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Abstract
Fine-tuned pretrained attention-based models001
often struggle with generalisation, leading to002
poor performance in scenarios like out-of-003
domain transfer, distribution shifts, and few-004
shot learning. This limitation is prevalent005
across modalities such as speech, text, graphs,006
and vision. Nonparametric Variational Informa-007
tion Bottleneck (NVIB) is an attention-based008
information-theoretic regulariser applicable to009
pretrained models that has been shown to im-010
prove generalisation. However, prior work has011
applied NVIB only to the text modality and012
without fine-tuning. We investigate whether013
NVIB’s ability to remove information from014
pretrained embeddings helps the model avoid015
spurious correlations with noisy and superfi-016
cial features during fine-tuning. We are the017
first to integrate NVIB regularisation during018
fine-tuning across multiple diverse models and019
modalities. This required modifications to the020
architecture which enhance adaptability and sta-021
bility during fine-tuning and simplify the evalu-022
ation. We found improved out-of-distribution023
generalisation in: speech quality assessment024
and language identification, text with induced025
attention sparsity, graph-based link prediction,026
and image-based tasks, including few-shot clas-027
sification and privacy classification.028

1 Introduction029

Leveraging pretrained attention-based representa-030

tions by fine-tuning has become the de facto mod-031

elling paradigm due to its wide applicability and032

significant improvements on the state-of-the-art033

(Ruder et al., 2019). Applications of pretrained034

Transformers (Vaswani et al., 2017) are modality035

agnostic and gained prevalence across: speech pro-036

cessing (Baevski et al., 2020; Radford et al., 2023);037

natural language processing (Devlin et al., 2019;038

Raffel et al., 2020; Touvron et al., 2023), graphs039

(Rong et al., 2020; Li et al., 2021b) and computer040

vision (Liu et al., 2021; Dosovitskiy et al., 2021;041

Bao et al., 2022).042

The success of pretrained attention-based mod- 043

els is thought to stem from their ability to scale, 044

both in terms of corpora size and the number of pa- 045

rameters, as well as the inductive biases inherent in 046

the attention-based architecture (Henderson, 2020; 047

Zhai et al., 2022; Fedus et al., 2021; Dehghani et al., 048

2023). Despite their success, these models still ex- 049

hibit notable limitations during fine-tuning. Due to 050

their large number of parameters and expressivity, 051

they can be prone to overfitting and struggle to gen- 052

eralise in the presence of shortcuts from spurious 053

correlations (Bhargava et al., 2021; Geirhos et al., 054

2020), distribution shift (Wu et al., 2020a; Kumar 055

et al., 2022). The attention mechanism facilitates 056

expressivity through token interaction, but this also 057

introduces redundant information, which can hin- 058

der generalisation (Bian et al., 2021; Bhojanapalli 059

et al., 2021). Introducing sparsity as a form of 060

regularisation into attention has been shown to im- 061

prove generalisation performance by reducing this 062

redundancy (Child et al., 2019; Behjati et al., 2023; 063

Fehr and Henderson, 2024). However, regularising 064

attention during fine-tuning of pretrained models 065

remains both challenging and unexplored. 066

Information bottleneck (IB) is an information- 067

theoretic regulariser that learns latent features Z 068

that compress the input X while preserving infor- 069

mation for the downstream task Y (Tishby et al., 070

2000). The variational information bottleneck 071

(VIB) framework, introduced through a variational 072

lower bound to the IB objective (Alemi et al., 2017), 073

enables deep neural representations (Tishby and Za- 074

slavsky, 2015) to be trained using gradient-based 075

optimisation. This framework has been widely 076

applied across speech (Nelus and Martin, 2021; 077

Lian et al., 2022), natural language (McCarthy 078

et al., 2020; mahabadi et al., 2021), graphs (Wu 079

et al., 2020b; Sun et al., 2022) and vision (Han 080

et al., 2020; Chun, 2024). The success of the VIB 081

framework can be attributed to its key properties, 082

including resilience against spurious correlations 083
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Figure 1: The NVIB module including the NVIB layer (left) and denoising attention (right).

(Chuah et al., 2022) and distribution shift (Li et al.,084

2021a), robustness (Zhang et al., 2022) and sparsity085

(Paranjape et al., 2020). Despite this success, VIB086

regularisation has seen limited exploration in the087

fine-tuning of pretrained attention-based models.088

Applying VIB to these pretrained models is diffi-089

cult due to the complexity of incorporating it into090

the variable-sized latent representations accessed091

by attention.092

Henderson and Fehr (2023) propose Nonpara-093

metric Variational Information Bottleneck (NVIB)094

as a VIB regulariser for attention layers. NVIB reg-095

ularises the variable-sized representations accessed096

by attention by compressing both the information097

in individual vectors and the number of vectors.098

Further contributions to NVIB have demonstrated099

characteristics such as out-of-distribution (OOD)100

generalisation, robustness and sparsity (Hender-101

son and Fehr, 2023; Behjati et al., 2023; Fehr102

and Henderson, 2024). Behjati et al. (2023) em-103

ploy NVIB for representation learning by incorpo-104

rating the regulariser into the self-attention lay-105

ers of a Transformer-based encoder, and trains106

from scratch to progressively learn sparser repre-107

sentations through its layers. Fehr and Hender-108

son (2024) integrated NVIB into pretrained models109

and achieved improvements in OOD summarisa-110

tion and translation tasks without further training.111

Previous work has not applied NVIB regularisation112

during fine-tuning of pretrained models, nor has113

it explored generalising nonparametric variational114

models beyond text to diverse modalities like vi-115

sion, speech, and graphs with their varying model116

architectures, data, and tasks.117

Contributions. In this paper, we are the first to118

extend NVIB regularisation methods to fine-tuning,119

with diverse pretrained models. (1) We propose sev- 120

eral novel methods for NVIB fine-tuning, includ- 121

ing a learnable prior mean embedding per layer for 122

adaptability, clipped Dirichlet pseudo-counts for 123

stability, and a simplified denoising attention func- 124

tion at evaluation (Section 2). (2) We do the first 125

empirical evaluation of NVIB on diverse modali- 126

ties such as speech (Section 3.1), text (Section 3.2), 127

graphs (Section 3.3), and vision (Section 3.4 and 128

3.5). (3) We show improved OOD generalisation in 129

classification and regression tasks, demonstrating 130

NVIB’s added value across diverse applications. 131

2 Fine-tuning with NVIB 132

Figure 1 depicts an NVIB module, with the NVIB 133

layer (left) and denoising attention function (right). 134

The NVIB layer projects the sequence of vec- 135

tors x ∈ Rn×d from a Transformer embedding 136

to the parameters of a Dirichlet Process. These 137

parameters include the isotropic Gaussian means 138

µ ∈ R(n+1)×d and variances σ2 ∈ R(n+1)×d spec- 139

ifying the mixture base distribution, and the Dirich- 140

let concentration parameters α ∈ R(n+1). Each of 141

the n vectors has an associated mixture component, 142

along with an additional (n+1)th component that 143

serves as a prior for the embeddings. During train- 144

ing, the NVIB layer samples a mixture distribution, 145

represented as a set of weighted vectors (π,Z), 146

where π ∼ Dir(α) and Zi ∼ N (µi,σi
2). During 147

evaluation, the NVIB layer outputs the expecta- 148

tion of these samples, which is the mixture of n+1 149

Gaussians, but can be approximated as Z = µ and 150

π = α/
∑n

i αi. 151

Figure 1 (right) depicts how the denoising atten- 152

tion function is a generalisation of standard atten- 153

tion to any nonparametric mixture distribution. In 154
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the case of a set of weighted vectors, this involves155

using the weights π as bias terms for the attention156

weights over keysK(Z). We provide a detailed de-157

scription and pseudocode for denoising attention in158

Appendix B, and a consolidated overview of prior159

research on NVIB in Appendix A.160

Following from Fehr and Henderson (2024), we161

reinterpret the pretrained models as nonparametric162

variational models by including NVIB layers be-163

fore the attention mechanisms. This layer maps the164

input vectors x to the DP parameters (µq,σq,αq):165

µ = µ(x) = xW µ + bµ (1)166

σ2 = σ2(x) = exp(xW σ + bσ) (2)167

α = α(x) = exp(x2wα
1 + xwα

2 + bα) (3)168

The weight and bias parameters are initialised as:169

W µ = I and bµ = 0, ensuring an identity initiali-170

sation for µ (Equation 1). For σ2, we set W σ = 0171

and bσ = log(τ2σ), which initialises the variance172

(Equation 2). Finally, the parameters for α (Equa-173

tion 3) are given by wα
1 = 1

2
√

d/h
⊙ 1, wα

2 = 0,174

and bα = τα which allows for a constant bias term175

in denoising attention in Figure 1 (right). This ini-176

tialisation ensures empirical equivalence with the177

pretrained model, after manual adjustment of the178

hyperparameters (τ2σ , τα) for each model, where179

d and h denote the projection size and number of180

attention heads. During fine-tuning, all model pa-181

rameters are updated, including W µ, bµ, W σ, bσ,182

wα
1 , wα

2 , and bα.183

To fine-tune with NVIB regularisation, we add184

Kullback-Leibler (KL) divergence terms to the task185

loss. As with previous VIB regularisers, informa-186

tion flow is controlled during training by sampling187

the latent representations. Minimising the KL diver-188

gence with the prior tries to maintain this sampling189

noise and remove information, while the task loss190

keeps the information needed for the task. The task191

loss LT is computed with the sampled representa-192

tions. With NVIB, the KL divergence is decom-193

posed into two loss terms: LG for the Gaussians194

and LD for the Dirichlet distributions, with hyper-195

parameters λG and λD controlling their balance.196

The corresponding equations from Henderson and197

Fehr (2023) are provided in Appendix A.3. This198

gives us a total fine-tuning loss of:199

L = LT + λDLD + λGLG (4)200

Novel methods for NVIB fine-tuning. Firstly, in201

contrast to Fehr and Henderson (2024), we simplify202

the denoising function during evaluation to better 203

align with the training function. The equations 204

used in both training and evaluation are shown in 205

Figure 1 (right) and pseudocode in Appendix B. 206

Secondly, while Fehr and Henderson (2024) esti- 207

mate the prior parameters from training data, in 208

this work we allow the prior mean µp to be fine- 209

tuned. This allows for flexibility and adaptation 210

to the pretrained model. To maintain the noise in 211

the prior during training, we keep the prior vari- 212

ance (σp)2 = 1 and the prior pseudo-count αp
0 = 1 213

fixed. Thirdly, we stabilise fine-tuning by apply- 214

ing proportional clipping to the Dirichlet sampling 215

parameters α. The magnitude of α controls the 216

amount of noise when sampling the weights π, 217

with larger values reducing noise. The relative val- 218

ues of α determine the expected π distribution. 219

Thus, we control the magnitude of α while preserv- 220

ing its relative values using the clipping functions 221

max(ϵ, .) and min(ω, .) to prevent underflow and 222

overflow, respectively. The parameter ϵ is set small 223

enough to prevent values from vanishing, while ω 224

is chosen to be sufficiently large to avoid distorting 225

the distribution. 226

α = max

(
ϵ,

α∑
i αi

)
×min

(
ω,
∑
i

αi

)
(5) 227

3 Experiments 228

To evaluate the NVIB regulariser, we design 229

controlled experiments by fine-tuning pretrained 230

models across modalities, including speech, text, 231

graphs, and vision. We compare to models that are 232

first pretrained and then fine-tuned using empirical 233

risk minimization (ERM) with task-specific loss 234

functions. 235

Baselines. For simplicity and to maintain unifor- 236

mity across experiments, we define a set of fine- 237

tuned baselines, avoiding modality-specific alter- 238

natives. These baselines include models trained 239

without regularisation and models with dropout 240

regularisation. To ensure consistency with standard 241

practices, we use the predefined dropout rate of 242

0.1 for all pretrained models. Dropout is a suitable 243

baseline for NVIB regularisation, as it is widely 244

used and effective, seamlessly integrates into pre- 245

trained models, and introduces noise into both em- 246

beddings and attention mechanisms. All experi- 247

ments are conducted on a consumer-grade NVIDIA 248

RTX 3090 (24GB) GPU, with smaller Transformer 249

models chosen to reduce computational costs. 250
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Table 1: Speech quality assessment for NISQA (ID) and Tencent (OOD). Average test results (0–1) are reported
with standard deviation across 5 seeds.

NISQA (ID) Tencent (OOD)
Model PCC (↑) RMSE MAP (↓) PCC (↑) RMSE MAP (↓)

W2V2Base 0.89 (0.02) 0.42 (0.03) 0.80 (0.01) 0.54 (0.01)

with Dropout 0.89 (0.01) 0.43 (0.01) 0.83 (0.03) 0.51 (0.04)

with NVIB 0.90 (0.01) 0.41 (0.02) 0.83 (0.02) 0.51 (0.03)

Table 2: Language identification for CommonLanguage (ID), FLEURS (OOD) and VoxPopuli (OOD) speech
datasets. Average test F1 scores (0–1) are reported with standard deviation across 5 seeds.

CommonLanguage (ID) FLEURS (OOD) VoxPopuli (OOD)
Model F1 (↑) F1 (↑) F1 (↑)

W2V2Large 0.82 (0.01) 0.90 (0.02) 0.86 (0.02)

with Dropout 0.81 (0.01) 0.90 (0.01) 0.82 (0.02)

with NVIB 0.82 (0.01) 0.91 (0.02) 0.85 (0.02)

Initialisation of NVIB layers. The initialisation251

ensures empirical equivalence with each pretrained252

model after adjusting (τ2σ , τα), allowing the atten-253

tion weights to ignore the prior component in NVIB254

layers. While Fehr and Henderson (2024) empir-255

ically initialise the prior component, we simplify256

this by setting µp = 0, (σp)2 = 1, and αp
0 = 1.257

During fine-tuning, µp remains learnable, while258

(σp)2 and αp
0 are fixed. However, stacking NVIB259

across layers in deeper models reduces equivalence260

precision. In such cases, NVIB is omitted from261

the later layers of the model. The parameters τσ262

and τα influence equivalence during training and263

evaluation.τσ controls initial Gaussian noise dur-264

ing fine-tuning but is unnecessary for evaluation265

equivalence, as mean embeddings are used. τα266

reweights Dirichlet pseudo-counts to ensure input267

embeddings outweigh the prior in attention.268

Fine-tuning hyperparameters. Following269

Henderson and Fehr (2023), we set the number270

of samples per component to one but omit271

their conditional prior, which prevents pos-272

terior collapse during training from scratch.273

The KL divergence is weighted by λG and274

λD, respectively. We optimize these hyper-275

parameters through a log-scaled grid search276

[10 0, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7],277

tying λG and λD and selecting the best values278

based on validation performance.279

3.1 Speech Out-of-Distribution Evaluation280

Language identification and automated assessment281

of speech are crucial tasks in the development of282

audio transmission systems, but are challenging 283

due to many factors related to: the acoustic environ- 284

ment; variation in recording hardware and software; 285

speaker characteristics; and evaluation conditions 286

(Gierlich and Kettler, 2006; Chinen, 2021; Cooper 287

et al., 2022). The prediction of perceived speech 288

quality is formulated as a regression task to esti- 289

mate the scores of human listeners (ITU-T, 1996), 290

whereas language identification is a classification 291

task given an audio sample. Given the diverse array 292

of factors that can impact speech, generalisation is 293

essential in these tasks. 294

Speech quality assessment. We fine-tune and 295

evaluate on the NISQA (Mittag et al., 2021) dataset, 296

which contains English speech recordings from live 297

calls with network impairments and simulated dis- 298

tortions. We perform OOD testing on the Tencen- 299

tWithReverberation (Tencent) Chinese speech cor- 300

pus (Yi et al., 2022), which introduces new condi- 301

tions such as: simulated and real reverberation; and 302

different labelling conditions. Following ITU-T 303

(2020), we evaluate our models using the Pearson’s 304

correlation coefficient (PCC) and root-mean-square 305

error after mapping with a first-order polynomial 306

function (RMSE MAP). 307

We fine-tuned the pretrained Wav2vec2-base 308

model (Baevski et al., 2020), a 12-layer Trans- 309

former encoder, using mean-squared-error (MSE) 310

loss. Fine-tuning was conducted with the Adam op- 311

timizer (Kingma and Ba, 2014), a constant learning 312

rate of 1e−5, a batch size of 16, and for 5 epochs. 313

NVIB was applied to layers 0–10, with projections 314

initialized using τσ = 0.1 and τα = 10. The best- 315
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performing model used λG = λD = 1e−2. Table 1316

shows that NVIB regularisation achieves the high-317

est correlation on the in-distribution (ID) data. On318

the OOD dataset, NVIB regularisation achieves319

comparable generalisation improvements while ex-320

hibiting a lower standard deviation.321

Speech language identification. We fine-tune322

our models on the CommonLanguage (Ravanelli323

et al., 2021) dataset which consists of 22K train-324

ing audios from 45 languages. We evaluate on325

two OOD datasets with overlapping languages:326

FLEURS (Conneau et al., 2023) with 27 languages;327

and VoxPopuli (Wang et al., 2021) with 11 lanu-328

ages. The FLEURS dataset is read speech, which329

is closer to CommonLanguage. Whereas, the Vox-330

Populi dataset is more challenging as it contains331

spontaneous speech from the European Parliament.332

We fine-tuned the pretrained Wav2vec2-large333

model (Baevski et al., 2020), a 24-layer Trans-334

former encoder, using cross-entropy loss for the335

language identification classification task. Fine-336

tuning was performed with the AdamW optimizer337

(Loshchilov and Hutter, 2019), a learning rate of338

3e−5, a scheduler with linear warm-up and decay,339

a batch size of 4, and for 10 epochs with mixed340

precision (16-bit) and gradient norm clipping of341

1. NVIB was applied to layers 0–16, with projec-342

tions initialized using τσ = 0 and τα = 10. The343

best-performing model used λG = λD = 1e−7.344

Table 2 reports the F1 classification scores, show-345

ing that NVIB matches ID performance and out-346

performs the dropout-regularised baseline on the347

OOD datasets.348

3.2 Text Out-of-Distribution Classification349

We consider the CivilComments (CC) (Borkan350

et al., 2019) task which is part of the WILDS (Koh351

et al., 2021) curated set of datasets that represent352

real-life distribution shifts. CC classifies the pres-353

ence of toxicity in online comments which is an354

important task of monitoring internet content. The355

task is a binary classification task of determining356

if a comment is toxic, and contains a subpopula-357

tion shift between 8 demographic identities classes,358

meaning that the training and test domains overlap,359

but their relative proportions differ. We measure360

generalisation by the accuracy of the lowest per-361

forming subpopulation worst-group (WG).362

We fine-tuned the pretrained TinyBERT model363

(Turc et al., 2019), a two-layer Transformer en-364

coder, using cross-entropy loss. Fine-tuning was365

Table 3: Text classification on CC train (ID) and test
(OOD). Average accuracy (%) is reported across 5 seeds
with standard deviation and the best OOD model.

CC Train (ID) CC Test (OOD)
Model WG (↑) WG (↑)

BERTTiny 78.12 (14.33) 99.00 49.14 (5.56) 61.03

with Dropout 91.05 (1.49) 91.16 60.10 (3.11) 63.97

with NVIB 80.12 (10.69) 76.30 55.01 (6.15) 61.03

0.00.20.40.60.81.0
Proportion of Keys

0.75

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e 

W
G 

Ac
cu

ra
cy

BERT-Tiny
with Dropout
with NVIB
Split
Test (OOD)

Figure 2: Worst-group (WG) test (OOD) accuracy as
a function of attention key sparsity for the best OOD
models, relative to dropout without sparsity.

performed with the AdamW optimizer (Loshchilov 366

and Hutter, 2019), a constant learning rate of 5e−5, 367

a batch size of 1024, and for 50 epochs with mixed 368

precision (16-bit) and gradient norm clipping of 369

0.1. NVIB was applied to all layers, with pro- 370

jections initialized using τσ = 0.1 and τα = 1, 371

and a linear KL annealing warmup was used dur- 372

ing fine-tuning. The best-performing model used 373

λG = λD = 1e−1. 374

Table 3 shows the generalisation improvement of 375

this task through regularisation. On average, NVIB 376

regularisation improves OOD generalisation over 377

the unregularised baseline, though it remains less 378

effective than dropout. However, introducing spar- 379

sity in the attention keys based on their attention 380

magnitude, as shown in Figure 2, improves OOD 381

accuracy and sustains it across a wide range of spar- 382

sity levels. NVIB naturally induces key sparsity by 383

reducing the weight of embeddings relative to the 384

prior component during attention calculations. To 385

remove keys, we mask embeddings with the lowest 386

average attention magnitudes. Further inspection 387

of the attention patterns in Figure 3 reveals a clear 388

focus on toxic words as spurious keys are dropped 389

and attention shifts to the prior token. The align- 390

ment with toxic content becomes more pronounced 391

as sparsity increases. Additional examples can be 392
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Table 4: Graph link prediction on FB15k-237. Test set ranking metrics (0–1) are reported, based on the best model
selected from validation set performance.

FB15k-237
Model MRR (↑) H@1 (↑) H@3 (↑) H@10 (↑)

BLP-BERTTiny 0.164 0.100 0.175 0.288
with Dropout 0.162 0.097 0.172 0.288
with NVIB 0.167 0.103 0.180 0.294
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 3: Attention plot for the best models on Civil-
Comments showing a single head of the last layer. Left:
with dropout, Right: with NVIB. Top-Bottom: Propor-
tion of keys retained [0.1, 0.25, 0.5, 1.0]. Sentence:
("that’s it, boast about your stupidity.").

found in Appendix Figures 6, 7 and 8.393

3.3 Graph Link Prediction394

Link prediction is a graph-based problem that in-395

volves predicting whether a link exists between two396

nodes in a graph. This is widely used for recom- 397

mendation and prediction in social networks, cita- 398

tion links and biological interactions (Kumar et al., 399

2020; Xia et al., 2021). We build upon the BERT 400

for Link Prediction (BLP) model (Daza et al., 2020) 401

which operates on a set of triples (h, r, t), where 402

h and t represent the head and tail node, while r 403

represents the relation between those two nodes. 404

We evaluate on the FB15k-237 dataset (Daza 405

et al., 2020). This dataset follows an inductive 406

setting, where new entities and triples are dynami- 407

cally incorporated into the graph during evaluation. 408

We evaluate the models by querying them with 409

(h, r, ? ) and (? , r, t) triples, and assess their perfor- 410

mance using two metrics: Mean Reciprocal Rank 411

(MRR), which measures the model’s ability to rank 412

the correct triple, and H@k, which calculates the 413

proportion of correct triples ranked within the top- 414

k results. We fine-tuned the pretrained TinyBERT 415

model (Turc et al., 2019), a two-layer Transformer 416

encoder, using a distance-based TransE loss func- 417

tion. Fine-tuning was performed with the RAdam 418

optimizer (Liu et al., 2020), a cosine learning rate 419

scheduler with a value of 8e−5, a batch size of 420

256, and for 40 epochs with mixed precision (16- 421

bit) and gradient norm clipping of 1. NVIB was 422

applied to both layers, with projections initialised 423

using τσ = 0.1 and τα = 1. The best-performing 424

model used λG = λD = 1e−3. 425

Table 4 presents the test set results, which high- 426

lights the advantage of the NVIB-regularised model 427

over typical regularisation methods like dropout. 428

This advantage may stem from the presence of new 429

entities in the head or tail positions, which require 430

a higher level of generalisation. 431

3.4 Image Few-Shot Classification 432

Few-shot classification aims to train models ca- 433

pable of classifying images with limited labelled 434

examples per category. Meta-learning (Vinyals 435

et al., 2016) achieves this by meta-training on sev- 436

eral episodes, enabling generalisation to new tasks 437
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Table 5: Image classification on CIFAR-FS (ID). Test
episodes accuracy (%) with standard deviation.

CIFAR-FS (ID)
Model Acc (↑) Std (↓)

DeiTSmall 93.57 5.71
with Dropout 93.55 5.61
with NVIB 93.88 5.58

with previously unseen classes. To generalise ef-438

fectively, the classifier must transfer knowledge439

from the training distribution to unseen testing dis-440

tributions while avoiding spurious correlations and441

shortcuts (Zheng et al., 2024; Zhang et al., 2024).442

The following experiments were conducted443

within a meta-learning-based few-shot classifica-444

tion framework (Hu et al., 2022), using the pre-445

trained DeiT-Small (Touvron et al., 2021), a 12-446

layer Transformer encoder, with cross-entropy loss.447

Fine-tuning was performed using the AdamW op-448

timizer (Loshchilov and Hutter, 2019), a constant449

weight decay of 0.05, and a linear warm-up with450

cosine decay learning rate scheduler 1e−4. The451

model was trained for 50 epochs with mixed preci-452

sion (16-bit) and a batch size of 1. For classifica-453

tion, we used the prototypical network (ProtoNet)454

(Snell et al., 2017), which dynamically creates class455

centroids for each episode and performs nearest456

centroid classification (Hu et al., 2022). In this457

experiment we initialised the prior µp = 0 and did458

not allow it to be learnable.459

Few-shot in-distribution. We evaluate the ID460

performance using the CIFAR-FS (Bertinetto et al.,461

2019) dataset. Following Hu et al. (2022), we con-462

duct experiments in a 5-way, 5-shot setting. Each463

episode consists of a "support set" with 5 classes464

and 5 samples per class for training, and a "query465

set" with 5 classes and 15 examples per class for466

testing. The experiment includes 2000 episodes467

for meta-training and 2000 episodes for testing.468

NVIB was applied to layers 0–5, with projections469

initialized using τσ = 0 and τα = 0. The best-470

performing model used λG = λD = 1e−2.471

Table 5 reports the average classification accu-472

racy and standard deviation over all test episodes473

for CIFAR-FS in few-shot classification. Com-474

pared to the baseline and Dropout, we observe that475

NVIB regularisation improves accuracy with lower476

variance across all test episodes.477

Few-shot out-of-distribution. To evaluate the478

OOD few-shot classification performance, we use479

1.5 1.0 0.5 0.0 0.5
Relative Accuracy

QDraw

Acraft

CUB

Flower

Omglot

Fungi

DTD

Sign

COCO

DeiT-Small
with Dropout
with NVIB

Figure 4: Percentage point improvement in test accu-
racy relative to the unregularised baseline on the Meta-
Dataset benchmark (OOD).

the Meta-Dataset (Triantafillou et al., 2019). This 480

benchmark is a diverse set of 10 image datasets, in- 481

cluding, ImageNet-1k, MSCOCO (COCO), Traffic 482

Signs (Sign), Describable Textures (DTD), FGVCx 483

Fungi (Fungi), Omniglot, VGG Flower (Flower), 484

CUB-200-2011 (CUB), FGVCAircraft (Acraft) 485

and QuickDraw (QDraw). We meta-train the mod- 486

els on ImageNet-1k and then meta-test them on the 487

remaining datasets. 488

We follow the methodology outlined in Hu et al. 489

(2022), where the number of ways sampled ranges 490

from 5 to 50, with a maximum support size of 500 491

and a maximum query size of 10. For our Trans- 492

former encoder, we apply NVIB to layers 0–5, with 493

projections initialised using τσ = 0 and τα = −3. 494

The best-performing model used NVIB regulariza- 495

tion parameters of λG = λD = 1e−3. Figure 4 496

shows that the NVIB-regularised model achieves 497

the highest performance on 6 out of 9 OOD datasets 498

and outperforms the dropout-regularised model in 499

7 out of 9 cases. 500

3.5 Image Privacy Classification 501

Image privacy classification is a crucial task in safe- 502

guarding sensitive visual content, requiring models 503

to accurately and robustly identify privacy-sensitive 504

information. An effective classifier must generalise 505

across data variations to minimize the risk of pri- 506

vate information leakage. We consider the Priva- 507

cyAlert (Zhao et al., 2022) dataset, which contains 508

images labelled as either private (25%) or public. 509
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Table 6: Image privacy classification on PrivacyAlert.
Average test F1 scores (%) are reported with standard
deviation across 5 seeds.

PrivacyAlert (ID)
Model F1 (↑) Std (↓)

DeiTTiny 78.41 0.10
with Dropout 76.26 2.47
with NVIB 79.40 0.72

0.1 0.2 0.3 0.4 0.5
Gaussian noise standard deviation

2

4

6

8

10

Av
er

ag
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)

DeiT-Tiny
Unregularised
with Dropout
with NVIB
Split
Test

Figure 5: Average attack success rate (ASR) on privacy
classifiers, reported across 5 models with varying Gaus-
sian noise standard deviations. A lower ASR indicates
greater model robustness.

The private category is largely composed of im-510

ages from the Nudity/Sexual class, with limited511

representation from the Medical and Personal In-512

formation categories.513

We fine-tuned the pretrained DeiT-Tiny (Tou-514

vron et al., 2021), a 12-layer Transformer encoder,515

with cross-entropy loss. Fine-tuning was conducted516

with the AdamW optimizer (Loshchilov and Hut-517

ter, 2019), a constant learning rate of 5e−6, a batch518

size of 32, and for 80 epochs with mixed precision519

(16-bit). NVIB was applied to all layers, with pro-520

jections initialized using τσ = 0.5 and τα = 8. The521

best-performing model used λG = λD = 1e−3.522

We evaluate classification performance using F1523

scores and assess robustness by perturbing images524

with zero-mean Gaussian noise at varying standard525

deviations. Robustness is measured using the at-526

tack success rate (ASR), which is the proportion527

of correctly classified images that are misclassi-528

fied after perturbation. Table 6 shows that NVIB529

outperforms the dropout-regularised baseline. Ad-530

ditionally, Figure 5 indicates that NVIB achieves531

robustness comparable to dropout while offering532

improvements over an unregularised vision base-533

line.534

4 Discussion 535

Our results suggest that including NVIB regulari- 536

sation improves the model’s ability to distinguish 537

signal from noise. This is supported by perfor- 538

mance gains observed in tasks such as speech qual- 539

ity prediction (Table 1) and few-shot and privacy 540

image classification (Tables 5 & 6). We attribute 541

this to NVIB’s Bayesian nature, which effectively 542

models statistical uncertainty. During fine-tuning, 543

NVIB introduces noise into the latent represen- 544

tations, which enhances its ability to generalise 545

across noisy feature spaces such as background 546

disturbances and capture variations present in both 547

audio and images. 548

NVIB regularisation shifts the model’s atten- 549

tion from relying on superficial, spurious features 550

to deeper features which generalise better out-of- 551

distribution. This is evident in consistent improve- 552

ments across tasks that require generalisation to 553

unseen entities, such as graph linking (Table 4) 554

and visual meta-learning (Figure 4). We believe 555

this is due to the additional prior tokens, which 556

disentangle and reweight attention away from spu- 557

rious tokens (attention maps in Figures 3, 6, 7 & 558

8). Additionally, this effect is observed in sustained 559

performance with increased sparsity and robustness 560

(Figure 2 & 5). 561

5 Conclusion 562

In this work, we contribute to fine-tuning with Non- 563

parametric Variational Information Bottleneck reg- 564

ularisation by demonstrating improved generalisa- 565

tion across multiple modalities and models. We 566

extend NVIB to pretrained models by proposing 567

a novel learnable prior mean embedding per layer 568

for greater adaptability, clipping Dirichlet pseudo- 569

counts for training stability, and simplifying the 570

NVIB denoising attention function at evaluation 571

time. 572

Future work. In future work, we aim to scale our 573

experiments to include models with larger parame- 574

ter sizes and explore training from scratch, where 575

regularisation may be even more beneficial. While 576

our current focus prioritized simplicity and uni- 577

formity, we are encouraged to evaluate additional 578

baselines and tasks across each modality. Further- 579

more, we see significant promise in applying NVIB 580

to language modelling, particularly with large lan- 581

guage models (LLMs). 582
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6 Limitations583

Our experiments offer a broad exploration of NVIB584

regularisation across various models, tasks, and585

modalities, but they do not delve deeply into any586

one area. While NVIB shows effectiveness, the ex-587

periments were conducted on moderate-sized mod-588

els, and future work should focus on scaling to589

larger models for a more thorough understanding.590

Additionally, the emphasis on simplicity and uni-591

formity in the experimental design leaves room592

for exploring additional baselines and tasks across593

different domains.594

The performance gains are relatively modest.595

In some cases, NVIB outperforms methods like596

dropout and consistently surpasses models without597

regularisation. A key finding of this work is that598

NVIB’s regularisation behaviour resembles that599

of dropout when fine-tuned. However, the intro-600

duction of key sparsity opens up opportunities for601

future efficiency gains and enhanced interpretabil-602

ity. While NVIB adds complexity, we see this as603

an important step in understanding embedding dis-604

tributions and their interactions through attention.605
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Henderson and Fehr (2023) define Nonparametric 973

Variational Information Bottleneck (NVIB) by gen- 974

eralising the standard attention layer to a Bayesian 975

model where embeddings are distributions over the 976

latent space. A key insight of this approach is that 977

the latent space of attention-based representations 978

can be viewed as nonparametric mixture distribu- 979

tions. In this interpretation, the vectors accessed 980

via attention define a mixture of impulse distribu- 981

tions. Since a Transformer embedding is a set of 982

vectors that dynamically scale with the complexity 983

of the input, the corresponding latent space of these 984

mixture distributions is inherently nonparametric 985

in nature. In this formulation, the attention function 986

is interpreted as Bayesian “query denoising” using 987

the latent distribution as the prior. The authors de- 988

fine denoising attention as a generalisation of the 989

attention function to query denoising. 990

A.1 Denoising attention 991

Denoising attention is a generalisation of atten- 992

tion which interprets the latent space of Trans- 993

formers as a nonparametric mixture distribution. 994

Henderson and Fehr (2023) provide a constructive 995

proof of exact equivalence to the standard atten- 996

tion function. When standard attention accesses 997

the latent space of Transformers, which is a set 998

of embedding vectors Z ∈ Rn×d via weight ma- 999

trices WK ,W V ∈ Rd×d to keys and values, re- 1000

spectively, and projects the accessing input vector 1001

u′ ∈ R1×d via the weight matrix WQ ∈ Rd×d to a 1002

query. By letting u = (u′WQ(WK)⊤) ∈ R1×d, 1003

the standard scaled dot product attention func- 1004

tion can be rewritten as (Attn(u,Z) W V ), with 1005

Attn(u,Z) defined in terms of a sum over the vec- 1006

tors zi in Z, or equivalently defined in terms of an 1007

integral over a distribution which is only non-zero 1008

at the zi: 1009

Attn(u,Z) = softmax
(

1√
d
uZ⊤

)
Z (6) 1010

= DAttn(u;FZ) 1011
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1012

DAttn(u;F ) =
∫
v

f(v)g(u;v,
√
dI)∫

v f(v)g(u;v,
√
dI) dv

vdv

(7)

1013

FZ =
n∑

i=1

exp(
1

2
√
d
||zi||2)∑n

i=1 exp(
1

2
√
d
||zi||2)

δzi

(8)

1014

where δzi is an impulse distribution at zi, f(·) is1015

the probability density function for distribution1016

F , and g(u; v,
√
dI) is the multivariate Gaus-1017

sian function with diagonal variance of
√
d. This1018

alternative definition DAttn(u; FZ) is denoising1019

attention. It subsumes standard attention in that1020

any attention-based embedding Z has an equiva-1021

lent mixture of impulse distributions, namely FZ ,1022

where denoising attention DAttn(u; FZ) gives us1023

exactly the same result as attention Attn(u,Z), for1024

all queries u. This is an elegant result, which in1025

practice allows us to define a nonparametric distri-1026

bution over the latent embeddings of Transformers.1027

Appendix B covers the exact equations for denois-1028

ing attention and pseudocode.1029

A.2 Distributions over mixture distributions1030

Given this generalisation of attention-based repre-1031

sentations to nonparametric mixture distributions,1032

Bayesian nonparametrics can be used to define dis-1033

tributions over the latent space. Henderson and1034

Fehr (2023) propose to use Dirichlet Processes1035

(DPs) to define distributions over mixture distri-1036

butions, so an NVIB layer first embeds its input1037

vectors into a DP representation by mapping them1038

to the parameters (µq,σq,αq) of a DP. A DP is1039

defined by a base distributionGq
0 for generating the1040

vectors for the component impulse distributions,1041

and a pseudo-count αq
0 for generating their mixture1042

weights.1043

αq
0 =

∑
i

αq
i (9)1044

Gq
0 =

∑
i

αq
i

αq
0

N (µq
i , I(σ

q
i )

2) (10)1045

Following this definition, Gq
0 is itself a mixture dis-1046

tribution, consisting of one Gaussian component1047

from the prior plus one Gaussian component for1048

each vector input to the NVIB layer. These DPs1049

represent the posterior q(F |x)). The prior p(F ) is 1050

a DP specified by the parameters (µp,σp, αp) of 1051

its pseudo-count αp and its uni-modal base distri- 1052

bution Gp
0 = N (µp,σp). In this work, we allow 1053

the prior µp to be learned, which allows the prior 1054

to be centred in the latent embedding space. How- 1055

ever, to maintain noise during regularisation, we 1056

set the prior variance (σp)2 = 1 and the prior’s 1057

pseudo-count αp
0 = 1. 1058

A.3 NVIB regularisation 1059

During training, NVIB regularises the information 1060

passing through the NVIB layer by sampling la- 1061

tent representations from its DP embedding. This 1062

process introduces noise and removes redundant 1063

information, enhancing model generalisation. The 1064

level of noise is learned by the DP parameters 1065

(µq,σq,αq) within the NVIB layer. To maintain 1066

noise during training, a Kullback-Leibler (KL) di- 1067

vergence loss term is included between the embed- 1068

ding distribution and the DP prior. Since the prior 1069

DP is input independent, the KL term enforces 1070

an information bottleneck by minimising the in- 1071

formation retained in the DP embedding. During 1072

evaluation, the NVIB layer uses the mean latent 1073

representation, which is the base distribution Gq
0 of 1074

the DP embedding. 1075

The evidence lower bound (ELBO) is a widely
used objective in variational Bayesian methods,
serving as a tractable approximation to the log-
likelihood of the observation x, where x represents
the input. The ELBO is formulated as follows:

(11)
log(p(x)) ≥ Eq(F |x) log(p(x|F ))

−KL(q(F |x)||p(F ))

where the reconstruction loss is defined as: 1076

LR = −Eq(F |x) log(p(x|F )) (12) 1077

The ELBO’s decomposition consists of two key 1078

terms: the reconstruction loss LR, computed using 1079

samples F drawn from the approximate posterior 1080

q(F |x), and the KL divergence between this pos- 1081

terior and the prior p(F ). In this work, we replace 1082

the reconstruction loss with a task specific loss 1083

LT . Henderson and Fehr (2023) further divided 1084

the KL term into LG, corresponding to Gaussian 1085

distributions, and LD, corresponding to Dirichlet 1086

distributions. 1087

LD + LG ≈ DKL(q(F |x) || p(F )) (13) 1088

13



This gives us the following loss terms for the KL1089

divergence, where Γ is the gamma function and ψ1090

is the digamma function:1091

(14)
LD = log Γ(αq

0)− log Γ(αp′

0 )

+ (αq
0 − αp′

0 ) (−ψ(α
q
0) + ψ(αq

0))

+
(
log Γ(αp′

0 )− log Γ(αq
0)
)

(15)
LG =

1

2
κ0

n+1∑
i=1

αq
i

αq
0

d∑
h=1

(
(µqih − µph)

2

(σph)
2

− 1

+
(σqih)

2

(σph)
2
− log

(σqih)
2

(σph)
2

)
Since we only draw a single sample per component,1092

thus κ0 = n+1. However, in practice we scale both1093

LG and LD by the number of components (n+ 1)1094

such that the loss is invariant to sequence length.1095

We introduce two hyperparameters to control the1096

relative weight of the above three parts of the loss,1097

which defines our VIB loss L.1098

L = LT + λDLD + λGLG (16)1099

A.4 Including NVIB into pretrained models1100

Fehr and Henderson (2024) define an identity ini-1101

tialisation for NVIB such that the latent embed-1102

dings have negligible uncertainty and denoising1103

attention is effectively equivalent to standard at-1104

tention. This allows pretrained attention-based1105

models to be reinterpreted as Nonparametric Vari-1106

ational models. By only changing the initialisa-1107

tion, away from the identity and towards an em-1108

pirically estimated prior, an effective post-training1109

regularisation is added. The authors found that1110

this information-theoretic regularisation lead to im-1111

provements in OOD text generalisation in summari-1112

sation and translation without fine-tuning.1113

B Simplifying denoising attention1114

In this section, we provide the implementation de-1115

tails for denoising multihead attention. We define1116

the set of Transformer latent embedding vectors as1117

Z ∈ Rn×d and set of pre-projected queries as U ′ ∈1118

Rm×d. We assume the latent projection matrices1119

are square such that WQ,WK ,W V ∈ Rd×d and1120

biases bQ, bK , bV ∈ Rd are used to linearly project1121

to the queries, keys and values, respectively. We1122

define the standard attention weights before the 1123

softmax as follows: 1124

A =
1√
d
(U ′WQ + bQ)︸ ︷︷ ︸

Q

(ZWK + bK)⊤︸ ︷︷ ︸
K⊤

(17) 1125

where A ∈ Rm×n. Typically, for multihead at- 1126

tention the projected query Q and keys K are 1127

split into heads. In this definition, we split the 1128

linear projections by a divisible number of heads h 1129

such that WQ,WK ,W V ∈ Rh×d× d
h and biases 1130

bQ, bK , bV ∈ Rh× d
h , so that Q ∈ Rh×m× d

h and 1131

K ∈ Rh×n× d
h . We can then specify multihead 1132

attention by defining a matrix of attention scores 1133

A ∈ Rh×m×n, for each head i: 1134

Ai =
1√
d/h

((Qi(W
K
i )⊤Z⊤ +Qi(b

K
i )⊤)

(18)

1135

where the bias term Qi(b
K
i )⊤ ∈ Rm is added 1136

across all n keys, and thus is normalised out in 1137

the softmax below. The scaling term also considers 1138

the heads and is division by
√
d/h. For denois- 1139

ing attention, each head’s query is projected into 1140

the space of the original set of vectors Z, namely 1141

U i=Qi(W
K
i )⊤, and so is still in Rm×d. Thus, 1142

each head can be viewed as doing denoising atten- 1143

tion in the same way as single-head attention, with 1144

the only difference being that the variance of the 1145

theoretical query noise is now
√
d/hI . 1146

Training. Given these sampled weights and vec-
tors, the training-time denoising attention function
is the same as the standard attention function with
two changes: (1) the keys come from the sampled
vectors Z ∈ R(n+1)×d, which include a vector
sampled from the prior component; and (2) each
key has an attention bias b ∈ R(n+1) which is de-
termined by its weight π ∈ R(n+1). Summing
over heads i, the training-time denoising attention
function DAttn(.) is defined as follows:

(19)

DAttn(.) =
∑
i

Softmax(Ai

+ log(π)− 1

2
√
d/h

∥Z∥2︸ ︷︷ ︸
b

)

× (ZW V
i + bVi )︸ ︷︷ ︸
V i

The biases b are defined by adding the log of the 1147

sampled weights log(π) ∈ R(n+1) from the NVIB 1148

14



layer and subtracting the scaled squared-L2-norms1149

of the sampled vectors 1

2
√

d/h
∥Z∥2∈ R(n+1). For1150

multihead attention we only need to reuse the same1151

biases b for each head, just like we reuse the same1152

vectors Z for each head.1153

Evaluation. During the evaluation, as for train-1154

ing, the NVIB layer outputs the isotropic Gaus-1155

sian parameters µ ∈ R(n+1)×d,σ ∈ R(n+1)×d and1156

Dirichlet parameters α ∈ R(n+1). For evaluation1157

the base distribution is used. The parameters are1158

taken directly without sampling such that we use1159

the expectation of the distribution. We can write1160

the denoising attention scores A ∈ Rh×m×(n+1),1161

for each head i, as follows:1162

Ai = Qi(W
K
i )⊤(

µ√
d/h

)⊤ +
1√
d/h

Qi(b
K
i )⊤

(20)

1163

where the bias term Qi(b
K
i )⊤ ∈ Rm is added

across all n keys, and thus is normalised out in
the softmax below. For this attention score matrix
A, multihead evaluation denoising attention adds
the same key biases c ∈ Rh×(n+1) across all m
queries and h heads. For ease of notation we de-
fine α0 =

∑d
j=1 αj . Thus, the test-time denoising

attention function DAttn(.) is defined as follows:

(21)

DAttn(.) =
∑
i

Softmax(Ai

+ log(
α

α0
)− 1

2
∥ µ√

d
∥2︸ ︷︷ ︸

b

)

× (µW V
i + bVi )︸ ︷︷ ︸
V i

This simplifies previous implementations of Hen-1164

derson and Fehr (2023) and Fehr and Henderson1165

(2024) by removing the additional variance term in1166

the bias b and the interpolation between the query1167

and value vectors. This makes the training and test1168

time denoising attention functions more similar and1169

reduces computation requirements.1170

C Attention maps 1171
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Figure 6: Attention plot for the best models on Civil-
Comments. The plots show a single head of the last
layer. Left: with dropout, Right: with NVIB. Top-
Bottom: Proportion of keys retained [0.1, 0.25, 0.5, 1.0].
Sentence: (‘the clowns are ignorant sheep of the left
living in hate like you while trump is working and suc-
ceeding for the usa. how about less focus on trump
and more on our pathetic leadership’.) NVIB highlights
‘ignorant’ and ‘pathetic’.
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Pseudocode: Attention and Denoising Attention during training (single-head). Left: Standard Attention.
Right: Denoising Attention.

class Attention ():
def __init__(self , d):

# Projections to Q, K, V [d,d]
self.q = linear(d, d)
self.k = linear(d, d)
self.v = linear(d, d)

def forward(self , u, z):
# queries u: [B, M, d]
# keys / values z: [B, N, d]
d = keys.shape (2)

# Project to Q, K, V
q = self.q(u)
k = self.k(z) / sqrt(d)
v = self.v(z)

# Attention scores [B, M, N]
attn = q @ k.transpose ()

# Attention probabilities [B, M, N]
attn = softmax(attn)

# Value projection [B, M, d]
out = attn @ v

return out

class DenoisingAttention ():
def __init__(self , d):

# Projections to Q, K, V [d,d]
self.q = linear(d, d)
self.k = linear(d, d)
self.v = linear(d, d)

def forward(self , u, z, pi):
# queries u: [B, M, d]
# keys / values z: [B, N+1, d]
d = keys.shape (2)

# Project to Q, K, V
q = self.q(u)
k = self.k(z) / sqrt(d)
v = self.v(z)

# NVIB bias [B, 1, N+1]
b = log(pi)

- 1/(2*sqrt(d))*l2norm(z)**2

# Attention scores [B, M, N+1]
attn = q @ k.transpose () + b

# Attention probabilities [B, M, N+1]
attn = softmax(attn)

# Value projection [B, M, d]
out = attn @ v

return out

Pseudocode: Denoising Attention during evaluation (single-head). Left: Previous implementation
including extra bias term and query value interpolation. Right: Current simplified implementation.

class DenoisingAttention ():
def __init__(self , d):

# Projections to Q, K, V [d,d]
self.q = linear(d, d)
self.k = linear(d, d)
self.v = linear(d, d)

def forward(self , u, mu, sigma2, alpha):
# queries u: [B, M, d]
# keys / values mu: [B, N+1, d]
d = keys.shape (2)

# Project to Q, K, V
q = self.q(u)
k = self.k(mu / (sqrt(d)+sigma2))
# v is used in interpolation

# NVIB bias [B, 1, N+1]
b = log(alpha / sum(alpha))

- 1/(2*(sqrt(d)+sigma2))*l2norm(mu)**2
- sum(log(sqrt(sqrt(d)+sigma2)))

# Attention scores [B, M, N+1]
attn = q @ k.transpose () + b

# Attention probabilities [B, M, N+1]
attn = softmax(attn)

# Query projection to key-space [B, M, d]
u_k = self.k(q)

# Value interpolation [B, M, d]
out = (attn @ (sigma2/(sqrt(d)+sigma2)))*u_k

+ attn @ ((sqrt(d)/(sqrt(d)+sigma2)))*mu
out = self.v(out)

return out

class DenoisingAttention ():
def __init__(self , d):

# Projections to Q, K, V [d,d]
self.q = linear(d, d)
self.k = linear(d, d)
self.v = linear(d, d)

def forward(self , u, mu, alpha):
# queries u: [B, M, d]
# keys/values mu: [B, N+1, d]
d = keys.shape (2)

# Project to Q, K, V
q = self.q(u)
k = self.k(mu) / sqrt(d)
v = self.v(mu)

# NVIB bias [B, 1, N+1]
b = log(alpha/sum(alpha))

- 1/(2*sqrt(d))*l2norm(mu)**2

# Attention scores [B, M, N+1]
attn = q @ k.transpose () + b

# Attention probabilities [B, M, N+1]
attn = softmax(attn)

# Value projection [B, M, d]
out = attn @ v

return out
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 7: Attention plot for the best models on Civil-
Comments. The plots show a single head of the last
layer. Left: with dropout, Right: with NVIB. Top-
Bottom: Proportion of keys retained [0.1, 0.25, 0.5, 1.0].
Sentence: (’not onlu a hawaii thing, majority of black
kids have a fatherless home.-’) NVIB highlights ‘black’,
‘kids’ and ‘father’.
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 8: Attention plot for the best OOD models on
CC with increasing sparsity. The plots show a single
head of the last layer. Left: with dropout, Right: with
NVIB. Top-Bottom: Proportion of keys retained [0.1,
0.25, 0.5, 1.0]. Sentence: (‘you sound like a terrorist.’).
NVIB highlights ‘sound’ and ‘terrorist’.
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