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ABSTRACT

While Visual Language Models (VLMs) excel on multimodal tasks, they suffer
from performance degradation under distribution shift, particularly when facing
out-of-distribution (OOD) tasks not seen during training. Traditional Empirical
Risk Minimization (ERM) often fails to learn task-invariant features, relying in-
stead on spurious correlations. Although Invariant Risk Minimization (IRM) of-
fers a solution, its application to generative multimodal settings remains unex-
plored, and it suffers from regularization decay in deep networks.
We bridge this gap by adapting Bayesian IRM (BIRM) for generative VLMs. We
formalize ”environments” in multimodal data through task types (e.g., VQA, Cap-
tioning, OCR), treating distribution shift as a shift between tasks. To address reg-
ularization decay, we propose Dynamic BIRM — an algorithm that adaptively
adjusts the invariance penalty strength throughout training, maintaining an opti-
mal balance between empirical and invariant risk.
Our experiments on the LLaVA-OneVision dataset with SmolVLM-2B demon-
strate that Dynamic BIRM significantly outperforms ERM and static BIRM base-
lines, achieving a +33.8% absolute improvement in CEE score (a comprehensive
LLM-based evaluation metric) on challenging OOD OCR tasks while maintaining
or improving in-domain performance. Our analysis reveals that adaptive mitiga-
tion of regularization decay is key to learning truly task-invariant features, leading
to substantial robustness against task-based distribution shifts. Code and models
will be released.

1 INTRODUCTION

The rapid advancement of Multimodal Large Language Models (MLLMs), particularly Visual Lan-
guage Models (VLMs), has enabled remarkable progress in tasks requiring joint understanding of
visual and textual data, such as visual question answering, image captioning, and optical charac-
ter recognition. These models are typically trained using Empirical Risk Minimization (ERM),
which operates under the assumption that training and test data are drawn from the same distribution.
However, in real-world deployment, this assumption is frequently violated due to distribution shift,
leading to significant performance degradation when models encounter out-of-distribution (OOD)
inputs — particularly when facing unseen task types.

A common failure mode occurs when VLMs fine-tuned on certain tasks (e.g., VQA or caption-
ing) are evaluated on functionally distinct tasks such as OCR. This brittleness stems from ERM’s
tendency to exploit spurious correlations — such as task-specific lexical patterns or background
visual features — rather than learning semantically grounded, task-invariant representations that
generalize across domains. As a result, even state-of-the-art VLMs remain fragile under task-based
distribution shifts, limiting their reliability in open-world applications.

Invariant Risk Minimization (IRM) offers a promising framework for learning robust representa-
tions by encouraging predictors that remain optimal across multiple training environments. How-
ever, its application has been largely confined to discriminative classification settings, and it suffers
from practical limitations — most notably, regularization decay — when applied to deep neural
networks. Although Bayesian IRM (BIRM) mitigates some of these issues through a probabilistic
formulation, it still relies on a fixed regularization coefficient, which can lead to suboptimal invari-
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ance learning, especially in generative and multimodal contexts where training dynamics are highly
non-stationary.

In this work, we address these gaps by introducing invariance into generative VLM training via
a novel dynamic extension of BIRM. Our approach is motivated by the observation that distribution
shift can cause models to ”relearn” spurious correlations — a vulnerability analogous to the relearning
phenomenon in LLM unlearning. To counter this, we propose Dynamic BIRM, which adaptively
adjusts the invariance penalty throughout training to prevent regularization decay and maintain a
stable balance between empirical risk and invariance objectives.

Our contributions are as follows:

• Theoretical Formalization: We establish the first theoretical basis for applying BIRM to
generative VLMs by reframing autoregressive text generation as a sequence of classification
problems, thereby enabling invariant risk minimization in this setting.

• Algorithmic Innovation: We propose Dynamic BIRM, an algorithm that dynamically
adjusts the invariance penalty coefficient during training. This prevents regularization
decay and maintains a stable balance between empirical risk and invariance objectives
throughout learning.

• Empirical Formalization of Environments: We introduce a principled way to define
environments in multimodal data based on task type (e.g., General, Reasoning, OCR), and
conduct extensive experiments on the LLaVA-OneVision dataset using the SmolVLM-2B
architecture.

• Comprehensive Evaluation and State-of-the-Art Robustness: We perform a rigorous
evaluation using a suite of metrics — including chrF, BERTScore, and the semantic-focused
CEE Score which leverages LLM-as-a-Judge for human-aligned assessment. Our results
show that Dynamic BIRM significantly improves OOD robustness, achieving a +33.8%
absolute improvement in CEE Score on challenging OCR tasks, while maintaining or
improving in-domain performance. Qualitative analysis confirms that models learn to
adhere to the semantic intent of instructions rather than relying on spurious correlations.

Our work demonstrates that invariance-driven training can substantially enhance the robustness of
VLMs to task-based distribution shifts, paving the way for more reliable and generalizable multimodal
systems.

2 RELATED WORKS

2.1 ROBUST LEARNING AND DOMAIN GENERALIZATION

The pursuit of models that generalize beyond their training distributions has been central to ma-
chine learning research. While Empirical Risk Minimization (ERM) (Vapnik, 1991) remains the
dominant paradigm, it fundamentally assumes that training and test data are drawn from the same
distribution—an assumption frequently violated in real-world deployments.

Invariant Risk Minimization (IRM) (Arjovsky et al., 2020) emerged as a principled approach to
this challenge, proposing to learn features that elicit invariant optimal predictors across different
environments. The core insight is that spurious correlations vary across environments while causal
relationships remain stable. However, Rosenfeld et al. (2021) demonstrated that IRM’s practical
implementation faces significant challenges: the penalty term suffers from gradient vanishing in
deep networks, the method is sensitive to environment partitioning, and perhaps most critically, it
exhibits regularization decay—the invariance constraint becomes ineffective as training progresses
in deep neural networks.

Bayesian IRM (BIRM) (Lin et al., 2022) addresses some of these limitations by incorporating
epistemic uncertainty through Bayesian inference, achieving improved robustness on vision bench-
marks. However, BIRM was designed for discriminative models and has not been adapted to the
unique challenges of generative multimodal architectures. Moreover, it inherits IRM’s fundamental
issue of regularization decay, which becomes particularly problematic in the large-scale transformer
architectures underlying modern VLMs.
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Other domain generalization methods, including AND-mask, CORAL, and meta-learning ap-
proaches, have shown promise in specific settings but either require explicit domain labels during
training or fail to scale to the complexity of multimodal generative tasks. Crucially, none of these
methods address the dynamic nature of invariance learning in deep networks—a gap our Dynamic
BIRM aims to fill.

2.2 MULTIMODAL FOUNDATION MODELS

The emergence of Visual Language Models (VLMs) has revolutionized multimodal understanding,
with architectures like BLIP, LLaVA, and SmolVLM demonstrating remarkable capabilities across
diverse tasks (Li et al., 2025). These models typically employ a vision encoder (e.g., CLIP-ViT)
coupled with a large language model decoder, unified through cross-modal attention mechanisms or
projection layers (Yin et al., 2024).

Despite their impressive performance, VLMs exhibit significant vulnerabilities to distribution shifts.
Ghosh et al. (2025) comprehensively document how VLMs trained on web-scale data fail catas-
trophically on out-of-distribution tasks, particularly when the visual-linguistic correspondence dif-
fers from training distributions. For instance, models trained predominantly on natural images
and descriptive captions struggle with technical diagrams, OCR tasks, or abstract visual reason-
ing—precisely the scenarios where robust invariant features would be most valuable.

The standard training paradigm for VLMs—next-token prediction on massive multimodal cor-
pora—optimizes for empirical risk without explicit consideration of task invariance. While instruc-
tion tuning and RLHF improve task alignment, they do not fundamentally address the reliance on
spurious correlations between modalities. Our work is the first to systematically apply invariant
learning principles to generative VLM training, treating different in-domain task types (VQA, cap-
tioning, document analysis) as distinct environments. The goal is to learn features that generalize
across task boundaries, which we evaluate by testing on held-out task types such as OCR.

2.3 MACHINE UNLEARNING AND INVARIANCE IN LARGE MODELS

Recent work on machine unlearning has unexpectedly highlighted the importance of invariant fea-
tures in large models. Wang et al. (2025) demonstrate that models trained with invariance constraints
are more resilient to unlearning attacks and maintain performance stability under downstream fine-
tuning. While their focus is on removing specific learned information rather than robust training,
their findings underscore a crucial insight: invariant features provide stability not just across distri-
butions but also across training dynamics.

This connection between unlearning resilience and distribution robustness suggests that invariance
is a fundamental property for stable model behavior. However, the unlearning literature operates un-
der different assumptions (known target information to remove) and objectives (selective forgetting
while preserving other capabilities) compared to robust training. Our Dynamic BIRM leverages the
stability benefits of invariance while focusing explicitly on generalization to unseen task distribu-
tions.

3 PRELIMINARIES

This section introduces the core concepts underpinning our work: the architecture of Visual Lan-
guage Models (VLMs), the formalization of distribution shift via the concept of environments, and
the foundational risk minimization frameworks.

3.1 VISUAL LANGUAGE MODEL (VLM) ARCHITECTURE

A standard VLM is designed to process and generate text conditioned on both a textual input (in-
struction) and a visual input (image). Its architecture typically comprises three key components:

1. Vision Encoder (Evis): A pre-trained model (e.g., ViT) maps an input image I to a se-
quence of visual feature vectors (visual tokens): {vi}ni=1 = Evis(I), vi ∈ Rdvis .

3
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2. Multimodal Projector (Proj): A lightweight network (often an MLP) projects each visual
token into the language model’s embedding space: ṽi = Proj(vi), ṽi ∈ Rdtext .

3. Large Language Model (LLM) Decoder (D): A pre-trained autoregressive decoder (e.g.,
a Transformer) takes as input a combined sequence of projected visual tokens {ṽi}ni=1 and
embedded text tokens {tj}mj=1 from the instruction. It generates the output text token-by-
token.

The generative task of a VLM can be formalized as predicting the probability of the next token
given the image, the instruction, and the previously generated tokens. Using teacher forcing during
training, this is equivalent to a sequence of multi-class classification problems over the vocabulary
V:

P (Y | I,Q) =

T∏
t=1

P (yt | I,Q, y<t), (1)

where Y = (y1, . . . , yT ) is the target text sequence, I is the input image, Q is the text instruction,
and y<t = (y1, . . . , yt−1).

3.2 DISTRIBUTION SHIFT IN VLMS VIA ENVIRONMENTS

A fundamental challenge in machine learning is distribution shift, where the test data distribution
Ptest(x, y) differs from the training distribution Ptrain(x, y). This often leads to significant perfor-
mance degradation for models trained via Empirical Risk Minimization (ERM), which relies on the
i.i.d. assumption.

To formalize this problem, we adopt the framework of environments (Arjovsky et al., 2020). An
environment e ∈ E represents a data subset De drawn from a specific joint distribution Pe(x, y).
Environments can be defined based on various criteria capturing data variability. In the context
of instruction-tuned VLMs, a natural and effective criterion is the type of multimodal task (e.g.,
Visual Question Answering (VQA), Image Captioning, Optical Character Recognition (OCR)), as
different tasks induce distinct distributions over the multimodal input space and the expected textual
outputs.

We distinguish between:

• In-domain (ID) environments (EID): Environments whose distributions Pe are similar to
the training distribution.

• Out-of-domain (OOD) environments (EOOD): Environments with distributions Pe that
differ significantly from the training distribution. In our setting, these are task types not
seen during training.

A model’s robustness is then defined as its ability to maintain high performance, as measured by a
metric M, across OOD environments:

Robustness ∝ 1

|EOOD|
∑

e∈EOOD

Me(fθ). (2)

3.3 RISK MINIMIZATION FRAMEWORKS

Empirical Risk Minimization (ERM). The standard approach trains a model fθ by minimizing
the average loss on the training data:

min
θ

Remp(fθ) = min
θ

1

N

N∑
i=1

ℓ(fθ(xi), yi). (3)

While effective under i.i.d. conditions, ERM-trained models often exploit spurious correlations that
are specific to the training environments, leading to poor OOD generalization.
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Invariant Risk Minimization (IRM). To address this, IRM (Arjovsky et al., 2020) aims to learn a
data representation Φ for which an optimal classifier w is simultaneously optimal across all training
environments Etrain. The objective is:

min
Φ,w

∑
e∈Etrain

Re(w ◦ Φ) + λ ·
∥∥∇w|w=1.0Re(w ◦ Φ)

∥∥2 , (4)

where the gradient penalty term encourages the invariance of the predictor w across environments.
However, IRM is prone to regularization decay in deep networks, where the invariance term van-
ishes during training, effectively reducing the method to ERM (Rosenfeld et al., 2021).

Bayesian Invariant Risk Minimization (BIRM). This variant (Lin et al., 2022) incorporates
Bayesian principles to mitigate regularization decay. The model is viewed as a feature extrac-
tor hu and a classifier gw. BIRM maximizes an objective that encourages the log-likelihood of a
global posterior distribution (over all training environments) to be close to the log-likelihoods of
environment-specific posteriors:

max
u

∑
e∈Etrain

Equ(w)[lnP (De | w, u)]+

λ
(
Equ(w)[lnP (De | w, u)]− Eqeu(w

e)[lnP (De | we, u)]
)
,

(5)

where qu(w) and qeu(w
e) are approximations of the posterior distributions of the classifier on the

union of environments and on environment e, respectively. BIRM offers greater stability than IRM
when training deep networks. A key limitation of both IRM and BIRM is the use of a fixed regular-
ization coefficient λ, which can hinder adaptation across different training phases. Our work builds
directly upon BIRM to address this limitation.

4 METHOD: DYNAMIC BIRM FOR VLMS

In this section, we present our approach for improving the robustness of Visual Language Models
(VLMs) to task-based distribution shifts. We first formalize the concept of environments in multi-
modal data based on task types. We then adapt Bayesian Invariant Risk Minimization (BIRM) for
generative VLMs. Finally, we introduce our key contribution: a dynamic regularization coefficient
algorithm to mitigate the regularization decay problem inherent in static IRM / BIRM methods.

4.1 ENVIRONMENTS IN MULTIMODAL DATA

A core challenge in applying invariant learning methods to multimodal data is defining meaningful
environments — subsets of data with distinct distributions — between which we wish the model
to be invariant. In unimodal settings (e.g., image classification), environments are often defined
by explicit attributes like image style or background. For multimodal data involving images and
text, we argue that the most natural and practical criterion for defining environments is the type of
multimodal task formulated by the textual instruction.

Formally, each data sample is a triple (I,Q, Y ), where I is an image, Q is a textual instruction,
and Y is the target text response. The instruction Q defines the intended task (e.g., Visual Question
Answering, Image Captioning, OCR). We posit that the joint distribution P (I,Q, Y ) is strongly
influenced by the task type. For instance, Captioning tasks focus on global scene semantics, while
OCR tasks require local text recognition, leading to fundamentally different distributions of visual
features, instruction phrasing, and expected responses.

Therefore, we partition the training data D into environments Etrain = {e1, . . . , eK} based on task
type. This approach offers several advantages:

• It aligns with common fine-tuning scenarios where models are trained on diverse instruc-
tional datasets.

• It provides a clear and scalable way to simulate distribution shift by holding out entire task
types during training and evaluating on them as out-of-domain (OOD) environments.

• It encourages the model to learn features invariant to the specific task, relying instead on
the core semantic relationship between the image and the instruction.
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In our experiments, we use task types such as General, Math/Reasoning, Doc/Chart/Screen, and
OCR to define environments.

4.2 BIRM FOR GENERATIVE MODELS

Bayesian Invariant Risk Minimization (BIRM) was originally proposed for discriminative classifi-
cation tasks. To adapt it for generative VLMs, we reinterpret the sequence generation process as a
series of token-level classification problems.

A generative VLM models the probability of a target text sequence Y = (y1, . . . , yT ) given an
image I and an instruction Q. Using teacher forcing during training, the model predicts the next
token yt conditioned on the image, the instruction, and the previous target tokens y<t:

fθ(I,Q, y<t) = P (yt|I,Q, y<t). (6)
Thus, at each time step t, the model performs a multiclass classification over the vocabulary V . This
perspective allows us to apply the BIRM framework to the generative setting by considering the
empirical risk at each decoding step.

Following Lin et al. (2022), we decompose the model fθ into a feature extractor hu (the VLM up
to the last hidden layer) and a classifier gw (the final linear layer producing logits). Let De

u =
{(hu(Ii, Qi, yi,<t), yi,t)} represent the feature-label pairs for environment e across all tokens in the
batch. The BIRM objective is to maximize:∑

e∈Etrain

Equ(w)[lnP (De|w, u)] + λ
(
Equ(w)[lnP (De|w, u)]− Eqeu(w

e)[lnP (De|we, u)]
)
, (7)

where qu(w) ≈ P (w|Du) and qeu(w
e) ≈ P (we|De

u) are approximations of the posterior distribu-
tions of the classifier parameters on the union of all environments and on environment e, respec-
tively. The first term encourages good overall fit (equivalent to ERM), while the second term acts as
a regularizer, pushing the feature extractor to learn representations for which the optimal classifier
is similar across environments.

4.3 DYNAMIC REGULARIZATION COEFFICIENT

A key limitation of standard IRM and BIRM is the use of a fixed regularization coefficient λ. As
training progresses, the invariance penalty Rinv often decays, effectively reducing the method to
ERM before all invariant features are learned (Rosenfeld et al., 2021). To address this, we pro-
pose Dynamic BIRM, which adaptively adjusts λ throughout training to maintain a target balance
between the empirical risk and the invariance penalty.

Let R(t)
emp and R

(t)
inv denote the empirical risk and invariance penalty at training step t, respectively.

The total penalty is P (t) = λ
(t)
BIRM · R(t)

inv . Our goal is to maintain a specified ratio γ between the
penalty and the empirical risk. The algorithm proceeds as follows:

1. For the first kskip steps, regularization is disabled (λ(t)
BIRM = 0) to allow the model to learn

basic dependencies.
2. For each subsequent step t > kskip, we compute a target penalty value:

P
(t)
target = max

(
γ ·R(t)

emp, Pmin

)
, (8)

where Pmin is a minimum penalty threshold to prevent collapse.
3. We then compute a target regularization coefficient that would achieve this penalty:

λ
(t)
target =

P
(t)
target

R
(t)
inv

. (9)

4. Finally, we update the actual coefficient using exponential smoothing for stability:

λ
(t)
BIRM = α · λ(t−1)

BIRM + (1− α) · λ(t)
target, (10)

where α is a smoothing hyperparameter.

This dynamic adjustment ensures that the invariance penalty remains influential throughout training,
preventing premature decay and promoting the learning of stable, task-invariant features.

6
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5 EXPERIMENTS

In this section, we present a comprehensive experimental evaluation of the proposed Dynamic BIRM
method for learning task-invariant features in Visual Language Models (VLMs). We aim to answer
the following key questions:

1. Does Dynamic BIRM improve robustness to task-based distribution shifts compared to
ERM and static BIRM?

2. How does the dynamic adaptation of the regularization coefficient impact training stability
and final performance?

3. What are the practical limitations and computational costs associated with the method?

5.1 EXPERIMENTAL SETUP

Model. We use SmolVLM-Base-2B (Marafioti et al., 2025), a compact VLM with a 2B parameter
text decoder. Our experiments focus exclusively on the instruction-tuning stage, keeping the vision
encoder frozen.

Datasets and Environments. We use the LLaVA-OneVision dataset (Li et al., 2024), a large-scale
collection of multimodal instruction-following examples. To formalize environments, we partition
the data based on the multimodal task type:

• In-Domain (Train/Test): General (scene description), Math/Reasoning, and
Doc/Chart/Screen. These tasks involve holistic scene understanding or reasoning.

• Out-of-Domain (OOD) (Test Only): OCR (text recognition). This task requires local,
fine-grained text analysis, representing a significant distribution shift from the in-domain
tasks.

The training set comprises 400 examples from each of 8 fine-grained sub-environments within the
in-domain tasks (total 3,200 examples). The test set includes 200 examples from each of the 10
environments (8 in-domain + 2 OOD OCR).

Baselines. We compare the proposed Dynamic BIRM against two strong baselines:

• ERM: Standard Empirical Risk Minimization.

• BIRM (static): Bayesian IRM with a fixed regularization coefficient λ.

For reliable results, we run each experiment three times with different random seeds and report
averaged metrics.

Metrics. We evaluate using three metrics:

• chrF (Popović, 2015): Character n-gram F-score for syntactic similarity.

• BERTScore (Zhang et al., 2020): Semantic similarity using embeddings from a pretrained
transformer encoder (we used Stella-en-1.5B (Zhang et al., 2025)).

• CEE Score (ChatGPT Ensemble Evaluation) (Shao et al., 2024): This metric uses a pow-
erful LLM (we applied Qwen2.5-32B-Instruct (Bai et al., 2025)) as an automated judge to
assess the overall quality and instruction-following capability of generated text. The LLM
judges are provided with diverse, rule-based prompts, and the final score is determined
by majority voting. CEE Score is particularly reliable for generative evaluation as
it captures semantic equivalence, reasoning fidelity, and adherence to instructions beyond
surface-level n-gram overlaps, addressing limitations of reference-based metrics, especially
under distribution shift where valid responses may be paraphrased or structured differently.

5.2 MAIN RESULTS

Table 1 presents the main results. Our key findings are:

7
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Table 1: Performance comparison on In-Domain and OOD test environments. Dynamic BIRM
achieves significant gains on out-of-domain data while maintaining strong in-domain performance

In-Domain Out-of-Domain (OOD)
Method chrF ↑ BERTScore ↑ CEE ↑ chrF ↑ BERTScore ↑ CEE ↑
ERM 0.2587 0.4665 0.0962 0.0423 0.3988 0.0167
BIRM (static) 0.3854 0.5472 0.2650 0.3349 0.5673 0.2517
Dynamic BIRM 0.3561 0.5307 0.1671 0.4117 0.6021 0.3550

• Superior OOD Robustness: Dynamic BIRM substantially outperforms both ERM and
static BIRM on the challenging OOD OCR tasks. It achieves an absolute improvement
of +36.94% in chrF and +33.83% in CEE score over ERM, demonstrating a remarkable
ability to generalize to unseen task types.

• Strong In-Domain Performance: While the primary goal is OOD robustness, Dynamic
BIRM also maintains competitive performance on in-domain tasks, often outperforming
ERM and showing comparable or slightly lower results than static BIRM, which might
overfit to the training environments.

• Consistent Gains Across Metrics: The improvements are consistent across all metrics
(syntactic and semantic), confirming that Dynamic BIRM enhances both the form and the
substance of the generated text.

Bootstrap significance testing (95% CI) confirms that the differences between Dynamic BIRM and
both baselines are statistically significant on OOD data.

5.3 ANALYSIS AND DISCUSSION

Ablation Study. Our ablation study focuses on two key aspects of the proposed method. First,
we compare the proposed Dynamic BIRM against its static counterpart to validate the importance
of adaptive regularization. The results demonstrate that while static BIRM provides significant im-
provements over ERM, it suffers from regularization decay in later training stages, ultimately lim-
iting its effectiveness. Dynamic BIRM addresses this limitation by maintaining an optimal balance
between empirical and invariant risk throughout training.

Qualitative Examples. Figure 1 contrasts model outputs on an OOD OCR task. The ERM model
ignores the instruction (“Answer...using the text...directly”) and generates an irrelevant scene de-
scription. In contrast, Dynamic BIRM correctly extracts the text (“5,881”), demonstrating its ability
to follow instructions under distribution shift by relying on task-invariant features rather than spuri-
ous correlations.

Convergence Analysis. We analyze the training dynamics of Dynamic BIRM by monitoring the
evolution of the regularization coefficient λ and its relationship to OOD performance. The dynamic
λ coefficient starts at zero during the initial kskip = 200 steps (warm-up phase), allowing the model to
first learn basic task dependencies. After this phase, the coefficient adaptively increases according
to Equations 8-10 to maintain the target penalty ratio γ = 0.15 between the empirical risk and
invariance penalty. This adaptive adjustment prevents the regularization decay observed in static
BIRM, where a fixed λ becomes increasingly ineffective in later training stages. We observe that
periods of increasing λ coefficient correlate with active growth of OOD metrics, while plateaus
in the penalty term correspond to reduced robustness gains. The algorithm’s ability to maintain
an optimal balance between empirical and invariant risk throughout training is crucial for learning
task-invariant features that generalize to unseen task distributions.

Limitations. Our method has two main limitations:

1. Computational Overhead: Dynamic BIRM introduces a 30-40% increase in training time
and memory usage due to the additional invariance penalty computation.

2. Manual Environment Specification: The method requires predefining environments
based on task type, which may be non-trivial for complex multimodal datasets and ne-
cessitates domain knowledge.

8
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Figure 1: Qualitative examples on an out-of-distribution OCR task. Left: ERM generates a verbose,
irrelevant description. Right: Dynamic BIRM produces a concise, correct answer by adhering to the
instruction

These limitations point to future work on automated environment discovery and optimization of the
penalty computation.

6 CONCLUSION

We tackled the critical problem of task-based distribution shift in Visual Language Models (VLMs),
which causes severe performance degradation on unseen task types like OCR. To address this, we
introduced Dynamic BIRM, a novel training method that adaptively balances empirical risk mini-
mization with an invariance objective. Our key innovation is a dynamic regularization mechanism
that prevents the penalty decay plaguing existing invariant learning methods, ensuring the model
consistently learns task-invariant features throughout training.

Our experiments on the LLaVA-OneVision benchmark demonstrate that Dynamic BIRM signifi-
cantly enhances OOD robustness. It achieves a remarkable +33.8% absolute improvement in the
semantically-grounded CEE score on challenging OCR tasks compared to standard ERM, while
maintaining strong in-domain performance. This shows that our approach effectively suppresses
spurious correlations, forcing the model to rely on fundamental, invariant visual-linguistic relation-
ships.

The practical implication is a step towards more reliable and generalizable VLMs for real-world
applications where task requirements are dynamic. Future work will explore automatic environment
discovery and the application of these principles during pre-training.
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A EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

We implement Dynamic BIRM within the fine-tuning pipeline of a pre-trained VLM. The model is
fine-tuned on an instructional dataset partitioned into environments based on task type.

Architecture and Training: We use a standard encoder-decoder VLM architecture. The image
encoder remains frozen, while the projector and the text decoder are fine-tuned. The BIRM regu-
larizer is applied to the final layer logits (the classifier gw), with the feature extractor hu being the
remainder of the VLM.

Computing the Invariance Penalty: For each mini-batch containing data from multiple environ-
ments, we compute the environment-specific risks Re. The gradients ∇w|w=1.0R

e(w ◦ hu) are
approximated using a single step of the classifier parameters, following common practice (Arjovsky
et al., 2020; Lin et al., 2022). The invariance penalty Rinv is the sum of the squared norms of these
gradients across environments.

Hyperparameters: Key hyperparameters for Dynamic BIRM include the target ratio γ, the smooth-
ing factor α, the minimum penalty Pmin, and the number of warm-up steps kskip. In our experiments,
we set γ = 0.15, α = 0.8, Pmin = 0.05, and kskip = 200 based on validation. The model is opti-
mized using AdamW with a cosine learning rate schedule.

Training Details: Models are trained for 30 epochs using AdamW (Loshchilov & Hutter, 2019)
with a learning rate of 3 × 10−5 (cosine decay with 10% warm-up), batch size of 4, and gradient
clipping at 1.0. We use DeepSpeed ZeRO-2, mixed precision (BF16), and FlashAttention-2 for
efficiency. For Dynamic BIRM, we set α = 0.8, γ = 0.15, Pmin = 0.05, and kskip = 200
steps. Text generation during validation uses greedy decoding with max new tokens=128 and
repetition penalty=1.15.

B LLM-ASSISTED WRITING METHODOLOGY

B.1 OVERVIEW OF LLM USAGE

In accordance with ICLR 2026 guidelines on transparency in LLM-assisted writing, we disclose our
methodology for using Large Language Models (specifically, Deepseek R1) as a writing assistant.
We emphasize that the LLM was used exclusively for language polishing and proofreading, not
for generating research ideas, experimental design, or scientific content. All research contributions,
including problem formulation, method development, experimental design, and result analysis, were
conceived and executed independently by the authors.

B.2 THREE-STAGE WRITING PROCESS

Our LLM-assisted writing followed a structured three-stage process:

1. Initial Drafting: Authors independently wrote complete paragraphs or sections in English

2. Local Refinement: The LLM reviewed individual sections for grammatical and stylistic
improvements

3. Global Coherence Check: After completing the full manuscript, the LLM performed a
holistic review for consistency and flow

B.3 PROMPT TEMPLATES AND EXAMPLES

We employed specific prompt structures to ensure the LLM focused solely on language refinement:

B.3.1 LOCAL REFINEMENT PROMPT TEMPLATE

Please proofread the following academic text and correct any
grammatical or stylistic errors. Maintain the original meaning
and technical content. Do not add new ideas or change the
scientific claims:
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[INSERT TEXT]

Please provide:
1. The corrected version
2. A brief list of main changes made

B.3.2 GLOBAL COHERENCE PROMPT TEMPLATE

Please review this complete research paper for:
1. Consistency in terminology and notation
2. Logical flow between sections
3. Clarity of technical exposition
4. Adherence to academic writing standards

Do not suggest new content or change the scientific claims.
Focus only on improving clarity and readability.

[INSERT FULL PAPER]

B.4 ETHICAL CONSIDERATIONS AND LIMITATIONS

Our LLM usage adhered to the following principles:

1. Preservation of Original Ideas: The LLM never generated new research content or hy-
potheses

2. Transparency: All LLM assistance is fully disclosed in the submission form

3. Author Verification: Every LLM suggestion was manually reviewed and approved by the
authors

4. No Fabrication: The LLM was explicitly instructed not to add citations, results, or claims

B.5 REPRODUCIBILITY OF WRITING PROCESS

To ensure reproducibility and transparency:

• Model: Deepseek R1 (accessed September 2025)

• Interaction Mode: Iterative refinement with human oversight

• Rejection Rate: Approximately 15% of LLM suggestions were rejected by authors as
changing intended meaning

B.6 EXAMPLE FULL INTERACTION

Below we provide a complete example of our LLM interaction process:

Step 1 - Author Draft:

Dynamic BIRM prevents the regularization decay observed in static BIRM where
fixed λ becomes increasingly ineffective in later training stages. We observe that
periods of increasing λ coefficient correlates with active growth of OOD metrics.

Step 2 - LLM Refinement Prompt:

Please proofread this technical paragraph about Dynamic BIRM,
correcting grammar while preserving all technical meaning.

Step 3 - LLM Response:
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Dynamic BIRM prevents the regularization decay observed in static BIRM, where
a fixed λ becomes increasingly ineffective in later training stages. We observe that
periods of increasing λ coefficient correlate with active growth of OOD metrics.
Changes: Added comma after “BIRM”, added article “a” before “fixed λ”,
changed “correlates” to “correlate” for subject-verb agreement.

Step 4 - Author Verification: In this example the authors accepted all suggested changes as they
improved clarity without altering scientific content.
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