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Abstract

Fine-tuned pretrained attention-based models
often struggle with generalisation, leading to
poor performance in scenarios like out-of-
domain transfer, distribution shifts, and few-
shot learning. This limitation is prevalent
across modalities such as speech, text, graphs,
and vision. Nonparametric Variational Informa-
tion Bottleneck (NVIB) is an attention-based
information-theoretic regulariser applicable to
pretrained models that has been shown to im-
prove generalisation. However, prior work has
applied NVIB only to the text modality and
without fine-tuning. We investigate whether
NVIB’s ability to remove information from
pretrained embeddings helps the model avoid
spurious correlations with noisy and superfi-
cial features during fine-tuning. We are the
first to integrate NVIB regularisation during
fine-tuning across multiple diverse models and
modalities. This required modifications to the
architecture which enhance adaptability and sta-
bility during fine-tuning and simplify the evalu-
ation. We found improved out-of-distribution
generalisation in: speech quality assessment
and language identification, text with induced
attention sparsity, graph-based link prediction,
and image-based tasks, including few-shot clas-
sification and privacy classification.

1 Introduction

Leveraging pretrained attention-based representa-
tions by fine-tuning has become the de facto mod-
elling paradigm due to its wide applicability and
significant improvements on the state-of-the-art
(Ruder et al., 2019). Applications of pretrained
Transformers (Vaswani et al., 2017) are modality
agnostic and gained prevalence across: speech pro-
cessing (Baevski et al., 2020; Radford et al., 2023);
natural language processing (Devlin et al., 2019;
Raffel et al., 2020; Touvron et al., 2023), graphs
(Rong et al., 2020; Li et al., 2021b) and computer
vision (Liu et al., 2021; Dosovitskiy et al., 2021;
Bao et al., 2022).

The success of pretrained attention-based mod-
els is thought to stem from their ability to scale,
both in terms of corpora size and the number of pa-
rameters, as well as the inductive biases inherent in
the attention-based architecture (Henderson, 2020;
Zhai et al., 2022; Fedus et al., 2021; Dehghani et al.,
2023). Despite their success, these models still ex-
hibit notable limitations during fine-tuning. Due to
their large number of parameters and expressivity,
they can be prone to overfitting and struggle to gen-
eralise in the presence of shortcuts from spurious
correlations (Bhargava et al., 2021; Geirhos et al.,
2020), distribution shift (Wu et al., 2020a; Kumar
et al., 2022). The attention mechanism facilitates
expressivity through token interaction, but this also
introduces redundant information, which can hin-
der generalisation (Bian et al., 2021; Bhojanapalli
et al., 2021). Introducing sparsity as a form of
regularisation into attention has been shown to im-
prove generalisation performance by reducing this
redundancy (Child et al., 2019; Behjati et al., 2023;
Fehr and Henderson, 2024). However, regularising
attention during fine-tuning of pretrained models
remains both challenging and unexplored.

Information bottleneck (IB) is an information-
theoretic regulariser that learns latent features Z
that compress the input X while preserving infor-
mation for the downstream task Y (Tishby et al.,
2000). The variational information bottleneck
(VIB) framework, introduced through a variational
lower bound to the IB objective (Alemi et al., 2017),
enables deep neural representations (Tishby and Za-
slavsky, 2015) to be trained using gradient-based
optimisation. This framework has been widely
applied across speech (Nelus and Martin, 2021;
Lian et al., 2022), natural language (McCarthy
et al., 2020; mahabadi et al., 2021), graphs (Wu
et al., 2020b; Sun et al., 2022) and vision (Han
et al., 2020; Chun, 2024). The success of the VIB
framework can be attributed to its key properties,
including resilience against spurious correlations
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Figure 1: The NVIB module including the NVIB layer (left) and denoising attention (right).

(Chuah et al., 2022) and distribution shift (Li et al.,
2021a), robustness (Zhang et al., 2022) and sparsity
(Paranjape et al., 2020). Despite this success, VIB
regularisation has seen limited exploration in the
fine-tuning of pretrained attention-based models.
Applying VIB to these pretrained models is diffi-
cult due to the complexity of incorporating it into
the variable-sized latent representations accessed
by attention.

Henderson and Fehr (2023) propose Nonpara-
metric Variational Information Bottleneck (NVIB)
as a VIB regulariser for attention layers. NVIB reg-
ularises the variable-sized representations accessed
by attention by compressing both the information
in individual vectors and the number of vectors.
Further contributions to NVIB have demonstrated
characteristics such as out-of-distribution (OOD)
generalisation, robustness and sparsity (Hender-
son and Fehr, 2023; Behjati et al., 2023; Fehr
and Henderson, 2024). Behjati et al. (2023) em-
ploy NVIB for representation learning by incorpo-
rating the regulariser into the self-attention lay-
ers of a Transformer-based encoder, and trains
from scratch to progressively learn sparser repre-
sentations through its layers. Fehr and Hender-
son (2024) integrated NVIB into pretrained models
and achieved improvements in OOD summarisa-
tion and translation tasks without further training.
Previous work has not applied NVIB regularisation
during fine-tuning of pretrained models, nor has
it explored generalising nonparametric variational
models beyond text to diverse modalities like vi-
sion, speech, and graphs with their varying model
architectures, data, and tasks.

Contributions. In this paper, we are the first to
extend NVIB regularisation methods to fine-tuning,

with diverse pretrained models. (1) We propose sev-
eral novel methods for NVIB fine-tuning, includ-
ing a learnable prior mean embedding per layer for
adaptability, clipped Dirichlet pseudo-counts for
stability, and a simplified denoising attention func-
tion at evaluation (Section 2). (2) We do the first
empirical evaluation of NVIB on diverse modali-
ties such as speech (Section 3.1), text (Section 3.2),
graphs (Section 3.3), and vision (Section 3.4 and
3.5). (3) We show improved OOD generalisation in
classification and regression tasks, demonstrating
NVIB’s added value across diverse applications.

2 Fine-tuning with NVIB

Figure 1 depicts an NVIB module, with the NVIB
layer (left) and denoising attention function (right).
The NVIB layer projects the sequence of vec-
tors & € R™*? from a Transformer embedding
to the parameters of a Dirichlet Process. These
parameters include the isotropic Gaussian means
p € RODXd and variances o2 € R(1)xd gpec-
ifying the mixture base distribution, and the Dirich-
let concentration parameters o € R("+1)_ Each of
the n vectors has an associated mixture component,
along with an additional (n+1)" component that
serves as a prior for the embeddings. During train-
ing, the NVIB layer samples a mixture distribution,
represented as a set of weighted vectors (7, Z),
where 7 ~ Dir(a) and Z; ~ N (u;, 0;%). During
evaluation, the NVIB layer outputs the expecta-
tion of these samples, which is the mixture of n+1
Gaussians, but can be approximated as Z = p and
T=a/>" .

Figure 1 (right) depicts how the denoising atten-
tion function is a generalisation of standard atten-
tion to any nonparametric mixture distribution. In



the case of a set of weighted vectors, this involves
using the weights 7r as bias terms for the attention
weights over keys K (Z). We provide a detailed de-
scription and pseudocode for denoising attention in
Appendix B, and a consolidated overview of prior
research on NVIB in Appendix A.

Following from Fehr and Henderson (2024), we
reinterpret the pretrained models as nonparametric
variational models by including NVIB layers be-
fore the attention mechanisms. This layer maps the
input vectors @ to the DP parameters (u?, 09, a?):

p = pule) =xWH4b* (1)
o? = o?(x) = exp(xW? + b°) ()
a = a(z) =exp(x’ws +zw§ +0b*) 3)

The weight and bias parameters are initialised as:
WH =TI and b" = 0, ensuring an identity initiali-
sation for p (Equation 1). For o2, we set W7 = 0
and b° = log(72), which initialises the variance
(Equation 2). Finally, the parameters for o (Equa-

tion 3) are given by w{ = NI ©1wy =0,

and b® = 7, which allows for a constant bias term
in denoising attention in Figure 1 (right). This ini-
tialisation ensures empirical equivalence with the
pretrained model, after manual adjustment of the
hyperparameters (72, 7,) for each model, where
d and h denote the projection size and number of
attention heads. During fine-tuning, all model pa-
rameters are updated, including W#, b*, W7, b°,
wq, ws, and b*.

To fine-tune with NVIB regularisation, we add
Kullback-Leibler (KL) divergence terms to the task
loss. As with previous VIB regularisers, informa-
tion flow is controlled during training by sampling
the latent representations. Minimising the KL diver-
gence with the prior tries to maintain this sampling
noise and remove information, while the task loss
keeps the information needed for the task. The task
loss L is computed with the sampled representa-
tions. With NVIB, the KL divergence is decom-
posed into two loss terms: Lg for the Gaussians
and Lp for the Dirichlet distributions, with hyper-
parameters Ag and Ap controlling their balance.
The corresponding equations from Henderson and
Fehr (2023) are provided in Appendix A.3. This
gives us a total fine-tuning loss of:

L=Lr + ApLp + AeLa 4)

Novel methods for NVIB fine-tuning. Firstly, in
contrast to Fehr and Henderson (2024), we simplify

the denoising function during evaluation to better
align with the training function. The equations
used in both training and evaluation are shown in
Figure 1 (right) and pseudocode in Appendix B.
Secondly, while Fehr and Henderson (2024) esti-
mate the prior parameters from training data, in
this work we allow the prior mean p? to be fine-
tuned. This allows for flexibility and adaptation
to the pretrained model. To maintain the noise in
the prior during training, we keep the prior vari-
ance (o?)? = 1 and the prior pseudo-count oy = 1
fixed. Thirdly, we stabilise fine-tuning by apply-
ing proportional clipping to the Dirichlet sampling
parameters . The magnitude of a controls the
amount of noise when sampling the weights 7,
with larger values reducing noise. The relative val-
ues of ¢ determine the expected 7 distribution.
Thus, we control the magnitude of o while preserv-
ing its relative values using the clipping functions
max(e, .) and min(w, .) to prevent underflow and
overflow, respectively. The parameter € is set small
enough to prevent values from vanishing, while w
is chosen to be sufficiently large to avoid distorting
the distribution.

a = max (E, E?%) X min <w, ;oq) o)

3 Experiments

To evaluate the NVIB regulariser, we design
controlled experiments by fine-tuning pretrained
models across modalities, including speech, text,
graphs, and vision. We compare to models that are
first pretrained and then fine-tuned using empirical
risk minimization (ERM) with task-specific loss
functions.

Baselines. For simplicity and to maintain unifor-
mity across experiments, we define a set of fine-
tuned baselines, avoiding modality-specific alter-
natives. These baselines include models trained
without regularisation and models with dropout
regularisation. To ensure consistency with standard
practices, we use the predefined dropout rate of
0.1 for all pretrained models. Dropout is a suitable
baseline for NVIB regularisation, as it is widely
used and effective, seamlessly integrates into pre-
trained models, and introduces noise into both em-
beddings and attention mechanisms. All experi-
ments are conducted on a consumer-grade NVIDIA
RTX 3090 (24GB) GPU, with smaller Transformer
models chosen to reduce computational costs.



Table 1: Speech quality assessment for NISQA (ID) and Tencent (OOD). Average test results (0—1) are reported

with standard deviation across 5 seeds.

NISQA (ID) Tencent (OOD)
Model PCC (1) RMSEMAP (/) PCC(1) RMSE MAP (])
W2V2Base 0.89 .02 0.42 .03 0.80 .01 0.54 ©.01)
with Dropout  0.89 .01 0.43 .01 0.83 0.03) 0.51 ©.04)
with NVIB 0.90 ©.01) 0.41 ©.02) 0.83 .02 0.51 .03

Table 2: Language identification for CommonLanguage (ID), FLEURS (OOD) and VoxPopuli (OOD) speech
datasets. Average test F1 scores (0—1) are reported with standard deviation across 5 seeds.

CommonLanguage (ID) FLEURS (OOD) VoxPopuli (OOD)
Model F1 (1) F1(1) F1 (1)
W2V2Large 0.82 ©.0n 0.90 ©0.02) 0.86 ©0.02)
with Dropout 0.81 ©.0n 0.90 .01 0.82 .02
with NVIB 0.82 ©.0n 0.91 ©0.02) 0.85 (0.02)

Initialisation of NVIB layers. The initialisation
ensures empirical equivalence with each pretrained
model after adjusting (72, 7,,), allowing the atten-
tion weights to ignore the prior component in NVIB
layers. While Fehr and Henderson (2024) empir-
ically initialise the prior component, we simplify
this by setting u? = 0, (7)? = 1, and o} = 1.
During fine-tuning, p” remains learnable, while
(oP)? and of are fixed. However, stacking NVIB
across layers in deeper models reduces equivalence
precision. In such cases, NVIB is omitted from
the later layers of the model. The parameters 7,
and 7, influence equivalence during training and
evaluation.7, controls initial Gaussian noise dur-
ing fine-tuning but is unnecessary for evaluation
equivalence, as mean embeddings are used. T,
reweights Dirichlet pseudo-counts to ensure input
embeddings outweigh the prior in attention.

Fine-tuning hyperparameters. Following
Henderson and Fehr (2023), we set the number
of samples per component to one but omit
their conditional prior, which prevents pos-
terior collapse during training from scratch.
The KL divergence is weighted by A\g and
Ap, respectively. We optimize these hyper-
parameters through a log-scaled grid search
[10°,1071,1072,1073,107%,107>,1076,1077],
tying Ag and Ap and selecting the best values
based on validation performance.

3.1 Speech Out-of-Distribution Evaluation

Language identification and automated assessment
of speech are crucial tasks in the development of

audio transmission systems, but are challenging
due to many factors related to: the acoustic environ-
ment; variation in recording hardware and software;
speaker characteristics; and evaluation conditions
(Gierlich and Kettler, 2006; Chinen, 2021; Cooper
et al., 2022). The prediction of perceived speech
quality is formulated as a regression task to esti-
mate the scores of human listeners (ITU-T, 1996),
whereas language identification is a classification
task given an audio sample. Given the diverse array
of factors that can impact speech, generalisation is
essential in these tasks.

Speech quality assessment. We fine-tune and
evaluate on the NISQA (Mittag et al., 2021) dataset,
which contains English speech recordings from live
calls with network impairments and simulated dis-
tortions. We perform OOD testing on the Tencen-
tWithReverberation (Tencent) Chinese speech cor-
pus (Yi et al., 2022), which introduces new condi-
tions such as: simulated and real reverberation; and
different labelling conditions. Following ITU-T
(2020), we evaluate our models using the Pearson’s
correlation coefficient (PCC) and root-mean-square
error after mapping with a first-order polynomial
function (RMSE MAP).

We fine-tuned the pretrained Wav2vec2-base
model (Baevski et al., 2020), a 12-layer Trans-
former encoder, using mean-squared-error (MSE)
loss. Fine-tuning was conducted with the Adam op-
timizer (Kingma and Ba, 2014), a constant learning
rate of 1e >, a batch size of 16, and for 5 epochs.
NVIB was applied to layers 0-10, with projections
initialized using 7, = 0.1 and 7, = 10. The best-



performing model used A\ = Ap = le~2. Table 1
shows that NVIB regularisation achieves the high-
est correlation on the in-distribution (ID) data. On
the OOD dataset, NVIB regularisation achieves
comparable generalisation improvements while ex-
hibiting a lower standard deviation.

Speech language identification. We fine-tune
our models on the CommonLanguage (Ravanelli
et al., 2021) dataset which consists of 22K train-
ing audios from 45 languages. We evaluate on
two OOD datasets with overlapping languages:
FLEURS (Conneau et al., 2023) with 27 languages;
and VoxPopuli (Wang et al., 2021) with 11 lanu-
ages. The FLEURS dataset is read speech, which
is closer to CommonLanguage. Whereas, the Vox-
Populi dataset is more challenging as it contains
spontaneous speech from the European Parliament.

We fine-tuned the pretrained Wav2vec2-large
model (Baevski et al., 2020), a 24-layer Trans-
former encoder, using cross-entropy loss for the
language identification classification task. Fine-
tuning was performed with the AdamW optimizer
(Loshchilov and Hutter, 2019), a learning rate of
3e~?, a scheduler with linear warm-up and decay,
a batch size of 4, and for 10 epochs with mixed
precision (16-bit) and gradient norm clipping of
1. NVIB was applied to layers 0-16, with projec-
tions initialized using 7, = 0 and 7, = 10. The
best-performing model used A\¢ = Ap = le™".
Table 2 reports the F1 classification scores, show-
ing that NVIB matches ID performance and out-
performs the dropout-regularised baseline on the
OOD datasets.

3.2 Text Out-of-Distribution Classification

We consider the CivilComments (CC) (Borkan
et al., 2019) task which is part of the WILDS (Koh
et al., 2021) curated set of datasets that represent
real-life distribution shifts. CC classifies the pres-
ence of toxicity in online comments which is an
important task of monitoring internet content. The
task is a binary classification task of determining
if a comment is toxic, and contains a subpopula-
tion shift between 8 demographic identities classes,
meaning that the training and test domains overlap,
but their relative proportions differ. We measure
generalisation by the accuracy of the lowest per-
forming subpopulation worst-group (WG).

We fine-tuned the pretrained TinyBERT model
(Turc et al., 2019), a two-layer Transformer en-
coder, using cross-entropy loss. Fine-tuning was

Table 3: Text classification on CC train (ID) and test
(OOD). Average accuracy (%) is reported across 5 seeds
with standard deviation and the best OOD model.

CC Train (ID) CC Test (OOD)
WG (1) WG (1)

78.12 (1433)99.00 49.14 (5.56)61.03
60.10 .11)63.97

Model

BERTTiny
with Dropout 91.05 (1.49) 91.16

with NVIB  80.12 (10.69) 7630 55.01 (6.15) 61.03
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Figure 2: Worst-group (WG) test (OOD) accuracy as
a function of attention key sparsity for the best OOD
models, relative to dropout without sparsity.

performed with the AdamW optimizer (Loshchilov
and Hutter, 2019), a constant learning rate of 5e7,
a batch size of 1024, and for 50 epochs with mixed
precision (16-bit) and gradient norm clipping of
0.1. NVIB was applied to all layers, with pro-
jections initialized using 7, = 0.1 and 7, = 1,
and a linear KL annealing warmup was used dur-
ing fine-tuning. The best-performing model used
Ag =Ap = le L.

Table 3 shows the generalisation improvement of
this task through regularisation. On average, NVIB
regularisation improves OOD generalisation over
the unregularised baseline, though it remains less
effective than dropout. However, introducing spar-
sity in the attention keys based on their attention
magnitude, as shown in Figure 2, improves OOD
accuracy and sustains it across a wide range of spar-
sity levels. NVIB naturally induces key sparsity by
reducing the weight of embeddings relative to the
prior component during attention calculations. To
remove keys, we mask embeddings with the lowest
average attention magnitudes. Further inspection
of the attention patterns in Figure 3 reveals a clear
focus on toxic words as spurious keys are dropped
and attention shifts to the prior token. The align-
ment with toxic content becomes more pronounced
as sparsity increases. Additional examples can be



Table 4: Graph link prediction on FB15k-237. Test set ranking metrics (0—1) are reported, based on the best model

selected from validation set performance.

FB15k-237
Model MRR (1) H@1(}) H@3 (1) H@10 (})
BLP-BERTy,,  0.164 0.100 0.175 0.288
with Dropout ~ 0.162 0.097 0.172 0.288
with NVIB 0.167 0.103 0.180 0.294
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Figure 3: Attention plot for the best models on Civil-
Comments showing a single head of the last layer. Left:
with dropout, Right: with NVIB. Top-Bottom: Propor-
tion of keys retained [0.1, 0.25, 0.5, 1.0]. Sentence:
("that’s it, boast about your stupidity.").

found in Appendix Figures 6, 7 and 8.

3.3 Graph Link Prediction

Link prediction is a graph-based problem that in-
volves predicting whether a link exists between two

nodes in a graph. This is widely used for recom-
mendation and prediction in social networks, cita-
tion links and biological interactions (Kumar et al.,
2020; Xia et al., 2021). We build upon the BERT
for Link Prediction (BLP) model (Daza et al., 2020)
which operates on a set of triples (h, r,t), where
h and t represent the head and tail node, while r
represents the relation between those two nodes.

We evaluate on the FB15k-237 dataset (Daza
et al., 2020). This dataset follows an inductive
setting, where new entities and triples are dynami-
cally incorporated into the graph during evaluation.
We evaluate the models by querying them with
(h,r,?7)and (?,r,t) triples, and assess their perfor-
mance using two metrics: Mean Reciprocal Rank
(MRR), which measures the model’s ability to rank
the correct triple, and H@k, which calculates the
proportion of correct triples ranked within the top-
k results. We fine-tuned the pretrained TinyBERT
model (Turc et al., 2019), a two-layer Transformer
encoder, using a distance-based TransE loss func-
tion. Fine-tuning was performed with the RAdam
optimizer (Liu et al., 2020), a cosine learning rate
scheduler with a value of 8¢~°, a batch size of
256, and for 40 epochs with mixed precision (16-
bit) and gradient norm clipping of 1. NVIB was
applied to both layers, with projections initialised
using 7, = 0.1 and 7, = 1. The best-performing
model used A\ = A\p = le 5.

Table 4 presents the test set results, which high-
lights the advantage of the NVIB-regularised model
over typical regularisation methods like dropout.
This advantage may stem from the presence of new
entities in the head or tail positions, which require
a higher level of generalisation.

3.4 Image Few-Shot Classification

Few-shot classification aims to train models ca-
pable of classifying images with limited labelled
examples per category. Meta-learning (Vinyals
et al., 2016) achieves this by meta-training on sev-
eral episodes, enabling generalisation to new tasks



Table 5: Image classification on CIFAR-FS (ID). Test
episodes accuracy (%) with standard deviation.

CIFAR-FS (ID)

Model Acc (1) Std ({)
DeiTsman 93.57 5.71
with Dropout  93.55 5.61
with NVIB 93.88 5.58

with previously unseen classes. To generalise ef-
fectively, the classifier must transfer knowledge
from the training distribution to unseen testing dis-
tributions while avoiding spurious correlations and
shortcuts (Zheng et al., 2024; Zhang et al., 2024).

The following experiments were conducted
within a meta-learning-based few-shot classifica-
tion framework (Hu et al., 2022), using the pre-
trained DeiT-Small (Touvron et al., 2021), a 12-
layer Transformer encoder, with cross-entropy loss.
Fine-tuning was performed using the AdamW op-
timizer (Loshchilov and Hutter, 2019), a constant
weight decay of 0.05, and a linear warm-up with
cosine decay learning rate scheduler le=*. The
model was trained for 50 epochs with mixed preci-
sion (16-bit) and a batch size of 1. For classifica-
tion, we used the prototypical network (ProtoNet)
(Snell et al., 2017), which dynamically creates class
centroids for each episode and performs nearest
centroid classification (Hu et al., 2022). In this
experiment we initialised the prior P = 0 and did
not allow it to be learnable.

Few-shot in-distribution. We evaluate the ID
performance using the CIFAR-FS (Bertinetto et al.,
2019) dataset. Following Hu et al. (2022), we con-
duct experiments in a 5-way, 5-shot setting. Each
episode consists of a "support set" with 5 classes
and 5 samples per class for training, and a "query
set" with 5 classes and 15 examples per class for
testing. The experiment includes 2000 episodes
for meta-training and 2000 episodes for testing.
NVIB was applied to layers 0—5, with projections
initialized using 7, = 0 and 7, = 0. The best-
performing model used A\ = A\p = le 2.

Table 5 reports the average classification accu-
racy and standard deviation over all test episodes
for CIFAR-FS in few-shot classification. Com-
pared to the baseline and Dropout, we observe that
NVIB regularisation improves accuracy with lower
variance across all test episodes.

Few-shot out-of-distribution. To evaluate the
OOD few-shot classification performance, we use
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Figure 4: Percentage point improvement in test accu-
racy relative to the unregularised baseline on the Meta-
Dataset benchmark (OOD).

the Meta-Dataset (Triantafillou et al., 2019). This
benchmark is a diverse set of 10 image datasets, in-
cluding, ImageNet-1k, MSCOCO (COCO), Traffic
Signs (Sign), Describable Textures (DTD), FGVCx
Fungi (Fungi), Omniglot, VGG Flower (Flower),
CUB-200-2011 (CUB), FGVCAircraft (Acraft)
and QuickDraw (QDraw). We meta-train the mod-
els on ImageNet-1k and then meta-test them on the
remaining datasets.

We follow the methodology outlined in Hu et al.
(2022), where the number of ways sampled ranges
from 5 to 50, with a maximum support size of 500
and a maximum query size of 10. For our Trans-
former encoder, we apply NVIB to layers 0-5, with
projections initialised using 7, = 0 and 7, = —3.
The best-performing model used NVIB regulariza-
tion parameters of \¢ = A\p = le~3. Figure 4
shows that the NVIB-regularised model achieves
the highest performance on 6 out of 9 OOD datasets
and outperforms the dropout-regularised model in
7 out of 9 cases.

3.5 Image Privacy Classification

Image privacy classification is a crucial task in safe-
guarding sensitive visual content, requiring models
to accurately and robustly identify privacy-sensitive
information. An effective classifier must generalise
across data variations to minimize the risk of pri-
vate information leakage. We consider the Priva-
cyAlert (Zhao et al., 2022) dataset, which contains
images labelled as either private (25%) or public.



Table 6: Image privacy classification on PrivacyAlert.
Average test F1 scores (%) are reported with standard
deviation across 5 seeds.

PrivacyAlert (ID)
Model F1(t) Std()
DeiTrigy 78.41 0.10
with Dropout  76.26 2.47
with NVIB 79.40 0.72
10 — B:Z:grm)a/rised
- w?th Dropout
é 8 — évptli NVIB
é —-@— Test Y
3 —
3 ./
z 4
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2 ./

0.1 0.2 0.3 0.4 0.5
Gaussian noise standard deviation

Figure 5: Average attack success rate (ASR) on privacy
classifiers, reported across 5 models with varying Gaus-
sian noise standard deviations. A lower ASR indicates
greater model robustness.

The private category is largely composed of im-
ages from the Nudity/Sexual class, with limited
representation from the Medical and Personal In-
formation categories.

We fine-tuned the pretrained DeiT-Tiny (Tou-
vron et al., 2021), a 12-layer Transformer encoder,
with cross-entropy loss. Fine-tuning was conducted
with the AdamW optimizer (Loshchilov and Hut-
ter, 2019), a constant learning rate of 5¢~6, a batch
size of 32, and for 80 epochs with mixed precision
(16-bit). NVIB was applied to all layers, with pro-
jections initialized using 7, = 0.5 and 7, = 8. The
best-performing model used \g = A\p = le~3.
We evaluate classification performance using F1
scores and assess robustness by perturbing images
with zero-mean Gaussian noise at varying standard
deviations. Robustness is measured using the at-
tack success rate (ASR), which is the proportion
of correctly classified images that are misclassi-
fied after perturbation. Table 6 shows that NVIB
outperforms the dropout-regularised baseline. Ad-
ditionally, Figure 5 indicates that NVIB achieves
robustness comparable to dropout while offering
improvements over an unregularised vision base-
line.

4 Discussion

Our results suggest that including NVIB regulari-
sation improves the model’s ability to distinguish
signal from noise. This is supported by perfor-
mance gains observed in tasks such as speech qual-
ity prediction (Table 1) and few-shot and privacy
image classification (Tables 5 & 6). We attribute
this to NVIB’s Bayesian nature, which effectively
models statistical uncertainty. During fine-tuning,
NVIB introduces noise into the latent represen-
tations, which enhances its ability to generalise
across noisy feature spaces such as background
disturbances and capture variations present in both
audio and images.

NVIB regularisation shifts the model’s atten-
tion from relying on superficial, spurious features
to deeper features which generalise better out-of-
distribution. This is evident in consistent improve-
ments across tasks that require generalisation to
unseen entities, such as graph linking (Table 4)
and visual meta-learning (Figure 4). We believe
this is due to the additional prior tokens, which
disentangle and reweight attention away from spu-
rious tokens (attention maps in Figures 3, 6, 7 &
8). Additionally, this effect is observed in sustained
performance with increased sparsity and robustness
(Figure 2 & 5).

5 Conclusion

In this work, we contribute to fine-tuning with Non-
parametric Variational Information Bottleneck reg-
ularisation by demonstrating improved generalisa-
tion across multiple modalities and models. We
extend NVIB to pretrained models by proposing
a novel learnable prior mean embedding per layer
for greater adaptability, clipping Dirichlet pseudo-
counts for training stability, and simplifying the
NVIB denoising attention function at evaluation
time.

Future work. In future work, we aim to scale our
experiments to include models with larger parame-
ter sizes and explore training from scratch, where
regularisation may be even more beneficial. While
our current focus prioritized simplicity and uni-
formity, we are encouraged to evaluate additional
baselines and tasks across each modality. Further-
more, we see significant promise in applying NVIB
to language modelling, particularly with large lan-
guage models (LLMs).



6 Limitations

Our experiments offer a broad exploration of NVIB
regularisation across various models, tasks, and
modalities, but they do not delve deeply into any
one area. While NVIB shows effectiveness, the ex-
periments were conducted on moderate-sized mod-
els, and future work should focus on scaling to
larger models for a more thorough understanding.
Additionally, the emphasis on simplicity and uni-
formity in the experimental design leaves room
for exploring additional baselines and tasks across
different domains.

The performance gains are relatively modest.
In some cases, NVIB outperforms methods like
dropout and consistently surpasses models without
regularisation. A key finding of this work is that
NVIB’s regularisation behaviour resembles that
of dropout when fine-tuned. However, the intro-
duction of key sparsity opens up opportunities for
future efficiency gains and enhanced interpretabil-
ity. While NVIB adds complexity, we see this as
an important step in understanding embedding dis-
tributions and their interactions through attention.
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A Introduction to NVIB

Henderson and Fehr (2023) define Nonparametric
Variational Information Bottleneck (NVIB) by gen-
eralising the standard attention layer to a Bayesian
model where embeddings are distributions over the
latent space. A key insight of this approach is that
the latent space of attention-based representations
can be viewed as nonparametric mixture distribu-
tions. In this interpretation, the vectors accessed
via attention define a mixture of impulse distribu-
tions. Since a Transformer embedding is a set of
vectors that dynamically scale with the complexity
of the input, the corresponding latent space of these
mixture distributions is inherently nonparametric
in nature. In this formulation, the attention function
is interpreted as Bayesian “query denoising” using
the latent distribution as the prior. The authors de-
fine denoising attention as a generalisation of the
attention function to query denoising.

A.1 Denoising attention

Denoising attention is a generalisation of atten-
tion which interprets the latent space of Trans-
formers as a nonparametric mixture distribution.
Henderson and Fehr (2023) provide a constructive
proof of exact equivalence to the standard atten-
tion function. When standard attention accesses
the latent space of Transformers, which is a set
of embedding vectors Z € R"*? via weight ma-
trices WX, WV e R%? to keys and values, re-
spectively, and projects the accessing input vector
u’ € R*? yia the weight matrix W € R4 (o a
query. By letting u = (/' WE(WH)T) e R1x4,
the standard scaled dot product attention func-
tion can be rewritten as (Attn(u, Z) W), with
Attn(u, Z) defined in terms of a sum over the vec-
tors z; in Z, or equivalently defined in terms of an
integral over a distribution which is only non-zero
at the z;:

1
—uz'
Vd

= DAttn(u; Fz)

Attn(u, Z) = softmax ( ) Z (6)
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o [ f@)gCure, VD)
DAttn(u; F)—/va F(0)g (a0, Val) dvvdv
(7
n o exp(—=|lzl?)
Fz = 2\/ﬁ1 0z
=1 Y eXp(mllziHZ)
(8)

where 0, is an impulse distribution at z;, f(+) is
the probability density function for distribution
F, and g(u; v,V/dI) is the multivariate Gaus-
sian function with diagonal variance of \/ﬁ This
alternative definition DAttn(u; Fz) is denoising
attention. It subsumes standard attention in that
any attention-based embedding Z has an equiva-
lent mixture of impulse distributions, namely F'z,
where denoising attention DAttn(u; Fz) gives us
exactly the same result as attention Attn(u, Z), for
all queries u. This is an elegant result, which in
practice allows us to define a nonparametric distri-
bution over the latent embeddings of Transformers.
Appendix B covers the exact equations for denois-
ing attention and pseudocode.

A.2 Distributions over mixture distributions

Given this generalisation of attention-based repre-
sentations to nonparametric mixture distributions,
Bayesian nonparametrics can be used to define dis-
tributions over the latent space. Henderson and
Fehr (2023) propose to use Dirichlet Processes
(DPs) to define distributions over mixture distri-
butions, so an NVIB layer first embeds its input
vectors into a DP representation by mapping them
to the parameters (u?, 0%, af) of a DP. A DP is
defined by a base distribution G¢ for generating the
vectors for the component impulse distributions,
and a pseudo-count a for generating their mixture
weights.

©))

q __ q

0‘0—5:%‘
7

q __

Gi=>

)

NN T (10)
ag 77 (3

Following this definition, G, is itself a mixture dis-
tribution, consisting of one Gaussian component
from the prior plus one Gaussian component for
each vector input to the NVIB layer. These DPs
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represent the posterior ¢(F'|x)). The prior p(F') is
a DP specified by the parameters (u?, 0P, o) of
its pseudo-count o and its uni-modal base distri-
bution G, = N (p?, o). In this work, we allow
the prior p? to be learned, which allows the prior
to be centred in the latent embedding space. How-
ever, to maintain noise during regularisation, we
set the prior variance (o?)? = 1 and the prior’s
pseudo-count o = 1.

A.3 NYVIB regularisation

During training, NVIB regularises the information
passing through the NVIB layer by sampling la-
tent representations from its DP embedding. This
process introduces noise and removes redundant
information, enhancing model generalisation. The
level of noise is learned by the DP parameters
(pn?, 0%, ) within the NVIB layer. To maintain
noise during training, a Kullback-Leibler (KL) di-
vergence loss term is included between the embed-
ding distribution and the DP prior. Since the prior
DP is input independent, the KL term enforces
an information bottleneck by minimising the in-
formation retained in the DP embedding. During
evaluation, the NVIB layer uses the mean latent
representation, which is the base distribution G{ of
the DP embedding.

The evidence lower bound (ELBO) is a widely
used objective in variational Bayesian methods,
serving as a tractable approximation to the log-
likelihood of the observation =, where x represents
the input. The ELBO is formulated as follows:

log(p(z)) = Ey(p|e) log(p(z|F))
— KL(q(Flz)||p(F)) D

where the reconstruction loss is defined as:

,CR = _Eq(F\a:) log(p(a:|F)) (12)

The ELBO’s decomposition consists of two key
terms: the reconstruction loss £g, computed using
samples F' drawn from the approximate posterior
q(F|x), and the KL divergence between this pos-
terior and the prior p(F'). In this work, we replace
the reconstruction loss with a task specific loss
L~r. Henderson and Fehr (2023) further divided
the KL term into L, corresponding to Gaussian
distributions, and £ p, corresponding to Dirichlet
distributions.

Lp + L ~Drr(g(Fle) [ p(F))  (13)



This gives us the following loss terms for the KL
divergence, where I is the gamma function and
is the digamma function:

Lp =logT(af) —log F(ozg/)
+ (af — of ) (—v(af) + ¥(ad)) (14
+ <10g T(of) - log r(ag))

1 n+1 a? d <(H _Mp)Q
L=k ) ih h 1
¢ O; O‘g ; (Ufb) (15)
(Uqh)2 (Uqh)2>
+ [ —1 i
(o) (1)

Since we only draw a single sample per component,
thus kg = n+1. However, in practice we scale both
L and Lp by the number of components (n + 1)
such that the loss is invariant to sequence length.
We introduce two hyperparameters to control the
relative weight of the above three parts of the loss,
which defines our VIB loss L.

L=Lr + ApLp + AgLqg (16)

A.4 Including NVIB into pretrained models

Fehr and Henderson (2024) define an identity ini-
tialisation for NVIB such that the latent embed-
dings have negligible uncertainty and denoising
attention is effectively equivalent to standard at-
tention. This allows pretrained attention-based
models to be reinterpreted as Nonparametric Vari-
ational models. By only changing the initialisa-
tion, away from the identity and towards an em-
pirically estimated prior, an effective post-training
regularisation is added. The authors found that
this information-theoretic regularisation lead to im-
provements in OOD text generalisation in summari-
sation and translation without fine-tuning.

B Simplifying denoising attention

In this section, we provide the implementation de-
tails for denoising multihead attention. We define
the set of Transformer latent embedding vectors as
Z € R™ 4 and set of pre-projected queries as U’ €
R™*? We assume the latent projection matrices
are square such that W@ WX WV e R4 and
biases b9, b, b € R? are used to linearly project
to the queries, keys and values, respectively. We

define the standard attention weights before the
softmax as follows:
1

A=

(U'W? +b9) (ZzWE + 65T (17)
Q KT

where A € R™*". Typically, for multihead at-
tention the projected query @ and keys K are
split into heads. In this definition, we split the
linear projections by a divisible number of heads h
such that W@ WE WV ¢ R"¥4X5 and biases
be, bE bV € th%, so that Q € RPXMX4 and
K € R™™ % We can then specify multihead
attention by defining a matrix of attention scores
A € RMmxn for each head i:

A= (@WK ZT 4+ Q,b5)T)

V/h

(18)

where the bias term Q;(b)T € R™ is added
across all n keys, and thus is normalised out in
the softmax below. The scaling term also considers
the heads and is division by \/d/h. For denois-
ing attention, each head’s query is projected into
the space of the original set of vectors Z, namely
U,=Q,(WE)T, and so is still in R™*¢, Thus,
each head can be viewed as doing denoising atten-
tion in the same way as single-head attention, with
the only difference being that the variance of the
theoretical query noise is now /d/hl.

Training. Given these sampled weights and vec-
tors, the training-time denoising attention function
is the same as the standard attention function with
two changes: (1) the keys come from the sampled
vectors Z € R("H)Xd, which include a vector
sampled from the prior component; and (2) each
key has an attention bias b € R("*+1) which is de-
termined by its weight 7 € R("*D. Summing
over heads 4, the training-time denoising attention
function DAttn(.) is defined as follows:

DAttn(.) = Z Softmax(A;

1

2\/d/h
b

x (ZW) +b))

———
\'Z

+ log(m) — 1Z]%)

(19)

The biases b are defined by adding the log of the
sampled weights log(7) € R(™*Y from the NVIB



layer and subtracting the scaled squared-L2-norms

of the sampled vectors 1d/h |1Z||?€ R+, For

multihead attention we only need to reuse the same
biases b for each head, just like we reuse the same
vectors Z for each head.

Evaluation. During the evaluation, as for train-
ing, the NVIB layer outputs the isotropic Gaus-
sian parameters p € R("t1)*d o ¢ R(MH1)xd apd
Dirichlet parameters o € R("t1). For evaluation
the base distribution is used. The parameters are
taken directly without sampling such that we use
the expectation of the distribution. We can write
the denoising attention scores A € R/xmx(nt1),
for each head 7, as follows:

1

e

T

Ai=QWT (b)"

o ;
/h

(20)

where the bias term Q;(bX)T € R™ is added
across all n keys, and thus is normalised out in
the softmax below. For this attention score matrix
A, multihead evaluation denoising attention adds
the same key biases ¢ € R"*("*1) across all m
queries and h heads. For ease of notation we de-
fine ap = Z?Zl aj. Thus, the test-time denoising
attention function DAttn(.) is defined as follows:

This simplifies previous implementations of Hen-
derson and Fehr (2023) and Fehr and Henderson
(2024) by removing the additional variance term in
the bias b and the interpolation between the query
and value vectors. This makes the training and test
time denoising attention functions more similar and
reduces computation requirements.
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Figure 6: Attention plot for the best models on Civil-
Comments. The plots show a single head of the last
layer. Left: with dropout, Right: with NVIB. Top-
Bottom: Proportion of keys retained [0.1, 0.25, 0.5, 1.0].
Sentence: (‘the clowns are ignorant sheep of the left
living in hate like you while trump is working and suc-
ceeding for the usa. how about less focus on trump
and more on our pathetic leadership’.) NVIB highlights
‘ignorant’ and ‘pathetic’.



Pseudocode: Attention and Denoising Attention during training (single-head). Left: Standard Attention.

Right: Denoising Attention.

class Attention():
def __init__(self, d):
# Projections to Q, K, V [d,d]
self.q = linear(d, d)
self.k = linear(d, d)
self.v = linear(d, d)

de

&

forward(self, u, z):

# queries u: [B, M, d]
# keys / values z: [B, N, d]
d = keys.shape(2)

# Project to Q, K, V

q = self.q(u)

k = self.k(z) / sqrt(d)
v = self.v(z)

# Attention scores [B, M, NJ]
attn = q @ k.transpose()

# Attention probabilities [B, M, NI]
attn = softmax(attn)

# Value projection [B, M, d]
out = attn @ v

return out

class DenoisingAttention():

def

__init__(self, d):

# Projections to Q, K, V [d,d]
self.q = linear(d, d)

self.k linear(d, d)

self.v linear(d, d)

forward(self, u, z, pi):
queries u: [B, M, d]
# keys / values z: [B, N+1, d]
d = keys.shape(2)

3

# Project to Q, K, V

q = self.q(u)

k = self.k(z) / sqrt(d)
v = self.v(z)

*

NVIB bias [B, 1, N+1]
b = log(pi)
- 1/(2*sqrt(d))*12norm(z)**2

# Attention scores [B, M, N+1]
attn = q @ k.transpose() + b

# Attention probabilities [B, M, N+1]
attn = softmax(attn)

# Value projection [B, M, d]
out = attn @ v

return out

Pseudocode: Denoising Attention during evaluation (single-head). Left: Previous implementation
including extra bias term and query value interpolation. Right: Current simplified implementation.

class DenoisingAttention():
def __init__(self, d):
# Projections to Q, K, V [d,d]
self.q = linear(d, d)
self.k = linear(d, d)
self.v = linear(d, d)

def forward(self, u, mu, sigma2, alpha):
queries u: [B, M, d]

# keys / values mu: [B, N+1, d]

d = keys.shape(2)

*

Project to Q, K, V

= self.q(u)

= self.k(mu / (sqrt(d)+sigma2))
v is used in interpolation

# xa #*

NVIB bias [B, 1, N+1]

= log(alpha / sum(alpha))
- 1/(2*(sqrt(d)+sigma2))*12norm(mu)**2
- sum(log(sqrt(sqrt(d)+sigma2)))

o #*

# Attention scores [B, M, N+1]
attn = q @ k.transpose() + b

# Attention probabilities [B, M, N+1]
attn = softmax(attn)

# Query projection to key-space [B, M, d]
u_k = self.k(q)

# Value interpolation [B, M, d]

out = (attn @ (sigma2/(sqrt(d)+sigma2)))*u_k
+ attn @ ((sqrt(d)/(sqrt(d)+sigma2)))*mu

out = self.v(out)

return out

class DenoisingAttention():

def

__init__(self, d):

# Projections to Q, K, V [d,d]
self.q = linear(d, d)

self.k = linear(d, d)

self.v = linear(d, d)

forward(self, u, mu, alpha):

# queries u: [B, M, d]
# keys/values mu: [B, N+1, d]
d = keys.shape(2)

# Project to Q, K, V

q = self.q(u)

k = self.k(mu) / sqrt(d)

v = self.v(mu)

# NVIB bias [B, 1, N+1]

b = log(alpha/sum(alpha))
= 1/(2*sqrt(d))*12norm(mu)**2

# Attention scores [B, M, N+1]
attn = q @ k.transpose() + b

# Attention probabilities [B, M, N+1]
attn = softmax(attn)

# Value projection [B, M, d]
out = attn @ v

return out
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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0 [SEP]
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Figure 7: Attention plot for the best models on Civil-
Comments. The plots show a single head of the last
layer. Left: with dropout, Right: with NVIB. Top-
Bottom: Proportion of keys retained [0.1, 0.25, 0.5, 1.0].
Sentence: ("not onlu a hawaii thing, majority of black
kids have a fatherless home.-’) NVIB highlights ‘black’,
‘kids’ and ‘father’.

Figure 8: Attention plot for the best OOD models on
CC with increasing sparsity. The plots show a single
head of the last layer. Left: with dropout, Right: with
NVIB. Top-Bottom: Proportion of keys retained [0.1,
0.25, 0.5, 1.0]. Sentence: (‘you sound like a terrorist.”).
NVIB highlights ‘sound’ and ‘terrorist’.
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