
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WILTING TREES: INTERPRETING THE DISTANCE BE-
TWEEN MPNN EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the distance function implicitly learned by message passing neu-
ral networks (MPNNs) on specific tasks. Our goal is to capture the functional
distance that is implicitly learned by an MPNN for a given task. This contrasts
previous work which relates MPNN distances on arbitrary tasks to structural dis-
tances that ignore the task at hand. To this end, we distill the distance between
MPNN embeddings into an interpretable graph distance. Our distance is an opti-
mal transport on the Weisfeiler Leman Labeling Tree (WILT), whose edge weights
reveal subgraphs that strongly influence the distance between MPNN embeddings.
Moreover, it generalizes the metrics of two well-known graph kernels and is com-
putable in linear time. Through extensive experiments, we show that MPNNs
define the relative position of embeddings by focusing on a small number of sub-
graphs known by domain experts to be functionally important.

1 INTRODUCTION

Message passing graph neural networks (MPNNs) have been reported to achieve high predictive
performance in various domains (Zhou et al., 2020). To understand these performance gains, many
studies have focused on the expressive power of MPNNs (Morris et al., 2019; Xu et al., 2019; Maron
et al., 2019). However, the binary nature of expressive power excludes any analysis of the distance
between graph embeddings, which is considered to be a key to the predictive power of MPNNs (Liu
et al., 2022b; Li & Leskovec, 2022; Morris et al., 2024). Recently, there has been growing interest
in the analysis of MPNN (generalization) performance using structural distances between graphs
Böker et al. (2024); Franks et al. (2024) that consider graph topology but ignore the target function
to be learned. One can then derive generalization bounds under assumptions on the margin between
classes or on Lipschitz constants of the target function. Both assumptions do often not hold on real
data and MPNN architectures used in practice. In this work, we instead investigate the distance
dMPNN implicitly obtained from an MPNN and its relation to a functional distance dfunc defined on
the target values of the learning task.

Specifically, we ask: What properties does the distance dMPNN learned by a well-performing MPNN
have in practice that can explain the high performance? While previous studies (Chuang & Jegelka,
2022; Böker et al., 2024) focused on the alignment between dMPNN and a non-task-tailored struc-
tural graph distance dstruc, we have found that it is not critical to the predictive performance of
MPNNs. Rather, even if an MPNN was trained with classical cross-entropy loss, dMPNN respects
the task-relevant functional distance dfunc and the alignment between both is highly correlated with
the predictive performance of MPNNs. Then, we move to our second question: How do MPNNs
learn such a metric structure? Since MPNNs essentially consider graphs as multisets of Weisfeiler
Leman (WL) subgraphs, we propose a method to identify WL subgraphs whose presence in a graph
significantly affects its relative position to other graphs in the MPNN embedding space. Specifi-
cally, we distill MPNNs into a weighted Weisfeiler Leman Labeling Tree (WILT) while preserving
dMPNN. The WILT yields an optimal transport distance on a tree ground metric, which we prove
to be a trainable generalization of the graph distances of existing high-performance kernels (Kriege
et al., 2016; Togninalli et al., 2019). We show experimentally that the WILTing tree distance fits
MPNN distances well. Examination of the resulting edge parameters on WILT after distillation
shows that only a small number of WL subgraphs determine dMPNN. In a qualitative experiment, the
subgraphs that strongly influence dMPNN are those that are known to be functionally important by
domain knowledge. In short, our contributions are:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

HG

Figure 1: Examples of how the Weisfeiler Leman algorithm works on graphs. and are colors cor-
responding to initial node labels. Node colors in iterations one and two are shown in the small circles
next to the nodes. For example, = (, {{(,), (,)}}) and = (, {{(,), (,), (,)}}).

• We show that MPNN distances after training are aligned with the task-relevant functional
distance of the graphs and that this is key to the high predictive performance of MPNNs.

• We propose a trainable graph distance on a weighted Weisfeiler-Lehman Labeling Tree
(WILT) that generalizes Weisfeiler Leman-based distances and is efficiently computable.

• WILTs allow a straightforward definition of relevant subgraphs. Thus, distilling an MPNN
into a WILT enables us to identify subgraphs that strongly influence the distance between
MPNN embeddings, allowing an interpretation of the MPNN embedding space.

2 PRELIMINARIES

We define a graph as a tuple G = (V,E, lnode, ledge), where V and E are the set of nodes and
edges, respectively. Each node and each edge have a label defined by lnode : V → Σnode and
ledge : E → Σedge, where Σnode and Σedge are finite sets. We restrict them to finite sets because
our method is based on the Weisfeiler Leman test described below, which is discrete in nature. We
denote the set of all labeled graphs up to isomorphism as G. Note that we only consider undirected
graphs, but extending our work to directed graphs is easy by employing an appropriate version of
the Weisfeiler Leman test. We denote the set of neighbors of node v as N (v).

Message Passing Algorithms (Gilmer et al., 2017) include popular GNNs such as Graph Con-
volutional Networks (GCN, Kipf & Welling, 2017), and Graph Isomorphism Networks (GIN, Xu
et al., 2019). At each iteration, a message passing algorithm updates the embeddings of all nodes
by aggregating the embeddings of themselves and their neighbors in the previous iteration. After L
iterations, the node embeddings are aggregated into the graph embedding hG:

h(l)
v = UPD(l)

(
h(l−1)
v ,AGG(l)

(
{{(h(l−1)

u , evu) | u ∈ N (v)}}
))

hG = READ
(
{{h(L)

v | v ∈ V }}
)

Here {{}} denotes a multiset and 0 < l ≤ L with h
(0)
v = lnode(v). h

(l)
v ∈ Rd and hG ∈ Rd′

are the embedding of node v after the l-th layer and the graph embedding, respectively. AGG(l),
UPD(l), and READ are functions. Message Passing Neural Networks (MPNNs) implement UPD(l)

and AGG(l) using multilayer perceptrons (MLPs). Sum and mean pooling are popular for READ.

The Weisfeiler Leman (WL) Algorithm is a message passing algorithm, where UPD(l) is an injec-
tive function. AGG(l) and READ are the identity function on multisets. A node embedding of the
WL algorithm is called color. We use c

(l)
v instead of h(l)

v to refer to it. Figure 1 shows the progress
of the WL algorithm on two graphs: G and H start with the same colors, but after two iterations,
they no longer share any colors, i.e., {{c(2)v | v ∈ VG}} ∩ {{c(2)v | v ∈ VH}} = ∅.
Message Passing Pseudometrics The WL algorithm cannot distinguish some nonisomorphic
graphs (Cai et al., 1992) and all MPNNs are bounded by its expressiveness (Xu et al., 2019). Hence,
any MPNN yields a pseudometric on the set of pairwise nonisomorphic graphs G.
Definition 1 (Graph Pseudometric). A graph pseudometric space (G, d) is given by a non-negative
real valued function d : G × G → R≥0 that satisfies for all F,G,H ∈ G:

d(G,G) = 0 (Identity)
d(G,H) = d(H,G) (Symmetry)

d(G,F) ≤ d(G,H) + d(H,F) (Triangle inequality)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Given an MPNN, we obtain a pseudometric space (G, dMPNN) by setting dMPNN(G,H) :=

d(hG, hH), where d : Rd′ × Rd′ → R is a (pseudo)metric and hG and hH are graph embed-
dings. Note that (G, dMPNN) is not a metric space since there are nonisomorphic graphs G,H with
identical representations and hence dMPNN(G,H) = 0. For the remainder of this paper, we will use
dMPNN(G,H) = ||hG − hH ||2, but other distances between embeddings can also be used. It should
be noted that dMPNN depends not only on the input graphs but also on the task on which the MPNN
is trained. For example, dMPNN of an MPNN trained to predict the toxicity of molecules will be
different from the dMPNN of another MPNN trained to predict the solubility of the same molecules.

Structural Pseudometrics To date, many different graph kernels have been proposed (Kriege et al.,
2020). Each positive semidefinite graph kernel k : G × G → R corresponds to a pseudometric
between graphs. See Appendix B.1 for how the kernels used in this article are transformed into
corresponding pseudometrics. We will refer to these pseudometrics as structural pseudometrics and
write dstruc, as they only consider the structural and node/edge label information of graphs, without
being trained using the target label information on a training set.

Functional Pseudometrics To formally define the functional distance between graphs, we introduce
another pseudometric on G that is based on the target labels of the graphs.
Definition 2 (Functional Pseudometric). Let yG be the target label of graph G in a given task. In
classification, yG is a categorical class, while yG is a numerical value in regression. We assume
the space for yG is bounded. Then, the functional pseudometric space (G, dfunc) is obtained from
dfunc : G × G → [0, 1] defined as:

dfunc(G,H) :=

1yG ̸=yH
(classification)

|yG−yH |
sup
I∈G

yI− inf
I∈G

yI
(regression),

where 1yG ̸=yH
is the indicator function that returns 1 if yG ̸= yH , otherwise 0.

See Appendix B.2 for a proof that (G, dfunc) is a pseudometric space. If the sup/inf of yG in G are
unknown, they can be approximated by the max/min in a training dataset D.

The Expressive Power of a message passing algorithm is defined based on its ability to distinguish
non-isomorphic graphs. Formally, a message passing graph embedding function f is said to be at
least as expressive as another one g if the following holds:

∀G,H ∈ G : f(G) = f(H) =⇒ g(G) = g(H),

where G is the set of all pairwise non-isomorphic graphs. We extend the above to pseudometrics on
graphs. Specifically, a graph pseudometric d is said to be at least as expressive as d′ (d ≥ d′) iff

∀G,H ∈ G : d(G,H) = 0 =⇒ d′(G,H) = 0.

d and d′ are equally expressive (d ∼= d′) iff d ≥ d′ and d′ ≥ d. Furthermore, d is said to be more
expressive than d′ (d > d′) iff d ≥ d′ and there exists G,H ∈ G s.t. d(G,H) ̸= 0∧ d′(G,H) = 0.

3 IS THE MPNN EMBEDDING DISTANCE CRITICAL TO PERFORMANCE?

Our first question is what properties dMPNN of well performing MPNNs have in practice that can
explain their high performance. This section investigates whether the alignment between dMPNN and
the task-relevant pseudometric dfunc is such a property. Specifically, we address questions below:

Q1.1 Does training MPNN increase the alignment between dMPNN and the task-relevant dfunc?
Q1.2 Does a strong alignment between dMPNN and dfunc indicate high performance of the MPNN?

Note that the alignment between dMPNN and task-irrelevant structural graph pseudometrics dstruc has
been considered a key to MPNN performance in previous studies (Chuang & Jegelka, 2022; Böker
et al., 2024; Franks et al., 2024). However, we found that this property is not consistently improved
by training and does not correlate with performance. (See Appendix E for detailed analyses).

To answer Q1.1 and Q1.2, we should first define a measure of the alignment between dMPNN and
dfunc. Note that it is inappropriate to adopt a typical min/max of dfunc(G,H)

dMPNN(G,H) to measure the alignment.
This is because dfunc is a binary function for classification tasks, and expecting the exact match of
the two distances is unreasonable. Thus, we define another evaluation criterion in the following.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1 5 10 20

k

0.1

0.2

0.3

0.4

A
L

I k

Mutagenicity

1 5 10 20

k

0.0

0.2

0.4

0.6

0.8

ENZYMES

1 5 10 20

k

0.05

0.10

0.15

Lipophilicity

untrained

trained

Figure 2: The distribution of ALIk(dMPNN, dfunc) under different k and datasets.

Table 1: Correlation between ALIk(dMPNN, dfunc) and the performance on Dtrain and Dtest under
different k. Performance is accuracy for Mutagenicity and ENZYMES, and RMSE for Lipophilicity.

Mutagenicity ENZYMES Lipophilicity

k 1 5 10 20 1 5 10 20 1 5 10 20

train 0.71 0.69 0.67 0.64 0.88 0.81 0.77 0.74 -0.74 -0.72 -0.70 -0.69
test 0.71 0.69 0.66 0.64 0.49 0.43 0.38 0.34 -0.56 -0.53 -0.53 -0.52

Definition 3 (Evaluation Criterion for Alignment Between dMPNN and dfunc). Let D be a graph
dataset, k be an integer hyperparameter, and Nk(G) ⊂ D \ {G} be a set of k ≥ 1 graphs that are
closest to G under dMPNN. Let

Ak(G) :=
1

k

∑
H∈Nk(G)

dfunc(G,H), Bk(G) :=
1

|D| − k − 1

∑
H∈D\(Nk(G)∪{G})

dfunc(G,H).

Then dMPNN is aligned with dfunc if

ALIk(dMPNN, dfunc) :=
1

|D|
∑
G∈D

[−Ak(G) +Bk(G)]

is positive. In addition, the larger ALIk is, the more we say dMPNN is aligned with dfunc.

Here, Ak(G) and Bk(G) are the average functional distances between G and its neighbors and non-
neighbors, respectively. If Ak(G) < Bk(G), then the MPNN embeds G and functionally similar
graphs closer on average than functionally dissimilar graphs.

We show the distribution of ALIk(dMPNN, dfunc) for 48 different MPNNs on different datasets and
varying k in Figure 2. Each model was trained with a standard loss function (cross entropy loss
for classification and RMSE for regression). We did not explicitly optimize ALIk. We also include
the results for untrained MPNNs to see the effect of training. We can see that there is little overlap
between the distributions of the untrained and trained MPNNs. This means that ALIk consistently
improves a lot through training, implying a positive answer to Q1.1. Next, we tested the Pearson
correlation coefficient (PCC) between ALIk(dMPNN, dfunc) of trained MPNNs and their predictive
performance. We use accuracy and RMSE between the ground truth target and predicted values
to measure classification and regression performance, respectively. Table 1 shows that the PCC
for Mutagenicity and ENZYMES is close to one, indicating that the higher the ALIk, the higher the
accuracy. Similarly, the higher the ALIk, the lower the RMSE for Lipophilicity. The correlations are
consistent across training and test sets. These results suggest that the degree of alignment between
dMPNN and dfunc is a crucial factor contributing to the high performance of MPNNs, answering Q1.2
positively. See Appendix D for more details and additional results on non-molecular datasets.

4 WILTING PSEUDOMETRICS

Section 3 confirms that MPNNs are implicitly trained so that dMPNN aligns with dfunc, which turns
out to be crucial for MPNN’s performance. Then, our second research question is: How do MPNNs

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

learn dMPNN that respects dfunc? Since MPNN embeddings are aggregations of WL color embed-
dings, we can infer that MPNNs learn during training which WL colors are important for captur-
ing the task-relevant functional graph distance dfunc. This determines the relative position between
MPNN embeddings based on the existence of such WL colors in graphs. To identify WL colors that
strongly influence dMPNN, we propose to distill dMPNN into our new graph pseudometric dWILT, which
has tunable weights and is based on the WL colors of the input graphs. dWILT is an optimal transport
distance on the Weisfeiler Leman Labeling Tree (WILT) and generalizes two existing distances of
high-performing graph kernels (Kriege et al., 2016; Togninalli et al., 2019). After distillation, the
parameters of dWILT allow us to identify WL colors that are considered important by the MPNN.

4.1 WEISFEILER LEMAN LABELING TREE (WILT)

The Weisfeiler Leman Labeling Tree (WILT) TD is a rooted weighted tree built from the set of
colors obtained by the WL test on a graph dataset D ⊆ G. Given D, we define V (TD) as the set of
colors that appear on any node during the WL test plus the root node r, that is, V (TD) = {c(l)v | v ∈
VG, G ∈ D, l ∈ [L]} ∪ {r}. Colors x, y ∈ V (TD) \ {r} are connected in TD if and only if there
exists a node v in some graph in D and an iteration l with x = c

(l)
v and y = c

(l−1)
v . r is connected to

all x = c
(0)
v . Due to the injectivity of the AGG and UPD functions in the WL algorithm, it follows

that TD is a tree. Figure 3 (upper left) shows the WILT built from the graphs G and H in Figure 1.
See Appendix C for a detailed algorithm to build a WILT from D.

We consider edge weights w : E(TD)→ R≥0 on WILT. We only allow non-negative weights so that
the WILTing distance in Definition 4 will be non-negative. Given a WILT TD with weights w, the
shortest path distance dpath(x, y;w) :=

∑
e∈Path(x,y) w(e) is the sum of edge weights of the unique

shortest path Path(x, y) between x and y. Note that dpath is a pseudometric on V (TD), i.e., the set of
WL colors in D. Intuitively, dpath(x, y;w) is large if Path(x, y) is long, but w allows us to tune this
distance according to the needs of the learning task.

4.2 THE WILTING DISTANCE

A WILT TD with edge weights w yields a pseudometric dWILT on the graph set D. This section
shows two equivalent characterizations of dWILT as an optimal transport distance and as a weighted
Manhattan distance. The latter allows us to define the importance of specific WL colors and to
compute our proposed distance efficiently. For simplicity, we define dWILT for graphs with the same
number of nodes. In the next section, we will discuss the extension to graphs with different num-
bers of nodes. For two distributions with identical mass on the same pseudometric space, optimal
transport distances such as the Wasserstein distance (Villani, 2009) measure the minimum effort of
shifting probability mass from one distribution to the other. Each unit of shifted mass is weighted
by the distance it is shifted. We define our pseudometric dWILT(G,H;w) as the optimal transport
between VG and VH , where the ground pseudometric is the shortest path metric on the WILT TD.

Definition 4 (WILTing Distance). Let G,H ∈ D be graphs with |VG| = |VH |. Then

dWILT(G,H;w) := min
P∈Γ

∑
vi∈VG

∑
uj∈VH

Pi,jdpath(c
(L)
vi

, c(L)
uj

)

where Γ := {P ∈ R|VG|×|VH | | Pi,j ≥ 0, P1 = 1, PT1 = 1}.

Note that dWILT is not a metric but a pseudometric on the set of pairwise nonisomorphic graphs
G. This is because there are nonisomorphic graphs G and H whose colors are the same after L
iterations, i.e., {{c(L)

v | v ∈ VG}} = {{c(L)
v | v ∈ VH}}.

Generic algorithms to compute Wasserstein distances require cubic runtime. In our case, however,
there exists a linear time algorithm to compute dWILT as shown below, since the ground pseudometric
dpath is the shortest path metric on a tree (Le et al., 2019).

Definition 5 (WILT Embedding). The WILT embedding of a graph G ∈ D is a vector, where each
dimension counts how many times a corresponding WL color appears during the WL test on G, i.e.,
νGc := |{v ∈ VG | ∃l ∈ [L] c

(l)
v = c}| for c ∈ V (TD) \ {r}. (see upper right of Figure 3).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

νG

νH

ν̇G

ν̇H

ν̄G

ν̄H

3 2 2 1 1 1 0 2 0 1 1 1 0

2 2 2 0 0 0 2 0 2 0 0 0 2

3
5

2
5

2
5

1
5

1
5

1
5

0
5

2
5

0
5

1
5

1
5

1
5

0
5

2
4

2
4

2
4

0
4

0
4

0
4

2
4

0
4

2
4

0
4

0
4

0
4

2
4

3 2 0 2 1 1 1 0 0 2 0 1 1 1 0 0

2 2 1 2 0 0 0 2 1 0 2 0 0 0 2 1

r

r

c0¬
c1¬
c2¬

Figure 3: (upper left): The Weisfeiler Leman Labelling Tree (WILT) built from D = {G,H} from
Figure 1. (lower left): The WILT built from D = {G,H} with dummy nodes. (right): The WILT
embeddings ν, ν̇ with size normalization, and ν̄ with dummy node normalization.

Proposition 1 (Equivalent Definition of WILTing Distance). dWILT in Definition 4 is equivalent to:

dWILT(G,H;w) =
∑

c∈V (TD)\{r}

w
(
e{c,p(c)}

) ∣∣νGc − νHc
∣∣ ,

where e{c,p(c)} is the edge connecting c and its parent p(c) in TD.

This equivalence allows efficient computation of dWILT given the WILT embeddings of graphs,
which can be computed by the WL algorithm in O(L|EG|) time, where L is the number of WL
iterations. Using sparse vectors for νG and νH , dWILT(G,H) can be computed in O(|VG|+ |VH |).

4.3 NORMALIZATION AND SPECIAL CASES OF WILTING DISTANCE

The definition of dWILT(G,H) as an optimal transport distance requires |VG| = |VH |. However,
|VG| and |VH | usually do not match, so we propose two solutions. Interestingly, the two modified
WILTing distances generalize two distance functions corresponding to well-known graph kernels.

Size Normalization Straightforwardly, we can restrict the mass of each node to 1
|VG| when calcu-

lating the Wasserstein distance in Definition 4. In other words, we replace Γ with Γ̇ := {P ∈
R|VG|×|VH | | Pi,j ≥ 0, P1 = 1

|VG|1, P
T1 = 1

|VH |1}. Similarly, νG in Proposition 1 is changed to

ν̇G := νG

|VG| . The resulting distance ḋWILT effectively ignores differences in the number of nodes of
G and H , generally assigning fractions of colors in G to colors in H . In Figure 3 (right center), we
show ν̇ of G and H in Figure 1. ḋWILT(G,H) is calculated as:

ḋWILT(G,H) = w(e{ , })

∣∣∣∣35 − 2

4

∣∣∣∣+ w(e{ , })

∣∣∣∣25 − 2

4

∣∣∣∣+ . . .+ w(e{ , })

∣∣∣∣05 − 2

4

∣∣∣∣ .
An interesting property of ḋWILT is that it generalizes the pseudometric corresponding to the Wasser-
stein Weisfeiler Leman graph kernel (Togninalli et al., 2019): When w ≡ 1

2(L+1) , ḋWILT matches
their distance. See Appendix B.3 for technical details.

Dummy Node Normalization We can also add isolated nodes with a special label, called dummy
nodes, to graphs so that all the graphs have the same number of nodes. The WILT will be built in the
same way as described in Section 4.1 after dummy nodes are added to all graphs inD. The resulting
WILT has new colors c0¬, c

1
¬, . . . , c

L
¬ that arise from the WL iteration on the isolated dummy nodes

(Figure 3 lower left). The WILT embedding will be slightly changed to

ν̄Gc :=

{
N − |VG| if c ∈ {c0¬, c1¬, . . . , cL¬}
νGc otherwise

,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Optimizing edge weights of WILT
Input: Graph dataset D, an MPNN f with L message passing layers trained on D, and WILT TD
built from the results of L-iteration WL test on D
Parameter: batch size, number of epochs E, and learning rate lr
Output: Optimized edge weights of WILT TD
nc ← |E(TD)|
w ← 1 ∈ Rnc

optimizer← Adam(params=w, lr=lr)
for e = 1 to E do

for batch B in D2 do
l← 1

|B|
∑

(G,H)∈B

(
dWILT(G,H)− dMPNN(G,H)

)2

l.backward()
optimizer.step()
w ← max(w, 0) ▷ Ensuring that each dimension of w is non-negative

end for
end for
return w

where N = maxG∈D |VG| (See Figure 3 (lower right)). Then, the resulting distance d̄WILT(G,H)
for the graphs in Figure 1 is:

d̄WILT(G,H) = w(e{ , })|3− 2|+ w(e{ , })|2− 2|+ . . .+ w(e{ , })|0− 1|.

Similar to size normalization, d̄WILT includes the pseudometric of Weisfeiler Leman optimal as-
signment kernel (Kriege et al., 2016) as a special case. When w ≡ 1

2 , d̄WILT is equivalent to their
distance. See Appendix B.3 for more details.

4.4 WILTING TREE LEARNING AND IDENTIFICATION OF IMPORTANT WL COLORS

Now, we have a graph distance on WILT defined for any pairs of graphs in D. Next, we show how
to optimze the edge weights w. Proposition 1 allows us to learn the edge weights w, given training
data. Specifically, given a target distance dtarget we adapt the distance function dWILT by minimizing

L(w) :=
∑

(G,H)∈D2

(
dWILT(G,H;w)− dtarget(G,H)

)2

,

with respect to w. Note that dWILT can refer to both ḋWILT and d̄WILT. In this work, we focus on
dtarget = dMPNN. That is, we train dWILT to mimic the distances between the graph embeddings of
a given MPNN, as shown in Algorithm 1. Once we have trained w by minimizing L, we can gain
insight into dMPNN via dWILT. WL colors with large edge weights are those whose presence in a
graph significantly affects dMPNN between the graph and other graphs. Specifically, we can derive
the following reasoning.

Large difference between G and H in the number or ratio of WL colors with a large w(e{c,p(c)})

=⇒ Large dWILT(G,H) (∵ Proposition 1)
=⇒ Large dMPNN(G,H) (∵ dWILT approximates dMPNN)

4.5 EXPRESSIVENESS OF PSEUDOMETRICS ON WILT

Here, we discuss which of the two normalizations is preferred for a given MPNN based on the
expressive power. Below are the relationships between the expressiveness of dMPNN and dWILT.
Theorem 1 (Expressive Power of the Pseudometrics on WILT). Let dmean

MPNN and dsum
MPNN be dMPNN of

MPNNs with mean/sum graph poolings, respectively. We also define a pseudometric based on the
L-iteration WL test:

dWL(G,H) := 1{{c(L)
v |v∈VG}}≠{{c(L)

v |v∈VH}}.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Then, the following inequalities hold for WILT with positive edge weights.

ḋWILT < d̄WILT ∼= dWL, dmean
MPNN ≤ ḋWILT(< d̄WILT), dsum

MPNN ≤ d̄WILT, dsum
MPNN@≤ḋWILT.

Proof. See Appendix B.4.

Since d̄WILT is more expressive than ḋWILT, you might think that d̄WILT is always preferable to approx-
imating dMPNN. However, ḋWILT is expected to be better at approximating dmean

MPNN, since it provides
a tighter bound. Intuitively, this follows from the fact that mean pooling and the size normalization
are essentially the same procedure: They both ignore the number of nodes. In contrast, d̄WILT is
expected to work well on dsum

MPNN, which retains the information about the number of nodes and thus
cannot be bounded by ḋWILT. We will experimentally confirm these analyses in Section 5. Note
that Theorem 1 considers only the binary expressiveness of pseudometrics. Regarding the size of
the family of functions that each pseudometric can represent, dMPNN is expected to be superior to
dWILT, because dWILT is restricted to an optimal transport on the tree for faster computation and better
interpretability. Still, in Section 5, we empirically show that dWILT can approximate dMPNN well.

5 EXPERIMENTS

In this section, we confirm that our proposed dWILT can successfully approximate dMPNN. Then, we
show that the distribution of learned edge weights of WILT is skewed towards 0, and a large part of
them can be removed with L1 regularization. Finally, we investigate the WL colors that influence
dMPNN most. Due to space limitations, we report results only for a selection of MPNNs and datasets.
Code is available online, and experimental settings and additional results are in Appendix F.

We trained 3-layer GCNs with mean or sum pooling on the three datasets with five different seeds.
We then distilled each into two WILTs, one with size normalization and one with dummy node
normalization. To evaluate how well a distance d approximates dMPNN, we used a variant of RMSE:

RMSE(dMPNN, d) :=

√√√√min
α∈R

1

|D|2
∑

(G,H)∈D2

(
d̃MPNN(G,H)− α · d̃(G,H)

)2

,

where d̃WILT and d̃ means they are normalized to [0, 1]. Intuitively, the closer the RMSE is to zero,
the better the alignment is, and zero RMSE means perfect alignment. We do not use the correlation
coefficient because it can be one even if dMPNN is not a constant multiple of d: it allows non-zero
intercept. Note that the minimization over α can be solved analytically. Table 2 shows the RMSE
between dMPNN and ḋWILT or d̄WILT. We also include results for dWWL and dWLOA, which are special
cases of ḋWILT and d̄WILT with fixed edge weights, respectively. It is obvious that dWILT aligns with
dMPNN much better than dWWL and dWLOA. Interestingly, ḋWILT approximates dMPNN(mean) better,
while d̄WILT approximates dMPNN(sum) better, except for dMPNN(sum) trained on Lipophilicity, where
their performance is close. This observation is consistent with the theoretical analysis in Section 4.5.

Next, we look into the distribution of the learned edge weights of WILT. Figure 4 (left) shows the
histogram of the edge weights of the WILT with dummy node normalization after distillation from a
3-layer GCN with sum pooling trained on Mutagenicity. The distribution is heavily skewed towards
zero. This plot, together with Proposition 1, suggests that the relative position of MPNN graph
embeddings is determined based on only a small subset of WL colors. To further verify this idea,
we added an L1 regularization term to the objective function L and minimized it so that w(e{c,p(c)})
would be set to zero for some colors. Figure 4 (center) shows the RMSE between dMPNN and the
resulting d̄WILT, as well as the ratio of non-zero edge weights, under different L1 coefficient λ. As
expected, the larger λ is, the more edge weights are set to zero and the larger the RMSE. However,
it is worth noting that d̄WILT is much better aligned with dMPNN than dWLOA even when trained with
λ = 1.0 and about 95% of the edge weights are zero. This good approximation with only 5%
non-zero edges implies that MPNNs rely on only a few important WL colors to define dMPNN.

Finally, we show the subgraphs corresponding to the colors with the largest weights, thus influencing
dMPNN the most. Again, we only show results for the 3-layer GCN with sum pooling trained on the
Mutagenicity dataset. To avoid identifying colors that are too rare, we only consider colors that

8

https://anonymous.4open.science/r/WILTingTrees_ICLR2025/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: The mean±std of RMSE(dMPNN, d) [×10−2] over five different seeds. Each column corre-
sponds to a GCN with a given graph pooling method, trained on a given dataset.

Mutagenicity ENZYMES Lipophilicity

mean sum mean sum mean sum

dWWL 9.25±0.87 12.25±0.54 12.18±0.23 11.28±0.65 10.92±0.42 10.83±0.73
dWLOA 18.74±3.36 5.98±1.60 16.79±2.33 6.83±0.41 13.97±0.97 10.00±1.34
ḋWILT 1.74± 0.52 1.22±0.31 2.71± 0.38 9.15±0.47 3.11± 0.54 2.50± 0.67
d̄WILT 3.34±1.01 0.82± 0.17 4.64±0.67 1.43± 0.10 6.35±1.22 2.64±0.74

0 10 20 30 40

Weight value

100

101

102

103

104

F
re

qu
en

cy

Weight distribution

0.0 0.0001 0.001 0.01 0.1 1.0

L1 coefficient

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
M

S
E

Results with different λ
RMSE of WLOA

RMSE of WILT

Ratio of non-zero weights

0.2

0.4

0.6

0.8

1.0

R
at

io
of

n
on

-z
er

o
w

ei
gh

ts

H O H

(1)

C

N

NO2
(2)

CH2 N

CH3

N

O

F(3)

CH3 CH

Br

Br

(4)

Figure 4: (left): The distribution of the edge weights of WILT after distillation. (center): The RMSE
and the ratio of non-zero edge weights after distillation with different coefficients for the L1 term.
The results are mean and std over five different seeds. (right): Example graphs with highlighted
significant subgraphs corresponding to colors with the largest weights.

appear in at least 1% of the entire graphs. Figure 4 (right) shows example graphs with subgraphs
corresponding to colors with the four largest weights. The identified subgraphs in (1) and (4) are
known to be characteristic of mutagenic molecules (Kazius et al., 2005). In fact, (1) and (4) are
classified as “epoxide” and “aliphatic halide” based on the highlighted subgraphs. Given that only a
tiny fraction of the entire WL colors correspond to the subgraphs reported in (Kazius et al., 2005),
this result suggests that MPNNs learn the relative position of graph embeddings based on WL colors
that are also known to be functionally important by domain knowledge.

6 CONCLUSIONS

We analyzed the metric properties of the embedding space of MPNNs. We found that the alignment
with the functional pseudometric improves during training and is a key to high predictive perfor-
mance. In contrast, the alignment with the structural psudometrics, which has been studied inten-
sively in previous works, does not improve and is not correlated with performance. To understand
how MPNNs learn and reflect the functional distance between graphs, we propose a theoretically
sound and efficiently computable new pseudometric on graphs using WILT. By examining the edge
weights of the distilled WILT, we found that only a tiny fraction of the entire WL colors influence
dMPNN. The identified colors correspond to subgraphs that are known to be functionally important
from domain knowledge.

While we investigated MPNNs specifically, there is a hierarchy of more and more expressive GNNs
that are bounded in expressiveness by corresponding WL test variants. In this paper, we have defined
WILT on the hierarchy of 1-WL labels. Still, it is straightforward to extend the proposed WILT
metric to color hierarchies obtained from higher-order WL variants (Morris et al., 2023; Geerts &
Reutter, 2022) or extended message passing schemes (Frasca et al., 2022; Graziani et al., 2024).
While beyond the scope of this work, higher-order WILTing trees may prove useful in interpreting
a range of GNNs. However, as the number of trainable WILT weights scales with the number of
colors, the practical relevance of higher-order WILTs remains an open question. Using WILT for a
purpose other than understanding GNNs is also interesting. For example, by training WILT’s edge
parameters from scratch, we might be able to build a high-performance graph kernel.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea Passerini. Global explain-
ability of GNNs via logic combination of learned concepts. In International Conference on Learn-
ing Representations, 2023.

Jan Böker, Ron Levie, Ningyuan Huang, Soledad Villar, and Christopher Morris. Fine-grained
expressivity of graph neural networks. Advances in Neural Information Processing Systems, 36,
2024.

Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Ching-Yao Chuang and Stefanie Jegelka. Tree mover’s distance: Bridging graph metrics and stabil-
ity of graph neural networks. Advances in Neural Information Processing Systems, 2022.

Billy Joe Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at the
margin: When more expressivity matters. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=HTNgNt8CTJ.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Understanding and
extending subgraph GNNs by rethinking their symmetries. In Advances in Neural Information
Processing Systems, 2022.

Floris Geerts and Juan L. Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, 2017.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In IEEE
International Joint Conference on Neural Networks, 2005.

Caterina Graziani, Tamara Drucks, Fabian Jogl, Monica Bianchini, Franco Scarselli, and Thomas
Gärtner. Expressiveness and approximation properties of graph neural network. In International
Conference on Machine Learning, 2024.

Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for
mutagenicity prediction. Journal of Medicinal Chemistry, 48(1):312–320, 2005.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Nils M. Kriege, Pierre-Louis Giscard, and Richard C. Wilson. On valid optimal assignment kernels
and applications to graph classification. In Advances in Neural Information Processing Systems,
2016.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5:1–42, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, 2012.

Dominik Köhler and Stefan Heindorf. Utilizing description logics for global explanations of hetero-
geneous graph neural networks. arXiv preprint:2405.12654, 2024.

Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco Cuturi. Tree-sliced variants of Wasserstein
distances. Advances in Neural Information Processing Systems, 2019.

Pan Li and Jure Leskovec. The expressive power of graph neural networks. In Graph Neural
Networks: Foundations, Frontiers, and Applications. 2022.

Ninghao Liu, Qizhang Feng, and Xia Hu. Interpretability in graph neural networks. In Graph Neural
Networks: Foundations, Frontiers, and Applications. 2022a.

10

https://openreview.net/forum?id=HTNgNt8CTJ
https://openreview.net/forum?id=HTNgNt8CTJ

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S Yu. Graph self-
supervised learning: A survey. IEEE Transactions on Knowledge and Data Engineering, 35(6):
5879–5900, 2022b.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in Neural Information Processing Systems, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
Workshop on Graph Representation Learning and Beyond, 2020.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe,
Matthias Fey, and Karsten M. Borgwardt. Weisfeiler and leman go machine learning: The story
so far. Journal of Machine Learning Research, 24:333:1–333:59, 2023.

Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, İsmail İlkan Ceylan, Ron Levie,
Derek Lim, Michael M. Bronstein, Martin Grohe, and Stefanie Jegelka. Position: Future direc-
tions in the theory of graph machine learning. In International Conference on Machine Learning,
2024.

Peter Müller, Lukas Faber, Karolis Martinkus, and Roger Wattenhofer. GraphChef: Decision-tree
recipes to explain graph neural networks. In International Conference on Learning Representa-
tions, 2024.

Alexander Pluska, Pascal Welke, Thomas Gärtner, and Sagar Malhotra. Logical distillation of graph
neural networks. In International Conference on Knowledge Representation and Reasoning,
2024.

Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational graphs for
pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 13(3):353–
362, 1983.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein Weisfeiler-Lehman graph kernels. Advances in Neural Information Processing Sys-
tems, 2019.

Cédric Villani. Optimal transport: old and new, volume 338 of Grundlehren der mathematischen
Wissenschaften. Springer, 2009.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical Science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):
5782–5799, 2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A RELATED WORK

A graph is a data structure composed of nodes and the edges connecting them, capable of repre-
senting various entities such as molecules and social networks. Due to the high flexibility of graph
structures, it is difficult to apply deep neural networks from non-graph domains, such as convolu-
tional neural networks (Krizhevsky et al., 2012), to graph data. Thus, graph-specific architectures
called graph neural networks have been studied for about two decades since their initial proposal
(Gori et al., 2005). Message passing graph neural networks, in particular, achieve high predictive
performance in various tasks, including node or graph classification and link prediction.

To understand the high performance of MPNNs, many studies have focused on their expressive
power (Morris et al., 2019; Xu et al., 2019; Maron et al., 2019). Expressive power refers to the ability
of a permutation invariant function to embed nonisomorphic graphs into distinct representations.
Formally, a message passing graph embedding function f is said to be at least as expressive as
another function g if the following holds:

∀G,H ∈ G : f(G) = f(H) =⇒ g(G) = g(H),

where G is the set of all pairwise nonisomorphic graphs. However, the binary expressive power
cannot capture the similarity between graphs, so it alone is said to be insufficient to explain the
performance of MPNNs. Recently, it has become increasingly recognized that the geometry of the
embedding space in MPNNs, not just their combinatorial expressiveness, is crucial (Li & Leskovec,
2022; Morris et al., 2024). For instance, many of the graph contrastive learning methods implic-
itly assume that good metric structure in the embedding space will lead to the high performance
of MPNNs (Liu et al., 2022b). Chuang & Jegelka (2022) theoretically showed that the distance
between MPNN embeddings can be upper bounded by their proposed task-irrelevant structural dis-
tance, called the tree mover’s distance, paving the way for the theoretical analyses of MPNN gen-
eralization ability or robustness. Böker et al. (2024) proved the equivalence between the MPNN
embedding distance and other structural distances, but their analyses dealt only with dense graphs
and required the consideration of all MPNNs with some Lipschitz constant. Our study also focuses
on the geometry of the embedding space, but we investigate one MPNN trained on practical sparse
graphs.

This study is also related to GNN interpretability (Liu et al., 2022a; Yuan et al., 2022). The inter-
pretability of GNNs is important because people may be reluctant to apply them to real-world prob-
lems where safety or privacy are important if the mechanism behind their predictions is unknown.
Furthermore, higher interpretability of well-performing models may lead to a new understanding of
scientific phenomena when applied to scientific domains such as chemistry or biology. Most of ex-
isting interpretation methods are instance-level, which identify input features in a given input graph
that are important for its prediction. However, instance-level methods cannot explain the global be-
havior of GNNs. Recently, some studies have proposed a way to understand the global behavior of
GNNs by distilling them into highly interpretable models. The resulting model can be a GNN with
higher interpretability (Müller et al., 2024), or a logical formula (Azzolin et al., 2023; Köhler &
Heindorf, 2024; Pluska et al., 2024). Our study also distills MPNNs into highly interpretable WILT
for global-level understanding, but the difference is that ours aims to interpret the metric structure
of the MPNN embedding space, while previous studies focused on generating explanations for each
label class. In addition, our method can be applied to regression tasks on graphs, while previous
studies cannot.

B THEORETICAL ANALYSIS

B.1 STRUCTURAL PSEUDOMETRICS

Here we introduce the definitions of the graph edit distance (dGED, Sanfeliu & Fu, 1983), Weisfeiler
Leman optimal assignment distance (dWLOA, Kriege et al., 2016), and Wasserstein Weisfeiler Leman
graph distance (dWWL, Togninalli et al., 2019). For the definition of tree mover’s distance, please
refer to the original paper (Chuang & Jegelka, 2022).

Definition 6 (Graph Edit Distance(Sanfeliu & Fu, 1983)). Let E be the set of graph edit operations,
and c : E → R≥0 be a function that assigns a cost to each operation. Then, the graph edit distance

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

(GED) between G and H is defined as the minimum cost of a sequence of edit operations that
transform G into H . Formally,

dGED(G,H) := min
s∈S(G,H)

∑
e∈s

c(e),

where S is a set of sequences of graph edit operations that transform G into H .

In this paper, E consists of insertion and deletion of single nodes and single edges, as well as substi-
tution of single node or edge labels. We set the cost of each operation to 1, i.e., c(e) ≡ 1. Next, we
move on to the Weisfeiler Leman optimal assignment (WLOA) kernel.
Definition 7 (Weisfeiler Leman Optimal Assignment Kernel (Kriege et al., 2016)). Consider G =
(VG, EG) and H = (VH , EH). Let V ′

G and V ′
H be the extended node sets resulting from adding

special nodes z to G or H so that G and H have the same number of nodes. Let the base kernel k
is defined as:

k(v, u) :=

{∑L
l=0 1c

(l)
v =c

(l)
u

(v ̸= z ∧ u ̸= z)

0 (v = z ∨ u = z),

where c
(l)
v and c

(l)
u represent the colors of vertices v and u at iteration l of the WL algorithm (see

Section 2). Then, the Weisfeiler Leman optimal assignment (WLOA) kernel is defined as:

kWLOA(G,H) := max
B∈B(V ′

G,V ′
H)

∑
(vG,uH)∈B

k(vG, uH),

where B(V ′
G, V

′
H) denotes the set of all possible bijections between V ′

G and V ′
H .

Kriege et al. (2016) proved that kWLOA is a positive semidefinite kernel function. While they focus
only on the kernel, a corresponding graph pseudometric can be defined in the following way:
Definition 8 (Weisfeiler Leman Optimal Assignment (WLOA) Distance). A function dWLOA below
is a pseudometric on the set of pairwise nonisomorphic graphs G:

dWLOA(G,H) := (L+ 1) ·max(|VG|, |VH |)− kWLOA(G,H)

Proof. Theorem 3 shows that dWLOA defined as above is a special case of d̄WILT. Since d̄WILT is a
pseudometric on the set of pairwise nonisomorphic graphs G, so is dWLOA.

We will show later that the above WLOA distance is a special case of our WILT distance with
dummy node normalization (Theorem 3). Togninalli et al. (2019) proposed another graph pseudo-
metric based on the WL algorithm, called Wasserstein Weisfeiler Leman graph distance.
Definition 9 (Wasserstein Weisfeiler Leman (WWL) Distance (Togninalli et al., 2019)). Let
dham(v, u) be the hamming distance between

[
c
(0)
v , c

(1)
v , . . . c

(L)
v

]
and

[
c
(0)
u , c

(1)
u , . . . c

(L)
u

]
, where

c
(l)
v is the color of node v at iteration l of the WL algorithm (see Section 2). Specifically,

dham(v, u) :=
1

L+ 1

L∑
l=0

1
c
(l)
v ̸=c

(l)
u
.

Then the WWL distance is defined as

dWWL(G,H) := min
P∈ΓWWL

∑
vi∈VG

∑
uj∈VH

Pi,jdham(vi, uj),

where ΓWWL := {P ∈ R|VG|×|VH |
≥0 | P1 = 1

|VG|1, P
T1 = 1

|VH |1} is a set of valid transports
between two uniform discrete distributions.

Togninalli et al. (2019) have shown that dWWL is a pseudometric. In addition, they proposed a
corresponding kernel kWWL(G,H) := e−λdWWL(G,H), and showed that it is positive semidefinite. We
will prove later in Theorem 2 that our WILT distance with size normalization includes the WWL
distance as a special case.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B.2 FUNCTIONAL PSEUDOMETRIC

Here, we show that dfunc is a pseudometric.
Definition 2 (Functional Pseudometric). Let yG be the target label of graph G in a given task. In
classification, yG is a categorical class, while yG is a numerical value in regression. We assume
the space for yG is bounded. Then, the functional pseudometric space (G, dfunc) is obtained from
dfunc : G × G → [0, 1] defined as:

dfunc(G,H) :=

1yG ̸=yH
(classification)

|yG−yH |
sup
I∈G

yI− inf
I∈G

yI
(regression),

where 1yG ̸=yH
is the indicator function that returns 1 if yG ̸= yH , otherwise 0.

Proof. We start with the classification case.
dfunc(G,G) = 1yG ̸=yG

= 0

dfunc(G,H) = 1yG ̸=yH

= 1yH ̸=yG

= dfunc(H,G)

dfunc(G,F) = 1yG ̸=yF

≤ 1yG ̸=yH
+ 1yH ̸=yF

= dfunc(G,H) + dfunc(H,F)

We can prove similarly in regression case.

dfunc(G,G) =
|yG − yG|

sup
I∈G

yI − inf
I∈G

yI

= 0

dfunc(G,H) =
|yG − yH |

sup
I∈G

yI − inf
I∈G

yI

=
|yH − yG|

sup
I∈G

yI − inf
I∈G

yI

= dfunc(H,G)

dfunc(G,F) =
|yG − yF |

sup
I∈G

yI − inf
I∈G

yI

≤ |yG − yH |
sup
I∈G

yI − inf
I∈G

yI
+

|yH − yF |
sup
I∈G

yI − inf
I∈G

yI

= dfunc(G,H) + dfunc(H,F)

In both cases, identity, symmetry, and triangle inequality are satisfied.

If the sup/inf of yG in G are unknown, they can be approximated by the max/min in a training dataset
D, and we can similarly prove that dfunc is a pseudometric.

B.3 NORMALIZED WILTING DISTANCES AND RELATIONSHIP TO EXISTING DISTANCES

We present the formal definitions of the size normalization and dummy node normalization. We
then show that ḋWILT with size normalization generalizes the WWL distance and d̄WILT with dummy
node normalization generalizes the WLOA distance.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Definition 10 (WILTing Distance with Size Normalization). We define the WILTing distance with
size normalization as:

ḋWILT(G,H;w) := min
P∈Γ̇

∑
vi∈VG

∑
uj∈VH

Pi,jdpath(c
(L)
vi , c(L)

uj
),

where Γ̇ := {P ∈ R|VG|×|VH | | Pi,j ≥ 0, P1 = 1
|VG|1, P

T1 = 1
|VH |1}. It is equivalent to:

ḋWILT(G,H;w) =
∑

c∈V (TD)\{r}

w(e{c,p(c)})
∣∣ν̇Gc − ν̇Hc

∣∣ ,
where ν̇G := 1

|VG|ν
G.

The only difference between Definition 4 and Definition 10 is the mass assigned to each node. The
equivalence between the two definitions of ḋWILT is a straightforward consequence of (Le et al.,
2019). The other normalization is defined as follows.
Definition 11 (WILTing Distance with Dummy Node Normalization). Let V̄G be an extension of
VG with additional N − |VG| isolated dummy nodes with special label, where N := maxG∈D |VG|.
Let T̄D be WILT built from the extended graphs {(V̄G, EG)}G∈D. Note that T̄D is just a slight
modification of TD (see Figure 3). We define the WILTing distance with dummy node normalization
as:

d̄WILT(G,H;w) := min
P∈Γ̄

∑
vi∈V̄G

∑
uj∈V̄H

Pi,jdpath(c̄
(L)
vi , c̄(L)

uj
),

where Γ̄ := {P ∈ R|V̄G|×|V̄H | | Pi,j ≥ 0, P1 = 1, PT1 = 1}, and c̄
(L)
v is the color of node v on

T̄D after L iterations. An equivalent definition is:

d̄WILT(G,H;w) =
∑

c̄∈V (T̄D)\{r}

w(e{c̄,p(c̄)})
∣∣ν̄Gc̄ − ν̄Hc̄

∣∣ ,
where ν̄G is the WILT embedding of G using T̄D.

Intuitively speaking, we add dummy nodes to all the graphs so that they have the same number of
nodes1, and compute the WILTing distance in exactly the same way as shown in Section 4.2.

Next, we show that ḋWILT includes the Wasserstein Weisfeiler Leman distance and d̄WILT includes
the Weisfeiler Leman optimal assignment distance as a special case, respectively.
Theorem 2 (dWWL as a Special Case of ḋWILT). The WWL distance in Definition 9 is equal to the
WILTing distance with size normalization with all WILT edge weights set to 1

2(L+1) . Specifically,

dWWL(G,H) = ḋWILT

(
G,H;w ≡ 1

2(L+ 1)

)
.

Proof.

dWWL(G,H) := min
P∈ΓWWL

∑
vi∈VG

∑
uj∈VH

Pi,jdham(vi, uj)

= min
P∈ΓWWL

∑
vi∈VG

∑
uj∈VH

Pi,j
1

L+ 1

L∑
l=0

1clv ̸=clu

= min
P∈ΓWWL

∑
vi∈VG

∑
uj∈VH

Pi,jdpath

(
c(L)
vi , c(L)

uj
;w ≡ 1

2(L+ 1)

)

= min
P∈Γ̇

∑
vi∈VG

∑
uj∈VH

Pi,jdpath

(
c(L)
vi , c(L)

uj
;w ≡ 1

2(L+ 1)

)

= ḋWILT

(
G,H;w ≡ 1

2(L+ 1)

)
.

1In fact, d̄WILT remains a pseudometric even on D = G, as it can be defined without explicit use of N . To
this end, note that limN→∞ |ν̄G

ci¬
− ν̄H

ci¬
| = |V (G)− V (H)| for any dummy node color ci¬.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Theorem 3 (dWLOA as a Special Case of d̄WILT). The WLOA distance in Definition 8 is equal to the
WILTing distance with dummy node normalization with all WILT edge weights set to 1

2 . Specifically,

dWLOA(G,H) = d̄WILT

(
G,H;w ≡ 1

2

)
.

Proof. First, dWLOA(G,H) can be transformed as follows.

dWLOA(G,H) := (L+ 1) ·max(|VG|, |VH |)− kWLOA(G,H)

= (L+ 1) ·max(|VG|, |VH |)− max
B∈B(V ′

G,V ′
H)

∑
(vG,uH)∈B

k(vG, uH)

= min
B∈B(V ′

G,V ′
H)

∑
(vG,uH)∈B

(L+ 1− k(vG, uH))

Next, we introduce a equivalent definition of k(v, u). In Definition 7, the WL algorithm is applied
only on VG and VH , not on special nodes. Assume w.l.o.g. that |V (G)| ≤ |V (H)|, i.e., V (G)
is extended with |V (H)| − |V (G)| dummy nodes. By treating the special nodes in V ′

G as dummy
nodes, we can define WL colors for the special nodes z: (c

(0)
z , c

(1)
z , . . . , c

(L)
z) = (c0¬, c

1
¬, . . . , c

L
¬).

Then, as only V ′
G contains special nodes, k(v, u) can be simplified to:

k(v, u) =

L∑
l=0

1
c̄
(l)
v =c̄

(l)
u
,

where c̄(l)v is the color of node v on the WILT T̄D with dummy node normalization after l iterations.
Then, L+ 1− k(v, u) is equivalent to dpath(c̄

(L)
v , c̄

(L)
u ;w ≡ 1

2):

L+ 1− k(v, u) = L+ 1−
L∑

l=0

1
c̄
(l)
v =c̄

(l)
u

=

L∑
l=0

1
c̄
(l)
v ̸=c̄

(l)
u

= dpath

(
c̄(L)
v , c̄(L)

u ;w ≡ 1

2

)
Therefore, dWLOA is a special case of d̄WILT:

dWLOA(G,H) = min
B∈B(V ′

G,V ′
H)

∑
(vG,uH)∈B

(L+ 1− k(vG, uH))

= min
B∈B(V ′

G,V ′
H)

∑
(vG,uH)∈B

dpath

(
c̄(L)
vG , c̄(L)

uH
;w ≡ 1

2

)
⋆
= min

P∈Γ̄

∑
vi∈V̄G

∑
uj∈V̄H

Pi,jdpath

(
c̄(L)
vi , c̄(L)

uj
;w ≡ 1

2

)

= d̄WILT

(
G,H;w ≡ 1

2

)
Note that ⋆ holds since adding the same number of dummy nodes to both G and H does not change
the left side, and the optimal transport on WILT always delivers a mass on a node to only one
node.

B.4 EXPRESSIVENESS OF GRAPH PSEUDOMETRICS

We now discuss in detail the expressiveness of graph pseudometrics, which was summarized in
Section 4.5. We split Theorem 1 in Section 4.5 into three theorems below, and prove each one

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

separately. The discussion below provides a possible explanation for some results in Section 5 and
Appendix E. First, we introduce a pseudometric defined by the WL test:

dWL(G,H) := 1{{c(L)
v |v∈VG}}={{c(L)

v |v∈VH}},

where L is the number of WL iterations. In other words, dWL(G,H) = 1 if the L-iteration WL test
can distinguish G and H , otherwise 0. With this definition, we start with the comparison of dWILT
and dWL for a better understanding of dWILT.

Theorem 4 (Expressiveness of the WILTing Distance). Suppose ḋWILT and d̄WILT are pseudometrics
defined with WILT with some edge weight functions. We assume that all edge weights are positive
for d̄WILT. Then,

ḋWILT < d̄WILT ∼= dWL.

Proof. We first show ḋWILT ≤ d̄WILT.

d̄WILT(G,H) = 0 =⇒ ν̄G = ν̄H ∧ |VG| = |VH |
=⇒ ∀ leaf color c : |{v ∈ VG | c(L)

v = c}| = |{v ∈ VH | c(L)
v = c}|

=⇒ ∀ leaf color c :
|{v ∈ VG | c(L)

v = c}|
|{v ∈ VH | c(L)

v = c}|
=
|VG|
|VH |

= 1

=⇒ ν̇G = ν̇H

=⇒ ḋWILT(G,H) = 0.

Note that leaf color c means that c is a leaf of the WILT. The first implication follows from the
fact that dummy node normalization implies that only graphs with identical numbers of nodes can
have a distance of zero if the weights are positive. To see that d̄WILT(G,H) is more expressive than
ḋWILT(G,H), note that there are G and H s.t. d̄WILT(G,H) ̸= 0 ∧ ḋWILT(G,H) = 0: For example,
let G and H be k-regular graphs (such as cycles) with different numbers of nodes and identical node
and edge labels. Next, we show d̄WILT = dWL.

d̄WILT(G,H) = 0 ⇐⇒ ν̄G = ν̄H

⇐⇒ ∀ leaf color c : |{v ∈ VG | c(L)
v = c}| = |{v ∈ VH | c(L)

v = c}|
⇐⇒ {{c(L)

v | v ∈ VG}} = {{c(L)
v | v ∈ VH}}

⇐⇒ dWL(G,H) = 0.

The first equivalence again follows from the fact that weights are positive.

Since dMPNN ≤ dWL holds for any MPNN (Xu et al., 2019), the above theorem implies that dMPNN ≤
d̄WILT if all edge weights are positive. At first glance, this seems to suggest that d̄WILT can better align
with any MPNN than ḋWILT because of its high expressiveness. However, the results in Section 5
show that ḋWILT is suitable for MPNNs with mean pooling, while d̄WILT is suitable for MPNNs with
sum pooling. Next, we compare dMPNN and dWILT in more detail to interpret these results. We start
with MPNNs with mean pooling, whose pseudometrics we will call dmean

MPNN.

Theorem 5 (Expressiveness of the Pseudometric of MPNN with Mean Pooling). Suppose ḋWILT and
d̄WILT are pseudometrics defined with WILT with some edge weight functions. We assume that all
edge weights are positive. Then,

dmean
MPNN ≤ ḋWILT(< d̄WILT).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. We first show the left inequality.

ḋWILT(G,H) = 0 =⇒ ν̇G = ν̇H

=⇒ ∀ leaf color c :
|{v ∈ VG | c(L)

v = c}|
|VG|

=
|{v ∈ VH | c(L)

v = c}|
|VH |

=⇒ ∀ leaf color c :
1

|VG|
∑

v∈VG:c
(L)
v =c

h(L)
v =

1

|VH |
∑

v∈VH :c
(L)
v =c

h(L)
v

=⇒ 1

|VG|
∑
v∈VG

h(L)
v =

1

|VH |
∑
v∈VH

h(L)
v

=⇒ dmean
MPNN(G,H) = 0.

The first implication follows from the fact that w(e{c,p(c)}) > 0 for all colors. The third implication
follows from Xu et al. (2019) by noting that c(L)

u = c
(L)
v =⇒ h

(L)
u = h

(L)
v for any MPNN.

ḋWILT < d̄WILT follows from Theorem 4.

In Section 5, we found that RMSE(dmean
MPNN, ḋWILT) is smaller than RMSE(dmean

MPNN, d̄WILT). The above
theorem and the proof yield an interpretation of the result. In terms of expressiveness, ḋWILT is a
stricter upper bound on dmean

MPNN than d̄WILT, since the mean pooling and the size normalization are
essentially the same procedure. Both ignore the information about the number of nodes in graphs.
When we try to fit d̄WILT to dmean

MPNN, it is difficult to tune edge parameters so that d̄WILT can ignore the
number of nodes in graphs, but ḋWILT satisfies this property by definition. This may be the reason
why ḋWILT can be trained to be better aligned with dmean

MPNN than d̄WILT. A similar discussion can be
applied to dWWL and dWLOA, which are special cases of ḋWILT and d̄WILT, respectively. Next, we
analyze MPNNs with sum pooling.

Theorem 6 (Expressiveness of the Pseudometric of MPNN with Sum Pooling). Suppose d̄WILT is
defined with WILT with an edge weight function that assigns a positive value to all edges. Then,

dsum
MPNN ≤ d̄WILT.

In addition, if ∃G ∈ G s.t.
∑

v∈VG
h
(L)
v ̸= 0, then

dsum
MPNN@≤ḋWILT

Proof. We begin with dsum
MPNN ≤ d̄WILT.

d̄WILT(G,H) = 0 =⇒ ν̄G = ν̄H

=⇒ ∀ leaf color c : |{v ∈ VG | c(L)
v = c}| = |{v ∈ VH | c(L)

v = c}|

=⇒ ∀ leaf color c :
∑

v∈VG:c
(L)
v =c

h(L)
v =

∑
v∈VH :c

(L)
v =c

h(L)
v

=⇒
∑
v∈VG

h(L)
v =

∑
v∈VH

h(L)
v

=⇒ dsum
MPNN(G,H) = 0.

Next, we show dsum
MPNN@≤ḋWILT. Let G be a graph that satisfies

∑
v∈VG

h
(L)
v ̸= 0. We can consider

a graph H that consists of two copies of G. Then, ν̇G = ν̇H , since 2νG = νH and 2|VG| = |VH |.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 Building WILT
Input: Graph dataset D
Parameter: L ≥ 1
Output: WILT TD

TD ←Initial tree with only the root r
for G in D do

/* L-iteration WL test on G */
cpre ← [] ▷ Keeping colors in the previous iteration
cnow ← [] ▷ Keeping colors in the current iteration
for v in VG do

if lnode(v) /∈ V (TD) then
V (TD)← V (TD) ∪ {lnode(v)}
E(TD)← E(TD) ∪ {(r, lnode(v))}

end if
cpre[v]← lnode(v)

end for
for l = 1 to L do

for v in VG do
cv ← HASH((cpre[v], {{(cpre[u], ledge(euv)) | u ∈ N (v)}}))
if cv /∈ V (TD) then

V (TD)← V (TD) ∪ {cv}
E(TD)← E(TD) ∪ {(cpre[v], cv)}

end if
cnow[v]← cv

end for
cpre ← cnow
cnow ← []

end for
end for
return TD

Therefore, ḋWILT(G,H) = 0. On the other hand,

dsum
MPNN(G,H) =

∥∥∥∥∥ ∑
v∈VG

h(L)
v −

∑
v∈VH

h(L)
v

∥∥∥∥∥
2

=

∥∥∥∥∥ ∑
v∈VG

h(L)
v − 2

∑
v∈VG

h(L)
v

∥∥∥∥∥
2

=

∥∥∥∥∥ ∑
v∈VG

h(L)
v

∥∥∥∥∥
2

̸= 0.

In terms of expressiveness, dsum
MPNN is almost always not bounded by ḋWILT except for the trivial

MPNN which embeds all graphs to zero. In fact, the opposite ḋWILT ≤ dsum
MPNN holds if the MPNN is

sufficiently expressive, e.g. GIN. These analyses may explain why RMSE(dsum
MPNN, d̄WILT) is gener-

ally smaller than RMSE(dsum
MPNN, ḋWILT) in Section 5. No matter how much it is trained, ḋWILT cannot

capture the information about the number of nodes that dsum
MPNN can. On the other hand, d̄WILT is

expressive enough to capture the information, and thus has a chance of aligning well with dsum
MPNN.

Again, a similar reasoning can be applied to dWWL and dWLOA.

C ALGORITHM TO CONSTRUCT WILT

Algorithm 2 shows how to build WILT from a graph dataset D.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 5 10 20

k

0.10

0.15

0.20

A
L

I k

IMDB-BINARY

1 5 10 20

k

0.2

0.3

0.4

COLLAB

untrained

trained

Figure 5: The distribution of ALIk(dMPNN, dfunc) under different k and datasets.

Table 3: Correlation between ALIk(dMPNN, dfunc) and accuracy on Dtrain and Dtest under different k.
IMDB-BINARY COLLAB

k 1 5 10 20 1 5 10 20

train 0.38 0.60 0.60 0.59 0.89 0.90 0.88 0.89
test -0.03 0.14 0.19 0.28 0.81 0.83 0.81 0.81

D EXPERIMENTAL DETAILS FOR SECTION 3

Here, we present the detailed experimental setup resulting in Figure 2 and Table 1. We conduct
experiments on three different datasets: Mutagenicity and ENZYMES (Morris et al., 2020), and
Lipophilicity (Wu et al., 2018). We chose these datasets to represent binary classification, multiclass
classification, and regression tasks, respectively. For the models, we adopt two popular MPNN
architectures: GCN and GIN. For each model architecture, we vary the number of message passing
layers (1, 2, 3, 4), the embedding dimensions (32, 64, 128), and the graph pooling methods (mean,
sum). This results in a total of 2 × 4 × 3 × 2 = 48 different MPNNs for each dataset. In each
setting, we split the dataset into Dtrain,Deval, and Dtest (8:1:1). We train the model for 100 epochs
and record the performance onDeval after each epoch. We set the batch size to 32, and use the Adam
optimizer with learning rate of 10−3. ALIk(dMPNN, dfunc) and the performance metric (accuracy for
Mutagenicity and ENZYMES, RMSE for Lipophilicity) are calculated with the model at the epoch
that performed best on Deval.

Next, we offer additional experimental results on non-molecular datasets: IMDB-BINARY and
COLLAB (Morris et al., 2020). Figure 5 visualizes the distribution of ALIk(dMPNN, dfunc) on these
datasets and varying k. Similar to Figure 2, ALIk consistently improves with training. Table 3 also
offers results similar to Table 1, showing that there is a positive correlation between ALIk of trained
MPNNs and their accuracy in general. We visualize in Figure 6 the plots used to compute the cor-
relation coefficient in Table 1 and Table 3 for better understanding. Each blue dot represents one of
the 48 different models. For ALIk with k ̸= 5, similar plots were observed.

E MPNN PSEUDOMETRIC AND STRUCTURAL PSEUDOMETRICS

There has been intensive research on graph kernels, which essentially aims to manually design graph
pseudometrics dstruc that lead to good prediction performance. Recent studies have theoretically
analyzed the relationship between dMPNN and such dstruc, but they only upper-bounded dMPNN with
dstruc (Chuang & Jegelka, 2022), or showed the equivalence for untrained MPNNs on dense graphs
(Böker et al., 2024). Therefore, this section examines if dMPNN really aligns with dstruc in practice,
and if the alignment explain the high performance of MPNNs. Specifically, we address the following
questions:

Q1.3 What kind of dstruc is dMPNN best aligned with?

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.20 0.25 0.30 0.35 0.40

ALI5

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

tr
ai

n
A

C
C

corr: 0.69

Mutagenicity

0.1 0.2 0.3 0.4 0.5 0.6

ALI5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tr
ai

n
A

C
C

corr: 0.81

ENZYMES

0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16

ALI5

0.45

0.50

0.55

0.60

0.65

0.70

0.75

tr
ai

n
R

M
S

E

corr: -0.72

Lipophilicity

0.13 0.14 0.15 0.16 0.17 0.18 0.19

ALI5

0.66

0.68

0.70

0.72

0.74

tr
ai

n
A

C
C

corr: 0.60

IMDB-BINARY

0.200 0.225 0.250 0.275 0.300 0.325 0.350

ALI5

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

tr
ai

n
A

C
C

corr: 0.90

COLLAB

0.20 0.25 0.30 0.35 0.40

ALI5

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

te
st

A
C

C

corr: 0.69

0.1 0.2 0.3 0.4 0.5 0.6

ALI5

0.35

0.40

0.45

0.50

0.55

te
st

A
C

C

corr: 0.43

0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16

ALI5

0.7

0.8

0.9

1.0

te
st

R
M

S
E

corr: -0.53

0.13 0.14 0.15 0.16 0.17 0.18 0.19

ALI5

0.625

0.650

0.675

0.700

0.725

0.750

0.775

te
st

A
C

C

corr: 0.14

0.200 0.225 0.250 0.275 0.300 0.325 0.350

ALI5

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

te
st

A
C

C

corr: 0.83

Figure 6: Scatter plots between ALI5(dMPNN, dfunc) and the performance on the train/test set. In
general, higher ALI5(dMPNN, dfunc), i.e., higher alignment between dMPNN and dfunc, indicates higher
performance.

Q1.4 Does training MPNN increase the alignment?
Q1.5 Does a strong alignment between dMPNN and dstruc indicate high performance of the MPNN?

We first define an evaluation criterion for the alignment between dMPNN and dstruc to answer them,
which is the same as the one used in Section 5.
Definition 12 (Evaluation Criterion for Alignment Between dMPNN and dstruc). Consider a graph
dataset denoted by D. Let d̃MPNN and d̃struc be normalized versions of dMPNN and dstruc, respectively:

d̃MPNN(G,H) :=
dMPNN(G,H)

max
(G′,H′)∈D2

dMPNN(G′, H ′)
, d̃struc(G,H) :=

dstruc(G,H)

max
(G′,H′)∈D2

dstruc(G′, H ′)
.

We measure the alignment between dMPNN and dstruc by the RMSE after fitting a linear model with
the intercept fixed at zero to the normalized pseudometrics:

RMSE(dMPNN, dstruc) :=

√√√√min
α∈R

1

|D|2
∑

(G,H)∈D2

(
d̃MPNN(G,H)− α · d̃struc(G,H)

)2

.

The closer the RMSE is to zero, the better the alignment is. Zero RMSE means perfect alignment.
That is, dMPNN is a constant multiple of dstruc. Note that we use different evaluation criteria to
measure the alignment between dMPNN and dfunc (Definition 3) or dstruc (Definition 12). There are
multiple reasons for this. First, the RMSE is in principle designed for non-binary dstruc. Therefore,
RMSE(dMPNN, dfunc) is not a meaningful value when dfunc is a binary function, which is the case
when the task is classification. Second, the computation of ALIk(dMPNN, dstruc) is computationally
too expensive. We explain this in terms of how many graph pairs we need to compute the distance
for. Both the RMSE and ALIk require the calculation of the distance between |D|2 pairs in the
original definition. This is too demanding, especially when dstruc is dGED, which is NP-hard to
compute. Therefore, in practice, we approximate the RMSE with 1000 randomly selected pairs
from D2. This kind of approximation is difficult for ALIk. To approximate ALIk, we first choose a
subset Dsub of D, and then compute dstruc of all pairs in D2

sub. Even if we set |Dsub| = 100, which is
quite small, we still need about 10 times more computation than the RMSE.

We evaluate four structural pseudometrics: graph edit distance (dGED, Sanfeliu & Fu, 1983), tree
mover’s distance (dTMD, Chuang & Jegelka, 2022), Weisfeiler Leman optimal assignment distance
(dWLOA, Kriege et al., 2016), and Wasserstein Weisfeiler Leman graph distance (dWWL, Togninalli
et al., 2019). See Appendix B.1 for detailed definitions. dTMD, dWLOA, and dWWL are pseudometrics
on the set of pairwise nonisomorphic graphs G. Only dGED for strictly positive edit costs is a metric,
i.e., dGED(G,H) = 0 if and only if G and H are isomorphic. We will also call dGED a pseudometric

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

dGED dTMD dWLOA dWWL

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

S
E

Mutagenicity

dGED dTMD dWLOA dWWL

0.05

0.10

0.15

0.20

0.25

ENZYMES

dGED dTMD dWLOA dWWL

0.05

0.10

0.15

0.20

Lipophilicity

dGED dTMD dWLOA dWWL

0.0

0.2

0.4

R
M

S
E

IMDB-BINARY

dGED dTMD dWLOA dWWL

0.0

0.2

0.4

0.6

COLLAB

untrained/mean

trained/mean

untrained/sum

trained/sum

Figure 7: The distributions of RMSE(dMPNN, dstruc) under different dstruc and datasets. Each color
represents whether the MPNNs are trained or not and which graph pooling function they use.

for simplicity. We chose dGED because it is a popular graph pseudometric. The others were chosen
because they are based on the message passing algorithm, like MPNNs, and classifiers based on
their corresponding kernels were reported to achieve high accuracy. In addition, dTMD has been
theoretically proven to be an upper bound of dMPNN (Chuang & Jegelka, 2022). Note that the exact
calculation of dGED is in general NP-hard due to the combinatorial optimization over the set of valid
transformation sequences (see Definition 6). Therefore, in our experiment, we limit the computation
time of dGED of each graph pair (G,H) to a maximum of 30 seconds. If this time limit is exceeded,
we consider the lowest total cost at that point to be dGED(G,H). When we compute the RMSE
between a given MPNN and any of dTMD, dWLOA, and dWWL, we set the depth of the computational
trees used to compute these dstruc as the number of message passing layers in the MPNN for a fair
comparison.

Figure 7 presents the distributions of the RMSE in different datasets (Morris et al., 2020; Wu et al.,
2018), dstruc, and the graph grouping methods used in MPNN. We followed exactly the same pro-
cedure for training and evaluating MPNNs as shown in Appendix D. Each distribution consists of
RMSE(dMPNN, dstruc) of 24 MPNNs with different architectures and hyperparameters. We also pro-
vide results for untrained MPNNs to see the effect of training. As can be seen from the plots, the
distributions of the untrained and trained MPNNs overlap, and there is no strong and consistent
improvement in RMSE after training (answer to Q1.4). Regarding Q1.3, none of the four dstruc per-
forms best in all cases. The best one depends on the choice of dataset and pooling. One intersting
observation is that dMPNN with sum pooling is more aligned with dWLOA than dWWL, while the reverse
is true for dMPNN with mean pooling. This difference between pooling methods can be explained by
different normalizations of the structural pseudometrics (see Section 4.5 and Appendix B.4).

Another insight from Figure 7 is that the degree of alignment between dMPNN and dstruc varies by
model. To see if the alignment is crucial for the high predictive performance of MPNNs, we exam-
ined the PCC between RMSE(dMPNN, dstruc) of trained models and their performance on the training
and test sets. We used accuracy and RMSE as performance criteria. Table 4 shows that the correla-
tion is neither strong nor consistent across settings. Thus the alignment between dMPNN and dstruc is
not a key to high MPNN performance. This answers Q1.5 negatively.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 4: The correlation coefficient between RMSE(dMPNN, dstruc) and the performance on the train-
ing and test sets. Performance was measured based on accuracy for Mutagenicity and ENZYMES,
and based on RMSE for Lipophilicity.

Train Test

GED TMD WLOA WWL GED TMD WLOA WWL

Mutagenicity mean 0.26 0.22 -0.06 0.43 0.31 0.31 0.06 0.50
sum 0.04 0.23 0.35 0.30 -0.09 0.17 0.20 0.29

ENZYMES mean 0.32 0.28 0.24 0.29 0.37 0.53 0.38 0.20
sum -0.35 0.68 0.41 0.32 -0.53 0.13 -0.09 -0.11

Lipophilicity mean -0.67 -0.65 -0.66 -0.56 -0.59 -0.67 -0.59 -0.59
sum -0.11 -0.60 -0.52 -0.30 -0.40 -0.82 -0.77 -0.58

IMDB-BINARY mean 0.04 0.18 -0.38 -0.31 -0.26 -0.24 -0.35 0.37
sum 0.41 0.67 -0.62 -0.60 0.07 0.21 -0.19 -0.07

COLLAB mean 0.75 0.63 0.59 -0.54 0.67 0.54 0.53 -0.43
sum -0.47 0.56 -0.50 -0.55 -0.36 0.48 -0.38 -0.48

Table 5: The mean±std of RMSE(dMPNN, d) [×10−2] over five different seeds. Each column corre-
sponds to GIN with a given graph pooling method, trained on a given dataset.

Mutagenicity ENZYMES Lipophilicity

mean sum mean sum mean sum

dWWL 11.47±0.24 14.08±0.77 11.54±0.30 12.10±0.84 14.12±0.60 14.97±0.58
dWLOA 17.99±2.79 13.05±1.44 23.71±0.81 9.94±1.88 16.95±0.52 13.97±0.75
ḋWILT 3.70± 0.57 3.86±0.40 5.32± 0.20 8.60±0.35 6.31± 0.46 6.49± 0.50
d̄WILT 4.98±0.78 3.56± 0.36 7.55±0.24 3.86± 0.68 9.52±0.70 6.59±0.51

F EXPERIMENTAL DETAILS FOR SECTION 5

For the experiments in Section 5, we trained 3-layer GCN and GIN with embedding dimensions
of 64 on the three datasets. We explored both mean and sum pooling. Each model was trained on
the full dataset for 100 epochs using the Adam optimizer with a learning rate of 10−3. Then, each
model was distilled to WILT by minimizing the loss L defined in Section 4.4. We used the entire
data set for D in L. The distillation was done using gradient descent optimization with the Adam
optimizer for 10 epochs. The learning rate and batch size were set to 10−2 and 256, respectively.
See Algorithm 1 for details.

In Table 2, we only show the results for GCN. Here, we show results for GIN in Table 5. The overall
trend is the same between Tables 2 and 5: ḋWILT and d̄WILT are much better aligned with dMPNN

than dWWL and dWLOA. In addition, dWWL and ḋWILT approximate dMPNN(mean) better, while the
opposite is true for dMPNN(sum). We also observed the same trend on the IMDB-BINARY dataset
(see Table 6).

Next, we plot the distribution of WILT edge weights after distillation in Figure 8. While the range
of edge weights varies by model and dataset, all the distributions are skewed to zero (note that the
y-axis is log scale). This suggests that only a small fraction of all WL colors influence dMPNN. In
other words, MPNNs build up their embedding space based on a small subset of entire WL colors,
regardless of model and dataset.

Finally, we visualize the WL colors with the largest weights, i.e., whose presence or absence influ-
ence dWILT and therefore – by approximation – dMPNN the most. We use the Mutagenicity dataset
as functionally important substructures are known from domain knowledge (Kazius et al., 2005). It
should be noted that we only consider colors that appear in at least 1% of all graphs in the dataset.
Table 7 and 8 show graphs with substructures corresponding to the WL colors with the top 10 largest
weights. Table 7 is the result for GCN with sum pooling, while Table 8 is for GCN with mean pool-
ing. If the highlighted subgraph matches one of the seven toxicophore substructures listed in Table
1 of Kazius et al. (2005), we show the toxicophore name as well. 4 and 3 out of 10 WL colors cor-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 6 12 18 24 30 36 42 48

100

101

102

103

104

G
C

N
/s

u
m

Mutagenicity

0 2 4 6 8 10 12 14

ENZYMES

0 2 4 6 8 10 12 14

Lipophilicity

0 3 6 9 12 15 18 21

IMDB-BINARY

0 6 12 18 24 30 36 42 48 54

100

101

102

103

104

G
C

N
/m

ea
n

0 1 2 3 4 5 6 7 8 0 3 6 9 12 15 18 21 0 2 4 6 8 10 12 14 16

0 8 16 24 32 40 48 56

100

101

102

103

104

G
IN

/s
u

m

0 1 2 3 4 5 6 7 0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32 36

0 10 20 30 40 50 60 70 80

100

101

102

103

104

G
IN

/m
ea

n

0 1 2 3 4 5 6 7 8 0 3 6 9 12 15 18 21 24 27 0 3 6 9 12 15 18 21 24 27

Weight value

F
re

qu
en

cy

Figure 8: The distribution of edge weights of WILT after distillation from varying models trained
on different datasets. The models with sum pooling were distilled into WILT with dummy normal-
ization, while the models with mean pooling were distilled into WILT with size normalization. The
log scale y-axis is shared across all plots.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 6: The mean±std of RMSE(dMPNN, d) [×10−2] over five different seeds. Each column corre-
sponds to a GCN or GIN with a given graph pooling method, trained on IMDB-BINARY.

GCN GIN

mean sum mean sum

dWWL 16.98±2.06 16.21±2.45 21.32±0.25 23.49±0.42
dWLOA 19.04±4.39 12.01±3.81 19.65±0.45 21.23±0.39
ḋWILT 6.19± 1.24 9.08±4.37 2.61± 0.34 8.09±0.89
d̄WILT 7.62±1.27 4.69± 3.70 3.09±0.37 0.85± 0.13

Table 7: Example graphs with highlighted significant subgraphs corresponding to colors with top 10
largest weights. GCN with sum pooling was used. The toxicophore name is shown if the highlighted
subgraph matches toxicophore substructures reported in Table 1 of Kazius et al. (2005)
(1) three-membered

heterocycle
(epoxide)

(2) (3) (4) alphatic halide (5)

H O H
C

N

NO2

CH2

N

H3C N

O

F

CH3 CH

Br

Br
N

N

O

O

N
CH3

(6) nitroso (7) (8) (9) (10) alphatic halide

N

N

O

CH2

OH

S

C CH2Cl

CH2Cl

ClH2C

CH2Cl

N

N

O

CH2

OH

S

N

N

O

O

N
CH3

F

N

respond to toxicophore substructures in Tables 5 and 6, respectively, which is quite a lot considering
that only 7 toxicophore substructures are listed in Table 1 of Kazius et al. (2005). Furthermore, there
are some colors that not fully but partially match one of the substructures in Kazius et al. (2005).
For instance, (6) and (9) in Table 7 and (8) in Table 8 partially match “aromatic nitro”, while (7)
in Table 8 is part of “polycyclic aromatic system”. Note that it is impossible to identify subgraphs
that perfectly match these toxicophore substructures, since our method can only identify subgraphs
corresponding to a region reachable within fixed steps from a root node. For example, the subgraph
in (1) of Table 7 is a region reachable in 2 steps from the oxygen O. This limiation may seem to be
a drawback of our proposed method, but in fact it is not. It is natural to identify only subgraphs cor-
responding WL colors to interpret dMPNN, because MPNNs can only see input graphs as a multiset
of WL colors.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: Example graphs with highlighted significant subgraphs corresponding to colors with top
10 largest weights. GCN with mean pooling was used. The toxicophore name is shown if the
highlighted subgraph matches toxicophore substructures reported in Table 1 of Kazius et al. (2005)

(1)
(2) three-membered

heterocycle
(epoxide)

(3) alphatic halide (4) (5)

C CH2Cl

CH2Cl

ClH2C

CH2Cl
H O H

CH3 CH

Br

Br

P

N

O2N

(6) (7) (8) nitroso (9) (10)

C CH2 CH3

O CH3

H3C

CH3

N

N

N

O

CH2

OH

S

C

N

NO2

O

26

	Introduction
	Preliminaries
	Is the MPNN Embedding Distance Critical to Performance?
	WILTing Pseudometrics
	Weisfeiler Leman Labeling Tree (WILT)
	The WILTing Distance
	Normalization and Special Cases of WILTing Distance
	WILTing Tree Learning and Identification of Important WL Colors
	Expressiveness of Pseudometrics on WILT

	Experiments
	Conclusions
	Related Work
	Theoretical Analysis
	Structural Pseudometrics
	Functional Pseudometric
	Normalized WILTing Distances and Relationship to Existing Distances
	Expressiveness of Graph Pseudometrics

	Algorithm to construct WILT
	Experimental Details for Section 3
	MPNN Pseudometric and Structural Pseudometrics
	Experimental Details for Section 5

