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Abstract

Physics-Informed Neural Networks (PINNs) have
emerged as a promising approach for solving
partial differential equations (PDEs) using deep
learning. However, standard PINNs do not ad-
dress the problem of constrained PDEs, where
the solution must satisfy additional equality or
inequality constraints beyond the governing equa-
tions. In this paper, we introduce Derivative-
Constrained PINNs (DC-PINNs), a novel frame-
work that seamlessly incorporates constraint in-
formation into the PINNs training process. DC-
PINNs employ a constraint-aware loss function
that penalizes constraint violations while simulta-
neously minimizing the PDE residual. Key com-
ponents include self-adaptive loss balancing tech-
niques that automatically tune the relative weight-
ing of each term, enhancing training stability, and
the use of automatic differentiation to efficiently
compute exact derivatives. This study demon-
strates the effectiveness of DC-PINNs on several
benchmark problems related to quantitative fi-
nance: heat diffusion, Black-Scholes pricing, and
local volatility surface calibration. The results
showcase improvements in generating appropriate
solutions that satisfy the constraints compared to
baseline PINNs methods. The DC-PINNs frame-
work opens up new possibilities for solving con-
strained PDEs in multi-objective optimization.

1. Introduction
Partial differential equations (PDEs) play a crucial role in
modelling various physical phenomena across scientific and
engineering disciplines. Traditional numerical methods for
solving PDEs, such as finite difference and finite element
methods, have been widely used but often face challenges
in terms of computational efficiency and handling complex
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geometries. Recently, Physics-Informed Neural Networks
(PINNs) by (Raissi et al., 2019) have emerged as a promising
alternative, leveraging deep learning to solve PDEs with
high accuracy and efficiency.

However, despite their empirical successes, PINNs still face
challenges in the presence of additional equality or inequal-
ity constraints beyond the PDE itself, as pioneered in (La-
garis et al., 1998). Such constrained PDEs are ubiquitous
in real-world applications: heat diffusion with temperature
bounds, option pricing with no-arbitrage constraints, and
fluid flow with velocity limits, to name a few. Naive tech-
niques for embedding constraints can lead to unstable train-
ing, slow convergence, and constraint violation. Although
more sophisticated approaches have been proposed to better
handle constraints in PINNs, limitations persist. Conserva-
tive PINNs (Jagtap et al., 2020) and DC NN (Lo & Huang,
2023) enforce equality constraints, while Augmented La-
grangian approaches (Lu et al., 2021) and theory-guided neu-
ral networks (Chen et al., 2021) show stronger performance
on inequality-constrained PDEs. Nevertheless, there is still
a need for methods that can effectively handle constraints
while reducing the dependence on intricate hyperparameter
adjustments and problem-specific architectures.

In this study, we propose Derivative-Constrained PINNs
(DC-PINNs), a general and robust framework for solving
derivative-constrained PDEs using deep learning. Our ap-
proach seamlessly integrates the constraints into the learning
process, ensuring that the solution satisfies the prescribed
conditions while maintaining the benefits of PINNs. The
key contributions of this study include:

• A flexible constraint-aware loss function that admits
general nonlinear constraints and seamlessly incorpo-
rates them into the PDE residual objective.

• Self-adaptive loss balancing techniques that automat-
ically tune the weightings of the objective terms, in-
cluding derivatives obtained through automatic differ-
entiation stabilizing training across diverse problem
settings.

• Demonstration of the approximation ability of DC-
PINNs on benchmark PDEs from the heat equations,
structural modelling of finance, and its inverse problem,
showcasing improvements over PINNs approaches.
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2. Problem Formulation
2.1. Derivative-Constrained PDE Problem

Physics-based machine learning can be formulated as an op-
timization problem that aims to find the feasible parameters
θ̂ of a parameterized function y := φθ(x) while satisfying
constraints represented by PDEs and related conditions by

θ̂ = argmin
θ

L(x,Dy), (1)

s.t. f(x,Dy) = 0, governing PDEs

B =
{
bk,D(b)

k |D(b)
k y(x) = 0, x ∈ bk

}Nb

k=1

H =
{
hk,D(h)

k |D(h)
k y(x) ≥ 0, x ∈ hk

}Nh

k=1
(2)

where L is the objective loss function, multivariate inputs
x ∈ Rn are state variables, D is the set of individual differ-
ential operators including the 0th order, f represents the gov-
erning PDEs, B is the set of boundary equality constraints,
H is the set of inequality constraints, and N(·) denotes the
number of corresponding conditions.

This study focuses on inequality constraints involving
derivatives and employs a discretize-then-optimize approach
combined with gradient-based optimization using artificial
neural networks (ANNs). The optimization problem is
first discretized numerically, transforming it into a finite-
dimensional problem. In the ANN approach, automatic
differentiation can be used to compute derivatives of the
network output with respect to the input variables. However,
the standard ANN architecture does not inherently satisfy
all PDEs and derivative conditions. Therefore, additional
techniques or modifications may be necessary to ensure that
the ANN solution complies with the governing equations
and constraints.

2.2. Physics-Informed Neural Networks (PINNs)

Physics-Informed Neural Networks (PINNs), introduced in
(Raissi et al., 2019), are neural networks that incorporate
underlying physical laws into the architecture through PDEs,
forming a new class of data-efficient universal function
approximations. We consider a parametrized PDE system
given by

f [φ (x)], x ∈ Ω,

b[φ (x)], x ∈ ∂Ω,
(3)

where f and b are a set of PDE and boundary operators, Ω
and ∂Ω are the spatial domain and the boundary.

PINNs solve this PDE system as an optimization problem
using an artificial neural network by minimizing the total
loss in a deep learning context:

L := L0 + Lb + Lf , (4)

L0 :=
1

N0

N0∑
i=1

∣∣∣φ(x(i)
0 )− ŷ

(i)
0

∣∣∣2 ,
Lb :=

1

Nb

Nb∑
i=1

∣∣∣b[φ(x(i)
b )]

∣∣∣2 ,
Lf :=

1

Nf

Nf∑
i=1

∣∣∣f [φ(x(i)
f )]

∣∣∣2 ,
(5)

where L0 represents the error between observed (ŷ) and
predicted values, Lb enforces boundary conditions, and Lf

penalizes the PDE residual at a set of collocation points.

2.3. Derivative-Constrained PINNs (DC-PINNs)

We now consider the extension of PINNs to handle deriva-
tive inequality constraints, which we term Derivative-
Constrained PINNs (DC-PINNs). Assume the presence
of inequality constraints of the form

h[φ(x)], x ∈ Ω (6)

where h[·] represents a set of differential operators acting
on an inequality equation, which includes derivatives. There
are several methods available to enforce inequality condi-
tions in general. The direct approach is to formulate loss
functions of inequalities and impose them as soft constraints
with fixed loss weights. To fit with inequality constraints, a
loss Lh to be minimized is defined as

Lh :=
1

Nh

Nh∑
i=1

γ ◦
∣∣∣h(φ(x(i)

h )
)∣∣∣2 . (7)

γ(x) =

{
x, if inequality is not satisfied
0, otherwise

(8)

where Lh penalizes the violation of inequality constraints
at a set of collocation points, and the function γ determines
the penalty based on whether the inequality is satisfied or
not.

Our proposed framework extends PINNs to handle
derivative-constrained PDEs effectively by seamlessly in-
tegrating the constraints into the learning process. We in-
troduce a constraint-aware loss function that penalizes vio-
lations of the constraints while simultaneously minimizing
the residual loss. However, setting large loss weights can
cause an ill-conditioned problem. On the other hand, when
small loss weights are chosen, the estimated solution may
violate the inequalities. In this sense, we formulate the total
cost in DC-PINNs to be minimized as,

L := λ0L̂0 + λbL̂b + λf L̂f + λhL̂h, (9)

where λ are weighting coefficients for each categorized loss
term. By minimizing this total loss, the neural network
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approximation satisfies the governing PDE, boundary/initial
conditions, and the prescribed inequality constraints. The
categorized loss terms are defined as

L̂0 =
1

N0

N0∑
i=1

m
(i)
0

∣∣∣φθ

(
x
(i)
0

)
− y

(i)
0

∣∣∣2 , (10)

L̂b =
1

Nb

Nb∑
i=1

m
(i)
b

∣∣∣φθ

(
x
(i)
b

)
− y

(i)
b

∣∣∣2 , (11)

L̂f =
1

Nf

Nf∑
i=1

m
(i)
f

∣∣∣f (
φθ(x

(i)
f )

)∣∣∣2 , (12)

L̂h :=
1

Nh

Nh∑
i=1

m
(i)
h

∣∣∣γ ◦ h
(
φθ(x

(i)
h )

)∣∣∣2 , (13)

where y0 is the observed values, i = 1, . . . , N0 from the
observed dataset, and L̂h represents a penalty term corre-
sponding to inequality constraints stated the third term in
(2). The modifications from loss configurations of standard
PINNs are the introducing multipliers λ for each categorized
loss as loss terms and the weights m for each individual loss
for the outputs on each state variable in the categorized loss.

3. Multi-Objective Optimization
The choice of weight coefficients for the different loss com-
ponents requires careful tuning to balance the contributions
of the residual loss, boundary/initial condition loss, and
constraint-aware loss. As mentioned in (Lu et al., 2021), if
the multiplier for the categorized loss is larger, the constraint
violations are penalized more severely, forcing the solutions
to better satisfy the constraints. However, when the penalty
coefficients are too large, the optimization problem becomes
ill-conditioned and difficult to converge to a minimum. On
the other hand, if the penalty coefficients are too small, then
the obtained solution will not satisfy the constraints and
thus is not a valid solution. Although the soft-constraint
approach has worked well for inverse problems to match ob-
served measurements, it cannot be used in general because
we cannot determine appropriate multipliers in the learning
process.

To enhance the usability and robustness of the framework,
automated techniques for optimal weight selection are em-
ployed. This study, involves a combination of two balanced
processes in the learning process, inspired by (McClenny &
Braga-Neto, 2020; Wang et al., 2023). The first balancing
intensifies the gradient of individual losses in categorized
losses to enhance local constraints, especially the objective
for inequality derivative constraints. The second balancing
addresses the multi-scale imbalance between categorized
losses in (10∼13), particularly to mitigate the changing of
gradient values from epoch to epoch due to the inequality
feature in (13).

3.1. Individual Loss Balancing

In alignment with the neural network philosophy of self-
adaptation, this study applies a straightforward procedure
with fully trainable weights to generate multiplicative soft-
weighting and attention mechanisms. The first balancing
proposes self-adaptive weighting that updates the loss func-
tion weights via gradient ascent concurrently with the net-
work weights. We minimize the total cost with respect to
θ but also maximize it with respect to the self-adaptation
weight vectors m at the k-th epoch,

m
(j)
β (k + 1) = m

(j)
β (k) + ηm∇

m
(j)
β

L̂β(k). (14)

where β specifies each loss β ∈ {0, b, f, h} and ηm is learn-
ing parameter. In the learning step, the derivatives with
respect to self-adaptation weights are increased when the
constraints are violated and become larger when the errors
are larger.

3.2. Categorized Loss Balancing

Parallely, for the second balancing, loss-balancing employs
the following weighting function with balancing parameters
λ in the loss function based on Eq (9). Considering updated
at the k-th epoch,

λβ(k + 1) =


1, if

∣∣∣∇θL̂β(k)
∣∣∣ = 0

λβ(k) +
∑

β |∇θL̂β(k)|
|∇θL̂β(k)|

, otherwise
(15)

where ∇i is the partial derivative vector (gradient) with
respect to the i-th input vector (or value), and |·| indicates
the average of the absolute values of the elements in the
vector. Note that the main reason for the choice of absolute
values, instead of squared values as in (Wang et al., 2023),
is to avoid overlooking outlier violations of the inequality
constraints because most elements of ∇Lh are assumed to
be zero values in almost all cases.

The applied methods automatically adjust the weights of
loss terms based on their relative magnitudes during training
at user-specified intervals. These adaptive approaches have
the potential to ensure a balanced contribution of each term
of unstable inequality losses to the optimization process,
potentially improving convergence and accuracy.

4. Neural Network Formulation
In this study, we apply a simple but deep feed-forward neural
network architecture, a multilayer perceptron (MLP). Let
L ≥ 2 be an integer representing the depth of the network;
we consider a neural network constructed with one input
vector, L hidden layers, and one output value. The input
values and the output variable are real numbers, i.e., x ∈ Rn
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and y ∈ R. We can consider the price function φ in 2.1
which includes MLP as a multivariate function φ depending
on the variables x, i.e., φ : R2 → R,

φ (x) = AL ◦ fL−1 ◦AL−1 ◦ · · · ◦ f1 ◦A1 (x) , (16)

where for l = 1, . . . , L, Al : Rdl−1 → Rdl are affine func-
tions as Al(xl−1) = WT

l xl−1 + bl, and dl is the num-
ber of neurons in the next layer l for xl−1 ∈ Rdl−1 , with
Wl ∈ Rdl−1×dl and bl ∈ Rdl , d0 = n, dL = 1, and
x0 = x. fl are an activation function which is applied
component-wise. Given a dataset x, which includes a set
of pairs (x(i), y(i)), i = 1, . . . N , the network model φ is
found by fitting the parameters θ (i.e., W and b) which mini-
mize the designed loss function L.

A challenge lies in that loss functions Eq. (9) for derivative-
constrained PDEs involve derivatives with respect to input
variables x, which are also functions of the parameters.
When numerical approximation of derivatives is used, it
could result in slow or inaccurate solutions. To address this,
this study utilizes an extended backpropagation algorithm
from (Rumelhart et al., 1986) with Automatic Differenti-
ation for the gradient in Eq. (9) through exact derivative
formulations, which require activation functions in the net-
work to be second-order differentiable or higher. It is noted
that some functions like Relu or Elu need slight additional
consideration at non-differentiable singular points. If all ac-
tivation functions are second-order differentiable, the same
is true for the whole MLP, as shown in (Hornik et al., 1990).

5. Algorithms
This section introduces the algorithm of the DC-PINNs for
multi-objective problems, which control the inequity loss of
the partial derivatives of a neural network function with re-
spect to its input features and apply the combination of loss
balancing techniques for both categorized and individual
losses.

Algorithm 1 exhibits DC-PINNs characteristics that set it
apart from conventional learning methods. First, the com-
putation points x{f,h} for the derivatives of the MLP do not
correspond with the points of the training dataset x0. The
algorithm adjusts the derivatives to fit wide mesh grids in
the defined space, thereby capturing derivative data across a
wide array of input features. Secondly, the objective func-
tion L does not depend only on the MLP’s direct output but
also on its derivatives as specified in Eq.(9), all of which de-
pend on identical network parameters. DC-PINNs facilitate
balancing among categorized losses in addition to enhanced
individual losses, which consist of PDE residuals and vari-
ous scaled losses resulting from the violation of inequality
constraints.

Algorithm 1 DC-PINNs with Balancing Processes
Input: Dataset (x0,b, y0,b), xf , xh, η, ηm, pm, pλ, kmax

Consider a deep NN φθ(x) with θ, and a loss function

L :=ΣβλβL̂β (mβ , xβ (, yβ)) ,

where L̂β denotes the categorized loss with β ∈
{0, b, f, h}, mβ = 1 are soft-weighting vectors for indi-
vidual losses and λβ = 1 are dynamic multipliers.
for k = 1, . . . , kmax do

Compute ∇θL̂β(k) by automatic differentiation
if k ≡ 0 (mod pm) then

Update mβ by

m
(j)
β (k + 1) = m

(j)
β (k) + ηm∇

m
(j)
β

L̂β(k),

where mβ(k), L̂β(k) shows values at k-th iteration.
end if
if k ≡ 0 (mod pλ) then

Update λβ by

λβ(k + 1) =

{
1, if α = 0

λβ(k) +
∑

β α

α
, otherwise

where αβ =
∣∣∣∇θL̂β(k)

∣∣∣
end if
Update the parameters θ via gradient descent, e.g.,

θ(k + 1) = θ(k)− η∇θL (k).
end for
Return: θ

6. Experimental Design
6.1. Neural Network Setting and Training Configuration

In the experiments, the network architecture φ is a deep
setting with four hidden layers (L = 5), each containing
32 neurons and a hyperbolic tangent activation function
for smooth activations, following (Wang et al., 2023) for
specific measures to improve learning efficiency and accu-
racy in selecting appropriate architectures. We also employ
Glorot initialization for network parameters and the Adam
optimization (Kingma & Ba, 2014) with a weight decay
setting, which starts with a learning rate η = 10−3 and an
exponential decay with a decay rate of 0.9 for every 1000
decay steps. The hyperparameters used are pm, pλ = 100,
and kmax = 10000. The compared models in the result
section are MLP L := L0+Lb, PINNs L := L0+Lb+Lf ,
and DC-PINNs L := λ0L̂0+λbL̂b+λf L̂f +λhL̂h. Train-
ing data is prepared using equally distributed points for
initial and boundary conditions (N0 = Nb = 101) and
containing square mesh grids for PDE residuals and inequal-
ity constraints, i.e., Nf = Nh = 101 × 101. To evaluate
approximation ability, the evaluation errors between predic-
tions and answers are calculated using mesh grids as the
same grids of constraints.

In computing, differentiable operators have been developed
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in JAX/Flax (Bradbury et al., 2018; Heek et al., 2023),
which can efficiently calculate exact derivatives using au-
tomatic differentiation. The experiments are conducted us-
ing Google Colab1, which offers GPU computing on the
NVIDIA Tesla T4 with a video random access memory of
15 GB.

7. Numerical Experiments
To demonstrate the effectiveness of the proposed framework,
we conduct a series of numerical experiments on several
benchmark problems related to quantitative finance: heat
diffusion, Black-Scholes option pricing, and local volatility
surface calibration with complex geometries and nonlinear
constraints. We compare our approach to existing PINN-
based approaches, including derivative profile comparisons
on a function of trained networks.

7.1. One-dimensional Heat Equation in
Thermodynamics

The heat equation is a classic example of a parabolic partial
PDE problem (Cannon, 1984). It is a suitable and well-
established problem for illustrating the robustness of PINNs.
Consider an infinitesimally thin steel beam heated at its cen-
tre by a heat source. The heat at the centre will spread over
the steel beam while the edges are kept at zero temperature,
ensuring that the temperature reaches zero at an infinite final
time. The problem setup is as follows:

f (x, t) =
∂y

∂t
− λ

∂2y

∂x2
, (17)

s.t. y (x, 0) = sin(πx), y (0, t) = y (1, t) = 0,

∂2y

∂x2
≤ 0,

∂y

∂t
≤ 0,

(18)

where x, t ∈ [0, 1]. The solution to this heat equation is
given by y(t, x) = e−λπ2t sinπx. We can add derivative
constraints, as shown in the second line of (18), based on the
fact that the specified derivatives of the analytical solution
should be negative in the defined space. This is also intu-
itively convincing because the high heat at the centre gradu-
ally spreads to the edges, maintaining solutions as parabolic
curves over the domain throughout the entire timespan with
heat reduction. We set coefficient λ = 0.1 in this experi-
ment.

Figure 1 compares the temperature fields learned by the
proposed DC-PINNs framework with those of the standard
PINNs approach. Both methods appear to achieve sufficient
fitting and do not exhibit significant differences in accuracy
when fitting the overall temperature profile.

To further investigate the impact of incorporating inequality

1Google Colab. http://colab.research.google.com

Figure 1. Numerical solutions for the one-dimensional heat equa-
tions with derivative-constrained conditions. (a) Exact solution.
(b) PINNs solution. (c) DC-PINNs solution.

Figure 2. Derivative profiles of the learned temperature fields at
different time snapshots for PINNs (upper row) and DC-PINNs
(bottom row), aligned with exact solutions (dashed lines). (a) First-
order derivatives with respect to x. (b) Second-order derivatives
with respect to x. (c) First-order derivatives with respect to t.

constraints in DC-PINNs, Figure 2 illustrates the derivative
profiles of the learned temperature fields with respect to
the spatial coordinate x at different time snapshots. These
sensitivity profiles highlight the key differences between
the PINNs and DC-PINNs solutions. The standard PINNs
generate temperature profiles with distinct regions of non-
physical positive in differentials ∂2y

∂x2 and ∂y
∂t . In contrast,

DC-PINNs consistently produce sensitivity profiles that ad-
here to non-positivity constraints in differentials ∂2y

∂x2 and ∂y
∂t

across all time snapshots while closely matching the ground
truth profiles. This demonstrates the effectiveness of the
DC-PINNs framework in enforcing inequality constraints
during the learning process, resulting in physically consis-
tent solutions. These results emphasize the importance of
explicit constraint handling in physics-informed neural net-
works, as naively relying on the partial differential equation
(PDE) residual term alone may lead to solutions that violate
critical physical principles.
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7.2. Black-Scholes Model in Quantitative Finance

Next, as an example of solving a PDE in which inequality
constraints on derivatives play a major role, we consider the
European (call) option pricing problem, which is a typical
quantitative finance problem governed by the Black-Scholes
model (Black & Scholes, 1973). The Black-Scholes equa-
tion is a parabolic partial differential equation that describes
the option price y in terms of the price of the underlying
asset x and time t, given the following initial and boundary
conditions:

f(x, t) =
∂y

∂t
+

1

2
σ2x2 ∂

2y

∂x2
+ rx

∂y

∂x
− ry, (19)

s.t. y(x, tm) = (xtm − k)
+
, y(0, t) = 0,

∂y

∂x
≥ 0,

∂2y

∂x2
≥ 0,

∂y

∂t
≤ 0,

(20)

where k is the strike price, τ = tm−t is the time to maturity
tm, σ is the volatility, and r is the risk-free rate. For the pur-
pose of this study, we consider a specific type of European
option with x, t ∈ [0, 1], k = 0.5, tm = 1, r = 0.1, and
σ = 0.3. The inequalities in the second line of Equation
(20) represent the necessary and sufficient conditions for
no-arbitrage, which ensure that the option price is consistent
with other financial strategies. These conditions are fun-
damental principles that the price of the financial product
must satisfy. The no-arbitrage constraints are expressed as
inequalities for the first and second derivatives with respect
to the underlying asset x and time t, as discussed in Section
A.2. The exact solutions for the option price with respect to
x and t are provided by the Black-Scholes formula (Black
& Scholes, 1973),

y(x, t) = xtN (d+)− e−rτkN (d−) ,

d± =
ln(e−rτxt/k)±

(
σ2/2

)
τ

σ
√
τ

,
(21)

where N(·) is the cumulative normal distribution function.

Figure 3. Numerical solutions for the Black-Scholes model in fi-
nance with derivative-constrained conditions. (a) Exact solution.
(b) PINNs solution. (c) DC-PINNs solution.

Figure 3 illustrates the numerical solutions obtained by each
method in a defined space. Both methods in the Black-
Scholes pricing problem also appear to achieve appropriate

Figure 4. Heatmaps of the inequality derivatives conditions of the
Black-Scholes option pricing for PINNs (upper row) and DC-
PINNs (bottom row), where the area that violates constraints is
coloured red. (a) First-order derivatives with respect to x. (b)
Second-order derivatives with respect to x. (c) First-order deriva-
tives with respect to t.

fitting and do not exhibit significant differences in accuracy
when fitting the overall price profile.

To further investigate the impact of incorporating inequal-
ity constraints in DC-PINNs as previous experiment, as in
the previous example, Figure 4 illustrates heatmaps of the
inequality derivatives conditions of the trained models; the
area that violates constraints are coloured red. These sen-
sitivity profiles also highlight the differences in solutions,
which is that DC-PINNs consistently produce sensitivity
profiles that adhere to the no-arbitrage constraints across al-
most time snapshots, although PINNs violate the inequality
condition of derivatives on the wide area.

7.3. Implied Volatility Surface Calibration in Finance

Finally, we consider the calibration problem, an inverse
problem to identify governing parameters in a PDE, where
the option prices satisfy the PDE (i.e., the Local Volatility
(LV) model explained in A). The implied volatility y is given
with respect to strike x and time to maturity t by,

f(x, t) =
∂ỹ

∂t
− 1

2
σ2
LVx

2 ∂
2ỹ

∂x2
+ rx

∂ỹ

∂x
,

ỹ = g(x, t, y), σLV = ϕ(x, t, y,Dy),

(22)

s.t. ỹt=0 = (stm − x)
+
, ỹx=0 = st,

∂ỹ

∂x
≤ 0,

∂2ỹ

∂x2
≥ 0,

∂ỹ

∂t
≥ 0,

(23)

where ỹ represents the option price calculated by the func-
tion g(·), which is plugged into the formula in (25). The
conversion function ϕ(·) is with respect to y using (28). As-
suming European (call) options with various strikes and time
to maturity x, t ∈ [0, 1], s0 = 0.1, tm = 1, r = 0.1, and
st = s0e

rt. Synthetic data is prepared as option premiums
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(ỹ) using the SABR model, as described in A.4. It is noted
that this problem is different from previous examples since
the feasible solution by optimizations affects the designed
parameters of PDEs.

Figure 5. Numerical solutions (σLV) for the implied surface cali-
bration in finance with derivative constrained conditions. (a) Exact
solution. (b) PINNs solution. (d) DC-PINNs solution.

Figure 5 illustrates the numerical solutions obtained by each
method. Similar to the previous examples, both methods in
the calibration problem also appear to achieve appropriate
fitting and do not exhibit significant differences in accuracy
when predicting the overall parameter profiles.

Figure 6. Heatmaps of the inequality derivatives conditions of the
learned local volatilities for PINNs (upper row) and DC-PINNs
(bottom row), the area that violates constraints is coloured red. (a)
First-order derivatives with respect to x. (b) Second-order deriva-
tives with respect to x. (c) First-order derivatives with respect to t.

As with other experiments, we compare the performance
of DC-PINNs that incorporate nonlinear constraints by in-
vestigating the derivative profiles of the obtained surface.
Figure 6 illustrates the area of heatmaps of the inequality
derivatives conditions of the learned local volatilities as
same as previous examples. The results demonstrate that
the proposed DC-PINNs framework captures the solution
while satisfying the nonlinear constraints, outperforming the
traditional PINNs approach. Furthermore, the DC-PINNs
framework demonstrates versatility, as it can be applied to
calibration problems of design parameters in PDEs, includ-
ing data-driven solutions.

7.4. Computational Efficiency

Table 1. The computation times (in seconds) for the training in 7.3
based on changes in dataset size (total N ) and number of neurons.

Models Default Dataset size ♯ of neurons
Half Quarter Half Quarter

MLP 48.2 45.0 44.8 45.4 44.8
PINNs 95.5 68.4 56.7 70.6 57.9
DC-PINNs 122.3 92.6 80.9 93.2 82.6

At last, we demonstrate the effectiveness of DC-PINNS
during training and evaluate its computational efficiency.
Table 1 presents the computation times required by DC-
PINNs and the baseline models for calibrating the surface
in 7.3 based on changes in dataset size and number of neu-
rons. The computational efficiency of DC-PINNs is evident
from their ability to handle these complex optimization chal-
lenges without significant overhead. The efficient use of
automatic differentiation and the adaptive loss balancing
approach contribute to DC-PINNs convergence and reduced
computational overhead. DC-PINNs also exhibit reason-
able scalability, as evidenced by the sublinear growth in
computation time with respect to the dataset size. This scal-
ability is crucial for handling the ever-increasing volumes
of real-world data in modern scientific domains.

8. Conclusion and Future Work
In this study, we proposed an extended PINNs framework
called Derivative-Constrained PINNs (DC-PINNs) to effec-
tively solve PDEs with derivative constraints, which seam-
lessly integrates constraint information into the learning
process through a constraint-aware loss function. The ef-
fectiveness of the DC-PINNs framework was demonstrated
through a series of numerical experiments on benchmark
problems related to quantitative finance, including heat dif-
fusion, Black-Scholes pricing, and local volatility surface
calibration. The results showed that DC-PINNs outper-
formed standard PINNs approaches in terms of the ability
to satisfy nonlinear constraints with sufficient accuracy. DC-
PINNs also illustrated computational efficiency in handling
optimization without significant overhead by the use of auto-
matic differentiation and adaptive loss balancing techniques.

The study emphasizes the importance of explicit constraint
handling in PINNs, as relying solely on the PDE residual
term may lead to solutions that violate critical physical
principles. The DC-PINNs framework opens up new pos-
sibilities for solving constrained PDEs in multi-objective
optimization problems. However, further investigation is
needed to assess the scalability of the framework to high-
dimensional and more complex constraint types. Future
work could explore efficient sampling strategies and adap-

7
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tive collocation point selection to mitigate the curse of di-
mensionality and improve accuracy and computational effi-
ciency.
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A. Implied Volatility Surface Calibration
A.1. Calibration Problem

The implied volatility surface is a model of values resulting from European option prices. We are given a complete filtered
probability space

(
Ω,F , (Ft)t∈[0,T ] ,P

)
and that P is an associated risk-neutral measure. The price of a European call option

C at time t is defined as
C = e−rτE

[
(ST −K)+ | Ft

]
, (24)

where St is the underlying price at t, K is the strike price, τ = T − t is the time to maturity T , and r is the risk-free rate. In
(Black & Scholes, 1973), the implied volatility σimp leads to the modelled price with K, τ ∈ [0,∞) as the Black-Scholes
(BS) formula,

CBS (σimp) = StN (d+)− e−rτKN (d−) ,

d± =
ln(e−rτSt/K)±

(
σ2
imp/2

)
τ

σimp
√
τ

,
(25)

where N(·) is the cumulative normal distribution function.

To expand the generalization for K and τ , (Dupire et al., 1994) proposed the Local Volatility (LV) model, in which the
European option prices satisfy the PDE,

rK
∂C

∂K
− 1

2
σ2
LV(K, τ)K2 ∂

2C

∂K2
+

∂C

∂τ
= 0, (26)

with initial and boundary conditions given by

Cτ=0 = (ST −K)
+
, lim

K→∞
C = 0, lim

K→0
C = St. (27)

Plugging it into the formula in (25), one obtains a conversion function σimp and σLV with respect to K and τ ,

σ2
LV(K, τ) =

σ2
imp + 2σimpτ

(
∂σimp

∂τ + rK
∂σimp

∂K

)
1 + 2d+K

√
τ
∂σimp

∂K +K2τ

(
d+d−

(
∂σimp

∂K

)2

+ σimp
∂2σimp

∂K2

) (28)

to be fit with the PDE (26).

We can define the calibration as identifying the multivariate function respecting the prices Φ (x), associated with implied
volatility surface as a function φ (x) ≥ 0 with inputs x := (K, τ),

Φ(x) = CBS (K, τ, φ (x)) . (29)

The inverse problem of the implied volatility surface is that, given limited options prices, we would like to identify the
implied volatility function with respect to x, redefined as σimp (x), to fit with that premium resulted by CBS also satisfy
PDE. Based on (25∼28), once φ is determined, we can analytically obtain the option price Φ. Furthermore, Φ is second
differentiable whenever φ is second differentiable, allowing the representation of the PDE in (26).

A.2. No-Arbitrage Constraints for European Options

The option prices should obey the constraints imposed by no-arbitrage conditions, which are essential financial principles
posit that market prices prevent guaranteed returns above the risk-free rate. This study considers the necessary and sufficient
conditions for no-arbitrage presented in (Carr & Madan, 2005). This allows us to express the call option price as a
two-dimensional surface appropriately. The necessary and sufficient conditions for no-arbitrage are represented as non-strict
inequalities for several first and second derivatives,

−e−rτ ≤ ∂C

∂K
≤ 0,

∂2C

∂K2
≥ 0,

∂C

∂τ
≥ 0. (30)

From the above, no-arbitrage conditions require these derivatives to have a specific sign. The standard architecture does not
automatically satisfy these conditions when calibrating with a loss function simply based on the mean squared error (MSE)
for the prices.
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A.3. The SABR model

The SABR model in (Hagan et al., 2002) is a typical parametric model, which can capture the market volatility smile and
skewness and reasonably depict market structure. When Ft is defined as the forward price of an underlying asset at time t,
the SABR model is described as

dFt = αtF
β
t dW

1
t , dαt = ναt dW

2
t ,

⟨dW 1
t , dW

2
t ⟩ = ρdt.

(31)

Here, W 1
t , W 2

t are standard Wiener processes, αt is the model volatility, ρ is the correlation between the two processes,
and ν is analogous to vol of vol. The additional parameter β describes the slope of the skewness. Essentially, the IV in the
SABR model is given by a series expansion technique associated with volatility form of (Black, 1976)

σ(K, τ) =
α
(
1 +

(
(1−β)2

24
α2

(FK)1−β + 1
4

ρβvα

(FK)(1−β)/2 + 2−3ρ2

24
v2
)
τ
)

(FK)(1−β)/2
[
1 + (1−β)2

24
ln2 F

K
+ (1−β)4

1920
ln4 F

K

] z

χ(z)
,

z =
v

α
(FK)(1−β)/2 ln

F

K
, χ(z) = ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
.

(32)

A.4. Testing with Synthetic Data

The algorithm developed for evaluating volatility surface was first tested on simulated values in a parameterized two-
dimensional case of the surface interpolation problem. We took up the Stochastic Alpha Beta Rho (SABR) model introduced
by (Hagan et al., 2002) and prepared a sparse two-dimensional dataset to test our methodology. To fit a more realistic market
situation, the following experiment utilized sparse (and uneven) grid data referring to 10, 000 random grids x, t ∈ [0, 1] and
generates synthetic option premiums on the grids by Eq (32) with {α, β, ρ, ν} = {0.3, 1.0,−0.6, 0.4}.
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