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Abstract

Visual localization is a fundamental task in computer vision and robotics. Training
existing visual localization methods requires a large number of posed images to
generalize to novel views, while state-of-the-art methods generally require ground
truth 3D labels for supervision. However, acquiring a large number of posed images
and 3D labels in the real world is challenging and costly. In this paper, we present
a novel visual localization method that achieves accurate localization while using
only a few posed images compared to other localization methods. To achieve this,
we first use a few posed images with coarse pseudo-3D labels provided by NeRF
to train a coordinate regression network. Then a coarse pose is estimated from the
regression network with PNP. Finally, we use the image-based visual servo (IBVS)
with the scene prior provided by NeRF for pose optimization. Furthermore, our
method can provide effective navigation prior, which enables navigation based on
IBVS without using custom markers and the depth sensor. Extensive experiments
on 7-Scenes and 12-Scenes datasets demonstrate that our method outperforms
state-of-the-art methods under the same setting, with only 5% to 25% training data.
Furthermore, our framework can be naturally extended to the visual navigation task
based on IBVS, and its effectiveness is verified in simulation experiments.

1 Introduction

The estimation of camera positions and orientation based on a query image is a fundamental task
in computer vision. It has wide applications in various fields such as robotics, virtual reality,
and autonomous driving. Existing works that tackle this task can be generally divided into two
categories. The first line of approaches are structure-based [6, 28, 31, 37, 46], which first establish
correspondences between 3D points and 2D pixels, and then compute camera pose with PnP [16]
solver utilizing RANSAC [12]. These methods typically achieve satisfactory results at the cost of a
complex pipeline. The other line of approaches is regression-based [2, 3, 40, 21, 42, 41], which either
regress the 3D coordinates or directly regress the absolute pose. These methods yield a more compact
framework and have fast inference performance. All the above methods require a substantial number
of posed images (generally thousands of posed images per scene) to guarantee the generalization
ability to novel viewpoints. Moreover, state-of-the-art methods [6, 4, 21] also require dense ground
truth 3D labels for supervision, such as depth and 3D model. However, acquiring a large number

∗These authors contributed equally to this work.
†Corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: Demonstration of the proposed NeRF-IBVS. Our method can achieve visual localization
based on a single query image. Moreover, our method can obtain navigation prior after processing
the images of the initial state and desired state, which can better enable IBVS-based navigation.

of posed images and dense 3D labels is challenging and costly. It naturally raises a question: is it
possible to design a framework that achieves accurate localization results while only requiring a
small number of posed images ?

Recent advances in Neural Radiance Fields (NeRF) [25] provide a promising solution. Trained
from hundreds of posed images, NeRF can render realistic images and give coarse depth maps for
novel viewpoints as prior knowledge of 3D scenes. Intuitively, this prior knowledge can assist visual
localization methods in generalizing to novel viewpoints. Current NeRF-based visual localization
methods [10, 11, 26] only employ NeRF for data augmentation purposes, which still requires a
substantial number of images for training. The estimated pose will be coarse when using a few data.
Considering this issue, it would be desirable if the coarse pose in NeRF could be further refined to
meet the need for visual localization.

In this paper, we propose a novel visual localization framework called NeRF-IBVS, which achieves
accurate localization while using only a few posed images. NeRF-IBVS adopts a coarse-to-fine
paradigm to estimate the pose of the query image. In the coarse stage, we first train a NeRF with
hundreds of posed images, which is significantly fewer than typical visual localization methods. Then,
we use the same posed images with coarse pseudo-3D labels provided by NeRF to train a coordinate
regression network. The coarse pose is estimated from the regression network with PNP. In the
refining stage, we design an optimization algorithm to effectively optimize the coarse pose. Motivated
by the image-based visual servo (IBVS) [9], which navigates the camera from the initial pose to the
desired pose using coordinate error and depth of correspondences between the current image and
the target image. Therefore, we first use NeRF to render the image and depth corresponding to the
current coarse poses. Then, we establish the correspondences between the rendered image and the
query image and query the approximate depth of the correspondences based on the rendering depth
map. Finally, the correspondences with depth are used to launch IBVS to guide pose optimization.

Due to rendering quality errors, directly applying IBVS to NeRF-rendered images and depth is
not feasible. Moreover, IBVS requires non-collinear correspondences during 6-degree-of-freedom
navigation. In order to achieve robust pose optimization, we design a correspondence selection
algorithm using spatial information provided by NeRF and the coordinate regression network. To
speed up the pose optimization, we further design a strategy that reduces the rendering frequency of
NeRF. Further, the effective 2D and 3D correspondences obtained by NeRF-IBVS can be used as the
navigation prior to enhance IBVS-based navigation. Specifically, this navigation prior can enable
IBVS-based navigation without using custom markers and the depth sensor. This advantage greatly
expands the application scope.

To the best of our knowledge, NeRF-IBVS is the first method that can accomplish both visual
localization and visual navigation based on IBVS as shown in Figure 1, providing a novel idea for
pose optimization by controlling camera motion. Employing only 5% to 25% of the posed images
required by other localization methods on 7-Scenes dataset and 12-Scenes dataset, our method
outperforms state-of-the-art methods without using ground truth 3D labels and has comparable
performance with methods using ground truth 3D labels. Furthermore, our method can enable
visual navigation based on IBVS without using custom markers and the depth sensor, which greatly
expands the application scope of IBVS-based navigation. We also verified the effectiveness of visual
navigation in a simulation environment.
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2 Related Work

Visual localization. Structure-based methods [6, 28, 31, 37, 46] use complex pipelines to achieve
precise localization. Firstly, correspondence is established between 3D coordinates and 2D pixels.
Secondly, a camera pose is computed through a PnP solver with RANSAC. The first stage requires
a complex pipeline consisting of image retrieval, feature extraction, and matching. To achieve
a more compact frame compared to structure-based methods. In recent years, regression-based
localization methods [2, 3, 40, 21, 42, 41, 24] attract increasing attention, which either regresses the
3D coordinates or directly regress the absolute pose. Specifically, coordinate regression methods, such
as DSAC++ [7] and HACNet [21] use neural networks to learn the first stage of the structure-based
methods, which directly regress 3D scene coordinates from an image. These coordinates regression
methods typically use ground truth 3D labels as supervision to achieve better localization performance.
Unlike coordinate regression, absolute pose regression methods [19, 40, 2] generally use only posed
images to train the neural network. MS-Transformer [32] and AtLoc [41] use attention mechanisms
to guide the regression process and have substantially improved the performance of absolute pose
regression methods. Recently, some methods [10, 11, 26] use NeRF as data enhancement to improve
the performance of visual localization methods. The above methods require a substantial number of
posed images to guarantee the generalization ability to novel viewpoints. Our method can achieve
accurate localization while using only a few posed images compared to other localization methods.

Robotics with neural radiance fields. Recently, the neural radiance field (NeRF) [25] has shown
great potential in robotics applications [22, 17, 15]. iNerf [44] fixes the network weights of NeRF and
directly optimizes the camera pose parameters by computing the backpropagation of the photometric
loss. However, this method requires an initial pose near the ground truth pose. Methods based on
photometric loss tend to fail when blur and artifacts appear in the rendered images. iMAP [36] and
NICE-SLAM [47] are a pose estimator in the SLAM setting that requires continuous sequential data.
BARF [23] optimize camera poses during the training of NeRF. Therefore they cannot estimate the
pose of a single query image. Moreover, NeRF can provide coarse scene geometry, which is useful
for navigation tasks. NeRF-nav [1] designs a smooth and collision-proof navigation strategy based
on the density provided by NeRF. RNR-Map [20] achieves precise visual navigation performance
based on NeRF, but is limited to three degrees of freedom and requires RGBD pictures and odometer
information. Our method can accomplish both visual localization and 6 degrees of freedom navigation
based on visual servo and using only RGB images.

3 Preliminaries

NeRF. NeRF uses MLP network Fθ to encode the 3D scene, which predicts the RGB color c ∈ R3

and volume density σ ∈ R for each input 3D point p ∈ R3 and its view direction d ∈ R3. It can be
summarized as Fθ(p,d) = (c, σ), where θ is the parameters of MLP network. Then, NeRF uses
volume rendering techniques to generate realistic rendered images C(r) and coarse depth maps D(r)
from any viewpoint:

C(r) =

M∑
i=1

Ti(1− exp(−σiδi))ci, D(r) =

M∑
i=1

Ti(1− exp(−σiδi))ti, (1)

where r and M indicates the rendering ray and the number of points along the ray, ci and ti indicates
the color and distance of the samples in the rendering ray, Ti = (−

∑i−1
j=1 σjδj) indicates the

accumulated transmittance from the near bound of the rendering ray to ti, and δi = ti+1 − ti is the
distance between adjacent samples in rendering ray.

IBVS. The aim of Image-Based Visual Servoing (IBVS) is to control the camera to move toward the
desired pose based on vision information while minimizing the coordinate error of image features
between the current image and the target image. Correspondences are used as image features in
this paper. To achieve this goal, IBVS first calculates the desired image coordinate velocity of
correspondences based on the coordinate error. Then, the Jacobi matrix is constructed based on the
correspondences, which establishes the relationship between the image coordinate velocity and the
camera velocity. Finally, the desired camera velocity to control the camera motion towards the target
is solved based on the Jacobi matrix and the desired image coordinate velocity. The specific details
of the IBVS are presented in the supplemental materials.
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Figure 2: The pipeline of our method, NeRF-IBVS. In the coarse pose estimation, we first train a
NeRF with hundreds of posed images, which is significantly fewer than typical visual localization
methods. Then, we use the same posed images with coarse pseudo-3D labels provided by NeRF to
train a coordinate regression network. The coarse pose is estimated from the regression network with
PNP. In the pose optimization, the correspondences with depth between the rendered image and the
target image are obtained to launch IBVS to guide pose optimization. Moreover, our method can
provide effective navigation prior, which enhances navigation based on IBVS.

4 Method

Given a few posed images compared to the typical localization method, we aim to achieve accurate
localization. To achieve this, we first use a few posed images with pseudo-3D labels provided by
NeRF to train a coordinate regression network. Then the coarse pose is estimated from the regression
network with PNP. Finally, we introduce IBVS to gradually refine the coarse pose by leveraging the
3D scene prior provided by NeRF. Furthermore, our method can provide effective navigation prior,
which enhances navigation based on IBVS. Figure 2 demonstrates the overall pipeline.

4.1 Coarse Pose Estimation

We use a few posed images with pseudo-3D labels provided by pre-training NeRF to train a coordinate
regression network. Then the coarse pose is estimated from the regression network with PNP.
Specifically, we convert the pixel coordinates p of training images into pseudo-3D labels Pw using
depth D provided by NeRF:

Pw = DT−1K−1p, (2)

where K,T denote the internal parameter and pose of camera. Following common settings [43], these
pseudo-3D labels Pw are then normalized to fit within the range of a unit cube. Then, we use the
advanced coordinate regression component of GDR-Net [42] as our coordinate regression network,
which is trained by pseudo-3D labels Pw. To estimate coarse pose, the coordinate regression network
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processes the query image to generate 3D coordinates and establishes a 2D-3D correspondence. This
2D-3D correspondence is then fed into PnP [16] to determine the coarse pose T̂ of the query image.
We empirically found that the lack of multi-view constraints in the boundary regions of the scene
leads to a significant depth error in image edges. To mitigate the impact of the rendering quality error,
we exclude the edge areas in the image of our pseudo-3D labels Pw when training our coordinate
regression network.

4.2 Pose Optimization

To optimize the coarse poses, our method views pose optimization as the process of navigating the
camera from the coarse pose towards the target pose using scenes prior provided by NeRF.

4.2.1 IBVS Module

IBVS initialization using NeRF. To start pose optimization, we first initialize IBVS using NeRF.
This process mainly initializes the Jacobian matrix L of IBVS using the image coordinates and depth
of correspondences, which establishes the relationship between the velocity vc of the camera and the
velocity ṡ of image coordinates:

ṡ = Lvc, (3)
where the L corresponds to per correspondence can be formulated as:

L =

[
− 1

Zc
0 x

Zc
xy −(1 + x2) y

0 − 1
Zc

y
Zc

1 + y2 −xy −x

]
, (4)

where x, y and Zc denote image coordinates and depth of the correspondence in the currently rendered
image. To initialize the Jacobian matrix L, we first utilize NeRF to render an image Cr and depth
map Dr that corresponds to the current coarse pose T̂ . Then the off-the-shelf correspondences
establishment algorithm, such as SuperPoint [14] with SuperGlue [29], is employed to extract the
pixel coordinate (mq,mr) of correspondences between the query image Cq and the rendered image
Cr. The depth Zc of correspondences mr can be obtained by querying the rendered depth Dr. Image
coordinates nr = (x, y) in the rendered image can be obtained using the pixel coordinates mr and
the internal parameter K follow [9]. Finally, nr with depth Zc are used to initialize L.

Optimization iteration. After the IBVS initialization, we started IBVS iteration to navigate the
camera from the coarse pose toward the target pose. At each iteration, IBVS needs to calculate the
velocity vc of the camera to update the pose. To control the 6 DOF velocity vc of the camera, four
non-collinear correspondences are selected and the velocity ṡ of the image coordinates are set to
−λ(nq − nr) follow [9]. According to Equation (3), we can obtain the camera velocity vc as:

vc = −λL+(nq − nr), (5)

where λ,L+, and nq denote proportional factor, generalized inverse matrix, and image coordinates
in the query image. Then, we update the current pose by integrating the camera velocity vc during
unit iteration to obtain the variation of pose ∆T(vc(t)). The coarse poses are updated as follows:

T̂(t+ 1) = T̂(t)∆T(vc(t)). (6)

The IBVS iteration proceeds until either the pixel coordinate error of correspondences is less than a
certain threshold or the maximum number of iterations is reached.

Theoretically, each iteration of IBVS requires NeRF rendering to update the parameters of the
Jacobian matrix L. However, utilizing NeRF rendering for each IBVS iteration is highly time-
consuming and impractical. Therefore, we design a new fast iteration strategy that reduces the
rendering frequency of NeRF. We first calculate the 3D coordinates of correspondences using the
depth information provided by NeRF, while assuming the 3D coordinates of the correspondences are
precise. At each iteration, We project the 3D coordinates of correspondences to the image plane by
using the updated poses. This projection can be an approximate substitute for the correspondence in
the rendered image. In this way, we skip the time-consuming NeRF rendering process, and NeRF
rendering is only executed at the initialization of IBVS.

Due to rendering errors of NeRF, the assumption that the 3D coordinates of correspondences are
accurate is violated, so accumulation errors will occur. Accumulated errors may lead to the optimiza-
tion terminating with a large error, In order to eliminate accumulated errors, we render the image
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again based on the most recently updated poses to relaunch IBVS iterations. Typically, the IBVS
iterations are launched no more than four times to obtain a precise localization.

The first IBVS iterations launch aims to move the camera a significant distance toward the target
pose, while the subsequent IBVS iterations launch only fine-tune the pose around the target pose. To
improve the optimization efficiency, We dynamically set the number of iteration steps. Specifically,
the number N(i) of iterations steps in the ith IBVS iterations launch is set dynamically based on
coordinate error of correspondences:

N(w(i)) =


N1, w(i)>1
N1

3 , w(i)< 1
3

w(i)N1, otherwise
, where w(i) =

∥nr
i − nq

i∥2
∥nr

1 − nq
1∥2

, (7)

where N1 and nr
i,nq

i denote the fixed number of iteration steps in the first IBVS iteration launch
and image coordinates of correspondences in the ith IBVS iterations launch, respectively.

4.2.2 Correspondence Selection

The Jacobian matrix L of IBVS is highly sensitive to the selection of the correspondences, and it
requires accurate and non-collinear correspondences to update parameters during iteration. Due to
rendering errors of NeRF, which may cause inaccurate correspondences. In order to increase the
robustness of IBVS, we designed a correspondence selection algorithm to select appropriate corre-
spondences for IBVS. We first query coarse 3D coordinates estimated by the coordinate regression
network to obtain 3D coordinate P̂q of correspondences mq in the query image. Then, we use coarse
pose T̂ to project the 3D coordinate P̂q onto the rendered image to obtain image coordinates n̂r.
Finally, we can obtain the coordinate distances of correspondences d = ∥n̂r −nr∥2. Since the coarse
pose T̂ and 3D coordinates P̂q near the target, the accurate correspondences generally have a smaller
distance. Therefore, we empirically set a threshold τ for the coordinate distance d to filter out a
large number of outliers. Finally, we use RANSAC [12] to further select accurate and non-collinear
correspondences. Please see the supplementary material for more details.

4.3 Visual Navigation

NeRF-IBVS can provide navigation prior which enhances IBVS-based navigation. To enable IBVS
navigation, it is necessary to use correspondences that are non-collinear and remain in the camera’s
field of view during navigation. However, acquiring such correspondences is challenging, current
methods [18, 45, 34] usually rely on custom markers which limit the applications of IBVS. The
navigation prior provided by our method can solve this problem. Specifically, We first use NeRF-
IBVS to locate the initial pose of the navigation task. Then the initial pose is viewed as a coarse pose
to start the NeRF-IBVS locating the target state of the navigation task. After that, the correspondence
selection algorithm can obtain accurate and non-collinear correspondences and the IBVS module
can obtain navigation trajectories in the image plane. The current correspondences are not yet
guaranteed to remain in the camera’s field of view during navigation. Benefiting from the navigation
trajectory, the appropriate 2D correspondences that fall outside of the image plane are automatically
filtered out. It ensures that the correspondences selected remain in the camera’s field of view during
navigation. We backproject 2D correspondences based on depth provided by NeRF to obtain coarse
3D coordinates as 3D correspondences. During the navigation iteration, the 3D correspondences are
projected using the current pose to obtain the depth prior and the image coordinates prior. The image
coordinates prior can assist in locating and associating the 2D correspondences in the current image,
which enables IBVS-based navigation without custom markers. Moreover, the depth prior can be
used to update the parameters of the Jacobian matrix in each iteration, which enables IBVS-based
navigation without using a depth sensor. Although there is a small error in the depth obtained by
projection, IBVS has the advantage of being robust to small depth errors[13].

5 Experiments

In this section, we first compare the proposed NeRF-IBVS with state-of-the-art visual localization
methods. Furthermore, our method extended to IBVS-based navigation without using custom markers
and the depth sensor, and its effectiveness is verified in simulation experiments.
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5.1 Visual Localization

Datasets. We conduct experiments on two public indoor benchmark datasets. The 7-Scenes [35]
contains seven indoor scenes recorded by a KinectV1 camera, the data includes RGB-D images,
poses, and ground truth 3D models. The 12-Scenes [39] contains twelve indoor scenes with RGB-D
images and poses. The recorded environments of the 12-Scenes are significantly larger than those
in the 7-Scenes. We use fewer posed images compared to baseline localization methods, and the
specific number of training data for each scene is configured as shown in Table 1 and Table 2.

Table 1: The number of training data on the 7-Scenes dataset.

Chess Fire Heads Office Pumpkin Kitchen Stairs All

Baseline 4000(100%) 2000(100%) 1000(100%) 6000(100%) 4000(100%) 7000(100%) 2000(100%) 26000(100%)
Our 260(6%) 280(14%) 240(24%) 300(5%) 320(8%) 350(5%) 340(17%) 2090(8%)

Table 2: The number of training data on the 12-Scenes dataset.

Kitchen1 Living1 Bed Kitchen2 Living2 Luke Gates362 Gates381 Lounge Manolis Office5a Office5b All

Baseline 744(100%) 1036(100%) 868(100%) 768(100%) 725(100%) 1370(100%) 3536(100%) 2950(100%) 925(100%) 1613(100%) 1001(100%) 1391(100%) 16927(100%)
Our 185(25%) 170(16%) 215(25%) 190(25%) 180(25%) 340(25%) 350(10%) 295(10%) 230(25%) 270(17%) 250(25%) 280(20%) 2955(17%)

Baseline. Baseline methods can be classified into two main categories based on whether or not
using ground truth 3D labels. Specifically, we utilized the following methods, each with its unique
characteristics and requirements. 1). Methods without ground truth 3D label supervision: DFNet
[10] and Direct-PoseNet [11] is the absolute pose regression method based on NeRF; FeatLoc++ [2]
is the absolute pose regression method using sparse features. Furthermore, featLoc++Au utilizes
sparse 3D structure to enhance visual localization performance; TransPoseNet [33] achieve visual
localization based on attention mechanism; 2). Methods with ground truth 3D label supervision: SA
[5] is a recently proposed absolute pose regression method based on 3D structure. HACNet [21],
DSAC* [8] and DSAC++ [7] are state-of-the-art visual localization methods based on coordinate
regression. PixLoc [30] is an advanced structure-based visual localization method.

Implementation Details. Our approach utilizes Nerfacto [38], an accelerated variant of NeRF.
Nerfacto was trained for 100,000 iterations, and all camera poses are only centralized, with no scale
adjustment. As errors in the ground truth pose of 7-Scenes dataset impair the training quality of
Nerfacto [38], we turn on the pose-optimization component of the Nerfacto for 7-Scenes dataset. We
set the far plane to 8 meters for office5a and office5b in the 12-Scenes dataset and set the far plane to
6 meters for other scenes. We set the near plane to 0 meters for all scenes. The coordinate regression
network is trained for 40 epochs with a learning rate of 0.001. We empirically set τ = 200 for the
threshold of coordinate distance. In pose optimization, we use SuperPoint with SuperGlue and their
official weights to detect correspondences, set λ = 0.5, N1 = 100 for IBVS iterations. For training
time, the Nerfacto and coordinate regression network are trained on one NVIDIA RTX3090 GPU for
about 2 days. Please see the supplementary material for more implementation details.

Table 3: Comparison of median position and orientation error (m,◦) on the 7-Scenes dataset.

Method Chess Fire Heads Office Pumpkin Kitchen Stairs Average

w/o
ground truth
3D labe

PoseNet [19] 0.32/8.12 0.47/14.4 0.29/12.0 0.48/7.68 0.47/8.42 0.59/8.64 0.47/13.8 0.44/10.4
Direct-PoseNet[11] 0.10/3.52 0.27/8.66 0.17/13.1 0.16/5.96 0.19/3.85 0.22/5.13 0.32/10.61 0.20/7.26
TransPoseNet [33] 0.08/5.68 0.24/10.6 0.13/12.7 0.17/6.34 0.17/5.6 0.19/6.75 0.30/7.02 0.18/7.81
FeatLoc++Au [2] 0.07/3.66 0.17/5.95 0.10/7.57 0.16/5.20 0.11/3.86 0.20/6.43 0.16/8.57 0.14/5.89
DFNet[10] 0.05/1.88 0.17/6.45 0.06/3.63 0.08/2.48 0.10/2.78 0.22/5.45 0.16/3.29 0.12/3.71
Ours 0.03/1.18 0.03/1.17 0.02/1.12 0.04/1.39 0.08/2.36 0.07/2.21 0.08/2.07 0.05/1.64

w/
ground truth
3D label

SA[5] 0.08/2.17 0.21/6.14 0.13/7.93 0.11/2.65 0.14/3.34 0.12/2.75 0.29/6.88 0.15/4.55
DSAC++[7] 0.02/0.5 0.02/0.9 0.01/0.8 0.03/0.7 0.04/1.1 0.04/1.1 0.09/2.6 0.04/1.1
DSAC*[8] 0.02/1.10 0.02/1.24 0.01/1.82 0.03/1.15 0.04/1.34 0.04/1.68 0.03/1.16 0.03/1.36
HACNet[21] 0.02/0.7 0.02/0.9 0.01/0.9 0.03/0.8 0.04/1.0 0.04/1.2 0.03/0.8 0.03/0.9
PixLoc[30] 0.02/0.80 0.02/0.73 0.01/0.82 0.03/0.82 0.04/1.21 0.03/1.20 0.05/1.30 0.03/0.98

Comparisons. We report the median translation (cm) and rotation (◦) errors [19] in each scene,
which is a main evaluation metric for localization accuracy. The localization accuracy is reported
in Table 3 for 7-Scenes and Table 4 for 12-Scenes. As can be observed, our method consistently
achieves the best performance among visual localization methods without ground truth 3D label

7



Table 4: Comparison of median position and orientation error (m,◦) on the 12-Scenes dataset.

w/o ground truth 3D label w/ ground truth 3D label

Scene PoseNet[19] FeatLoc++[2] FeatLoc++Au[2] Ours SA[5] HACNet[21]

Kitchen1 0.29/15.48 0.53/14.0 0.32/5.19 0.01/0.60 0.08/4.45 0.01/0.4
Living1 0.29/15.31 0.55/9.75 0.26/3.89 0.01/0.57 0.08/2.50 0.01/0.4
Bed 0.57/17.85 0.60/10.2 0.37/5.39 0.02/0.82 0.07/3.87 0.01/0.4
Kitchen2 0.21/18.18 1.21/29.1 0.73/6.37 0.02/0.79 0.08/2.96 0.01/0.3
Living2 0.31/23.58 0.73/11.4 0.40/5.71 0.03/1.07 0.09/3.13 0.01/0.4
Luke 0.35/20.07 0.59/11.4 0.33/4.85 0.03/1.20 0.12/4.82 0.01/0.5
Gates362 0.27/16.71 1.03/8.95 0.52/5.22 0.02/0.75 0.06/2.04 0.01/0.4
Gates381 0.37/20.52 0.73/12.9 0.42/6.23 0.02/0.82 0.12/5.02 0.01/0.6
Lounge 0.29/18.42 0.97/8.30 0.39/4.50 0.02/0.83 0.07/2.53 0.01/0.5
Manolis 0.22/17.45 0.66/11.9 0.30/4.67 0.01/0.62 0.09/3.52 0.01/0.5
Office5a 0.57/14.55 0.61/8.05 0.31/4.32 0.06/2.63 0.10/5.08 0.01/0.5
Office5b 0.47/15.49 0.51/7.29 0.23/4.14 0.02/0.74 0.09/2.57 0.02/0.5
Average 0.35/17.80 0.73/11.9 0.38/5.04 0.02/0.95 0.09/3.54 0.01/0.5

supervision. Meanwhile, our method has comparable performance with methods using ground
truth 3D labels as supervision, which closes the gap between the two types of visual localization
methods. It is important to note that we use fewer posed images for training compared to the baseline
methods, which shows the high value in practical application. Compared with the methods using
NeRF for data augmentation, our method (0.05m, 1.64◦) outperforms DFNet [10] (0.12m, 3.71◦) and
Direct-PoseNet [11] (0.20m, 7.26◦), thus providing a more efficient way to take advantage of the
scenes prior provided by NeRF. Moreover, our method outperforms attention-based MS-Transformer
[27] and FeatLoc++Au [2], which utilize sparse 3D structure augmentation, highlighting the potential
of NeRF in visual localization.

(a) (b) (c) 

Rendered Image Query Image Pose Optimization Trajectory Rendered Image Query Image 

Figure 3: Qualitative results on 12-Scenes dataset. (a) the correspondences between images rendered
using coarse poses and query images. (b) the pose optimization trajectories in 3D space and image
plane. (c) the correspondences between images rendered using optimized poses and query images.

Qualitative results. We also qualitatively analyze the NeRF-IBVS on 12-Scenes dataset. Our coarse
pose estimation can obtain the poses near the target as shown in Figure 3(a), which provides a good
starting point for pose optimization. The pose optimization trajectories in both 3D space and image
plane show that the optimized pose can accurately reach the desired pose as shown in Figure 3(b).
Figure 3(c) shows that the images rendered using the optimized poses are accurately aligned with the
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query images. Figure 3(b)-(c) demonstrate that our method can achieve accurate localization. Please
see the supplementary material for more qualitative results.

5.2 Simulation for Navigation

To verify the effectiveness of our method in enabling IBVS-based navigation without using custom
markers and the depth sensor, we randomly selected a pair of images from the real 12-Scenes dataset
with co-views to serve as the initial state and the desired state for navigation. We first establish the
correspondences between the initial state and the desired state as shown in Figure 4(a). Appropriate
2D and 3D correspondences are selected as navigation prior as shown in Figure 4(b)-(c). A 6-degree-
of-freedom navigation simulation is then performed using the camera model. Figure 4(d) shows that
the navigation trajectory in both 3D space and image plane can accurately reach the desired state.
Figure 4(e) shows that the coordinate error of correspondences can converge. The coordinate error of
correspondences can reflect errors in the pose. The simulation results in Figure 4(d)-(e) demonstrate
that our IBVS-based navigation without using custom markers and the depth sensor can achieve
accurate navigation. Please see the supplementary material for more simulation results.

NeRF-IBVS

Deired State Initial State Deired State Initial State

(c) 3D Correspondences (d)  Navigation Trajectories (e)  Pixel Coordinate Errors

Desired pixel

Initial pixel

(a) (b)  

Figure 4: Simulation navigation results on 12-Scenes dataset. (a) candidate correspondences are
established between initial states and desired states. (b) and (c) the appropriate 2D and 3D correspon-
dences are selected by NeRF-IBVS. (d) navigation trajectory in both 3D space and image plane. (e)
e(xi), e(yi) is the image coordinate error of correspondences.

5.3 Ablation Studies

In this section, we conduct ablation experiments on the 12-Scenes dataset to evaluate the effectiveness
of the major design of the proposed NeRF-IBVS.

Effectiveness of coarse pose estimation. To guarantee excellent performance for subsequent pose
optimization, coarse pose estimation is required to output coarse poses and coarse 3D coordinates
near the target. Therefore, we evaluate the localization performance of coarse pose estimation on the
12-Scenes dataset. As shown in Table 6, our coarse pose estimation obtains poses and 3D coordinates
near the target (0.27m, 13.10◦), providing a good starting point for pose optimization.

We consider that the coarse poses and coarse 3D coordinates near the target when the position and
orientation error of the coarse pose reduces after pose optimization. To further verify the effectiveness
of coarse pose estimation, we count how often this happens. The specific quantitative results on the
12-Scenes dataset as shown in Table 5, the average frequency of coarse pose error reduction is greater
than 95%. Therefore, the coarse pose estimation consistently outputs results near the target.

Effectiveness of pose optimization. To verify the effectiveness of pose optimization, we compare the
overall NeRF-IBVS with a coarse pose estimation pipeline on 12-Scenes dataset. Localization result
in Table 6 shows that pose optimization (0.02m, 0.95◦) can significantly improve the localization
performance compared to coarse pose estimation (0.27m, 13.10◦).
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Table 5: Frequency of the coarse pose reduction after pose optimization on the 12-Scenes dataset.

12Scenes Kitchen1 Living1 Bed Kitchen2 Living2 Luke Gates362 Gates381 Lounge Manolis Office5a Office5b Average
Frequency 96.88% 99.59% 94.61% 96.67% 95.42% 97.76% 100.00% 95.16% 99.69% 90.46% 90.14% 91.60% 95.66%

Table 6: Average of median position and orientation error (m,◦) on the 12-Scenes dataset.

coarse pose estimation NeRF-IBVS w/0 correspondence selection NeRF-IBVS w/ correspondence selection

12-Scenes 0.27/13.10 0.09/3.73 0.02/0.95

Effectiveness of correspondence selection. To verify the effectiveness of correspondence selection,
we evaluate the localization performance of NeRF-IBVS without correspondence selection. The
results presented in Table 6 show that the NeRF-IBVS without correspondence selection downgrade
localization performance (0.09m, 3.73◦) compared to NeRF-IBVS with correspondence selection
(0.02m, 0.95◦). It demonstrates that correspondence selection can select the appropriate correspon-
dences for NeRF-IBVS and enhance the robustness of NeRF-IBVS to noise.

We also qualitatively analyze the effectiveness of correspondence selection. Coordinate error and
depth error of correspondences are generally prone to occur in areas with poor rendering quality. As
shown in Figure 5, the correspondence selection tends to choose correspondences that occur in areas
with good rendering quality, which can enhance the robustness of pose estimation.

Query Image Rendered Image Query Image Rendered ImageRendered Depth

(a) (b) (c)

Figure 5: Qualitative comparison on correspondence selection. (a) the correspondences are randomly
selected. The dashed red circles indicate the correspondences in the areas with poor rendering quality.
(b) the rendered depth is used to indicate depth error of correspondences. (c) the correspondences are
selected using correspondence selection algorithm.

6 Conclusion

We propose a novel localization framework that can achieve precise localization performance using
only a few posed images compared to other localization methods. We first use a few posed images
with coarse 3D labels provided by NeRF to train a coordinate regression network. The coarse pose
of the query image can be estimated by a coordinate regression network with the PNP algorithm.
Then, we optimize the coarse pose using IBVS based on NeRF representation to achieve accurate
localization performance. Further, our method can provide effective navigation prior, which can
enable IBVS-based navigation without using custom markers and the depth sensor. This advantage
greatly expands the application scope of IBVS-based navigation. To the best of our knowledge,
NeRF-IBVS is the first method that can accomplish both visual localization and navigation based on
IBVS, providing a novel idea for pose optimization by controlling camera motion.

Limitations. The quality of NeRF rendering is crucial for our method. Due to the poor rendering
quality of NeRF in large outdoor scenes compared to indoor scenes, our method is mainly applied
in indoor scenes. Moreover, due to the slow rendering speed of NeRF, our method cannot achieve
real-time performance. The proposed method also struggles with non-Lambertian and dynamic
objects since the NeRF performs poorly in these scenarios. In the future, the improved NeRF variants
can be used to improve the performance of our method.
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