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Abstract

Black-box optimization does not require any specification on the function to opti-
mize nor its gradient. As such, it represents one of the most general problems in
optimization, and is central in many areas such as hyper-parameter tuning. How-
ever in many practical cases, one must solve a sequence of black-box problems
from functions sampled from a specific class and hence sharing similar patterns.
Classical algorithms such as evolutionary methods would treat each problem in-
dependently and would be oblivious of the general underlying structure. In this
paper, we introduce MELBA (MEta bLack Box optimizAtion), an algorithm that
exploits the similarities among a given class of functions to learn a task-specific
solver that is tailored to efficiently optimize every function from this task. More
precisely, given a class of functions, the proposed algorithm learns a Transformer-
based Reinforcement Learning (RL) black-box solver. First, the Transformer em-
beds a previously gathered set of evaluation points and their image through the
function into a latent state. Then, the next evaluation point is sampled depending
on the latent state. The black-box solver is trained using PPO and the global regret
on a training set. We show experimentally the effectiveness of our solvers on vari-
ous tasks including the hyper-parameter optimization of machine learning models
and demonstrate that our approach is competitive with existing methods.

1 Introduction

Over the past decades, research on black-box optimization has focused on designing algorithms
agnostic to the type of problems they can solve. The idea behind this approach was to propose al-
gorithms that could solve as many optimization problems as possible. However, in many real-world
applications such as automated machine learning (Hutter et al., 2019) or asset and energy manage-
ment (Waring et al., 2020; Salimans et al., 2017; Alarie et al., 2021), it is often the case that a
similar optimization problem is solved again and again, maintaining the same problem structure but
differing in the input data. Moreover, as it has long been known by the celebrated No Free Lunch
Theorems for Optimization (Wolpert and Macready, 1997), averaged over all problems, the cost of
finding a solution is the same for any optimization algorithm. Thus, whenever an algorithm is effi-
cient on vast classes of problems, it is suboptimal on a more specific class of functions. Following
this, we propose to directly learn black-box solvers which are tailored to optimize a specific class of
functions. To do so, it is necessary to (1) define a class of algorithms that can be learned and act as
black-box solvers and (2) define a way to learn these algorithms, despite the fact that the gradients of
the functions are unavailable. To overcome these challenges, we first propose to learn an expressive
latent representation of the optimization problem using Transformers. Secondly, we show how to
train this model by casting the problem as a RL instance to overcome the non-diffentiability. Com-
bining these ideas, we propose a meta-algorithm called MEta bLack Box optimizAtion (MELBA)

∗This work was partially done while the author was at Huawei.

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.



which aims at optimizing task-specific black-box functions through meta-learning and we show ap-
plications to hyper-parameter optimization of Machine Learning algorithms.

2 Meta-learning for black-box optimization: problem formulation

We consider the problem where we wish to find the maximum of a black-box function f : X → R
defined on some input space X ⊂ Rd, which is assumed to be sampled from a known class function
distribution F of potentially non-convex and non-differentiable functions. Here, the only thing we
assume is that for any black-box function f ∼ F from the distribution, we can query its values at
any point of the input domain X but we do not have access to its gradient. This setting corresponds,
for example, to the case where we wish to design a specific algorithm that can optimize the hyper-
parameters of an SVM trained on a dataset: choosing a dataset would correspond to sampling a
function f ∼ F , and training the SVM on some arbitrary hyper-parameters would correspond to
querying the value of the function at some point. As an example, Figure 1 displays the opposite of
the cross-validation error as a function of the two parameters of a SVM on three different datasets
showing strong similarities. To solve this type of problems, most standard black-box optimization
(BBO) algorithms rely on a sequential procedure, denoted here by A, that starts with no gathered
observations on the function (o0 = {}), and iterates as follow: (1) select a candidate solution xn+1

that depends on the information gathered so far on; , (2) evaluate the objective function (e.g. the
opposite of the cross validation error) at the candidate solution f(xn+1); and (3) update information
gathered so far on+1 ← on ∪ {(xn+1, f(xn+1))}, n ← n + 1. In practice, the performance of an
algorithm A on a black-box function f with a budget of N iterations is generally measured through
the difference between the true value of the optimum and the maximum found so far:

r(A, f,N) := f∗ − max
i=1...N

f(xi) , (1)

where f∗ = maxx∈X f(x) and x1, . . . , xN denotes the series of evaluation points chosen by the
algorithm A. Thus, given the a priori knowledge that the objective is sampled from a distribution F ,
we can measure the meta-loss of the algorithm A on the class function distribution F with a budget
of N evaluations as follows:

R(A,F , N) :=

∫
f∼F

r(A, f,N)df. (2)

In this paper, we investigate the problem of finding the best algorithm A∗ that minimize the meta-
error for a class of problemsF by minimizing the meta-loss R(A,F , N). Since it is assumed that we
have access to the distribution F , a natural approach would be to minimize its empirical counterpart:

A∗(F , N) ∈ argmin
A∈Alg

1

M

M∑
j=1

r(A, fj , N) , (3)

where f1, . . . , fM are independent problems sampled from the distributionF and Alg denotes the set
of all sequential black-box algorithms. However, this approach suffers from two major drawbacks:
(1) how do we define a class of trainable parametrized algorithms Alg large enough to effectively
learn efficient sequential algorithms? and (2) how do we perform the optimization over (3) when the
quantities r(A, fj , N) depends on black-box functions fj for which the gradient is not available?
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Figure 1: Examples of three objective functions f1, f2, f3 corresponding to the opposite of the cross-
validation error of a SVM as a function of the hyper-parameters on three different datasets where the
x-axis denotes the regularization parameter and y-axis denotes the bandwidth parameter in log-scale.
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Algorithm 1 MELBA (MEta bLack Box optimizAtion)

Require: Class function distribution F ; BBO budget N ; meta iterations M
1: Initialize belief function BθT and policy πθP
2: for i = 1 to M do ▷ Outer meta-loop: learning the solver
3: fi ∼ F , o0 = {}, fmax = −∞, τ = {}
4: for n = 0 to N − 1 do ▷ Inner meta-loop: applying the solver
5: zbn = BθT (on) ▷ Compute latent belief state
6: xn ∼ πθP (·|zbn) ▷ Sample a candidate solution
7: fmax = max(fmax, fi(xn)) ▷ Evaluate and update max observed so far
8: cn = f∗ − fmax ▷ Compute reward
9: on+1 = on ∪ {(xn, fi(xn)} ▷ Update information gathered so far

10: τ = τ ∪ {(on, xn, rn, on+1)} ▷ Update RL trajectory
11: end for
12: Compute PPO objective LRL(τ)
13: Update πθP , BθT according to LRL(τ) ▷ Gradient descent steps
14: end for

3 Meta-learn problem-specific solvers through reinforcement learning

Using Transformers to define a class of learnable algorithms. First, in order to solve (3), we
define a large class of algorithms Alg through the use of Transformers. More precisely, at any time
n ≤ N , based on the set of previously evaluated points on = ((x1, f(x1)), . . . , (xn, f(xn))), an
algorithm A selects the next evaluation points xn+1 based on the history on. One general way to
formalize this process is to consider algorithms (without loss of generality) that sample the next
points according to a Gaussian distribution with learnable parameters:

xn+1 ∼ πθP (·|zbn) = N (µθP (z
b
n),ΣθP ) , (4)

where zbn denotes a latent representation of the current observations on, and µθP ,ΣθP are two learn-
able functions (e.g. feed-forward networks) that represent the mean and covariance matrix of the
gaussian. Inspired by (Xiang and Foo, 2021), the idea here is to learn a latent representation zbn of
the current information on informative enough such that the more evaluated points, the less uncertain
the belief. To take the information on into account, a natural approach is to consider a state-of-the-art
model such as the Transformer architecture (Vaswani et al., 2017) which allows us to compute pair-
wise interactions between the collected evaluation points. Formally, the parametrized belief function
BθT embeds the set of observations on = {(xi, f(xi))}i∈{1,...n} in a latent space through several
layers of Transformer encoders. Finally, the final representations are averaged to provide the belief
latent representation zbn = BθT (on) which is used as the input of the algorithm πθP through µθP
instead of the raw observation on.

Minimizing the meta-loss using reinforcement learning. Second, equipped with the class of
learnable algorithms, the first potential idea is to directly differentiate the loss (3) that assesses
the performance of the learned algorithm as in (TV et al., 2019; Chen et al., 2016). However,
to differentiate (3), it is necessary for the functions f1, . . . , fM in F to be differentiable, which
greatly restricts the range of applications of the meta-approach to black-box functions. With these
considerations in mind, RL appears as a natural way to optimize this non-differentiable loss. Indeed,
similarly to RL problems, our framework relies on optimizing a parametrized algorithm (here the
policy πθP ) to minimize the observed error (here the regret (1)) that is not necessarily differentiable.
Our algorithm is thus optimized in a RL fashion by computing the standard surrogate loss LRL of
the Proximal Policy Optimization (PPO, Schulman et al. (2017)) and performing gradient descent,
learning together the Transformer parameters θT and the policy parameters θP . As classical meta-
learning approaches, our algorithm called MELBA (Algorithm 1) consists in two optimization loops:
an outer meta-loop optimizing the parameters of the learned solver by gradient descent (line 2); an
inner meta-loop optimizing the black-box function with the current parametrized solver (line 4).
More precisely, the outer loop contains the optimization of a meta-loss that is designed to learn the
optimization algorithm over F .
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Figure 2: Performance of the algorithms on the hyper-parameter optimization problems.

4 Experimental evaluation

Algorithms. Random Search (RS) is the standard random search method. CMA-ES is a state-of-
the-art evolutionary algorithm that samples the next evaluation points according to a multivariate nor-
mal distribution. Bayesian Optimization (BO) builds a surrogate model of the black-box function
and chooses points according to an acquisition function that trades off uncertainty and best known
regions. SMAC (Lindauer et al. (2022)) is an extension of BO adapted to a mix of categorical and
continuous parameters and several instances. MELBA, our algorithm, the policy is parametrized
by a 512-dimension latent space, a four-layer Transformer encoder with four heads followed by two
fully connected layers. Details regarding the experiments are provided in the Appendix. Lastly, we
point out that HypRL (Jomaa et al. (2019)), a pioneering previous work on hyper-parameter opti-
mization using RL similar to our approach, uses LSTMs (Hochreiter and Schmidhuber (1997)) to
treat sequentially the hyper-parameters evaluated so far and Q-Learning (Mnih et al. (2013)) to learn
a discrete policy over a discrete grid. However, MELBA is designed for continuous systems while
HypLR is tailored to grids of discrete values. Moreover, HypRL considers the sequential aspect of
the previous candidates by using LSTMs while MELBA considers them as a set of points. Finally,
HypRL adds meta-features associated to the dataset which are not available in our benchmark. For
these reasons, we did not compare MELBA to HypRL, but point out that it is a similar approach.

Test problems. Support Vector Machines (SVM). This problem consists of learning an algorithm
specifically tailored to optimize the hyper-parameters of an SVM. Precisely, the parameters to be
optimized are the regularization constant 10 log(C) and the bandwidth 10 log(γ) of the Radial Basis
Function kernel for any dataset. Fully Connected Networks (FCNet). This problem consists of
finding the parameters that define the architecture of dense neural network to perform classification:
learning rate, batch size, the width of the first layer, the width of the second layer, the dropout rates
for the first and second layer. XGBoost. This problem consists of finding the hyper-paramaters of an
XGBoost (Chen and Guestrin, 2016) regardless of the dataset. The hyper-parameters are: the learn-
ing rate, gamma, res_alpha, reg_lambda, n_estimators, sub_sample, max_depth, min_child_weight.
In all of the benchmarks, The parameters were rescaled to be in X = [−1, 1]d, d being the dimen-
sion. We used the benchmarking suite for hyper-parameter optimization called PROFET (Klein et al.,
2019), which uses generative models to create realistic tasks, allowing to query the value at some
point in the space of the black-box functions f1, . . . , fM that represents the metric of the trained
model as a function of its hyper-parameters corresponding to the above problems. Each instance of
MELBA has been trained on M = 970 test problems with a budget of N = 50 evaluations.

Performance metrics and discussion. For each algorithm A and each task F , we computed the
regret R(A,F , n) = 1

M

∑M
j=1 r(A, fj , n) for each iteration n ≤ N where f1, . . . , fM are randomly

sampled from the family of functions F and unseen during the training phase with M = 30. Re-
sults are displayed in Figure 2. MELBA shows high-performance compared to the baselines on all
tasks, outperforming CMA-ES and SMAC on all tasks. It outperforms RS on all tasks but the SVM
one where it has comparable performance. MELBA outperforms BO on XGBoost while having
comparable performances on SVM and FCNet. We observe that MELBA finds a significantly better
solution than the competitors within only 10 function evaluations. Then, MELBA is slightly over-
taken by BO on SVM and FCNet. In the case of XGBoost, the MELBA is efficient and reaches
a better value in 20 steps than the results reached by competitors in 50 steps. These promising re-
sults outline the relevance of learning task-specific solvers with Meta-learning for hyper-parameter
optimization. Finally, methods suchs as BOHB (Falkner et al., 2018) detect early in training if a
candidate will perform poorly by combining Bayesian Optimization with hyperband. Future works
will focus on such combination with MELBA to prune, early in training, poor candidates.
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A Time Complexity of MELBA vs BO

The time complexity of one iteration of MELBA in comparison with Bayesian Optimization is pre-
sented in table 1. We show that MELBA’s time complexity is quasi-constant with the dimension and
that it is from 70 times faster in dimension 2 to more than 150 times faster in dimension 8. This is
due to the inner maximization of the acquisition function in BO. Furthermore, time complexity is
almost constant with the dimension in our approach while getting higher and higher in BO. This is
a significant advantage of our approach.

Benchmark Dimension MELBA BO
SVM 2 0.08 5.66

FCNet 6 0.08 10.68
XGBoost 8 0.08 12.51

Table 1: Average time of an iteration (in seconds) of MELBA instances vs Bayesian Optimization
as a function of the dimension

B Details of the experimental section

The PROFET HPO benchmark (Klein et al., 2019) has been introduced to allow more reproducible
research in AutoML. It avoids heavy and time-consuming training computations when testing HPO
methods. Each HPO task is created thanks to some generative model fitted on some results of true
training datasets. The generative model, then, allows to infer the value of the targeted metric (MSE
or classification error) on unseen and continuous values of hyperparameters.

C Hyperparameter validation

In this section, we provide the technical details of our implementation and the hyperparameters we
used for our experiments.

C.1 Proximal Policy Optimization algorithm and Transformer encoder

We validated the hyperparameters of our framework (both PPO and the Transformer encoders) by
random search on each benchmark over a discrete grid of predefined values. Grids are presented in
tables 2 and 3 for PPO and the attention network architecture respectively. We train all the models
on 1000000 time-steps.

Name Values
Learning rate 3× 10−3, 3× 10−4, 1× 10−4, 7.5× 10−5, 3× 10−5

N steps 32, 64, 128, 256, 512, 1024, 2048, 4092
Batch size 4, 8, 16, 32, 64, 128, 256

Epochs 10, 20, 30
Gamma 0.8, 0.9, 0.99

Clip range 0.1, 0.2, 0.3
Entropy coefficient 0.01, 0.001, 0

Value function coefficient 0.5, 0.7, 1

Table 2: Grid over PPO hyperparameters.

Tables 4 and 5 provide the hyperparameters selected for each benchmark for the PPO algorithm and
the network architecture respectively:

C.2 Baselines

To run CMA-ES, we used the same values as in Klein et al. (2019), i.e., σ = 0.6 as the initial
standard deviation and 10 for the population size. We used the pymoo library (Blank and Deb, 2020)
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Name Values
Encoder layers 1, 2, 4, 8

Fully connected layers 1, 2, 4, 6
Hidden heads 1, 2, 4, 8

Feedforward dimension 32, 64, 128, 256, 512, 1024
Latent representation dimension 32, 64, 128, 256, 512, 1024

Dropout 0, 0.1, 0.2, 0.4, 0.8

Table 3: Grid over the Transformer encoders hyperparameters.

Benchmark Learning rate N steps Batch size Epochs Gamma Clip range Entropy Coefficient Value function coefficient
SVM 0.0001 512 32 10 0.99 0.1 0 0.7

‘ FCNet 0.0003 512 32 10 0.99 0.1 0 0.7
XGBoost 0.000075 512 32 10 0.99 0.1 0 0.7

Table 4: PPO hyperparameters for each benchmark

Benchmark Encoder layers Fully connected layers Hidden heads Feedforward dimension Latent representation dimension Dropout
SVM 4 2 4 256 256 0.1
FCNet 4 2 4 256 256 0.1

XGBoost 4 2 4 512 512 0.1

Table 5: Transformer encoders hyperparameters for each benchmark

implementation. For the Bayesian Optimization baseline, we used the Expected Improvement as the
acquisition function and we used the implementation of Scikit-Optimize (Head et al., 2018).

D Computational details

All the experiments, both training and inference, were done on a Tesla P100 GPU. During training,
we used multiprocessing with 8 CPUs to run 8 parallel environments.

E Ablation studies

In this section, we present some ablation studies on the impact of the Transformer architecture. For
this purpose, we compare the results obtained on the different benchmarks with our architecture
against Deep Set (Zaheer et al., 2017) which consists of shared fully connected layers with every
element in the set of evaluated points. The experimental protocol is the same as in the main results.
The Deep Set model consists of 4 fully connected layers with 512 neurons. The results are shown in
figures 3 for the HPO benchmarks. These demonstrate the importance of the attention mechanism
since the Transformer encoders outperform Deep Set consistently.
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Figure 3: Ablation study on the PROFET HPO benchmarks.
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