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ABSTRACT

Message-passing graph neural networks have become the dominant framework for
learning over graphs. However, empirical studies continually show that message-
passing graph neural networks tend to generate over-smoothed representations for
nodes after iteratively applying message passing. This over-smoothing problem
is a core issue that limits the representational capacity of message-passing graph
neural networks. We argue that the fundamental problem with over-smoothing is
a lack of diversity in the generated embeddings, and the problem could be reduced
by enhancing the embedding diversity in the embedding generation process. To
this end, we propose genetic-evolutionary graph neural networks, a new paradigm
for graph representation learning inspired by genetic algorithms. We view each
layer of a graph neural network as an evolutionary process and develop operations
based on crossover and mutation to prevent embeddings from becoming similar to
one another, thus enabling the model to generate improved graph representations.
The proposed framework has good interpretablility, as it directly draws inspiration
from genetic algorithms for preserving population diversity. We experimentally
validate the proposed framework on six benchmark datasets on different tasks.
The results show that our method significant advances the performance current
graph neural networks, resulting in new state-of-the-art results for graph represen-
tation learning on these datasets.

1 INTRODUCTION

Graphs are a general data structure for representing and analyzing complex relationships among
entities. Many real-word systems, such as social networks, molecular structures, communication
networks, can be modeled using graphs. It is essential to develop intelligent models for uncovering
the underlying patterns and interactions within these graph-structured systems. Recent years have
seen an enormous body of studies on learning over graphs. The studies include graph foundation
models, geometry processing and deep graph embedding. These advances have produced new state-
of-the-art or human-level results in various domains, including recommender systems, chemical
synthesis, and 2D and 3D vision tasks (Zhang et al., 2024; Xie et al., 2024; Chen et al., 2024; Kim
et al., 2023).

Graph neural networks have emerged as a dominant framework for learning from graph-structured
data. The development of graph neural network models can motivated from different approaches.
The fundamental graph neural network was been derived as a generalization of convolutions to
non-Euclidean data (Bruna et al., 2014), as well as by analogy to classic graph isomorphism tests
(Hamilton et al., 2017). Regardless of the motivations, the defining feature of the graph neural
network framework is that it utilizes a form of message passing wherein messages are exchanged
between nodes and updated using neural networks (Hamilton, 2020). During each graph neural
network layer, the model aggregates features from a node’s local neighbourhood and then updates
the node’s representation according to the aggregated information.

Message passing is at the heart of current graph neural networks. However, this paradigm of mes-
sage passing also has major limitations. Theoretically, it is connected to the Weisfeiler-Lehman
(WL) isomorphism test as well as to simple graph convolutions. The representational capacity of
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message-passing graph neural networks is inherently bounded by the WL isomorphism test. Empir-
ical studies continually find that massage-passing graph neural networks suffer from the problem of
over-smoothing. That is, the representations for all nodes can become very similar to one another
after too many message passing iterations. These core limitations prevent graph neural networks
from more meaningful representations from graphs. In recent years, increasing studies have been
devoted to addressing the bottlenecks, such as normalization and regularization techniques (?), and
combining the global self-attention mechanism (Rampasek et al., 2022), exploring generalized mes-
sage passing (Barceló et al., 2020). Regardless of these advances, improving the capability of graph
neural network models still remains a fundamental challenge in learning from graph-structured data.

To learn meaningful graph representations, it is crucial to generate embeddings for all nodes that
depend on both the graph structure and node attributes. However, when the over-smoothing phe-
nomenon occurs, the representations for all nodes begin to look identical to each other. The conse-
quence is that the information from node-specific features becomes lost. To prevent this issue, it is
important to perserve the diversity of generated embeddings throughout their layerwisely generation
process. In this paper, we propose genetic-evolutionary graph neural networks, a new paradigm
for graph representation learning that integrates the idea from genetic algorithms for maintaining
population diversity into the message-passing graph neural network framework.

Genetic algorithms, inspired by the Charles Darwin’s theory of natural evolution, emulate the pro-
cess of natural selection, wherein the fittest individuals are selected to reproduce and generate the
next generation of offspring. Genetic algorithms employ a set of evolution-inspired operations, in-
cluding mutation, crossover, and selection (Mitchell, 1998). Over multiple generations, biological
organisms evolve based on the principle of natural selection, or “survival of the fittest”, enabling
them to accomplish target tasks. Genetic algorithms have been successfully applied in solving com-
plex optimization and search problems. In machine learning, genetic algorithms have also been
used for feature selection (Babatunde et al., 2014) and hyperparameter tuning for models like neural
networks and support vector machines (Alibrahim & Ludwig, 2021).

In genetic algorithms, the crossover and mutation operations play a key role in generating diverse
individuals for selection, preventing the algorithms from premature convergence (Gupta & Ghafir,
2012). Crossover introduces variety by combining genetic information from different parents, and
mutation introduces small random changes in genetic information. In this work, we view the itera-
tive node embedding process as an evolutionary process, in which each layer of message passing
produces a new generation of embeddings. We introduce two crossover operations, i.e., cross-
generation crossover and sibling crossover, and a mutation operation, and we develop two graph
neural network building blocks based on the operations. At each layer of a graph neural network,
we first use message passing to update node representations and then apply crossover and muta-
tion to prevent embeddings from becoming similar to one another, thus enabling the model to learn
improved graph representations.

Unlike previous methods, such as residual connections (He et al., 2016), SSFG (Zhang et al., 2022)
and PairNorm (Zhao & Akoglu, 2020), this work proposes operations by drawing inspiration from
genetic algorithms for addressing the over-smoothing problem in graph neural network. Our frame-
work has good interpretablilty as it views the layerwisely node embedding process as analogous to
the genetic evolutionary process.. It is a general paradigm that can be integrated into different graph
neural network models. We conduct experiments on six benchmark datasets on different graph
tasks. We show that the use of our framework significantly improves the performance of the base-
line graph neural networks, advancing the state-of-the-art results for graph representation learning
on the datasets.

The main contributions of this paper can be summarized as follows. (1) This paper proposes a new
framework named genetic-evolutionary graph neural networks for learning from graph-structured
data. The core idea behind the proposed framework is to model each layer of a graph neural network
as an evolutionary process. We develop three key operations inspired by crossover and mutation
from genetic algorithms to enhance the diversity of generated embeddings at each layer. (2) The
proposed framework offers good interpretability, as it is directly inspired by biogenetics. It is a
general paradigm which can be integrated into current message-passing graph neural networks. Em-
pirical evaluations are conducted on six popular datasets on different graph tasks, and the results
demonstrate that the proposed framework significantly improves the performance of the baseline
graph neural networks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Most current graph neural networks can be categorized into spectral approaches and spatial ap-
proaches (Veličković et al., 2018). The spectral approaches are developed based on spectral graph
theory. The key idea of spectral graph neural networks is that convolutions are defined in the spectral
domain through an extension of the Fourier transform to graphs. In contrast, spatial graph neural
networks define convolutions in spatially localized neighbourhoods. The behaviour of the convolu-
tions is analogous to that of kernels in convolutional neural networks which aggregate features from
spatially-defined patches in an image.

Both spectral and spatial graph neural networks are essentially message-passing neural networks
that employ a paradigm of message passing wherein embeddings are exchanged between nodes and
updated using neural networks (Gilmer et al., 2017). A common issue with message-passing graph
neural networks is known as the over-smoothing problem. This issue of over-smoothing was first
identified by Li et al. (2018). It can also be viewed as a consequence of the neighbourhood aggrega-
tion operation in the message-passing update (Hamilton, 2020). The follow-up studies for limiting
over-smoothing include graph normalization and regularization techniques (Zhao & Akoglu, 2020;
Chen et al., 2022), combing the global self-attention with local message passing (Rampasek et al.,
2022), and improved graph attention approaches (Wu et al., 2024). Additionally, there have been
studies on uncovering over-smoothing in basic graph neural network models from theoretical analy-
sis (Oono & Suzuki, 2020). Luan et al. (2024) analyzed homophily by studying intra- and inter-class
node distinguishability and showed that graph neural network is capable of generating meaningful
representations regardless of homopiily levels.

2.2 GENETIC ALGORITHMS

Genetic algorithm methods are inspired by the mechanisms of evolution and natural genetics (Srini-
vas & Patnaik, 1994). Genetic algorithms were first introduced by Holland (1992) as a heuristic
method based on the principle of nature selection. Over the past years, genetic algorithms have
emerged as a powerful tool for solving complex optimization and search problems across numerous
fields such as scheduling, mathematics and networks (Alhijawi & Awajan, 2023).

In machine learning, genetic algorithms have been applied for optimizing neural networks (Miller
et al., 1989) and designing neural network architectures (Jones, 1993). Researchers have also used
genetic algorithms for optimizing hyperparameters in neural networks and support vector machines
(Alibrahim & Ludwig, 2021; Shanthi & Chethan, 2022). In object detection, hyperparameter evolu-
tion which uses a genetic algorithm was applied for optimizing hyperparameters in YOLO models
(Redmon, 2016). Sehgal et al. (2019) showed that evolving the weights of a deep nerual network
using a genetic algorithm was a competitive approach for training reinforcement learning models.

3 METHODOLOGY

3.1 GRAPH NEURAL NETWORKS

A graph G = (V, E) can be defined through a set of nodes V and a set of edges E between pairs of
these nodes. Each node u ∈ V is associated with a node-level feature xu. Graph neural networks
are a general framework for reorientation learning over the graph G and {xu,∀u ∈ V}. At its core,
the graph neural network framework iteratively updates the representation for every node using a
form of message passing. During each message-passing iteration, each node u ∈ V aggregates
the representations of the nodes in its neighborhood, and the representation for node u is then up-
dated according to the aggregated representation. Following Hamilton (2020), this message-passing
framework can be expressed as follows:

h(k)
u = Update(k)

(
h(k−1)
u , Aggregate(k)({h(k−1)

v ,∀v ∈ N (u)})
)
, (1)

where Update and Aggregate are neural networks, andN (u) is the set nodes in u’s neighbourhood.
The superscripts are used for distinguishing the embeddings and functions at different iterations. At
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Crossover
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0 0 1 1 1 0 0

Mutation

Figure 1: Crossover recombines of the genetic information of parents to produce an offspring. Mu-
tation introduces small random changes in genetic information.

each iteration k, the Aggregate function takes the set of embeddings of nodes inN (u) as input and
generates an aggregated message m

(k)
N (u). The Update function then generates the updated embed-

ding for node u based on the message m(k)
N (u) and u’s previous embedding h

(k−1)
u . The embeddings

at k = 0 are initialized to the node-level features, i.e., h(0)
u = xu,∀u ∈ V . After K iterations of

message passing, every node embedding contains information from its K-hop neighborhood.

This message passing formalism is currently the dominant framework for learning over graphs.
However, a common issue with message-passing graph neural networks is over-smoothing. The idea
of over-smoothing is that the embeddings for all nodes begin to become similar and are relatively
uninformative after too many rounds of message passing. This issue of over-smoothing can be
viewed as a consequence of the neighborhood aggregation operation. Li et al. (2018) showed that
the graph convolution of the basic graph convolutional network model (Kipf & Welling, 2016) can be
seen as a special form of Laplacian smoothing that generates the representation for every node using
the weighted average of a node’s itself and its neighbours’ embeddings. But after applying too many
rounds of Laplacian smoothing, the representations for all nodes will become indistinguishable from
each other. From the graph signal processing perspective, multiplying a signal by high powers of the
symmetric normalized adjacency matrix Asym = D− 1

2AD
1
2 , which corresponds to a convolutional

filter the lowest eigenvalues, or frequencies, of the symmetric normalized Laplacian Lsym = 1 −
Asym. Thus, the simple graph neural network that stacks multiple rounds of graph convolution
converges all the node representations to constant values within connected components on the graph,
i.e., the “zero-frequency” of the Laplacian (Hamilton, 2020).

3.2 GENETIC-REVOLUTIONARY GRAPH NEURAL NETWORKS

3.2.1 MOTIVATION

In the above, we discussed the over-smoothing problem in message-passing graph neural network.
We see that the fundamental issue is the loss of diversity of embeddings at each layer throughout
the generation process. Thus, we can view the trade-off between model performance and depth of
popular graph neural network models from this perspective. Graph neural networks need to model
complex relationships and long-term dependencies using more layers to improve the performance.
However, using using too many layers will eliminate node-specific features, which leads to signifi-
cantly reduced model performance.

Graph neural networks generate embeddings for nodes through an iterative message-passing pro-
cess. At each message-passing iteration, the representation for every node is updated according to
the information information aggregated from the node’s graph neighbourhood. We can view this
iterative process as an genetic evolutionary process, wherein graph nodes are individuals of a pop-
ulation, and the model is to evolve a population of nodes over multiple generations to obtain their
expressive representations for graph tasks.

In genetic algorithms, a very homogeneous population, i.e., little population diversity, is considered
as the major reason for premature converging to suboptimal solutions (Whitley, 2001). Therefore,
it is crucial to preserve the diversity of population during the evolutionary process. Similarly, we
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need to maintain the diversity of generated embedding in their generation to prevent the model from
converging to a local optimum in optimization.

To preserve the population diversity, genetic algorithms use the operators of crossover and mutation
to generate diverse individuals and select those best fit the environment to evolve over successive
generations. The crossover operation recombines of the characteristics of each ancestor of an off-
spring, and the mutation operation randomly changes the genetic information to increase the vari-
ability (see Figure 1). In a similar manner, we can generalize the mechanisms to the embedding
generation process. By integrating crossover and mutation methods within the message-passing
framework, we can prevent generated embeddings from becoming too similar to each other. This
ultimately would enhance the model representational capacity.

3.2.2 IMPROVING GRAPH NEURAL NETWORKS WITH GENETIC OPERATIONS

We view each layer of a graph neural network as a genetic evolution process, in which the nodes
represent individuals of a population and their embeddings represent chromosomes that store ge-
netic information. During each graph neural network layer, we first use message passing to update
the embeddings for all nodes and then use genetic operations to increase the diversity of gener-
ated embeddings. We propose three operations inspired by genetic algorhtms: (1) cross-generation
crossover, (2) sibling crossover, and (3) mutation.

Genetically, crossover is a process in which the genetic information of two parents is recombined to
produce new offspring, resulting in the exchange of genetic material between parental chromosomes.
This mechanism forms the basis for driving biological variation, shaping differences in traits within
species and introducing novel traits previously unseen in a population. It basically helps promote
the evolutionary process by enabling novel gene combinations to emerge and spread across gener-
ations. Fundamentally, this process creates diversity at the level of genes that reflects difference in
chromosomes of different individuals.

Cross-generation crossover. Similar to crossover in genetics, the cross-generation operation in
our framework recombines the embedding for a node generated by message-passing and the node’s
previous layer embedding. For h

(k)

u = (h
(k)

u,1, ...,h
(k)

u,d) and h
(k−1)
u = (h

(k−1)
u,1 , ...,h

(k−1)
u,d ) which

represent the embedding for node u generated by message passing and u’s previous layer embedding,
cross-generation crossover can be expressed as follows:

h(k)
u = Crossover(h

(k)

u ,h(k−1)
u )

where h
(k)
u,i =

{
h
(k)
u,i if λi < p

h
(k)

u,i else
,

(2)

and λi ∼ U(0, 1) and p is a probability indicating information from the previous layer embedding.
At each dimension, the feature is randomly selected from the embedding generated using mes-
sage passing or from the embeding inputted to this layer. Because each round of message passing
generates a smoothed version of the input, recombining information from a node’s previous layer
embedding reduces the smoothness of the generated embeddings. This operation is a parameter-free
method and can be integrated into current graph nerual networks.

Sibling crossover is an operation that randomly selects information from siblings. In our impelmen-
tation, we generate multi-head outputs using message passing as siblings and update the embedding
for a node by randomly selecting information from the multi-head outputs.

h(k)
u = Crossover(h

(k,head1)

u , ...,h
(k,headz)

u )

where h
(k)
u,i = h

(k,hij)

u,i ,
(3)

hij ∼ Categorical( 1z , ...,
1
z ), and z is the number of heads. Each h

(k,headh)

u in the multi-head
outputs represents a sibling generated using the same input. This operation also increases individual
diversity by randomly combining information from different siblings.

Mutation is the process in which some genes of individuals are randomly changed. In our frame-
work, the feature at each dimension is randomly replaced by a value sampled from a Gaus-
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Algorithm 1 Pseudocode for cross-generation crossover in a PyTorch-like style.

# h, h_in: representaton generated by message passing and the previous layer embedding
# f_prob: probabilty of recombining information from parent
# self.dist: a Bernoulli distribution defined by torch.distributions.Bernoulli(torch.tensor(

self.f_prob)):

def forward(self, h, h_in):

if self.training == True:
crossover_mask = self.dist.sample(h.shape) # generate crossover mask

# crossover from h and h_in
h = h_in * crossover_mask + h * (1 - crossover_mask)

else:
h = h_in * self.f_prob + h * (1 - self.f_prob)

return h

Algorithm 2 Pseudocode for mutation in a PyTorch-like style.

# self.running_mean: the mean of h over the training set
# self.running_var: the variance of h over the training set
# self.mutation_prob: probility of mutation

def forward(self, h):
if self.training == True:

mean = h.mean([0])
var = h.var([0])
n = h.numel() / h.size(1)

with torch.no_grad():
# momentum update of running_mean and running_var
self.running_mean = self.momentum * mean + (1 - self.momentum) * self.running_mean
self.running_var = self.momentum * var * n / (n - 1) + (1 - self.momentum) * self.

running_var

# generate mutatioin noise
gaussian_noise = torch.randn(h.shape)

if self.training == True:
mutation_mask = Bernoulli.sample(h.shape) # generate mutation mask
h = (gaussian_noise * self.running_var + self.running_mean) * mutation_mask + h * (1 -

mutation_mask)
else:

h = self.running_mean * self.mutation_prob + h * (1 - self.mutation_prob)

return h

sian distribution, wherein the statistics are calculated using batches. For a batch of m vectors
B = {h1

u,h
2
u, ...,h

m
u }, we calculate the mean µ and variance δ of the feature over the training

set as follows.
µ← EB(µB)

δ ← m

m− 1
EB(δ

2
B)

(4)

where µB and δ2B are the mean and variance of the batch B. Here we use the unbiased variance
estimate. Then we randomly sample a vector γ from a multivariate Gaussian distribution N(0, I)
and update the feature as follows:

h̃i
u = (γδ + µ)mask+ hi

u(1−mask) (5)

where the mask ∼ Bernoulli(mutation rate). The mutation operation is also a parameter-free
method. It basically introduces randomness to features as a regularization method, enabling the
model to explore new space for optimization.

3.3 MODEL ARCHITECTURE

Algorithm 1 and Algorithm 2 show our Pytorch-style pseudo-code for the cross-generation crossover
operation and mutation operation respectively. The code for sibling crossover can be easily adapted
from Algorithm 1. We design two building blocks based on the cross-generation crossover operaton
and sibling crossover operation (see Figure 2). The first building block applies the cross-generation

6
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Figure 2: Building block architectures: Block (a) applies cross-generation to a node’s embedding
generated using message passing and the node’s previous layer embedding, and Block (b) applies
sibling crossover to a set of outputs generated using multi-head message passing.

Table 1: Classification accuracy (%) on MNIST and CIFAR10 on the superpixel graph classification
task. The cross-generation crossover and mutation operations are applied to the base GPS model.

Model MNIST CIFAR10

GCN (Kipf & Welling, 2016) 90.705±0.218 55.710±0.381
MoNet (Monti et al., 2017) 90.805±0.032 54.655±0.518
GraphSAGE (Hamilton et al., 2017) 97.312±0.097 65.767±0.308
GIN (Xu et al., 2019) 96.485±0.252 55.255±1.527
GCNII (Chen et al., 2020) 90.667±0.143 56.081±0.198
PNA (Corso et al., 2020) 97.94±0.12 70.35±0.63
DGN (Beaini et al., 2021) – 72.838±0.417
CRaWl (Toenshoff et al., 2021) 97.944±0.050 69.013±0.259
GIN-AK+ (Zhao et al., 2021) – 72.19±0.13
3WLGNN (Maron et al., 2019) 95.075±0.961 59.175±1.593
EGT (Hussain et al., 2022) 98.173±0.087 68.702±0.409
GatedGCN + SSFG (Zhang et al., 2022) 97.985±0.032 71.938±0.190
EdgeGCN (Zhang et al., 2023) 98.432±0.059 76.127±0.402
Exphormer (Shirzad et al., 2023) 98.550±0.039 74.754±0.194
TIGT (Choi et al., 2024) 98.230±0.133 73.955±0.360
RandAlign + GatedGCN (Zhang & Xu, 2024) 98.512±0.033 76.395±0.186

GCN (Rampasek et al., 2022) 90.705±0.218 55.710±0.381
Ours + GCN 95.926±0.031 59.157±0.130
GPS (Rampasek et al., 2022) 98.051±0.126 72.298±0.356
Finetuned GPS 98.186±0.107 75.680±0.188
Ours + Finetuned GPS 98.685±0.029 80.636±0.195

crossover after message passing, followed by the mutation operation. Note that this building block
is compatible with different graph neural network models and it does not introduce additional train-
able parameters. The other building block applies sibling crossover to a set of multi-head outputs,
followed by the mutation operation. This method requires the model to generate multiple siblings
using a multi-head message passing.

The embedding generation process takes the graph G = (V, E) and features for all nodes xu,∀u ∈ V ,
as input. This is followed by K building blocks that generate hidden embeddings. Finally, a readout
function is applied to the output of the last block to generate the graph representation. For node-level
tasks, the embeddings generated by the last block are directly used.
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Table 2: Results on PascalVOC-SP and COCO-SP on the node classification task. The cross-
generation crossover and mutation operations are applied to the base GPS model.

Model PascalVOC-SP COCO-SP
(F1) (F1)

GCN Kipf & Welling (2016) 0.1268±0.0060 0.0841±0.0010
GINE Hu et al. (2019) 0.1265±0.0076 0.1339±0.0044
GCNII Chen et al. (2020) 0.1698±0.0080 0.1404±0.0011
GatedGCN Bresson & Laurent (2017) 0.2873±0.0219 0.2641±0.0045
GatedGCN + RWSE (Rampasek et al., 2022) 0.2860±0.0085 0.2574±0.0034
Transformer + LapPE Dwivedi et al. (2022) 0.2694±0.0098 0.2618±0.0031
SAN + LapPE Dwivedi et al. (2022) 0.3230±0.0039 0.2592±0.0158
SAN + RWSE Dwivedi et al. (2022) 0.3216±0.0027 0.2434±0.0156
Exphormer Shirzad et al. (2023) 0.3975±0.0037 0.3455±0.0009
RandAlign + GPS (Zhang & Xu, 2024) 0.4242±0.0011 0.3567±0.0026

Fine-tuned GCN (Tönshoff et al., 2023) 0.2078±0.0031 –
Ours + Finetuned GCN 0.2241±0.0020 –

GPS (Rampasek et al., 2022) 0.3748±0.0109 0.3412±0.0044
Fine-tuned GPS (Tönshoff et al., 2023) 0.4440±0.0065 0.3884±0.0055
Ours + Finetuned GPS 0.4832±0.0031 0.4002±0.0019

Table 3: Results on Pepti-func and Pepti-struct. The sibling crossover and mutation operations are
applied to the base GCN model.

Model Peptides-func Peptides-struct
(AP ↑) (MAE ↓)

GCN 0.5930±0.0023 0.3496±0.0013
GINE 0.5498±0.0079 0.3547±0.0045
GCNII (Chen et al., 2020) 0.5543±0.0078 –
GatedGCN 0.5864±0.0077 0.3420±0.0013
Gated + RWSE 0.6069±0.0035 0.3357±0.0006
Transformer+LapPE 0.6326±0.0126 0.2529±0.0016
SAN+LapPE 0.6384±0.0121 0.2683±0.0043
SAN+RWSE 0.6439±0.0075 0.2545±0.0012
Exphormer (Shirzad et al., 2023) 0.6527±0.0043 0.2481±0.0007
GPS (Rampasek et al., 2022) 0.6535±0.0041 0.2500±0.0005
Finetuned GPS (Tönshoff et al., 2023) 0.6534±0.0091 0.2509±0.0014

Finetuned GCN (Tönshoff et al., 2023) 0.6860±0.0050 0.2460±0.0007
Ours + Finetuned GCN 0.7021±0.0034 0.2426±0.0014

4 EMPIRICAL EVALUATION

4.1 DATASETS AND SETUP

The experiments are conducted on six benchmark datasets, i.e., MNIST, CIFAR10, PascalVOC-SP,
COCO-SP, Peptides-func and Peptides-struct (Dwivedi et al., 2020; 2022) on three graph tasks,
graph classification, node classification, and graph regression. We closely follow the setup as
Dwivedi et al. (2020; 2022) for training and evaluating the models. The details of the datasets
and evaluation metrics are provided in the appendix section.

4.2 RESULTS

CIFAR10 and MNIST. Table 1 reports the results on the two datasets on the superpixel classifica-
tion task. We use the GPS (Rampasek et al., 2022) as the base model. The GPS model is a hybrid of
local aggregation and global aggregation architecture. It uses GatedGCN for local aggregation and
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Table 4: Ablation study: Importance of crossover and mutation on the model performance on CI-
FAR10 and PascalVOC-SP.

Base Model Crossover Mutation CIFAR10 PascalVOC-SP

Finetuned GPS
× × 75.680±0.188 0.4440±0.0065
✓ × 79.434±0.228 0.4952±0.0098

(Tönshoff et al., 2023) × ✓ 77.029±0.203 0.4554±0.0077
✓ ✓ 80.636±0.195 0.4832±0.0031
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Figure 3: Impact of the crossover rate p on the model performance on CIFAR10 and PascalVOC-SP.
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Figure 4: Results of our method on the base Finetuned GPS model with different layers on CIFAR10
and PascalVOC-SP.

uses Transformer for global aggregation. We apply cross-generation and mutation (i.e., block (a) in
Figure 2) to the base GatedGCN model. The crossover rate is set to 0.5 and mutation rate is set to
0.1. We see from Table 1 that our method improves the performance of the base model by a large
margin, with a relative improvement of 0.648% and 11.53% on MNIST and CIFAR10 respectively.
It simultaneously outperforms both Exphormer (Shirzad et al., 2023) and RandAlign (Zhang & Xu,
2024), which previously achieved the best performance on MNIST and CIFAR10 respectively.

PascalVOC-SP and COCO-SP. The two datasets are long-range prediction datasets compared to
MNIST and CIFAR10. The task is to predict if a node corresponds to a region of an image which
belongs to a particular class. We use Finetuned GPS (Tönshoff et al., 2023) as the base model.
The Finetuned GPS is also a hybrid of GatedGCN and Transformer architecture. We apply cross-
generation and mutation to the base GatedGCN model. The crossover rate is set to 0.9 and mutation
rate is set to 0.05. The results are reported in Table 2. Previously, Finetuned GPS achieved the best
performance among the baseline models on the two datasets. As compared to Finetuned GPS, the
use of our method results in a relative improvement of 8.83% and 3.04% respectively without using
additional model parameters. Once again, our framework achieves new state-of-the-art performance
on the two datasets.

Peptides-func and Peptides-struct. We use Finetuned GCN (Tönshoff et al., 2023) as the base
model on the two datasets. We use sibling crossover and mutation to the base model. The number
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Table 5: Comparison of our method with the basic GCN, wherein residual connections and batch
normalizations (BN) are not used.

Model MNIST CIFAR10

GCN (w/o residual connections and BN) 87.590±0.336 48.810±1.045
GCN (with residual connections and BN) 90.705±0.218 55.710±0.381

GCN (with residual connections and BN) + Ours 95.926±0.031 59.157±0.130

of siblings is set to 2 and mutation rate is set to 0.1. The results are reported in Table 3. Finetuned
GCN is a strong baseline model in previous work. We see from Table 3 that the use of framework
further improve the model performance.

Ablation Study. We conduct an ablation study on CIFAR10 and PascalVOC-SP to analyse the
importance of crossover and mutation on the model performance. Table 5 shows the ablation study
results. It can be seen from Table 5 that the crossover operation plays a major role in improving
the model performance. The mutation operation helps further improve the model performance as a
regularization method.

We further analyzed the impact of the crossover rate p on model performance on CIFAR10 and
PascalVOC-SP. Figure 3 shows the experimental results. We see that the best performance is
achieved when p is set to different values on the two datasets. When p is set to 0, it is equiva-
lent to not using crossover. A recommended strategy for tuning p is starting from 0.9 or 0.95 and
then gradually decreasing it to find the optimal value.

We conducted experiments to analysis the performance of our method on the base Finetuned GPS
model with different layers on CIFAR10 and PascalVOC-SP. The results are shown in Figure 4. We
also analyzed the the performance of our method on the base Finetuned GPS model with different
layers on CIFAR10, and the results are reported in Figure 5 in the appendix section. It can be
seen from Figure 4 and Figure 5 that the use of our method improves the model generalization
performance on the base models.

We further compared our method with the basic GCN in which residual connections and batch
normalizations are not used on MNIST and CIFAR10. The results are shown in Table 5. We see that
the model performance drops without using these techniques and that the joint use of our method
with residual connections and batch normalizations yields the best task perforamnce.

5 CONCLUSIONS

This paper presents a new framework called genetic-evolutionary graph neural networks for graph
representation learning. The key idea of our approach is to view each layer of a graph neural net-
work as a genetic evolutionary process and use biogenetics-inspired operations to prevent the over-
smoothing problem in graph neural networks. We developed three operations, i.e., cross-generation
crossover, sibling crossover and mutation, inspired by genetic algorithms and presented two build-
ing blocks based on the the operations for graph representation learning. An important advantage
of the proposed framework lies in its interpretability, as it frames layerwisely graph representation
learning as an evolutionary process. The experimental evaluations were conducted on six popular
datasets on different graph tasks. The results showed that the use of our framework significantly
improves the performance of the base graph neural networks, achieving new state-of-the-art per-
formance for graph representation learning on these datasets. We also presented ablations of our
framework, showing the importance of each operation on the overall model performance.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
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A APPENDIX

Datasets. The experiments were conducted on the following six benchmark datasets.

• MNIST and CIFAR10 are two datasets for superpixel graph classification (Dwivedi et al.,
2020). The superpixels are converted from original images in MNIST (LeCun et al., 1998)
and CIFAR10 (Krizhevsky et al., 2009) using the SLIC algorithm (Achanta et al., 2012).

• PascalVOC-SP and COCO-SP are two datasets of superpiexels (Dwivedi et al., 2022),
which are converted from images in original PascalVOC and COCO datasets. The task on
the two datasets is to predict if a node corresponds to a region of an image which belongs
to a particular class.

• Peptides-func and Peptides-Struct (Dwivedi et al., 2022) are two datasets of peptides
molecular graphs. The nodes in the graphs represent heavy (non-hydrogen) atoms of the
peptides, and the edges represent the bonds between these atoms. The graphs are catego-
rized into 10 classes based on the peptide functions, e.g., antibacterial, antiviral, cell-cell
communication. The two datasets are used for evaluating the model’s performance for
multi-label graph classification and multi-label graph regression.

The statistics of the benchmark datasets used in the experiments are shown in below Table 6.

Table 6: Statistics of the six benchmark datasets used in the experiments.
Dataset Graphs Nodes Avg. nodes/graph #Training #Validation #Test #Categories

MNIST 70K – 40-75 55,000 5000 10,000 10
CIFAR10 60K – 85-150 45,000 5000 10,000 10

PascalVOC-SP 11,355 5,443,545 479.40 8,489 1,428 1,429 20
COCO-SP 123,286 58,793,216 476.88 113,286 5,000 5,000 81

Peptides-func 15,535 2,344,859 150.94 70% 15% 15% 10
Peptides-struct 15,535 2,344,859 150.94 70% 15% 15 –

Evaluation Metrics. Following Dwivedi et al. (2020) and Rampasek et al. (2022), the following
metrics are used evaluation on different tasks. The performance on MNIST and CIFAR10 on graph
classification is evaluated using the classification accuracy. The performance on PascalVOC-SP and
COCO-SP on node classification is evaluated using the macro weighted F1 score. The performance
on Peptides-func on multi-label graph classification is evaluated using average precision (AP) across
the categories. The performance on Peptides-struct on multi-label graph regression is evaluated
using mean absolute error (MAE).
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Figure 5: Results of our method on the base Finetuned GCN model with different layers on CI-
FAR10.

Figure 6: Implementation of the crossover operation in Pytorch.
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Figure 7: Implementation of the mutation operation in Pytorch.
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Algorithm 3 Pseudo for the cross-generation crossover operation.
Input: Crossover probability p, h, h in // embeddings generated by the current layer and the

previous layer
Output: h crossover // Crossover of h and h in

1: if model.training == True then
2: crossover mask = Bernoulli.sample(prob=p) // each element in crossover mask

is sampled from the Bernoulli distribution with probability p
3: h crossover = h in ∗ crossover mask+ h ∗ (1− crossover mask)
4: else
5: h crossover = h in ∗ p+ h ∗ (1− p)
6: end if

Algorithm 4 Pseudo for the mutation operation.
Input: Node embedding h, mutatiion probability r
Output: h mutation // Mutation output of h
1: running mean, running var = Update(h) // update running mean and var
2: gaussian noise = Gaussian.Sample() //the reparameterization trick
3: if model.training == True then
4: mutation mask = Bernoulli.sample(prob=r) // each element in mutation mask

is sampled from the Bernoulli distribution with probability p
5: h mutation = (gaussian noise ∗ running var+ running mean) ∗

mutation mask+ h ∗ (1−mutation mask)
6: else
7: h mutation = running mean ∗ r + h ∗ (1− r)
8: end if
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