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ABSTRACT

Portrait animation can generate realistic animated videos from static portrait im-
ages and play a crucial role in a wide range of real-world applications. Despite
substantial advances in realism, existing portrait animation methods suffer from
critical limitations: slow inference speeds unsuitable for interactive scenarios and
the absence of behavioral interaction capabilities, significantly restricting immer-
sive user experiences. To address these limitations, we propose InterAvatar, the
first framework that adapts a real-time video diffusion transformer for portrait ani-
mation conditioned on behavioral interaction prompts. Specifically, InterAvatar is
built upon the diffusion transformer Wan2.1-1.3B and LTX-Video-2B with diffu-
sion distillation. It is conditioned on a reference image, audio signals, and behav-
ioral interaction prompts to animate avatars. To enhance appearance consistency
and reduce drifting in real-time animation frameworks, we introduce a represen-
tation decoupling strategy that separates identity and attribute information from
the reference appearance. We also present the first work to introduce behavioral
interaction prompts into portrait animation, proposing pioneering strategies for
encoding and injecting these prompts into diffusion transformers. Besides, we in-
troduce a hybrid data curation pipeline for systematically collecting, annotating,
and filtering real and synthetic video data annotated with behavioral interaction
prompts. Extensive evaluations on HDTF, CelebV-HQ, and RAVDESS demon-
strate InterAvatar achieves comparable video quality with state-of-the-art models
and effectively simulates realistic behavioral interactions, enhancing the interac-
tive user experience. InterAvatar can generate 80 video frames at 512×512 res-
olution in just 5 seconds on an Nvidia H800 GPU, offering an optimal balance
between accuracy and efficiency.

1 INTRODUCTION

Portrait animation refers to the task of generating a realistic animated video of a human face or
character from a static portrait image. This technology is significant for a broad range of appli-
cations, including entertainment, augmented reality, virtual assistants, and social media. Existing
portrait animation methods have made remarkable progress in realism and fidelity. Audio-driven
approaches animate a still face to match a speech soundtrack, producing high-resolution talking-
head videos with accurate lip-sync and expressive facial movements. Other methods drive portraits
using explicit motion signals. More recently, video diffusion transformers have been applied to por-
trait animation (Cui et al., 2024; Wang et al., 2025b; Lin et al., 2025), leveraging their powerful
generative capabilities to produce avatars with dynamic backgrounds and high visual fidelity.

Despite these advances, current DiT-based approaches exhibit significant limitations, lacking nec-
essary interactivity between the portrait animation process and the user: (1) Most state-of-the-art
methods suffer from slow inference speeds, forcing users to endure considerable waiting times be-
fore viewing the generated animations. However, users generally expect immediate visual feedback
upon interaction. Such delays disrupt the perception of direct manipulation and negatively impact
user experience. For example, Wan2.1-14B (Wang et al., 2025a) requires roughly 30 minutes to
synthesize a 5-second clip on an H800 GPU, which results in unacceptable latency for interactive
scenarios. (2) Current portrait animation frameworks only allow plain interaction (e.g., text prompt
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Figure 1: The generation results of InterAvatar with different behavioral interaction prompts.
When InterAvatar receives customized behavioral interaction prompts from the user, it can simulate
natural human responses based on the context and animate the avatar in real time.

and audio signals) between users and avatars but inherently lack the behavioral interaction capa-
bilities present in real-world scenarios. Behavioral interaction between users and avatars is crucial
because it significantly enhances user engagement, immersion, and perceived realism by enabling
intuitive tactile interactions, similar to those encountered in daily life. For example, gently touching
an animated avatar’s cheek could trigger realistic facial responses, such as subtle smiling, blushing,
or eye movements, which deepens the emotional connection between users and avatars. Therefore,
simulating behavioral interactions within portrait animation represents an important direction for
advancing interactive realism and improving user interaction experience. However, the paradigm of
incorporating such interactions into portrait animation remains unexplored.

To address these limitations and enrich user interactivity, we propose the Interactive Avatar synthe-
sis framework (InterAvatar). InterAvatar adapts a pretrained video diffusion transformer (HaCohen
et al., 2024) for multi-condition generation, receiving a reference image, audio signals, and behav-
ioral interaction prompts as inputs to animate portraits in real-time. We are the first to investigate
how to adapt a pretrained video diffusion transformer for real-time portrait animation tasks condi-
tioned on behavioral interaction prompt inputs. We observe that, although Wan2.1-1.3B and LTX-
Video-2B with diffusion distillation (Huang et al., 2025) support real-time generation, they both
suffer from poor appearance consistency and drifting compared to larger models. By decoupling the
appearance representation of the reference image into distinct identity and attribute components, and
injecting corresponding knowledge from their respective vision encoders into the denoising process,
our approach substantially enhances identity preservation and reduces drifting artifacts. In addition,
we introduce the first attempt to simulate behavioral interactions between users and avatars within
portrait animation. Specifically, we interpret user clicks as a form of interaction position inputs: af-
ter specifying a behavioral interaction type, the user clicks on the avatar’s body or face region in the
reference image to simulate a behavioral interaction. We regard these user interaction positions and
interaction types as behavioral interaction prompts, and investigate effective strategies to encode and
incorporate these prompts for realistic interaction simulation. Lastly, we introduce a hybrid annota-
tion pipeline that combines real and synthetic videos with behavioral interaction prompts, enabling
the model to learn this special single-avatar–to–invisible-user interaction manner while ensuring the
generation of contextually appropriate human reactions. Evaluations on mainstream benchmarks,
including HDTF (Zhang et al., 2021), CelebV-HQ (Zhu et al., 2022), and RAVDESS (Livingstone
& Russo, 2019), demonstrate that InterAvatar achieves comparable video quality to state-of-the-art
models, with real-time generation capabilities. Specifically, InterAvatar can generate a 5-second
video at 512×512 resolution in just 5 seconds on an Nvidia H800 GPU, offering an optimal bal-
ance between accuracy and efficiency. Through visualizations, we also illustrate that our interactive
portrait animation effectively simulates behavioral interactions, improving user interactivity.

The contributions of this work are three-fold: (1) We explore how to adapt a pretrained video diffu-
sion transformer for real-time portrait animation and propose a novel method that decouples identity
and attribute representations to enhance appearance consistency. (2) We present the first work to
introduce behavioral interaction prompts into portrait animation, proposing effective strategies for
encoding and injecting these interaction prompts into diffusion transformers. (3) We propose a
data curation pipeline designed to systematically collect, filter, and annotate real videos from ex-
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isting datasets, as well as generate and filter synthetic videos annotated with behavioral interaction
prompts to effectively support interactive portrait animation training.

2 RELATED WORK

2.1 PORTRAIT ANIMATION

Early works on human image animation leveraged warping techniques and GAN-based frame-
works (Goodfellow et al., 2020). Some methods perform unsupervised keypoint-based motion
transfer (Siarohin et al., 2019; Chan et al., 2019), others utilize pose-conditioned generation (Wang
et al., 2019), while motion-appearance disentanglement further improves fidelity (Siarohin et al.,
2021). With the recent advances of diffusion probabilistic models (Ho et al., 2020; Nichol & Dhari-
wal, 2021), human animation has experienced a substantial leap in realism, temporal stability, and
controllability. Several works have adopted diffusion models for both pose-driven human anima-
tion, where human motion is represented as 2D skeletons or 3D meshes, and regional animation,
which enables local control. Recently, audio-driven human animation (Tian et al., 2024; Ji et al.,
2024; Meng et al., 2024) has gained increasing attention, where speech signals control facial and
body motion. Hallo adopts an end-to-end diffusion paradigm for audio-driven portrait animation,
with the latest Hallo3 (Cui et al., 2024) introducing a video diffusion transformer to better handle
dynamic motions and complex backgrounds. Pushing generalization further, OmniHuman-1 (Lin
et al., 2025) proposes a scalable multimodal framework trained on mixed conditioning signals, en-
abling high-fidelity animation. Different from previous methods, we propose a real-time human
animation framework enabling physical interaction prompts.

2.2 INTERACTIVE VIDEO GENERATION

Interactive video generation combines high-quality video synthesis with user-driven control and re-
sponsive feedback mechanisms. Recently, a key trend is the integration of strong video generative
models into closed-loop frameworks that respond to control signals in real time. Numerous works
treat the video model as a learnable simulator that can be steered by user actions or policies. For
example, diffusion-driven “world models” have been used as game engines and interactive environ-
ment simulators (Valevski et al., 2024; Che et al., 2024), enabling an agent or player to influence the
generated video on the fly. Another line of work focuses on controllable video generation for human-
centric content. Researchers have explored methods to explicitly guide the motion and appearance
in generated videos using high-level conditions. For instance, Follow-Your-Click (Ma et al., 2024)
enables precise and intuitive local animation by allowing users to animate specific regions with a
simple click and a short motion prompt. Besides, playable video techniques learn a latent video rep-
resentation that users can manipulate, enabling interactive animation of objects or human characters
in a synthesized scene (Menapace et al., 2021; 2022).

3 METHOD

3.1 OVERVIEW

The InterAvatar framework consists of two core components: (1) a video diffusion transformer back-
bone and (2) a multi-condition encoding and injection mechanism that enables controllable interac-
tive human animation. Our architecture leverages the pretrained Wan2.1-1.3B and LTX-Video-2B
as the baselines. To achieve interactive compatibility and improved controllability, our approach in-
tegrates multiple conditioning modalities, including reference images, audio signals, and behavioral
interaction prompts directly within the diffusion-based denoising pipeline. Notably, our method in-
troduces a novel capability in human animation: simulating realistic behavioral interactions between
users and the avatar guided explicitly by behavioral interaction prompts. We structure our discussion
as follows: In Section 3.2, we revisit the architecture of the video diffusion transformer backbone.
In Section 3.3, we detail the encoding strategies employed for several conditioning signals. Finally,
Section 3.4 details the encoding and injection strategies for behavioral interaction prompts.
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Figure 2: Architectures of InterAvatar with Wan2.1. We omit the time embedding for simplicity.

3.2 VIDEO DIFFUSION TRANSFORMER

Inputs. Initially, video frames are compressed using the VAE, which aggressively downsamples
spatial and temporal dimensions to yield a compact sequence of latent patch tokens. At the beginning
of the diffusion process, Gaussian noise is added to these latent tokens, and the embedded diffusion
timestep t is supplied to the transformer model. Additionally, the denoising transformer receives
multimodal conditioning signals: (1) a text prompt, encoded by a pretrained umT5 (Chung et al.,
2023) text encoder into text embedding tokens that provide semantic guidance via cross-attention;
and (2) an image conditioning tensor zimg, obtained by encoding the first frame through the VAE,
which is injected into the latent sequence to enable image-to-video generation; and (3) a binary
mask M , indicating preserved versus to-be-generated frames, which explicitly specifies the temporal
regions conditioned or synthesized. Furthermore, CLIP (Radford et al., 2021) features extracted
from the first frame serve as a global context, fused into the model via decoupled cross-attention.

Transformer Design. The transformer backbone extends the original DiT architecture (Peebles &
Xie, 2023) by incorporating a spatio-temporal attention and decoupled cross-attention layers in each
transformer block. Latent video representations, together with rearranged mask tokens, are flattened
into sequential tokens processed by multi-head self-attention layers to capture spatial and temporal
dependencies. To encode positional information within the attention mechanism, we employ 3D
Rotary Position Embeddings (RoPE) (Su et al., 2024), which explicitly capture each token’s spa-
tial coordinates and temporal frame indices. Transformer layers alternate between self-attention on
the video tokens and cross-attention to the provided context embeddings. Following the attention
layers, feed-forward networks (FFN) are included to enhance representations, and RMS normal-
ization (Zhang & Sennrich, 2019) is employed to enhance training stability. After performing T
diffusion steps, the transformer outputs denoised latent tokens that are decoded by the VAE decoder.

3.3 CONTROLLING CONDITIONS

Reference Image Conditioning. Early approaches (Tian et al., 2024; Cui et al., 2024) typically
used a trainable copy of the backbone network as an additional reference network to encode the
appearance representations of the reference image. However, this paradigm substantially increases
both the model complexity and training overhead. Leveraging the inherent flexibility of the trans-
former architecture, we observe that directly appending latent representations of the reference image
before the noisy latents effectively preserves reference appearance coherence across extended video
sequences. Similar observations have also been confirmed in large-scale models trained on exten-
sive datasets (Lin et al., 2025). Additionally, we observe the small baseline model exhibits poor
appearance consistency and temporal drifting compared to larger models over extended durations.
To address such limitation, we extract and decompose human-centric representations from the ref-
erence images into separate identity and attribute embeddings. The identity embedding is generated
by cropping facial regions and encoding them using the InsightFace (Ren et al., 2023) model, which
can ensure robust extraction of facial identity features. To capture detailed facial expressions and
gestures representations, the attribute embedding is derived using the self-supervised vision en-
coder DINOv2 (Oquab et al., 2023), which has demonstrated effectiveness in preserving nuanced
subject-specific details. Both embeddings are integrated into our diffusion transformer through an
appearance attention module. Given the input latents zin, identity embeddings cid, and attribute
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embeddings catt, the output features zout are computed as follows:

zout = zin + Proj
(

Softmax
(
QKT

id√
d

)
Vid + Softmax

(
QKT

att√
d

)
Vatt

)
, (1)

where Q = zinWq , K = cWk, and V = cWv , we omit the subscripts id and att for simplicity. The
term Proj denotes a linear projection layer whose parameters are initialized to zero to stabilize train-
ing. This decoupled appearance conditioning enhances the model’s ability to preserve facial identity,
ensure high fidelity, and achieve appearance coherence throughout extended video sequences.

Audio Conditioning. To enable precise control over lip movements and facilitate highly realis-
tic portrait animation, we incorporate audio conditioning. In practice, we leverage a pretrained
wav2vec (Baevski et al., 2020) network to encode the input audio waveform into a sequence of la-
tent audio features. The extracted audio features are initially aligned with video frames by linear
interpolation such that each video frame corresponds to a single audio embedding. To align the
audio embeddings with the temporal resolution of the compressed video latents, we downsample
the audio features using a convolutional network comprising two layers, each with a kernel size
of 2. These downsampled audio features are subsequently attended by the video tokens through
audio cross-attention. To be specific, both the video latents and audio features are reshaped into
frame-wise representations, enabling the model to perform frame-wise cross-attention.

3.4 BEHAVIORAL INTERACTION PROMPT

To enhance user interactivity and realistically simulate interactions between users and generated
avatars, we introduce behavioral interaction prompts. These behavioral interaction prompts specify
desired interactions with particular body regions of the animated human, enabling a video diffusion
model to generate content that accurately reflects natural behavioral responses. Each behavioral
interaction prompt comprises two key components: (1) spatial coordinates (x, y) marking a precise
location on the targeted region within a reference image, (2) a linguistic interaction description that
briefly describe the action type of interaction.

Interaction Position Processing. We explore four approaches for encoding the spatial information
of the behavioral interaction prompt: (1) positional encoding (Ravi et al., 2024) of spatial coordi-
nates, (2) binary regional masks created by defining a local region centered around the interaction
point, (3) cropping a local regional view around the interaction point, and (4) drawing a small, col-
ored marker at interaction coordinate. Realistic simulation of behavioral interactions requires not
only knowing the interaction’s region and type but also understanding the broader context, including
the human’s current activity and any objects held. While all methods can highlight the positional
information of the interaction region, the last approach additionally preserves contextual informa-
tion from the rest of the image. Therefore, we adopt a hybrid strategy that combines (1) positional
encoding and (4) marker-based annotation, allowing the model to encode precise interaction coor-
dinates while retaining the necessary image context. First, we obtain the positional encoding of the
normalized coordinates (x, y), which is projected through a multi-layer perceptron (MLP) to form
positional tokens. Next, leveraging the visual prompting capability of the CLIP encoder (Shtedritski
et al., 2023), we overlay a small red marker at the interaction region in the input image. This guides
the CLIP vision encoder’s attention specifically toward the interaction region while preserving high-
level image context comprehension. Finally, the positional tokens are injected with CLIP visual
features through cross-attention layers, enabling joint injection of behavioral interaction prompts.

Interaction Description Processing. To more precisely condition the diffusion model on specific
interaction types, we incorporate concise textual descriptions of behavioral prompts. Each interac-
tion is represented by a simple keyword such as touch, poke, or similar action terms, which capture
the intended interaction style. Different interaction types naturally lead to distinct avatar responses,
for instance, aggressive actions provoke intense reactions, whereas friendly actions elicit more ami-
able ones. Similar to us, prior work (Ma et al., 2024) conditions the model with additional text
prompts, but encodes them through dedicated adapter layers, whereas we directly leverage the dif-
fusion transformer’s inherent text comprehension capability. Specifically, the interaction keyword
is expanded into a natural language sentence following the template “The person is reacting right
after being <interaction>.” This sentence is prepended to the user prompt (separated by a
line break), and the combined prompt is then encoded by the pretrained text encoder. The resulting
embeddings are injected into the diffusion transformer through original cross-attention layers.
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Figure 3: Data curation pipeline for videos with behavioral interaction prompts.

4.1 DATA SOURCE

Our training dataset comprises two main components: audio-driven portrait animation videos and
videos with behavioral interaction prompts. For the first part, we aggregate several publicly avail-
able sources, including Hallo3 (Cui et al., 2024), Casual Conversations v2 (CCv2) (Porgali et al.,
2023), CelebV-Text (Yu et al., 2023), and MEAD (Wang et al., 2020). Hallo3 is a recent dataset
of high-quality talking-head videos with English speech, capturing diverse head poses, expressions,
and backgrounds. CCv2 provides 26K video monologues from 5.5K participants recorded in a half-
body view, which we include to increase the diversity of portrait and speaking styles in our training
data. MEAD dataset is a high-quality emotional audio-visual corpus featuring 60 actors expressing
eight emotions. To collect real videos with behavioral interaction prompts, we rely on the Open-
HumanVid (Li et al., 2024) dataset, a large-scale human-centric video collection. OpenHumanVid
consists of millions of high-quality video clips of people performing various activities, complete
with descriptive captions. Specifically, we filtered and selected approximately 30K real videos with
behavioral interaction prompts from the OpenHumanVid dataset. In addition, we augment our train-
ing set with 50K synthetic interaction videos generated by our elaborate data curation pipeline.

4.2 DATA ANNOTATION

Our proposed behavioral interaction prompts require a generated single avatar to react to an invisible
user positioned behind the camera, based on a specified interaction type and region. This setup de-
parts significantly from conventional interaction contents, where multiple visible individuals interact
in the same scene. Therefore, publicly available videos rarely capture scenarios in which a person
interacts with an unseen partner behind the camera. To overcome this data scarcity, we introduce a
hybrid annotation pipeline that integrates both real and synthetic videos as training data. This design
enables our framework to learn the unique interaction pattern from synthetic data while maintaining
capabilities to generate high-fidelity and contextually appropriate human reactions through real data.

Annotation for Real Videos. To construct behavioral interaction prompts from OpenHumanVid, we
design an automated annotation pipeline. First, we use Qwen2.5-VL-7B (Bai et al., 2025) to generate
descriptive captions for each video, focusing on human-centric content. Videos are then filtered to
retain only those involving at most two people, covering both single- and dual-person interactions.
Next, Qwen2.5-VL-7B is applied again to infer the interaction type and the corresponding body
region. For example, when a hand touches a head, the labels are “touch” (type) and “head” (region).
However, the large multimodal model (LMM) often lacks fine-grained accuracy in localizing body
regions. To mitigate this, we employ the pose estimator DWPose (Yang et al., 2023) on the first
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Table 1: Quantitative comparisons with audio-conditioned portrait animation baselines. The best
score is in blue , with the second-best score in green .

HDTF CelebV-HQ RAVDESS

Methods IDC↑ ASE↑ Sync-C↑ FID↓ FVD↓ IDC↑ ASE↑ Sync-C↑ FID↓ FVD↓ IDC↑ ASE↑ Sync-C↑ FID↓ FVD↓

SadTalker Zhang et al. (2023b) 0.845 5.500 1.645 88.026 129.474 0.851 5.383 2.123 69.411 167.184 0.859 5.134 3.553 91.426 217.972
Hallo Xu et al. (2024) 0.980 5.387 1.874 14.108 138.088 0.931 5.072 2.253 31.922 178.818 0.940 4.231 2.703 28.852 288.555
AniPortrait Wei et al. (2024) 0.977 5.442 1.324 16.937 146.850 0.935 5.190 1.218 33.229 228.409 0.920 4.273 1.969 29.946 614.112
DreamTalk Zhang et al. (2023a) 0.823 5.252 1.558 111.251 182.523 0.776 4.806 1.925 99.309 210.877 0.838 5.058 3.470 117.123 343.260
V-Express Wang et al. (2024) 0.971 5.176 1.972 23.228 114.666 0.848 4.829 1.896 55.500 161.924 0.936 4.165 3.548 29.123 222.759
EchoMimic Chen et al. (2025) 0.914 5.345 1.659 56.151 176.281 0.878 5.102 1.821 52.645 192.203 0.879 4.820 3.430 75.383 268.632
Hallo3 Cui et al. (2024) 0.975 5.172 1.935 15.820 115.060 0.927 4.822 2.297 29.496 168.635 0.947 4.869 3.860 23.091 237.704
InterAvatar-LTX 0.981 5.390 1.655 13.725 107.719 0.940 5.164 2.035 32.636 162.301 0.975 4.888 3.536 12.394 191.570
InterAvatar 0.981 5.392 6.072 11.171 87.680 0.932 5.203 3.283 28.891 176.115 0.970 4.835 4.637 11.243 76.529

frame to extract keypoint coordinates and map them to the predicted region label. In multi-person
scenarios, the LMM is further used to identify which individual corresponds to the interaction region.
Finally, the localized region coordinates at the first frame and the region label are combined to form
the annotated behavioral interaction prompt.

Annotation for Synthetic Videos. To supplement the training corpus, we construct additional data
with behavioral interaction prompts using a synthetic generation pipeline. We begin by collecting
8K high-quality human portrait images, all compliant with copyright regulations. For each image,
we apply DWPose and Qwen2.5-VL-7B to identify visible body regions that can serve as interaction
targets, along with their corresponding coordinates. The image, selected body regions, and prede-
fined interaction types are then provided to the GPT (Hurst et al., 2024) model, which produces con-
textually relevant responses consisting of action prompts and emotion prompts (see Appendix B.1
for details). Given the reference image together with the action and emotion prompts, we utilize
the Wan2.2-I2V-A14B model (Wang et al., 2025a) to synthesize a video clip, where the animated
avatar enacts the specified physical action and emotion, with the reference image serving as the ini-
tial frame. This pipeline generates high-quality synthetic videos for diverse interaction scenarios,
which are integrated into the training set to help the model adapt to this unique interaction pattern.

4.3 DATA FILTERING

All collected and generated videos are passed through a comprehensive processing pipeline to en-
sure both quality and consistency. For videos containing audio, we follow the preprocessing proce-
dures established in the Hallo3 pipeline (see Appendix B.2 for details). In addition, we incorporate
an LMM-based automatic filtering stage to detect and exclude undesirable artifacts such as water-
marks, subtitles, multiple individuals in the frame, facial occlusions, and other visual distortions.
Synthetic videos may exhibit distinctive artifacts introduced by generation models, posing further
challenges that can compromise training quality. To mitigate this, we apply several specialized filter-
ing procedures. First, a video quality filter evaluates metrics such as luminance and blur to discard
low-quality clips. Second, we compute motion, temporal consistency, and identiy consistency scores
to remove invalid or unstable videos. Motion scores are obtained using CoTracker (Karaev et al.,
2024), while temporal consistency and identity consistency are computed as the average CLIP fea-
ture and InsightFace (Ren et al., 2023) feature similarity scores between adjacent frames. Finally,
a human quality filter assesses anatomical correctness and filters out content with distorted limbs.
Together, these procedures yield a clean and reliable set of videos for training.

5 EXPERIMENTS

5.1 MAIN RESULTS

Implementation details are provided in Appendix C, while additional qualitative results, ablation
studies, and generated videos are available in Appendix D and the Supplementary Materials.

Comparisons with Existing Methods. We compare InterAvatar with other state-of-the-art methods
in Table 1. Following previous works, we randomly select 100 test samples for each dataset. For
quick evaluation, we use the same prompt, “the person is talking,” for each sample. However, this
simplification may impair InterAvatar’s performance, as the training captions generated by LMMs
are typically more detailed. Overall, InterAvatar achieves the best performance in terms of IDC, FID,
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Figure 4: Comparison on scenes with dynamic foreground, background, and interactive subjects.

Region: 
Hair

Type:
Pick

Region: 
Left ear

Type:
Touch

Region: 
Nose

Type:
Punch

Figure 5: Qualitative interactive human animation results.

and FVD, highlighting its superior visual fidelity and temporal consistency. Additionally, our de-
fault version with Wan2.1-1.3B achieves state-of-the-art lip-sync quality while preserving real-time
generation capability. We also provide qualitative comparisons in Appendix D.

Comparisons with video DiT-based Methods. Video DiT-based animation methods excel at gen-
erating dynamic foregrounds and backgrounds in animated videos. We compare our approach with
another video DiT-based method, Hallo3, as illustrated in Figure 4. Our method demonstrates su-
perior preservation of appearance consistency, including characters, backgrounds, and interactive
objects, as well as smoother and more natural motion dynamics. Notably, our inference speed sig-
nificantly outperforms Hallo3, achieving more than 30× faster inference at the same resolution.

Qualitative Interaction Visualizations. We provide qualitative evaluations in Figure 5. InterA-
vatar can animate avatars to simulate interactive responses conditioned on various input behavioral
interaction prompts, including specified interaction regions and interaction types. For example, in
the third row, when the user selects the woman’s nose with a “punch” interaction prompt, her ex-
pression shifts to one of pain, followed by a crying reaction.

(1) RITA (2) RITA with LMMs

Personality: 
Cheerful

Type:
Press

Region: 
Left eye

Type:
Pinch

(1) Positional encoding (2) Regional mask (3) Crop (4) Draw a red circle (5) Ours

Figure 6: Comparisons of different interaction position encoding strategies.
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Table 2: Conditioning methods

Method IDC↑ Sync-C↑ FID↓ FVD↓
Add 0.970 5.958 13.942 115.184
Refnet 0.979 6.143 13.755 101.421
Concat 0.981 6.072 11.171 87.680

Table 3: Appearance encoding

Method IDC↑ Sync-C↑ FID↓ FVD↓
Identity 0.972 6.036 14.250 121.114
Attribute 0.967 6.085 12.513 94.065
Both 0.981 6.072 11.171 87.680

Table 4: Appearance injection

Method IDC↑ Sync-C↑ FID↓ FVD↓
adaLN-zero 0.965 5.395 15.694 137.325
Separate 0.983 6.044 11.205 90.523
Decoupled 0.981 6.072 11.171 87.680

(1) RITA (2) RITA with LMMs

Personality: 
Cheerful

Type:
Press

Region: 
Right hand

Type:
Caress

(1) Only real data (2) Only synthetic data (3) Ours

Figure 7: Comparisons of different data annotation strategies.

5.2 ABLATION STUDY

Reference Image Conditioning. As shown in Table 2, concatenating the reference image latents
with the noisy latents achieves performance comparable to using a reference network. However, the
reference network significantly increases the parameter count of the backbone and incurs additional
computational overhead. We also evaluate an alternative approach that adds the reference image
latents to the latent of each frame, which results in lower performance than concatenation. Therefore,
we adopt the simpler strategy to maintain a balance between efficiency and effectiveness.

Appearance Encoding. We evaluate three methods for appearance encoding, as shown in Table 3.
Using only the identity embedding or only the attribute embedding results in performance degra-
dation. In contrast, our proposed decoupling strategy, which integrates both identity and attribute
embeddings, achieves the best performance in terms of appearance fidelity and expressiveness.

Appearance Injection. We compare three methods for injecting appearance features in Table 4.
adaLN-zero (Peebles & Xie, 2023) exhibits limited modulation capacity, while employing two
separate cross-attention modules increases model complexity without notable improvements. The
adopted decoupled cross-attention mechanism provides a more effective and efficient way to inject
identity and attribute information separately, bringing superior visual appearance quality.

Interaction Prompt Position Encoding. We consider four strategies for encoding the position
of behavioral interaction prompts in Section 3.4. We visualize an example where a person’s left
eye is pinched, and compare the generated responses across encoding methods in Figure 6. Our
adopted strategy generates a reaction in which the person touches the interaction region with her
hand, resulting in a more natural and contextually appropriate response compared to other methods.

Hybrid Data Annotation. We ablate our hybrid data annotation method in Figure 7. Training
solely on real data ensures high visual fidelity but lacks interactivity. Conversely, relying only on
synthetic data enables the model to learn richer user–avatar interaction patterns, yet the generated
avatars may suffer from visual artifacts. In contrast, combining real and synthetic data preserves the
visual quality inherited from real data while effectively learning interactive behaviors from synthetic
data, with only minor artifacts that do not significantly affect interaction experience.

6 CONCLUSION

In this work, we introduced InterAvatar, a novel framework for real-time interactive portrait ani-
mation designed to overcome two key limitations of existing methods: limited interactivity due to
slow inference and the lack of behavioral interaction modeling. To this end, we adapted a video
diffusion transformer for real-time portrait animation, incorporating an effective appearance de-
coupling strategy to improve appearance consistency over long durations. We further introduced
behavioral interaction prompts into portrait animation for the first time, devising new encoding and
injection methods to enhance user–avatar interactivity. To support training, we developed a hybrid
data annotation pipeline that systematically collects, labels, and filters real and synthetic videos
with behavioral interaction prompts. Extensive experiments on standard benchmarks demonstrate
that InterAvatar achieves real-time animation speeds without compromising visual quality, while
qualitative results highlight its ability to generate realistic and responsive user–avatar interactions.
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Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

11

https://www.kaggle.com/dsv/256618
https://www.kaggle.com/dsv/256618


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xingyu Ren, Alexandros Lattas, Baris Gecer, Jiankang Deng, Chao Ma, and Xiaokang Yang. Facial
geometric detail recovery via implicit representation. In 2023 IEEE 17th International Conference
on Automatic Face and Gesture Recognition (FG), pp. 1–8. IEEE, 2023.

Aleksandar Shtedritski, Christian Rupprecht, and Andrea Vedaldi. What does clip know about a
red circle? visual prompt engineering for vlms. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 11987–11997, 2023.
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A PRELIMINARY

Rectified flow (Liu et al., 2022; Lipman et al., 2022) is a deterministic generative modeling approach
that learns a continuous ordinary differential equation (ODE) mapping from a simple noise prior π0

(e.g., standard Gaussian) directly to a target data distribution π1. Formally, rectified flow constructs
a velocity field v(x, t) defining the ODE

dZt

dt
= v(Zt, t), Z0 ∼ π0, Z1 ∼ π1, (2)

transporting noise samples Z0 at t = 0 into data samples Z1 at t = 1.

The core idea is to align the ODE trajectories with a predefined straight-line interpolation Xt =
(1− t)X0 + tX1, where X0 ∼ π0 and X1 ∼ π1. Although this interpolation itself is non-causal (as
it requires knowing X1 in advance), rectified flow rectifies this by training the velocity field v(x, t)
to approximate the interpolation’s velocity (X1 −X0) without future knowledge:

min
v

EX0∼π0,X1∼π1

[∫ 1

0

∥∥v((1− t)X0 + tX1, t
)
− (X1 −X0)

∥∥2 dt] . (3)

This flow matching objective ensures that the distribution of ODE solutions Zt matches the interpo-
lation distribution at every t, effectively yielding the optimal vector field

v(x, t) ≈ E[X1 −X0 | Xt = x]. (4)

Rectified flow provides several advantages over conventional diffusion-based generative models: it
is inherently deterministic, avoids stochastic forward diffusion, and enables efficient sampling by
solving a simple ODE initial value problem. Additionally, the training procedure is simulation-free,
stable, and straightforward, directly optimizing the velocity field via regression without complex
reparameterizations or likelihood computations.

B DATA CURATION DETAILS

B.1 ANNOTATION FOR SYNTHETIC VIDEOS

Body Region. We define a comprehensive list of body regions for interaction, including: abdomen,
elbows (left/right), calves (left/right), chest, ears (left/right), eyes (left/right), face (left/right),
hair, mouth, neck, nose, hands (left/right), shoulders (left/right), and thighs (left/right). For the
hair region, we first employ Qwen2.5-VL-7B to localize the area, followed by the application of
SAM2 (Ravi et al., 2024) for precise hair segmentation. The center point of the segmented region
is selected as the position for the point prompt. For other body regions, we use the DWPose pose
estimator to obtain whole-body keypoints, and map the selected body region to its corresponding
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Figure 8: Ramdomly selected training samples.

coordinate based on the pose estimation results. During the annotation process, only visible body
regions are considered. For instance, if the hand is occluded or not visible in the image, it is excluded
from the list of annotated regions.

Interaction Type. We categorize interaction types into four groups: Affectionate (e.g., kissed and
caressed), Gentle (e.g., stroked and blown on), Neutral (e.g., pressed and tapped), and Aggressive
(e.g., punched, poked, kicked, pinched, and scratched).

Dataset Visualizations. We visualize some synthetic samples in Figure 8.

GPT Prompt. We present the GPT5-mini prompt used for synthetic data generation in Table 5.

B.2 FILTERING FOR TALKING-HEAD VIDEOS

During data pre-processing, we apply a three-stage filtering pipeline: single-speaker extraction,
motion filtering, and post-processing. First, we select videos with a single speaker to reduce back-
ground noise and scene variation, using existing tools (Plaquet & Bredin, 2023). We then apply
filtering techniques to ensure the quality of head motion, head pose, and camera stability (Karaev
et al., 2024; Chung & Zisserman, 2016), computing metric scores for each clip to support flexible
screening strategies. Finally, we extract a random frame from each video and encode facial embed-
dings with InsightFace (Ren et al., 2023), while audio tracks are encoded with Wav2Vec2 (Baevski
et al., 2020) to provide multimodal conditions during training.

C IMPLEMENTATION DETAILS

C.1 TRAINING.

Wan2.1-1.3B Baseline. We train the Wan2.1-1.3B baseline on 64 Nvidia H800 GPUs with a batch
size of 64 and an initial learning rate of 2e-5 under a cosine decay schedule. Training proceeds in
three stages: (1) 80K steps on audio-driven videos, (2) 40K steps on a mixture of audio-driven and
behavioral interaction videos, and (3) a distillation stage that follows the Self-Forcing (Huang et al.,
2025) setting. A multi-scale training strategy is employed, resizing each frame to 480p with varying
aspect ratios. The number of frames per video ranges from 25 to 101. During training, conditioning
inputs are randomly dropped with probability 0.1, while all conditioning signals are simultaneously
dropped with probability 0.05. For behavioral interaction videos, captions are dropped with proba-
bility 0.5. We use InterAvatar with Wan2.1-1.3B as the default model for ablation studies.

LTX-Video Baseline. The LTX-Video baseline is trained under the same setup but with a batch
size of 128. The two training stages consist of (1) 120K steps on audio-driven videos, and (2) 40K
steps on the mixed dataset. Since the original LTX-Video is designed for real-time generation, the
Self-Forcing stage is not applied. The frame resolution is consistently resized to 480p with variable
aspect ratios, and video lengths range from 37 to 129 frames. The same conditioning dropout scheme
is applied: individual inputs are dropped at probability 0.1, all signals jointly at 0.05, and captions
for behavioral interaction videos at 0.5.
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Figure 9: Qualitative comparisons on the RAVDESS and HDTF dataset.
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Table 5: Guidelines for the interaction simulation prompt generation. Each block summarizes
one aspect of the prompt that governs how the model should generate context-aware reactions.

Scenario Overview
You will analyze an image of a person and responding to hypothetical interactions by fully embody-
ing their physical and emotional presence. Each hypothetical interaction specifies a target body part
and an interaction type. The person is always facing the camera while reacting, and all interactions
occur as if the user is positioned directly in front of them, just outside the camera’s view. You will
act as if you are this person, responding purely based on their internal and physical reactions to the
situation, while drawing from the environmental context (e.g., clothing, setting, items held). Your
action and emotion should be reasonably expressive instead of cold and static.

Independent Reactions
(1) The Action must describe how the person physically reacts, including instinctive movements
and physical adjustments. Avoid describing the external source of contact.
(2) Responses must exclude any mention of external initiators or interactions and assume the person
is facing forward toward the camera at all times.
(3) When eyes, ears, limbs, or other paired features react, explicitly state left or right.

Narration Style
All descriptions must consistently use ”The person/man/woman/child/boy/girl” instead of pronouns
like ”they”, ”their”, or ”I”.

Emotion Intensity Scale
Use the following terms to indicate emotional scale:
(1) mild: Subtle reaction, slight emotion.
(2) moderate: Clear reaction, visible emotion.
(3) strong: Pronounced reaction, intense emotion.

Environmental Contextualization
Analyze the person’s clothing, held items, and setting from the image to ensure contextual accuracy.
The person’s response must reflect their physical state, posture, and surroundings. Assume they are
holding their position and facing the camera at all times. Consider the environmental context (e.g.,
items held) to provide a more natural and contextually appropriate response.

Body Part Inclusion
(1) Provide reactions for every listed body part that appears in the frame.
(2) Exclude any part that is not visible, without altering the output structure.

Expressive Detail
(1) Paint vivid micro-expressions—e.g., eyebrow lifts, lip twitches, or soft exhales.
(2) Pair physical movement with a matching emotional tone to convey authenticity.

C.2 EVALUATION.

When comparing our method with other methods, we apply spatiotemporal skip guidance (Hyung
et al., 2024). The reference image is used as the initial motion frame, while the last 5 frames
of each generated clip are used to condition the subsequent clip. Evaluations are performed on
HDTF (Zhang et al., 2021), CelebV-HQ (Zhu et al., 2022), and RAVDESS (Livingstone & Russo,
2019), using 100 randomly sampled videos from each dataset. We evaluate visual fidelity using
Fréchet Inception Distance (FID) (Heusel et al., 2017) and Fréchet Video Distance (FVD) (Un-
terthiner et al., 2019). FID measures the similarity between the distribution of generated and real
images and FVD extends this to the temporal domain by evaluating coherence and realism across
video sequences. Following FantasyTalking (Wang et al., 2025b), we measure identity consistency
(IDC) and aesthetic quality (ASE). Additionally, we use SyncNet (Chung & Zisserman, 2017) to
compute the Sync-C score, which quantify the lip-audio synchronization between lip movements of
the generated avatar and the input audio.
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Figure 10: Comparison of different interaction positions. The interaction type is kick. The red circle
marks the interaction region in the first column, while the blue circle indicates the interaction region
in the second column.

D MORE RESULTS

D.1 QUALITATIVE COMPARISONS WITH EXISTING METHODS

We conduct qualitative comparisons between InterAvatar and existing methods. As shown in the Fig-
ure 9, InterAvatar achieves promising results with the strongest appearance consistency. In contrast,
rendering-based methods such as DreamTalk and SadTalker often exhibit unnatural head jittering,
although this may be less noticeable when visualized as individual frames.

D.2 DISCUSSION

Prompting Strategy Comparison. Text prompts exploit the pretrained video–text alignment of the
diffusion model, which improves semantic comprehension. However, this approach is impractical
for interactive settings, as users must carefully craft detailed descriptions and manually input them,
a process that is time-consuming and lacks interactivity. In contrast, our proposed behavioral inter-
action prompts require additional architectural design and training to unlock this capability, but they
deliver a much more intuitive user experience. With a simple click on an interested region and a key-
word defining the interaction type, the avatar reacts immediately, enabling real-time responsiveness
and a more natural interaction paradigm.

D.3 ABLATION STUDY

Positions of Interaction Prompts. We investigate how the spatial location of interaction prompts
affects the generated avatar responses. Since reactions are intrinsically tied to the interacted region,
changing the prompt position leads to distinct avatar behaviors, as illustrated in Figure 10. Notably,
when keeping the interaction type and reference image fixed, the model still produces contextually
appropriate but different reactions depending on the chosen position.

E THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) in limited ways that did not contribute to the scientific
content or conclusions of the paper. Specifically, an LLM was employed for writing polish and
editing, helping to improve grammar, clarity, and readability of the manuscript. In addition, LLM-
based large multimodal models (LMMs) were used for data curation and data filtering.

F LIMITATIONS

We acknowledge some limitations in our paper that require attention. One limitation is that we only
regard the human body region as valid for interaction, and clicks outside of this region, such as in the
background, are not properly handled. This may lead to unexpected behavior or degraded animation
quality due to ambiguous input signals that fall outside the model’s defined interaction scope. In
future work, we plan to extend our interaction framework to include contextual interaction about the
entire scene, enabling more robust responses to diverse user inputs.
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