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ABSTRACT

We are interested in enabling visual planning for complex long-horizon tasks in
the space of generated videos and language, leveraging recent advances in large
generative models pretrained on Internet-scale data. To this end, we present video
language planning (VLP), an algorithm using a tree search procedure, where we
train (i) vision-language models to serve as both policies and value functions, and
(ii) text-to-video models as dynamics models. VLP takes as input a long-horizon
task instruction and current image observation, and outputs a long video plan that
provides detailed multimodal (video and language) specifications that describe
how to complete the final task. VLP scales with increasing computation budget
where more computation time results in improved video plans, and is able to
synthesize long-horizon video plans across different robotics domains – from multi-
object rearrangement, to multi-camera bi-arm dexterous manipulation. Generated
video plans can be translated into real robot actions via goal-conditioned policies,
conditioned on each intermediate frame of the generated video. Experiments show
that VLP substantially improves long-horizon task success rates compared to prior
methods on both simulated and real robots (across 3 hardware platforms).

1 INTRODUCTION

Intelligently interacting with the physical world involves planning over both (i) high-level semantic
abstractions of the task (i.e., what to do next), as well as the (ii) low-level underlying dynamics of
the world (i.e., how the world works). Factorizing the planning problem into two parts, one driven
by task-specific objectives and the other a task-agnostic modeling of state transitions, is an idea that
is pervasive and fundamental. This factorization drives much of the classic work in robotics from
integrating task and motion planning (Cambon et al., 2009; Wolfe et al., 2010; Kaelbling & Lozano-
Pérez, 2011) to deriving control policies that can perform complex manipulation tasks over long time
horizons such as tidying a dining table or rearranging a collection of objects to build new structures.
Pre-trained large language models (LLMs) (Brown et al., 2020; Chowdhery et al., 2022) have shown
to be capable of generating high-level step-by-step plans for long-horizon tasks over symbolic (often
linguistic) abstractions of the task (Huang et al., 2022a; Ahn et al., 2022), but this is only part of the
solution. LLMs are restricted by what they can represent in text, and struggle with grounding i.e.,
reasoning over shapes, physics, and constraints of the real world (Tellex et al., 2020; Huang et al.,
2023). LLMs can be integrated into larger vision-language models (VLMs) (Driess et al., 2023) that,
when trained on sufficient data, can respect physical constraints observed in image inputs to generate
more feasible plans that may be less likely to command the robot to perform impossible actions, or
manipulate inaccessible objects. However, existing VLMs are predominantly trained on static image
captioning and Q&A datasets – consequently, they continue to struggle to reason over dynamics e.g.,
how objects may move or collide with one another over time.
Meanwhile, recent text-to-video models trained on the wealth of videos on the Internet (Villegas
et al., 2022; Ho et al., 2022), have demonstrated an ability to learn the dynamics and motions of
objects by synthesizing video predictions of the future (Du et al., 2023b). Existing video models
can only generate short time horizon clips without losing visual fidelity, and whether they can be
applied for long-horizon planning remains unclear. Nevertheless, they exhibit properties that are
complementary to VLMs in that they (i) can model the low-level visual dynamics of objects in ways
that are more information-rich than text, and (ii) can absorb another source of Internet data e.g.,
YouTube videos. This leads to the natural question of how to build a planning algorithm that can
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Figure 1:Video Language Planninguses forward tree search via vision-language models and text-to-video
models to construct long-horizon video plans. From an image observation, the VLM policy (top left) generates
next-step text actions, which a video model converts into possible future image sequences (top right). Future
image states are evaluated using a VLM heuristic function (bottom left), and the best sequence is recursively
expanded with tree search (middle). Video plans can be converted to action execution with goal-conditioned
policies (bottom right).

leverage both long-horizon abstract planning from LLMs / VLMs and detailed dynamics and motions
from text-to-video-models.
In this work, we propose to integrate vision-language models and text-to-video models to enablevideo
language planning(VLP), where given the current image observation and a language instruction, the
agent uses a VLM to infer high-level text actions, and a video model to predict the low-level outcomes
of those actions. Speci�cally, VLP (illustrated in Fig. 1) synthesizes video plans for long-horizon
tasks by iteratively: (i) prompting the VLM as a policy to generate multiple possible next-step text
actions, (ii) using the video model as a dynamics model to simulate multiple possible video rollouts
for each action, and (iii) using the VLM again but as a heuristic function to assess the favorability of
each rollout in contributing task progress, then recursively re-planning with (i).
The combination of both models enables forward tree search over the space of possible video se-
quences to discover long-horizon plans (of hundreds of frames) that respect visual dynamics. In partic-
ular, VLP offers advantages in that it (i) can generate higher quality plans at inference time by expand-
ing the branching factor of the search, allowing plan quality to scale with increasing compute budget,
and (ii) bene�ts from training on incomplete language-labeled video data, which may contain short-
horizon snippets (that can be re-composed and sequenced into long-horizon ones), or segments of
videos with missing language labels (but contain dynamics that the video model can still learn from).
Experiments in both simulated and real settings (on 3 robot hardware platforms) show that VLP
generates more complete and coherent multimodal plans than baselines, including end-to-end models
trained directly to generate long videos conditioned on long-horizon task instructions. VLPs exhibit
improved grounding in terms of the consistency of scene dynamics in video plans, and when used in
conjunction with inverse dynamics models or goal-conditioned policies to infer control trajectories
(Du et al., 2023b), can be deployed on robots to perform multi-step tasks – from picking and stowing
a variety of objects over countertop settings, to pushing groups of blocks that rearrange them into new
formations. In terms of execution success, VLP-based systems are far more likely to achieve task
completion for long-horizon instructions than state-of-the-art alternatives, including PaLM-E (Driess
et al., 2023) and RT-2 (Brohan et al., 2023) directly �ne-tuned for long-horizon tasks. We also observe
that when co-trained on Internet-scale data, VLP generalizes to new objects and con�gurations.
Our main contributions are: (i) video language planning, a scalable algorithm for generating long-
horizon video plans by synergising vision-language models and text-to-video models, (ii) experiments

2



Published as a conference paper at ICLR 2024

that show how VLP enables both simulated and real robots to perform complex long-horizon
manipulation tasks, exhibiting task completion rates that often exceed that of the next best available
approach by a signi�cant margin, and (iii) ablations that study modes of generalization, as well as
how VLP scales with more compute. VLP presents a modern re-examination of visual planning by
integrating large generative models pretrained on Internet-scale data, and is not without limitations.

2 VIDEO LANGUAGE PLANNING

Our planning system, VLP, takes a visual observationx0 of a scene and a natural language goalg and
infers a video planf x t g1:T , where each imagex t is as a sub-goal to accomplishg. We assume that
each imagex t serves as an accurate representation of world state and use an image goal-conditioned
policy as a controller to infer low level control actionsu to reach each image state.
Below, we �rst discuss how vision-language and video models are used in VLP as planning sub-
modules in Sec. 2.1. Next, we talk about our tree-search algorithm using vision-language and video
building blocks in Sec. 2.2. Finally, in Sec. 2.3, we discuss how we can convert video plans into
policies to accomplish each long-horizon task.

2.1 USING V ISION-LANGUAGE AND V IDEO MODELS ASPLANNING SUBMODULES

We �rst discuss how to use vision-language and video models as sub-modules in VLP to synthesize
long horizon plans. At a high level, we use the multimodal processing power of VLMs to propose
abstract text actionsai to execute given goals and images. We then use the dynamics knowledge
of video models to accurately synthesize possible future world statesx i

1:T when abstract actions
are executed. Finally, we use a VLM to process possible future world statesx i

1:T and assess which
sequencex1:T and associated actions are the most promising to complete a task.
Vision-Language Models as Policies. Given a high-level goalg, VLP searches over a space of
possible abstract actions; these text actionsa are generated by a VLM policy� VLM (x; g) ! a that
is conditioned both on the goalg and an imagex of the current state. We implement this policy
following Driess et al. (2023) and query the VLM for a natural language action to take given as context
the natural language goal and a tokenized embedding of the current image (Fig. 1 Top Left). We
experiment with two different strategies for constructing this policy. In the �rst, we provide the VLM
a set of example text action labels and ask the VLM to predict possible actions to accomplish a goal.
In the second, we �netune the PaLM-E model on randomly selected short trajectory snippetsx1:S
labeled with abstract actions inside a long trajectoryx1:H that accomplishes a long horizon goalg.
Video Models as Dynamics Models. In order to perform the high-level search, given an imagex
of a current state and a language description of an abstract action, we need to predict the concrete
resulting state. In addition, to generate low-level controls that instantiate this abstract action, we need
a feasible sequence of low-level states that “interpolate” between the current state and the resulting
state. We obtain both of these things from a text-to-video modelf VM (x; a), which takes an imagex
and a short horizon text instructiona and outputs a short synthesized videox1:S starting at the image
observationx0 (Fig. 1 Top Right) following Du et al. (2023b). We construct this text-to-video model
by training on a set of short image trajectory snippetsx1:T and associated language labelsa.
Vision-Language Models as Heuristic Functions. To effectively prune branches in search, we
use a VLM to implement a heuristic functionHVLM (x; g) which takes as input an image observation
x and a natural language goal descriptiong and outputs a scalar “heuristic” predicting the number
of actions required to reach a state satisfying goalg from current statex (Fig. 1 Bottom Left). To
construct this heuristic function, we �netune a PaLM-E model using long trajectory snippetsx1:H
which accomplish a long horizon goalg, and train it to predict, given an image in the subtrajectory
x t , the number of steps left until the end of the trajectory snippet. The negated number of predicted
steps to goal completion from VLM is used to implementHVLM (x; g) (so that high heuristic value
corresponds to being close to goal completion).

2.2 PLANNING WITH V ISION-LANGUAGE MODELS AND V IDEO MODELS

Given a combination of modules discussed in Sec. 2.1, directly applying the� VLM to infer text actions
a to reach goalg is not suf�cient, as� VLM is not able to perform suf�ciently accurate long-horizon
reasoning to select actions that are helpful in the long run. Furthermore, there are many possible
low-level image sub-sequences that correspond to different ways to performa, but it is critical to
select one that is consistent with the rest of the actions that must be taken to reachg.
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Algorithm 1 Decision Making with VLP
1: Input: Current visual observationx0 , Language goalg
2: Functions: VLM Policy � VLM (x; g), Video Modelf VM (x; a), VLM Heuristic FunctionH VLM (x; g)
3: Hyperparameters: Text-Branching factorA, Video-Branching factorD , Planning BeamsB , Planning

horizonH
4: plans [ [x0 ] 8 i 2 f 1 : : : B g] # Initialize B Different Plan Beams
5: for h = 1 : : : H do
6: for b = 1 : : : B do
7: x  plans[b][� 1] # Get the Latest Image State in the Plan Beam
8: a1:A  � (x; g) # GenerateA Different Text Actions
9: videobranches [f VM (x; a i ) for i in (1 : : : A ) for j in (1 : : : D )]

10: plans[b].append(argmax(videobranches,H VLM )) # Add Video with Highest Value to Plan
11: end for
12: maxidx, min idx  argmax(plans,H VLM ), argmin(plans,H VLM )
13: plans[minidx]  plans[maxidx] # Periodically Replace the Lowest Value Plan
14: end for
15: plan argmax(plans,H VLM ) # Return Highest Value Plan

Instead, we propose to search for a sequence of actions to reachg, corresponding to �nding a
long-horizon video planx1:H which optimizes

x �
1:H = arg max

x 1: H � f VM ;� VLM

HVLM (xH ; g): (1)

A separate procedure is then used to instantiate control actionsu to enact the optimized video plan
x �

1:H . To sample long-horizon video plansx1:H , we �rst synthesize a short horizon video planx1:S
from a starting imagex throughx1:S = f VM (x; � VLM (x; g)) and autoregressively extend to a full
long-horizon video plan by recursively applyingf VM (x; � VLM (x; g)) on the �nal synthesized image
statexS . To optimize across video plans in Eqn (1), we use a tree-search procedure based on parallel
hill climbing (Selman & Gomes, 2006) (illustrated in Algorithm 1).
Our planning algorithm initializes a set ofB parallel video plan beams. At each step of the planning
horizon, for each video beam, we �rst sample a set ofA actions using� VLM (x; g), and for each action
we synthesizeD different videos usingf VM (x; a). We then use our heuristic functionHVLM (x; g) to
select the generated video with the highest heuristic among theA � D generated videos and extend
the corresponding video plan beam with this generated video. Over the course of plan generation,
certain video plan beams will obtain high heuristic value and be more promising to explore. Therefore,
every 5 steps, we discard the beam with the lowest value and replicate its video plan with the beam
with the highest value. Our �nal full long horizon video plan corresponds to the beam with highest
heuristic value at the end of planning.
Preventing Exploitative Model Dynamics. When our planning procedure optimizes the VLM
heuristic functionHVLM (x; g) it can exploit irregularities in the dynamics modelf VM (x; a) to get
arti�cially high estimates. For instance, the planning procedure can exploit videos fromf VM (x; a)
where key objects have teleported to desired locations or where the �nal image observation obscures
undesirable portions of world state. To prevent over-exploitation ofHVLM (x; g), during the planning
procedure in Algorithm 1, we discard generated videos fromf VM (x; a) if they increase the the
heuristic estimateHVLM (x; g) above a �xed threshold.

2.3 ACTION REGRESSIONFROM V IDEO THROUGHGOAL-CONDITIONED POLICIES

Given a synthesized video planx1:H , to execute tasks, we must infer control actionsu to reach
synthesized images. Prior work infers actions from synthesized videos by using an inverse-dynamics
model on each synthesized frame (Du et al., 2023b).
In many settings, a single action may not be suf�cient to directly reach the next synthesized image,
i.e. if you need to remove the cap off a toothbrush, and even in settings in which this is the case,
it may be dif�cult to precisely predict the correct action to reach the next frame. To reduce the
burden on the inverse dynamics model, we propose to use a short-horizon goal-conditioned policy
� control(x; x g), which given the current image observationx and next frame in a video planxg outputs
a low level control actionu that makes progress towardsxg. For each frame in our video planx1:H ,
the goal-conditioned policy is executed for a �xed pre-speci�ed number of timesteps. We train� control
using paired image and low level control snippetsx i

1:T andui
1:T , where we sample a random timestep

t, a corresponding statex t , and future statex t + h , and train� control(x t ; x t + h ) to predictut .
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Figure 2:Long Horizon Video Plan. Long horizon video plans generated by VLP on both simulated and real
images. VLP isonly giventheinitial imageandlanguage goal. Language subplans and other image frames are
directly synthesized. Sim Environment Real Environment

Move Group Make Move Group Make
Model Area Color Line Area Color Line

UniPi 2% 4% 2% 4% 12% 4%
VLP (No Value Function) 10% 42 % 8% 20% 64% 4%
VLP (Ours) 58% 98% 66% 78% 100% 56%

Table 1:Accuracy of Generated Video Plans.The percentage VLP and baselines are able to synthesize a full
video plan which can fully complete tasks in simulation and real environments. VLP substantially outperforms
both UniPi and directly combining the VLM policy

Replanning. Given a very long-horizon task, it is both dif�cult to use� control to accurately execute
the full video planx1:H (due to accumulating error) and dif�cult to fully synthesize a plan that
completely �nishes a long-horizon task given a �xed planning horizon. To circumvent this issue, we
use receding horizon control strategy (Kwon & Han, 2005), where we generate videos plans with a
�xed horizon (that might not fully complete the task), and then repeatedly regenerate/replan video
plans with the same horizon after a �xed number of action executions.

3 EXPERIMENTAL RESULTS

We �rst evaluate the ability of VLP to synthesize long-horizon video plans for different tasks in
Sec. 3.1. We then investigate VLP's ability to execute generated video plans in various environments
in Sec. 3.2. Finally, we further investigate generalization capabilities of VLP in Sec. 3.3.

3.1 LONG-HORIZON V IDEO SYNTHESIS

Baselines. We compare our approach with two other approaches for synthesizing long-horizon
video plans. First, we consider training a text-to-video modelf VM on long horizon text goals, as in
UniPi (Du et al., 2023b), omitting the entire VLP planning process. Next, we consider synthesizing
long horizon video plans by chaining� VLM policy with f VM , without the heuristic function.
Object Rearrangement. We �rst illustrate video plans in the Language Table environment (Lynch
et al., 2023), which consists of a dataset of long-horizon demonstrations and text labels with incom-
plete short horizon labels (Appendix A.3). We give as input to VLP a random image and randomly
chosen language goal. We then visualize the generated VLP plans (Fig. 2). We report the quantitative
success of synthesizing long-horizon videos given random starting images for each task in Language
Table in Tab. 1. For each reported number, we generated a total of 50 videos from each method
and visually assessed the percentage of time the video successfully solved the given task. VLP
substantially outperforms the baseline of directly synthesizing videos given a long-horizon prompt,
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Language Video Line
Beams Branch Branch Performance

1 1 1 4%
1 1 4 10%
1 4 4 22%
2 4 4 56%

Figure 3:Video Accuracy vs Planning Budget.Left: VLP scales positively with more compute budget; it is
better able to synthesize plans to solve tasks with more planning (i.e. with a higher beam-search branching factor).
Success percentage reported on the make line task.Right: Qualitative illustration of video plans for making
a line generated without planning (Beam 1, Branch 1) compared to extensive planning (Beam 2, Branch 16).

Figure 4:Planning Tree on 7DoF Mobile Manipulator. VLP is able to prune unlikely language and video
branches to synthesize a coherent long-horizon video plan.

indicating the importance of hierarchical structure. VLP further outperforms the ablation of only
using a VLM policy with a video model, pointing to the effectiveness of the VLP planning procedure
and including the value function.
Effect of Search of Video Synthesis. We analyze the effect of search in generating long-horizon
videos in Fig. 3 (left). We consider increasing the video branching, language branching and the
beams in the search procedure. We �nd that each increase of branching factor in search substantially
increases the success of synthesized long horizon plans. A qualitative illustration of the difference of
generated plans with small and large branching factor is illustrated in Fig. 3 (right).
Planning on 7DoF Mobile Manipulators. We qualitatively illustrate how we can generate plans
on a higher-DoF, 7DoF Mobile Manipulator in Fig. 4. Our planning system is able to generate videos
of actions that both open and close drawers in order to satisfy speci�ed text prompts.
Planning on Multicamera 14DoF Bi-Manual Manipulators. We further illustrate how our ap-
proach can generate multi-view 4-camera videos of dexterous manipulation on the 14DoF bi-manual
ALOHA (Zhao et al., 2023) platform in Fig. 5. Our video model outputs videos across views simulta-
neously (by concatenating each view channelwise), while our VLM policy and heuristic function
takes as input top and side views. While short horizon text labels are incomplete (Appendix A.3), our
approach synthesizes multiview consistent plans which stack bowls, cups, and utensils.

3.2 LONG-HORIZON EXECUTION

We next evaluate the ability of VLP to not only generate plans as in Sec. 3.1, but to actually use
planning (and replanning) toexecutelong-horizon tasks in closed-loop environments.
Baselines. We compare our approach to a set of approaches to solve long-horizon tasks. (i) We
consider using a VLM to directly plan, using PaLM-E (Driess et al., 2023) to plan short horizon
text snippets to execute, which are converted to actions using a text-conditioned policy, conditioned
on generated text snippets from PaLM-E. We also (ii) compare with UniPi (Du et al., 2023b),
where videos are directly generated by a text-to-video model trained on long-horizon text goals and
converted to actions using our goal-conditioned policy. Next, we consider (iii) directly learning
language-conditioned behavioral cloning policy on long-horizon text and actions, using the codebase
and architecture of the LAVA model Lynch et al. (2023). Finally, we (iv) compare with a multi-modal
transformer architecture to predict actions, and �netune the RT2 model Brohan et al. (2023) on
long-horizon text and actions. Note that methods that plan in language space (Hao et al., 2023) are
not applicable, as they cannot simulate detailed visual dynamics (Appendix A.1).
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