDGE MATTERS: A PREDICT-AND-SEARCH FRAME-
WORK FOR MILP BASED ON SINKHORN-NOMALIZED
EDGE ATTENTION NETWORKS AND ADAPTIVE
REGRET-GREEDY SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Predict-and-search is increasingly becoming the predominant framework for solv-
ing Mixed-Integer Linear Programming (MILP) problems through the applica-
tion of ML algorithms. Traditionally, MILP problems are represented as bipartite
graphs, wherein nodes and edges encapsulate critical information pertaining to
the objectives and constraints. However, existing ML approaches have primarily
concentrated on extracting features from nodes while largely ignoring those as-
sociated with edges. To bridge this gap, we propose a novel framework named
SHARP which leverages a graph neural network SKEGAT that integrates both
node and edge features. Furthermore, we design an adaptive Regret-Greedy algo-
rithm to break the barriers of the problem scale and hand-crafted tuning. Experi-
ments across a variety of combinatorial optimization problems show that SHARP
surpasses current SOTA algorithms, delivering notable enhancements in both so-
lution accuracy and computational efficiency.

1 INTRODUCTION

Mixed Integer Linear Programming (MILP) has seen a surge of interest in many practical applica-
tions spanning from production planning (Pochet & Wolsey, 2006; Wu et al., 2013), supply chain
scheduling (Sawik, 2011), and resource allocation (Liu & Fan, 2018; Watson & Woodruff, 2011).
As a discrete extension of linear programming, MILP often faces both integer and continuous vari-
ables, thereby leading to the NP-hard complexity. As a well-established topic, the significant suc-
cesses of traditional algorithms over the past decades, such as branch-and-bound (Land & Doig,
2010; 1960) and cutting plane algorithm (Gomory, 1960), have made it possible to near-optimal
solutions for MILP. Besides, these algorithms consist of the core of commercial solvers, such as
Gurobi (Gurobi Optimization, 2022). However, these algorithms adhere to an iterative paradigm
which heavily lacks parallelism, often making them unsuitable for handling large-scale problems in
industrial scenarios.

Recently, there has been significant interest in machine learning (ML) algorithms as a viable alter-
native to solve MILP in a data-centric fashion. The potential advantage lies in developing faster
algorithms in practice by exploiting typical patterns found through the analysis of large training in-
stances. They could automatically discover variable assignment strategies to speed up the similar
instance from the same distribution. Specifically, the attempts by several well-studied algorithms to
solve MILPs are shifting towards two major categories: the former involves ML-based algorithms
learning branch and bound strategies for exact solving, while the latter adopts ML-based methods
to learn heuristic rules for approximate solving. We will discuss these methods respectively in Sec-
tion A.1 and Section A.2 in detail.

Most notably, the pioneering work in approximate solving involves the Neural Diving approach
(Nair et al., 2020), which formulates the MILP problem as a bipartite graph and treats the problem
solving as the prediction of integer variable assignments. However, previous studies have high-
lighted challenges associated with insufficient representation for MILP problems and the inaccuracy
of a single prediction from the model. To address the issue of inadequate representation, numer-
ous strategies have been employed to compensate for this, such as generating higher-quality initial

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

solutions (Nair et al., 2020), enhancing representational capacity through additional modules (Nair
et al., 2020), and adopting more complicated models like SelectiveNet (Geifman & El-Yaniv, 2019).
To tackle the issue of inaccurate model predictions, the post-searching process is applied after the
Neural Diving method. For instance, a confidence threshold is used to control which variables to
assign. Building on the aforementioned successes, the Predict-and-Search framework (Han et al.,
2022) is proposed to consider feasibility by introducing a trust-region-like algorithm that allows
the algorithms to change certain fixed variables. However, the bipartite graph representation of the
MILP contains rich information about constraint coefficients and objective function coefficients,
which can potentially compromise solution quality. Previous works draws much attention on the
node representation while ignoring the edge representation. Additionally, algorithms that directly
predict variable assignments often struggle to satisfy the constraints, whereas most post-searching
algorithms rely on the specific structure of the problem to determine the neighborhood search range,
which limits their applicability beyond the initial designed scope and requires hand-crafted parame-
ter tuning.

To tackle above challenges, We propose a nevel framework named SHARP (Sinkhorn-regularized
Edge Attention with Adaptive Regret-based Procedure). In terms of insufficient representation chal-
lenge, we innovatively integrate EGAT (Gong & Cheng, 2019) with probability distribution learning
to provide a finer-grained representation of nodes and edges. Besides, we use the Sinkhorn al-
gorithm (Sinkhorn & Knopp, 1967) for feature normalization, which accelerates computation and
stabilizes the training process. In terms of prediction inaccuracy challenge, we propose a confidence
threshold-based greedy regret search method. Specifically, we fix variables greedily on the basis
of the variable assignment probability in proportion, and then allow for the adaptation of the last
variable assignment in a flexible manner. This strategy not only enhances solution feasibility and
improves solving accuracy but also captures subtle differences in problem structures, demonstrating
robust generalization capabilities.

We conducted comprehensive experiments on Combinatorial Auction (CA) and Item Placement (IP)
problems, evaluating SHARP against other methods using three metrics: Primal Gap (PG), Survival
Rate (SR), and Primal Integral (PI).

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to propose the EGAT with Sinkhorn normal-
ization, which more accurately captures node and edge information, thereby enhancing the
expressive power of the model and accelerating training while improving learning stability.

• Our proposed adaptive variable assignment strategy enhances solution feasibility and over-
comes the limitations of previous work that are bound by scale.

• The SHARP respectively achieves average 24.88% and 5.86% performance improvements
to the modern solvers the Gurobi and SCIP on primal gaps, and exceed the performance of
the SOTA ML-based algorithm by 17.19%.

2 PRELIMINARIES

2.1 MIXED INTEGER LINEAR PROGRAMMING

A mixed integer linear programming (MILP) problem is a type of the combinatorial optimization
problem. In these problems, some or all of the variables are constrained to take integer values.
Formally, a mixed integer linear programming problem M can be defined as

min c⊤x s.t. Ax ≤ b and x ∈ {0, 1}q × Rn−q, (1)

where x = (x1, . . . ,xn)
⊤ represents the q binary variables and the n − q continuous variables to

be optimized. The vector c ∈ Rn is the objective coefficient vector, and A ∈ Rm×n and b ∈ Rm

specify the m linear constraints. A solution x is called feasible if and only if it satisfies all the
constraints. In this paper, we focus on the aforementioned mixed binary form because, according
to the theory introduced by (Nair et al., 2020), mixed integer linear programming involving general
integers can be reduced to the above form.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 BIPARTITE GRAPH REPRESENTATION OF MILP

The bipartite graph representation of mixed integer linear programming was first proposed by Gasse
et al. In 2019, Gasse implemented a lossless bipartite graph representation of mixed integer linear
programming as an input for neural embedding networks, as shown in Figure 1. The n decision
variables in mixed integer linear programming can be represented as the set of right-side variable
nodes in the bipartite graph, while the m linear constraints can be represented as the set of left-side
constraint nodes. An edge connecting variable node i and constraint node j indicates the presence
of the corresponding variable i in constraint j, with the edge weight being the coefficient of variable
i in constraint j.

Figure 1: The bipartite graph representation of MILP.

2.3 EDGE-ENHANCED GRAPH ATTENTION NETWORK (EGAT)

(Gong & Cheng, 2019) proposed EGAT, which introduces an attention mechanism on graph neigh-
borhoods and fully exploits edge information. This approach is beneficial for learning neural em-
beddings and model-based initial solution predictions.

Before going into the EGAT, we recall that doubly stochastic normalization. Assuming Ê as the
original edge features, the generation process of doubly stochastic normalized features Ê can be
described as

Ẽij =
Êij∑N
k=1 Êik

,Eij =

N∑
k=1

ẼikẼjk∑N
v=1 Ẽvk

, (2)

where all elements in Ê must be non-negative. It can be easily verified that the normalized edge
feature vector E satisfies the following properties:

Furthermore, for an EGAT layer, it can be expressed as follows:

X l = σ[αl(X l−1,El−1)g(X l−1)], (3)

where σ is a non-linear activation function; α is an attention function that returns an N ×N matrix;
W l is a linear transformation; g is a transformation that maps node features from the input space to
the output space, typically using linear mapping.

The attention function α can be represented in the form of equation

α̂l
ij = exp

{
L
(
aT

[
X l−1

i. W l∥X l−1
j. W l

])}
El−1

ij ,

αl = DSN
(
α̂l
)
,

(4)

where || represents the tensor concatenation operation; DSN is the double stochastic normalization
operator described in Equation (2); L represents the LeakyReLU activation function; W l is the same
mapping as in equation Equation (3).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.4 SINKHORN ALGORITHM

The Sinkhorn algorithm is commonly used to compute doubly stochastic matrices, which are non-
negative square matrices where both rows and columns sum to 1. (Sinkhorn & Knopp, 1967) stated
that a simple iterative method to approach the double stochastic matrix is to alternately rescale all
rows and all columns of A to sum to 1. Sinkhorn and Knopp presented this algorithm and analyzed
its convergence.

The Sinkhorn algorithm plays a crucial role in various fields such as machine learning, computer
vision, and natural language processing, and is frequently applied in graph matching (Wang et al.,
2019), image registration (Sander et al., 2022), and optimal transport problems (Groueix et al.,
2019). In terms of its functionality for computing doubly stochastic matrices, the Sinkhorn algorithm
can be used to accelerate matrix calculations and improve numerical stability.

3 METHOD

In this section, we propose a solution framework called SHARP in order to address the problem
mentioned in Section 1, which is based on Edge-enhanced Graph Attention Network (EGAT) and
mixed-integer programming solver. Subsequently, we conducts a comprehensive computational
study comparing this framework with mainstream solvers and existing learning-enhanced methods
to demonstrate the superiority of the SHARP framework, which gives an overview in Fig 2.

BipartizationMathematical representation of MILP

 𝛿ଵ

 𝛿௠

 𝑥ଵ

 𝑥௡

𝑎ଵଵ

𝑎௠௡

𝑎ଵ௡
𝑎௠ଵ

𝑏ଵ

𝑏௠

𝑐ଵ

𝑐௡

Multi-layer
EGAT

𝛿ଵ

𝛿௠

𝑥ଵ

𝑥௠

Distribution
Learning

Confidence Threshold-Based
Regret Greedy Search

𝑥ଵ

𝑥௠

MLP

MLP

0.9

0.1

0.9

0.4

0.1

0.6

0.2

0.5

0.3

1

1

0

0

Fix
variables
λ = 0.7

1

1

1

0

0

1

0

Call a solver to perform
regret greedy search𝑝ఏ 𝑥ଵ = 1; 𝑀 𝑥𝑝ఏ 𝑥௜ = 1; 𝑀 𝑥ூ

𝑥ூ

𝑥

Regret,
𝑥ସ change to 1

𝑝ఏ 𝑥௠ = 1; 𝑀

MILP M:

Figure 2: Our framework initially employs a Multi-layer Edge-enhanced Graph Attention Network
to encode MILP into embeddings. Subsequently, we utilize Distribution Learning to map each
variables into marginal probability distributions. These distributions are then employed in the final
stage, where we harness an adaptive Confidence Threshold-Based Regret Greedy Search algorithm
to iteratively search for an approximately optimal solution.

3.1 SINKHORN NORMALIZATION FOR BIPARTITE GRAPH DOUBLY STOCHASTIC EDGE
NORMALIZATION

In EGAT, double random edge normalization is an important component. However, according to
Equation (2), it requires E to be an N×N edge matrix, which poses a challenge for bipartite graphs:
for bipartite graphs, the typical edge matrix size is N ×M , where N and M are the sizes of the
left and right vertex sets, respectively. This makes it impossible to perform calculations according
to Equation (2) using the conventional bipartite graph edge matrix. An improved approach is to
construct the bipartite graph edge matrix in the form of a general undirected graph, i.e., with an edge
matrix size of (N + M) × (N + M), which can solve the problem of being unable to calculate
according to Equation (2). However, this brings another problem: adopting this approach would
double the computational cost in terms of both time and space.

To address this problem, we propose introducing the Sinkhorn algorithm, commonly used in fields
such as computer vision, to calculate the double random edge normalization for bipartite graphs.
Formally, Equation (4) are replaced with the following

α̂l
ij = L(aT [X l−1

i. W l∥X l−1
j. W l])El−1

ij ,

αl = Sinkhorn(αl),
(5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The Sinkhorn(x) function internally executes the Sinkhorn algorithm, as shown in Algorithm 1.
This approach not only significantly reduces the time complexity from O((N +M)3) to O(kNM)
but also limits the space complexity bottleneck to the size of the edge matrix. Notably, following
the application of the Sinkhorn algorithm in graph matching, to handle cases where the two sets of
nodes in the bipartite graph to be matched have different numbers of nodes, the common practice is
to add padding rows to construct a square matrix. After row and column normalization, the padding
rows or columns will be discarded.

The specific process of the Sinkhorn algorithm is shown in Algorithm 1.

Algorithm 1 Sinkhorn Algorithm
Input: Matrix M of size n1 × n2

Parameter: Iteration count k, temperature parameter τ
Output: Doubly stochastic matrix S(k)

1: S
(0)
i,j = exp(

Mi,j

τ)
2: for i = 1 to k do
3: S′(k) = S(k−1) ⊘ (1n1

1⊤
n2
· S(k−1))

4: S(k) = S′(k) ⊘ (S′(k) · 1n1
1⊤
n2
)

5: end for
6: return S(k)

where ⊘ denotes element-wise division, and 1n represents a column vector of length n with all
elements equal to 1.

3.2 SKEGAT: EGAT WITH SINKHORN NORMALIZATION

Inspired by Ye et al. (2024), we propose a multi-layer half-convolutional Sinkhorn-normalized edge-
enhanced graph attention network. This network combines the advantages of graph convolutional
networks with half-convolutions (Gasse et al., 2019) and edge-enhanced graph attention networks
(see 2.3), thereby further improving the utilization of edge information. Formally, based on Equa-
tion (2) and Equation (5), let E represents the edges in a bipartite graph. The k-layer edge-enhanced
graph attention network with a multi-layer half-convolutional structure can be expressed as

αk
xiδj

= Sinkhorn(L(αT [Whk−1
xi
∥Whk−1

δj
])Ek−1

xiδj
),

hk
xi

= σ(αk(hk−1
xi

,Ek−1)gk(hk−1
xi

)),

hk
δj

= σ(αk(hk
δj
,Ek−1)gk(hk−1

δj
)),

Ek = αk,

(6)

where hk
δ and hk

x represent the hidden state vectors of constraint nodes and variable nodes in the
k-th layer, respectively; αk

xiδj
denotes the attention coefficient of the edge connecting variable node

xi and constraint node δj in the k-th layer; Ek represents the k-th layer; σ is a non-linear activation
function; gk is a transformation that maps node features from the input space to the output space,
typically implemented as a linear transformation.

3.3 DISTRIBUTION LEARNING

We use a supervised learning to predict the conditional distribution for MILP instances, following
the approach of previous work (Han et al., 2022; Nair et al., 2020). Given a set of MILP instances
M for training, we define the dataset D = {(M,SM) |M ∈M}, where SM is the set of solutions
for instance M . Formally, let p̂i ≡ pθ(xi = 1;M) denote the predicted probability that the i-th
variable is 1 in instance M , parameterized by θ. We define the loss function L(θ) as:

L(θ) =
∑

M∈M

nM∑
i=1

yM
i log p̂M

i + (1− yM
i) log(1− p̂M

i),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where nM is the number of variables in instance M . The target probability yM
i is defined as:

yM
i ≡

∑
j∈IM

i

exp
(
−cM⊤

xM,j
)

∑
x̃∈SM exp

(
−cM⊤

x̃
) ,

where cM denotes the objective coefficient vector for instance M , xM,j denotes the j-th solution
in SM , and IMi ⊆ {1, 2, ..., |SM |} denotes the set of indices in SM where the i-th component is 1.
This formulation ensures that yM

i is normalized by the total number of solutions in SM .

3.4 CONFIDENCE THRESHOLD-BASED REGRET GREEDY SEARCH

We introduce a novel confidence threshold-based regret greedy search method that leverages
marginal probabilities as input. The core concept of this approach is to strategically fix the val-
ues of certain variables based on the marginal probabilities generated by a neural network. This
technique effectively reduces the problem sizes, consequently mitigating the exponential time com-
plexity bottleneck inherent in the solver. The comprehensive framework of the proposed method is
illustrated in Algorithm 2.

The theoretical foundation of our approach lies on the premise that in an optimal solution, variables
with a value of 1 should, after neural network processing, exhibit marginal probabilities closer to 1,
and conversely, closer to 0. Leveraging this insight to reduce problem size and accelerate the solving
process, we employ a strategy to force certain binary variables to take specific values.

Assuming we have determined which variables are to be fixed, we formally define the set of variables
to be fixed to 0 as X0, while the set of variables to be fixed to 1 is represented as X1. We define a
function ϕ(x) as follows:

ϕ(x) ≡
{
0, if x ∈ X0,

1, if x ∈ X1.
(7)

A naive approach would be to directly subject these variables to the constraint∑
x∈X0∪X1

|ϕ(x)− x| = 0, resulting in the following problem formulation:

min c⊤x,

s.t. Ax ≤ b and x ∈ {0, 1}q × Rn−q,∑
x∈X0∪X1

|ϕ(x)− x| = 0.

However, this approach still has limitations. If there exists a variable x ∈ X0 ∪ X1 such that
ϕ(x) ̸= x∗, i.e., there are variable fixation errors, it will lead to deterioration of the solution or
even infeasibility. Han et al. (2022) observed that there exists a relatively small ∆ > 0 such that∑

x∈X0∪X1
|ϕ(x)− x ∗ | ≤ ∆. To utilize this property, Han et al. (2022) proposed a trust-region-

based search method. However, for different problem sizes and structures, this trust-region-based
search method lacks generalizability and requires more extensive manual parameter tuning.

Inspired by Yoon (2022), we propose a more generalizable and robust confidence threshold-based
regret greedy search method. In the regret greedy idea, undoing previous operations is also consid-
ered within the scope of the greedy strategy. In this method, we initially fix certain variables using
a greedy approach, while maintaining the flexibility to modify a subset of these fixed variables in
subsequent iterations. Introducing a regret mechanism to fix decision errors makes the search pro-
cess ”softer”. Formally, A regret coefficient 0 < λ < 1 is introduced, allowing λ|X0 ∪X1| variables
to have fixed values different from their corresponding values in the optimal solution during the
variable fixation process.

Formally, we define the set of variable which should be fixed to 0 as X0 = {xi | pθ(xi = 1;M) <
1 − β, 1 ≤ i ≤ q}, and the the set of variable which should be fixed to 1 as X1 = {xi | pθ(xi =

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1;M) > β, i = 1, 2, . . . , q}. The original MILP problem should be subject to the following
additional constraint:

∑
x∈X0∪X1

|ϕ(x)− x| ≤ λ|X0 ∪ X1|. (8)

Consider X0 and X1 separately:

∑
x∈X0

x+
∑
x∈X1

(1− x) ≤ λ|X0 ∪ X1| (9)

Consequently, the original MILP problem can be transformed as follows:

min c⊤x,

s.t. Ax ≤ b and x ∈ {0, 1}q × Rn−q,∑
x∈X0

x+
∑
x∈X1

(1− x) ≤ λ|X0 ∪ X1|.

As a result, we proceed to solve the new MILP problem described above.

Algorithm 2 Confidence Threshold-Based Regret Greedy Search Algorithm
Input: MILP instance M , neural network probability distribution prediction result pθ (xi = 1;M).
Parameter: Confidence threshold β, regret coefficient λ.
Output: Solution x of the MILP instance M .

1: M ′ ←M
2: X0 ← ∅
3: X1 ← ∅
4: for i = 1 to q do
5: if pθ (xi = 1;M) < 1− β then
6: X0 ← X0 ∪ xi

7: else if pθ (xi = 1;M) > β then
8: X1 ← X1 ∪ xi

9: end if
10: end for
11: create constraint

∑
x∈X0

x+
∑

x∈X1
(1− x) ≤ λ|X0 ∪ X1| to M ′

12: x = solve(M ′)
13: return x

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET

We evaluate our approach on three MILP benchmark problems: Set Covering (SC), Minimum Ver-
tex Cover (MVC), and one non-graph problem, Combinatorial Auction (CA). For SC, we generate
instances with . For CA, we generate instances with 300 items and 1500 bids . These problem
types were selected as our benchmarks due to their widespread recognition (Gasse et al., 2019; Han
et al., 2022; Ye et al., 2024) and the significant challenges they pose to current off-the-shelf solvers.
Besides, We do not use Maximum Independent Set (MIS) and Workload Balance as our benchmark
problem following Han et al. (2022) since these two problem is too easy for our proposed approach.
The details of the four problems will be provided in Appendix C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1.2 BASELINE

In this paper, we conduct comprehensive computational experiments to evaluate the effectiveness
and efficiency of our proposed SHARP framework. Our experiments compare our method against a
range of established baselines, including 1. traditional MILP solvers such as SCIP and Gurobi, and
2. a state-of-the-art machine learning-based approach, specifically the Predict-and-Search frame-
work proposed by Han et al. (2022).

4.1.3 EVALUATION METRIC

Primal Gap The Primal Gap γ(t) at time t is the relative difference between the optimization ob-
jective value achieved by the algorithm being evaluated at time t and the pre-computed known best
objective value f(x∗) (Berthold, 2006). Formally, it can be expressed as

γ(t) =

1,
if no feasible solution

at time t,
|f(xt)−f(x∗)|

max{|f(xt)|,|f(x∗)|} , otherwise.

Survival Rate The Survival Rate S(t) at time t refers to the proportion of instances where the Primal
Gap is below a specified Primal Gap threshold at time t, among all instances (Sonnerat et al., 2021).

Primal Integral The Primal Integral at time T refers to the integral of the Primal Gap over the
interval [0, T] at time T (Achterberg et al., 2012). It reflects both the quality and speed of finding
a solution. This metric measures the area under the Primal Gap curve during the solver’s solution
process, which is equivalent to the integral over time of the Primal Gap of the best feasible solution
found so far. Formally, it can be described as

P (T) =

∫ T

t=0

p(t)dt =

I∑
i=1

γ(ti−1) · (ti − ti−1).

4.2 RESULTS

20 40 60 80 100 120 140 160
Time (s)

0.000

0.001

0.002

0.003

0.004

0.005

Av
er

ag
e

Pr
im

al
 G

ap

Gurobi
SCIP
PaS+Gurobi
PaS+SCIP
SHARP+Gurobi
SHARP+SCIP

(a) Combinatorial Auction (CA)

200 400 600 800 1000
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Pr
im

al
 G

ap

Gurobi
SCIP
PaS+Gurobi
PaS+SCIP
SHARP+Gurobi
SHARP+SCIP

(b) Item Placement (IP)

Figure 3: Performance comparison across SCIP, Gurobi, PaS and SHARP, where the y-axis indicates
the average relative primal gap based on 50 instances about CA and IP.

Since our method is a Predict and Search strategy similarity to Han et al. (2022), we also utilized
Gurobi and SCIP as the benchmark solvers. Figure 3 exhibits the progress of average gap on 50
instances as the solving process proceeds, and Figure 4 show the progress of survival rate with
specific primal gap threshold on 50 instances when solving MILPs. In Figure 3a and Figure 4a,
we observe that our proposed SHARP outperforms PaS and off-shelf solvers, regardless of whether

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Gurobi or SCIP is used as solver. In Figure 3b and Figure 4b, our , even though our proposed
SHARP surpass PaS and off-shell solver, combined with whether Gurobi or SCIP.

20 40 60 80 100 120 140 160
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 R
at

e

Gurobi
SCIP
PaS+Gurobi
PaS+SCIP
SHARP+Gurobi
SHARP+SCIP

(a) Combinatorial Auction (CA)

200 400 600 800 1000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 R
at

e

Gurobi
SCIP
PaS+Gurobi
PaS+SCIP
SHARP+Gurobi
SHARP+SCIP

(b) Item Placement (IP)

Figure 4: Survival Rate of performance comparison across PaS, Sharp, Gurobi and SCIP based on
50 instances about CA and IP.

Besides, we also evaluate SHARP on the primal integral on all datasets across different combinato-
rial optimization problems, which refer to Table 1 in detail. The primal integral in Table 1 is more
smaller more better. Similar to the primal gap to the optimal solution, it also shows the trend that
SHARP achieves powerful results to the SOTA ML-based algorithms and the modern MILP solver
like Gurobi and SCIP.

Table 1: Average Primal Integral on each dataset.

Solver Method CA IP

SCIP
SCIP 1.0351 438.4543
PaS 1.0835 418.1390

SHARP 1.0173 394.5655

Gurobi
Gurobi 0.2934 93.1101

PaS 0.2765 120.5288
SHARP 0.2355 69.6635

4.3 ABLATION STUDY

20 40 60 80 100 120 140 160
Time (s)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Av
er

ag
e

Pr
im

al
 G

ap

SHARP+GAT
SHARP+GCN
SHARP+EGAT

Figure 5: Average primal gap slot

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

To further instigate the superiority of our proposed SKEGAT in MILP solving, we also conduct ex-
periments against other common GNN. The results are presented in Figure 5, where SHARP+GAT,
SHARP+GCN, and SHARP+SKEGAT represent the performance of our proposed method using
GAT, GCN, and SKEGAT as neural network, respectively.

5 CONCLUSION

This paper introduces SHARP, a novel framework that addresses the limitations of existing ap-
proaches by integrating EGAT with Sinkhorn normalization to enhance the representation of both
nodes and edges within MILP problems. This combination not only provides a richer and more
accurate representation of the problem space but also facilitates faster convergence and improved
stability during the training phase. Furthermore, the proposed adaptive variable assignment strat-
egy, which incorporates a confidence threshold-based greedy regret search method, significantly en-
hances the feasibility of the solutions generated by the model. However, the SHARP still has some
shortcomings, such as further integrating with the pos-search search algorithm to inversely optimize
the parameters. Nevertheless, the SHARP represents a significant step forward in the application of
machine learning techniques to MILP problems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tobias Achterberg and Timo Berthold. Hybrid branching. In Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems: 6th International Confer-
ence, CPAIOR 2009 Pittsburgh, PA, USA, May 27-31, 2009 Proceedings 6, pp. 309–311. Springer,
2009.

Tobias Achterberg, Timo Berthold, and Gregor Hendel. Rounding and propagation heuristics for
mixed integer programming. In Operations Research Proceedings 2011: Selected Papers of
the International Conference on Operations Research (OR 2011), August 30-September 2, 2011,
Zurich, Switzerland, pp. 71–76. Springer, 2012.

David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Finding cuts in the TSP (A
preliminary report), volume 95. Citeseer, 1995.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch. In
International conference on machine learning, pp. 344–353. PMLR, 2018.

Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière, and Olivier
Vincent. Experiments in mixed-integer linear programming. Mathematical programming, 1:76–
94, 1971.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(ZIB), 2006.

Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionı́sio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner, et al.
The scip optimization suite 9.0. arXiv preprint arXiv:2402.17702, 2024.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the aaai conference on artificial intelligence, volume 34, pp. 1452–1459, 2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject
option. In International conference on machine learning, pp. 2151–2159. PMLR, 2019.

Ralph Edward Gomory. An algorithm for the mixed integer problem. Report No. P-1885, The Rand
Corporation, Santa Monica, CA., 1960.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9211–9219, 2019.

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. Unsuper-
vised cycle-consistent deformation for shape matching. In Computer Graphics Forum, volume 38,
pp. 123–133. Wiley Online Library, 2019.

Aditya Grover, Todor Markov, Peter Attia, Norman Jin, Nicolas Perkins, Bryan Cheong, Michael
Chen, Zi Yang, Stephen Harris, William Chueh, et al. Best arm identification in multi-armed
bandits with delayed feedback. In International conference on artificial intelligence and statistics,
pp. 833–842. PMLR, 2018.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2022. URL https://www.
gurobi.com.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-
aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
arXiv preprint arXiv:2302.05636, 2022.

11

https://www.gurobi.com
https://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye
Hao, Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming.
Pattern Recognition, 123:108353, 2022.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

AH Land and AG Doig. An automatic method of solving discrete programming problems. Econo-
metrica, 28(3):497–520, 1960.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
Springer, 2010.

Li Liu and Qi Fan. Resource allocation optimization based on mixed integer linear programming in
the multi-cloudlet environment. IEEE Access, 6:24533–24542, 2018.

Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas
Krause, Matthias Seeger, and Cedric Archambeau. Automatic termination for hyperparameter
optimization. In International Conference on Automated Machine Learning, pp. 7–1. PMLR,
2022.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A supervised machine learning
approach to variable branching in branch-and-bound. 2014.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming, volume
149. Springer, 2006.

Meng Qi, Mengxin Wang, and Zuo-Jun Shen. Smart feasibility pump: Reinforcement learning for
(mixed) integer programming. arXiv preprint arXiv:2102.09663, 2021.

Michael E Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Sinkformers: Transform-
ers with doubly stochastic attention. In International Conference on Artificial Intelligence and
Statistics, pp. 3515–3530. PMLR, 2022.

Tadeusz Sawik. Scheduling in supply chains using mixed integer programming. John Wiley & Sons,
2011.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matri-
ces. Pacific Journal of Mathematics, 21(2):343–348, 1967.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012–20023, 2020.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In International conference on machine learning, pp. 9367–9376. PMLR, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks
for deep graph matching. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 3056–3065, 2019.

Jean-Paul Watson and David L Woodruff. Progressive hedging innovations for a class of stochastic
mixed-integer resource allocation problems. Computational Management Science, 8:355–370,
2011.

Tao Wu, Kerem Akartunalı, Jie Song, and Leyuan Shi. Mixed integer programming in produc-
tion planning with backlogging and setup carryover: modeling and algorithms. Discrete Event
Dynamic Systems, 23:211–239, 2013.

Álinson S Xavier, Feng Qiu, and Shabbir Ahmed. Learning to solve large-scale security-constrained
unit commitment problems. INFORMS Journal on Computing, 33(2):739–756, 2021.

Huigen Ye, Hua Xu, and Hongyan Wang. Light-milpopt: Solving large-scale mixed integer linear
programs with lightweight optimizer and small-scale training dataset. In The Twelfth International
Conference on Learning Representations, 2024.

Kaan Yilmaz and Neil Yorke-Smith. A study of learning search approximation in mixed integer
branch and bound: Node selection in scip. Ai, 2(2):150–178, 2021.

Taehyun Yoon. Confidence threshold neural diving. arXiv preprint arXiv:2202.07506, 2022.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the aaai conference on artificial intel-
ligence, volume 35, pp. 3931–3939, 2021.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205–217, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORK

In general, ML-based algorithms typically follow two primary strategies: those that rely on branch
and bound algorithms for exact solutions, and those that use heuristic algorithms for approximate
solutions. Zhang et al. (2023) provides a comprehensive survey of solving MILP via machine learn-
ing.

A.1 BRANCH AND BOUND

As a famous topic in operation research, the branch and bound (BnB) algorithm (Land & Doig, 2010;
1960) aims to iteratively partition the solution space through branching and pruning until an exact
solution is built. These algorithms form the foundation of most modern MIP solvers (Gurobi Opti-
mization, 2022; Bolusani et al., 2024), typically alongside with cutting plane algorithms (Gomory,
1960).

Most ML-based methods focus on locally improving the selection strategies within the BnB algo-
rithm, such as branching variable selection, node selection, and cutting plane selection. These meth-
ods frame the selection strategies as decision-making problems (Khalil et al., 2016; Balcan et al.,
2018) and develop heuristic selection rules by learning from extensive sets of training instances.

Branching variable selection has been drawn much attention due to its significant impact on BnB
performance. There has been developed various branching rules for variable selection, including
strong branching (SB) (Applegate et al., 1995), pseudo-cost (Bénichou et al., 1971), and hybrid
branching (Achterberg & Berthold, 2009). Recent approaches have employed imitation learning
(Ho & Ermon, 2016) to approximate these branching rules. Marcos Alvarez et al. (2014) and Khalil
et al. (2016) learned branching policies by imitating the strong branching rule. To mitigate the
complexity of feature calculation, Gasse et al. (2019) proposed encoding the MILP into a lossless
bipartite graph, which serves as input to a graph convolutional network (GCN) (Kipf & Welling,
2016). Building upon this bipartite graph model, Nair et al. (2020) employed a GCN to encode
MIPs as bipartite graphs and train it to imitate an ADMM-based policy for branching. Gupta et al.
(2020) introduced a hybrid architecture that combines GNN and MLP models. Deviating from the
bipartite representation, Ding et al. (2020) generated a tripartite graph from MIP formulation and
train a GCN for variable solution prediction. Additionally, Zarpellon et al. (2021) proposed a novel
neural network design that incorporates the global BnB tree state.

Compared to the branching variable selection, other strategies receive less attention. He et al. (2014)
employed imitation learning to train both node selection and node pruning policies, while Yilmaz &
Yorke-Smith (2021) focused more on learning a policy to select only the most promising children of
a given node. And for cutting plane selection, Tang et al. (2020) introduced an MDP formulation and
trains a reinforcement learning agent using evolutionary strategies. Huang et al. (2022) proposed a
cut ranking method using neural networks in a multiple instance learning setting.

A.2 ML-BASED APPROXIMATE MILP SOLVING

While BnB can solve MILP instances exactly, its NP-hard nature makes it impractical for large-
scale problems. Therefor, researchers have explored heuristic-based methods to find approximate
solutions efficiently.

One promising direction in this field is the application of machine learning to generate initial so-
lutions or partial assignments for MILP problems. Nair et al. (2020) introduced Neural Diving, a
learning-based approach that uses GCN to generate promising partial assignments for integer vari-
ables. They then trained an additional network called SelectiveNet (Geifman & El-Yaniv, 2019)
to determine which variable assignments to keep. Yoon (2022) simplified this framework by in-
troducing a confidence threshold concept. Building on these efforts, Han et al. (2022) proposed a
Predict-and-Search framework, incorporating a trust region-like algorithm to enhance feasibility by
allowing the solver to modify certain fixed variables. In our paper, we primarily follow this line of
research due to its promising potential.

Inspired by the success of Neural Diving, researchers have applied similar machine learning tech-
niques to enhance traditional heuristics for MILPs, particularly Large Neighborhood Search (LNS)
and Feasibility Pump (FP). LNS iteratively explores neighborhoods of the current solution, while

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

FP alternates between finding rounded solutions to the continuous relaxation and nearby feasible in-
teger solutions. The effectiveness of these methods depends crucially on aspects like initial solution
generation and search strategy. For LNS, Song et al. (2020) leveraged the ideas from Neural Div-
ing and used imitation and reinforcement learning for neighborhood selection. Similarly, Sonnerat
et al. (2021) adapted the neural diving concept for both initial solution and neighborhood selection
in LNS. In the FP domain, Qi et al. (2021) employed reinforcement learning to guide non-integer
solution selection during the algorithm’s execution, further demonstrating the potential of machine
learning in improving MILP heuristics.

Recent studies have increasingly concentrated on developing predictive models to intelligently se-
lect and utilize existing MILP solvers or methodologies for optimal performance. For instance, Ding
et al. (2020) developed a prediction-based method to choose between heuristic algorithms and ex-
act branching approaches for specific variables. Similarly, Grover et al. (2018) proposed an online
learning framework using reinforcement learning to select predefined heuristics in CPLEX based on
instance features. Taking a data-driven approach, Xavier et al. (2021) trained a k-Nearest Neighbors
(KNN) model to predict redundant constraints, good initial feasible solutions, and promising affine
subspaces for optimal solutions. Moreover, the concept of early stopping, widely employed in hy-
perparameter optimization (Makarova et al., 2022), exhibits substantial promise for MILP solvers
by predicting the optimal termination point of the BnB process.

B HYPERPARAMETER SETTINGS

The hyperparameter settings for each baseline method in this paper are detailed in Table 2.

Table 2: Hyperparameter settings for PaS and SHARP

dataset PaS SHARP
k0 k1 ∆ β λ

CA 400 0 10 0.95 0.05
SC 1500 0 100 0.96 0.02
IP 400 5 1 0.92 0.02

C DATASET DETAILS

The statistical data of the datasets for each problem are presented in Table 3, including the number
of constraints, the number of integer variables, and the number of continuous variables.

Table 3: Maximum problem sizes of each dataset

dataset # constr. # binary var. # continuous var.
CA 6,396 1,500 0
SC 5000 4000 0
IP 195 1,083 33

15

	Introduction
	Preliminaries
	Mixed Integer Linear Programming
	Bipartite Graph Representation of MILP
	Edge-enhanced Graph Attention Network (EGAT)
	Sinkhorn Algorithm

	Method
	Sinkhorn Normalization for Bipartite Graph Doubly Stochastic Edge Normalization
	SKEGAT: EGAT with Sinkhorn Normalization
	Distribution Learning
	Confidence Threshold-Based Regret Greedy Search

	Experiments
	Experimental Setup
	Dataset
	Baseline
	Evaluation Metric

	Results
	Ablation Study

	Conclusion
	Related Work
	Branch and Bound
	ML-based Approximate MILP Solving

	Hyperparameter Settings
	Dataset details

