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Abstract

Let V∗ : Rd → R be some (possibly non-convex) potential function, and consider the prob-
ability measure π ∝ e−V∗ . When π exhibits multiple modes, it is known that sampling
techniques based on Wasserstein gradient flows of the Kullback-Leibler (KL) divergence
(e.g. Langevin Monte Carlo) suffer poorly in the rate of convergence, where the dynamics
are unable to easily traverse between modes. In stark contrast, the work of Lu et al. (2019;
2022) has shown that the gradient flow of the KL with respect to the Fisher-Rao (FR) ge-
ometry exhibits a convergence rate to π that is independent of the potential function. In this
short note, we complement these existing results in the literature by providing an explicit
expansion of KL(ρFR

t ∥π) in terms of e−t, where (ρFR
t )t≥0 is the FR gradient flow of the KL

divergence. In turn, we are able to provide a clean asymptotic convergence rate, where the
burn-in time is guaranteed to be finite. Our proof is based on observing a similarity between
FR gradient flows and simulated annealing with linear scaling, and facts about cumulant
generating functions. We conclude with simple synthetic experiments that demonstrate our
theoretical findings are indeed tight. Based on our numerical findings, we conjecture that
the asymptotic rates of convergence for Wasserstein-Fisher-Rao gradient flows are possibly
related to this expansion in some cases.

1 Introduction

Sampling from a distribution with an unknown normalization constant is a widespread task in several sci-
entific domains. Namely, the goal is to generate samples from a probability measure

π(x) ∝ e−V∗(x) ,

where V∗ : Rd → R is some (possibly non-convex) potential function that is available for queries. In most
cases, the target measure π is only known up to the normalization constant. Applications of sampling
from π include Bayesian statistics, high-dimensional integration, differential privacy, statistical physics and
uncertainty quantification; see Gelman et al. (1995); Robert et al. (1999); MacKay (2003); Johannes & Polson
(2010); Von Toussaint (2011); Kobyzev et al. (2020); Chewi (2022) for thorough treatments.

Recent interest in the task of sampling stems from the following paradigm: sampling is nothing but optimiza-
tion over the space of probability measures (Wibisono, 2018). This interpretation is due to the connection
between the celebrated work of Jordan, Kinderleher, and Otto (Jordan et al., 1998) and the Langevin diffu-
sion dynamics given by

dXt = −∇V∗(Xt) dt +
√

2 dBt , (1)
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where dBt is Brownian motion.1 Indeed, the work of Jordan et al. (1998) demonstrates that the path in the
space of proabability measures given by the law of Eq. (1) is the same as the Wasserstein gradient flow (i.e.
steepest descent curve in the Wasserstein metric) of the Kullback-Leibler (KL) divergence

KL(ρ∥π) =
∫

log ρ

π
dρ .

We write (ρW
t )t≥0 ⊆ P(Rd) for the law of the path given by Eq. (1) (see Section 2.2.1 for a precise definition).

A central problem in this area has been to bound the convergence rate of ρW
t to π in certain similarity

metrics (e.g. the KL divergence itself, or the Wasserstein distance) under different conditions on π. These
bounds translate to convergence rates for the Langevin Monte Carlo (LMC) sampling algorithm (Dalalyan
& Tsybakov, 2012; Vempala & Wibisono, 2019; Durmus et al., 2021; Chewi et al., 2022), upon accounting
for discretization errors.

The classical result is as follows: assuming that π satisfies a Log-Sobolev inequality (LSI) with constant
CLSI > 0, we obtain the following convergence rate (Stam, 1959; Gross, 1975; Markowich & Villani, 1999)

KL(ρW
t ∥π) ≤ KL(ρW

0 ∥π)e− 2t
CLSI , (2)

which holds for all t ≥ 0. Recall that π satisfies an LSI if for all smooth test functions g,

entπ(f2) ≤ 2CLSIEπ∥∇f∥2 , (3)

where entπ(g) := Eπ(g log g)− Eπg logEπg. For example, when V∗ is α-strongly convex, an LSI with CLSI =
1/α holds. LSI hold more generally, but sometimes with very large constants CLSI. Indeed, for multimodal
distributions such as mixtures of Gaussians, CLSI scales exponentially in the height of the potential barrier
between modes (Holley & Stroock, 1987; Arnold et al., 2000). This impacts convergence at the discrete-time
level, and thus hinders our ability to generate samples using LMC.

Another geometry that gives rise to gradient flows over probability measures is the Fisher-Rao (FR) geometry;
see Section 2.2.2 for definitions. Similar to the case of Wasserstein gradient flows, we let (ρFR

t )t≥0 be the FR
gradient flow of the KL divergence. Recent work by Lu and collaborators has shown that the convergence
ρFR

t → π occurs at a rate that is independent of the potential function V∗. This is in stark contrast to the
case of Wasserstein gradient flows, where the rate of convergence is intimately related to the structure of V∗
through the LSI constant. In their first work, Lu et al. (2019) show that for any δ ∈ (0, 1

4 ] there exists a
t∗ ≳ log(δ3) such that for all t ≥ t∗,

KL(ρFR
t ∥π) ≤ KL(ρFR

0 ∥π)e−(2−3δ)(t−t∗) , (4)

where they require a warm-start condition KL(ρFR
0 ∥π) ≤ 1, and assumption (B) (see Section 3). In Lu et al.

(2022), the authors show that the KL divergence is always contracting under (ρFR
t )t≥0 even in the absence

of a warm-start, though with a worse rate. Combined, these two results provide the first continuous-time
convergence rates of the gradient flow of the KL divergence under the FR geometry to π.

Merging both these geometries gives rise to the well-defined Wasserstein-Fisher-Rao (WFR) geometry. The
WFR geometry has recently been used to analyse the convergence dynamics of parameters of neural networks
(Chizat, 2022), mean-field games (Rotskoff et al., 2019), and has shown to be useful in statistical tasks such
as Gaussian variational inference (Lambert et al., 2022), and identifying parameters of a Gaussian mixture
model (Yan et al., 2023). In the context of sampling, particle-based methods that follow dynamics governed
by WFR gradient flow of the KL, written (ρWFR

t )t≥0, are known to escape the clutches of slow-convergence
that plague the Wasserstein geometry. A simple observation (Lu et al., 2022, Remark 2.4) gives the following
continuous-time convergence rate for t ≥ t∗:

KL(ρWFR
t ∥π) ≤ KL(ρWFR

0 ∥π) min
{

e−CLSIt, e−(2−3δ)(t−t∗)
}

, (5)

1This equation is to be understood from the perspective of Itô calculus.
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where δ and t∗ are as in the FR convergence rate (4). Loosely speaking, this “decoupled rate” is a consequence
of the Wasserstein and FR geometries being orthogonal to one another; this is made precise in Gallouët &
Monsaingeon (2017).

As elegant as this last connection may seem, the convergence rate in Eq. (4), and consequently Eq. (5),
should appear somewhat unsatisfactory to the reader. It raises the natural question of whether or not the
factor of δ appearing in the rate is avoidable, and whether the upper bound in Eq. (4) is tight.

1.1 Main contributions

We close this gap for the KL divergence and any q-Rényi divergence. Using a different proof technique than
existing work, we prove the following asymptotic rate of convergence for the flow (ρFR

t )t≥0, namely,

KL(ρFR
t ∥π) = 1

2 Varπ

(
log ρFR

0
π

)
e−2t + O(e−3t) , (6)

and a similar result holds for all q-Rényi divergences. Our assumptions are weaker to that of prior work,
and given that this is a tight asymptotic convergence rate, we conjecture that the assumptions are likely
unavoidable in the large t regime. Our proof technique provides an explicit expansion of KL(ρFR

t ∥π) (and
q-Rényi) in terms of e−t. We supplement our finding with simulations for all three geometries, indicating that
our convergence rate is in fact tight for Fisher-Rao gradient flows, and sheds light on possible conjectures
for the convergence rate of WFR gradient flows.

Notation

For a probability measure ρ ∈ P(Rd) and a function f : Rd → R, we sometimes use the shorthand ⟨f⟩ρ :=∫
f dρ. We let log(·) denote the natural logarithm, and we use the standard shorthand notation f = O(g),

meaning there exists a constant C > 0 such that f ≤ Cg.

2 Background

2.1 Definitions

The study of gradient flows has a rich history in both pure and applied mathematics. The development of
the relevant calculus to understand gradient flows is not the purpose of this note, and we instead provide a
barebones introduction. However, we strongly recommend the interested reader consult standard textbooks
on the topic, namely Ambrosio et al. (2005), and the first chapter of Chewi (2022).

Let P(Rd) be the space of probability measures over Rd. A functional F : P(Rd) → R is defined on the
space of probability measures, with ρ 7→ F(ρ) ∈ R. We call δF(ρ) the first variation of F at ρ if for a signed
measure η such that

∫
dη = 0, it holds that

lim
ε→0

F(ρ + εη)−F(ρ)
ε

=
∫

δF(ρ) dη . (7)

The Kullback-Leibler (KL) divergence of a measure ρ with respect to some fixed target measure π is defined
as KL(ρ∥π) =

∫
log ρ

π dρ for ρ absolutely continuous with respect to π. For π ∝ e−V∗ , the first variation of
the KL divergence is given by

δKL(·∥π)(ρ)(x) = log ρ(x)
π(x) = log ρ(x) + V∗(x) + log Z1 , (8)

where Z1 is the normalizing constant for π.

A more general notion of dissimilarity between probability measures is the q-Rényi divergence: for q ∈ [1,∞],
we define Rq(ρ∥π) to be the q-Rényi divergence with respect to π, given by

Rq(ρ∥π) := 1
q − 1 log

∫ ( ρ

π

)q

dπ , (9)
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for measures ρ that are absolutely continuous with respect to π. Rq recovers the KL divergence in the
limit q → 1, and when q = 2, R2(ρ∥π) = log(χ2(ρ∥π) + 1), where χ2 is the chi-squared divergence, written
explicitly as

χ2(ρ∥π) = Varπ

( ρ

π

)
=

∫ ( ρ

π

)2
dπ − 1 .

2.2 Gradient flows of the Kullback-Leibler divergence

2.2.1 Wasserstein gradient flow

In its dynamic formulation, the 2-Wasserstein distance between two probability measures ρ0, ρ1 with bounded
second moments can be written as (Villani, 2008; Benamou & Brenier, 2000)

W2
2(ρ0, ρ1) := inf

(ρt,vt)

∫ 1

0

∫
∥vt(x)∥2ρt(x) dx dt s.t. ∂tρt +∇ · (ρtvt) = 0 , (10)

where (ρt)t∈[0,1] is a curve of probability densities over Rd, and (vt)t∈[0,1] is a curve of L2(Rd)d vector
fields. The constraint is known as the continuity equation, with endpoints ρ0 and ρ1. For a functional
F : P(Rd)→ R, the Wasserstein gradient flow is the curve of measures (ρW

t )t≥0 that satisfies the continuity
equation with the vector field replaced by the steepest descent under the Wasserstein geometry,

vt = −∇W2F(ρW
t ) := ∇δF(ρW

t ) ,

where the last equation is simply the (standard) spatial gradient of the first variation of F . Plugging in the
expression for the first variation of the KL divergence (8), we see that the law of the Langevin diffusion is
given by ρW

t which satisfies

∂tρ
W
t = ∇ ·

(
ρW

t (∇ log ρW
t +∇V∗)

)
. (11)

This equation may be rewritten as ∂tρ
W
t = ∇ · (∇V∗ρW

t ) + ∆ρW
t , which one readily identifies as the Fokker-

Planck equation for the potential V∗. The equation describes the evolution of the distribution of a particle
that moves according to the stochastic differential equation 1. At the particle level, the key aspect of
Wasserstein gradient flows is that they model particle transport, and that makes them useful for high-
dimensional applications such as LMC. In what follows, we will sometimes abbreviate Wasserstein gradient
flow to W-GF.

2.2.2 Fisher-Rao gradient flow

The Fisher-Rao distance, or Hellinger-Kakutani distance, between probability measures has a long history
in statistics and information theory (Hellinger, 1909; Kakutani, 1948). It can be defined as (Bogachev, 2007;
Gallouët & Monsaingeon, 2017)

FR2(ρ0, ρ1) := inf
(ρt,rt)

∫ 1

0

∫
rt(x)2ρt(x) dx dt s.t. ∂tρt = rtρt ,

where (ρt)t∈[0,1] is again a curve of probability measures, and (rt)t∈[0,1] is a curve of L2(Rd) functions.
Together, they satisfy the prescribed equation, with endpoints equal to ρ0 and ρ1. The Fisher-Rao gradient
flow of the KL divergence, also known as Birth-Death dynamics, is the curve of measures (ρFR

t )t≥0 that
satisfies (Gallouët & Monsaingeon, 2017; Lu et al., 2019)

∂tρ
FR
t = −ρFR

t αt , αt := log ρFR
t

π
−KL(ρFR

t ∥π) .

The first term adjusts mass (i.e. gives birth to or kills mass) according to the log-ratio of ρFR
t and the target

measure π. The last term preserves the total mass, so that ρFR
t ∈ P(Rd) for all time.
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Expanding this equation, we have

∂tρ
FR
t (x) = −

(
log(ρFR

t (x)) + V∗(x)−
〈

log(ρFR
t ) + V∗

〉
ρFR

t

)
ρFR

t (x). (12)

We henceforth omit the superscript FR for the Fisher-Rao gradient flow of the KL divergence unless the
notation becomes ambiguous. For short-hand, we make use of the abbreviation FR-GF for Fisher-Rao
gradient flows.

The FR-GF may be simulated using a system of weighted particles (see Appendix B). Unlike for the W-GF,
in this case the positions of the particles are fixed; only the weights change over time. Hence, to simulate
the FR-GF one is forced to grid the underlying space Rd. This is feasible only for small dimensions d.
Consequently, FR-GFs cannot be simulated in high dimensions, which makes them impractical for sampling
applications.

2.2.3 Wasserstein-Fisher-Rao geometry gradient flow

The Wasserstein-Fisher-Rao distance between probability measures arises as a combination of the Wasserstein
and the Fisher-Rao distances (Chizat et al., 2018; 2015; Kondratyev et al., 2016; Liero et al., 2016; 2018).
It is defined as

WFR2(ρ1, ρ2) := inf
(ρt,vt,rt)

∫ 1

0

∫
(∥vt(x)∥2 + rt(x)2)ρt(x) dx dt s.t. ∂tρt +∇ · (ρtvt) = rtρt ,

where, for each t ∈ [0, 1], the triple (ρt, vt, rt) lives in P(Rd) × L2(Rd)d × L2(Rd), and they simultaneously
satisfy the constraint equation, which has endpoints ρ0 and ρ1, as well. Similarly, the Wasserstein-Fisher-Rao
gradient flow of the KL divergence is the solution of PDE that incorporates the terms in the Wasserstein
and Fisher-Rao gradient flows (Eq. (11) and Eq. (12)):

∂tρ
WFR
t = ∇ ·

(
ρWFR

t (∇ log ρWFR
t +∇V∗)

)
−

(
log(ρWFR

t ) + V∗ −
〈

log(ρWFR
t ) + V∗

〉
ρWFR

t

)
ρWFR

t (13)

Similar to the other geometries, we write WFR-GF as shorthand for Wasserstein-Fisher-Rao gradient flow
At the particle level, WFR-GFs are able to capture both transport and weight updates, which is why they
enjoy a convergence rate that at least matches the better rate between W- and FR-GFs (recall Eq. (5)),
and is clearly superior in practice in some instances. Hence, any improvement in the convergence analysis
of either W- or FR-GFs translates to improving our understanding of WFR-GFs.

2.3 Simulated annealing dynamics

Simulated annealing is a technique seen in several works when attempting to either optimize a function or
sample from a multimodal probability distribution, and has a long history (Pincus, 1970; Kirkpatrick et al.,
1983), and plays a crucial role in our analysis. In what follows, we introduce the annealing path with linear
scaling, and conclude with a proposition.

Consider the time-dependent measure (µτ )τ∈[0,1] corresponding to the annealing path, with linear scaling,
initialized at the measure µ0 = ρ0 ∝ e−V0 . By definition, µτ admits the density

µτ (x) = e−τ(V∗(x)−V0(x))−V0(x)

Zτ
, Zτ =

∫
Rd

e−τ(V∗(x)−V0(x))−V0(x) dx, (14)

for τ ∈ [0, 1]. Note that indeed, µ1 = π. To this end, it will be convenient to rewrite Eq. (14) in terms of
the log-density of µτ . Remark that

log(µτ (x)) = −τ(V∗(x)− V0(x))− V0(x)− log Zτ . (15)

One can check that the pointwise derivative of the density µτ (with respect to τ) is

∂τ µτ (x) = −(V∗(x)− V0(x)− ⟨V∗ − V0⟩µτ
)µτ (x) . (16)
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From this, we obtain that

log(µτ (x)) + V∗(x)−
〈

log(µτ ) + V∗
〉

µτ

= −τ(V∗(x)− V0(x))− V0(x)− ⟨−τ(V∗ − V0)− V0 + V∗⟩µτ + V∗(x)− ⟨V∗⟩µτ

= −τ(V∗(x)− V0(x))− V0(x) + V∗(x)− ⟨−τ(V∗ − V0)− V0 + V∗⟩µτ

= (1− τ)
(
V∗(x)− V0(x)

)
− (1− τ)⟨V∗ − V0⟩µτ

= (1− τ)
(
V∗(x)− V0(x)− ⟨V∗ − V0⟩µτ

)
.

(17)

Note that in the first equality, we used that the log-partition is a constant and gets cancelled out by the
difference of the two terms. Consequently, Eq. (16) can be rewritten, for τ ∈ (0, 1), as

∂τ µτ (x) = − 1
1− τ

(
log(µτ (x)) + V∗(x)−

〈
log(µτ ) + V∗

〉
µτ

)
µτ (x). (18)

A first observation is that that the linear schedule τ in the exponent of Eq. (14) results in dynamics that
resemble the Fisher-Rao gradient flow of the KL divergence, up to a reparameterization that can be made
explicit. Indeed, if one compares Eq. (18) with Eq. (12), the only difference is the factor 1

1−τ in the right-
hand side of Eq. (18). Since the solution of the Fisher-Rao gradient flow of the KL divergence is unique (see
Proposition 4 in Appendix A), an appropriate time reparameterization of the annealed dynamics (14) will
yield the solution (12). We summarize this observation in the following proposition, which we were unable
to find a citation for in the literature.
Proposition 1. Let (µτ )τ∈[0,1] be as defined in Eq. (14). The Fisher-Rao gradient flow (ρt)t≥0 of KL(ρ∥π)
(i.e. solving Eq. (12)) is given by ρt = µ1−e−t .

Proof. If we write t as a function of τ , we have that

∂τ ρt(τ) = ∂tρt(τ)
dt

dτ
(τ) = − dt

dτ
(τ)

(
log(ρt(τ)(x)) + E(x)−

〈
log(ρt(τ)) + E

〉
ρt(τ)

)
ρt(τ)(x). (19)

Identifying ρt(τ) with ρτ , and establishing a direct comparison with Eq. (18), we obtain that for Eq. (19) to
hold, t(τ) must fulfill dt

dτ (τ) = 1
1−τ . With the initial condition that τ(0) = 0, this differential equation has

the following unique solution:

t(τ) =
∫ τ

0

1
1− s

ds = − log(1− τ) . (20)

That is, we have that t(τ) = − log(1− τ), or equivalently, τ(t) = 1− e−t.

2.4 Cumulants and their power series

Our core argument hinges on observing a relation between the above gradient flows and their connection to
cumulants of a random variable. Recall that for a random variable Y , its cumulant-generating function to be
KY (z) = logE[eY z]. The nth cumulant κn of the random variable Y is defined as the nth derivative of KY

evaluated at z = 0, that is, κn = K
(n)
Y (0). Similar to moment-generating functions, if KY (z) is finite in some

neighborhood of z ∈ (−ϵ0, ϵ0), then it holds that KY is smooth (in fact, holomorphic) (see e.g. (Shiryaev,
1984, Section II.12.8). Moreover, KY (z) admits the following infinite series expansion

KY (z) =
∑
n≥1

κn

n! zn .

In particular, one can easily check that κ1 = E[Y ] and κ2 = Var(Y ).
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3 Main result

The goal of this section is to prove our main result, which is an explicit expansion of the KL divergence in
terms of log-cumulants of the random variable log ρ0(X)

π(X) where X ∼ π. We make the following assumptions
throughout, and we will make their uses explicit when necessary.

(A1) V∗ ∈ L1(π),

(A2) There exists α ∈ R+, such that infx
ρ0(x)

π(x)1+α > 0.

Assumption (A1) ensures that π has finite differential entropy, and is a relatively weak condition. (A2)
asks that at least some mass is initially placed along the support of π. (A2) is, however, a much weaker
assumption that what is currently used in the literature. To be precise, Lu et al. (2019; 2022) assume a
particular case of (A2), namely

(B) There exists M > 0 such that infx
ρ0(x)
π(x) ≥ e−M .

This is the same as (A2) when α is constrained to be 0, and they make explicit use of the constant M > 0
in their rate. Note that (A2) is weaker the larger α is, as π(x)1+α decreases faster. As a comparison, if
ρ0 and π are Gaussians, (A2) covers the setting where both have arbitrary means and covariances, while
constraining α = 0 only covers the cases in which the covariance matrix of ρ0 is strictly larger than the one
of π in the positive definite order.

The following theorem is our main contribution. While here we have stated an asymptotic expression, in
fact a more general expression is available as an infinite power series for times large enough, and appears
explicitly in the proof (Eq. (29) and Eq. (30)).
Theorem 1. Suppose (A1) and (A2) hold. Then for any q ∈ (1,∞),

KL(ρt∥π) = κ2

2 e−2t + O(e−3t) , and Rq(ρt∥π) = qκ2

2 e−2t + Oq(e−3t) , (21)

where κ2 = Varπ

(
log ρ0

π

)
. The remainder terms O(e−3t) and Oq(e−3t) depend on the initialization ρ0 and

on the target π.

Note that the result (4) by Lu et al. (2019) implies an asymptotic rate very close to e−2t, but there are
significant differences between both: beyond the fact that our result holds under much weaker assumptions,
we characterize exactly the asymptotic decay of KL(ρt∥π), while they only provide an upper-bound that
becomes less tight as δ goes to zero (because the constant t∗ increases).
Remark 1. The coefficient κ2 is nothing more than the variance under π of the first-variation of the KL
divergence at ρ0 (recall Eq. (8)).

3.1 Proof

Given potentials V∗ and V0 such that π ∝ e−V∗ and ρ0 ∝ e−V0 , we define the random variable

Y := V∗(X)− V0(X) where X ∼ π , (22)

Note that we can set V∗(x) = − log π(x) and V0(x) = − log ρ0(x), which means that Y = log ρ0(X)
π(X) , but

adding any constant term to V∗ and V0 (or solely V0) also yields a valid construction of Y .
Proposition 2. Let Y be as in Eq. (22). Let (µτ )τ∈[0,1] be follow the simulated annealing dynamics from
Eq. (14). It holds that

KL(µτ∥π) = (1− τ)K ′
Y (1− τ)−KY (1− τ) , (23)

Rq(µτ∥π) = 1
q − 1KY (q(1− τ))− q

q − 1KY (1− τ) . (24)
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Proof. We first identify the following relationship, which arises from a simple manipulation of Eq. (14)

KY (1− τ) = log
( ∫

e(1−τ)(V∗(x)−V0(x)) e−V∗(x)

Z1
dx

)
= log

(∫
e−τ(V∗(x)−V0(x))−V0(x) dx

Z1

)
= log Zτ − log Z1.

(25)

Using this expression, we can expand the KL divergence between µτ and π as follows:

KL(µτ∥π) =
∫

log µτ

π
µτ =

∫
log

(
e−τ(V∗−V0)−V0Z−1

τ

e−V∗Z−1
1

)
dµτ

= log Z1 − log Zτ + (1− τ)⟨V∗ − V0⟩µτ

= (1− τ)⟨V∗ − V0⟩µτ
−KY (1− τ) .

Another fact about cumulant generating functions that we can exploit is the following differential relationship

−⟨V∗ − V0⟩µτ
= d

dτ
Zτ = −K ′

Y (1− τ) . (26)

Altogether, this gives

KL(µτ∥π) = (1− τ)K ′
Y (1− τ)−KY (1− τ) . (27)

The general q-Rényi case is deferred to the appendix, where the computation is similar.

The following lemma uses both (A1) and (A2) to establish that KY (z) is finite in some neighborhood of
z ∈ Bϵ0(0), which implies that KY admits the series expansion we will require in the sequel. The proof is
deferred to the appendix.
Proposition 3. Suppose (A1) and (A2) are satisfied. Then there exists some constant ϵ0 > 0 such that
the cumulant generating function of Y , KY (z) = logE[eY z] is finite on some neighborhood of z ∈ Bϵ0(0).
Moreover, inside this neighborhood, KY (z) is holomorphic and we have the series expansion

KY (z) =
∑
n≥1

κn

n! zn . (28)

We conclude with the proof of our main result.

Proof of Theorem 1. We begin with the expression of the KL divergence. Note that since KY (z) is smooth
for z sufficiently close to the origin, it holds that

K ′
Y (z) =

∑
n≥1

κn

(n− 1)!z
n−1 .

Using the parameterization of Eq. (27) and the series expansion for K ′
Y (1− τ), our expression for KL(µτ∥π)

reads

KL(µτ∥π) = (1− τ)
∑
n≥1

κn

(n− 1)! (1− τ)n−1 −
∑
n≥1

κn

n! (1− τ)n

=
∑
n≥1

κn

(
n

n! −
1
n!

)
(1− τ)n

=
∑
n≥2

κn

n(n− 2)! (1− τ)n .

Expanding the relation and replacing τ(t) = 1− e−t gives

KL(ρt∥π) = κ2

2 e−2t +
∑
n≥3

κn

n(n− 2)!e
−nt . (29)
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We now do the same manipulations for Rq(µτ∥π).

Rq(µτ∥π) = 1
q − 1

∑
n≥1

κn

n! (q(1− τ))n − q

q − 1
∑
n≥1

κn

n! (1− τ)n

= 1
q − 1

κ1

q
(1− τ) +

∑
n≥2

qn κn

n! (1− τ)n

− q

q − 1

κ1(1− τ) +
∑
n≥2

κn

n! (1− τ)n


=

∑
n≥2

qn − q

q − 1
κn

n! (1− τ)n .

Substituting τ(t) = 1− e−t and expanding out the first term yields

Rq(ρt∥π) = q
κ2

2 e−2t +
∑
n≥3

qn − q

q − 1
κn

n! e−nt . (30)

Lemma 2 in the appendix justifies that the higher-order terms of Eq. (29) and Eq. (30) are O(e−3t), which
concludes the proof.

4 Numerical simulations

We present simple numerical simulations that demonstrates our asymptotic convergence rate of the KL
divergence the FR gradient flows, as well as a comparison with the WFR- and W-GFs. We consider two
target distributions over the set [−π, π), each with two initializations:

1. Target distribution π1: We set π1 ∝ e−V1 with V1(x) = 2.5 cos(2x)+0.5 sin(x). This distribution has
two modes with different weights and has been studied previously by Lu et al. (2019). We consider
two initial distributions:
(a) πa ∝ e−Va with Va = −V1, which has two modes in locations where π has little mass.
(b) πb ∝ e−Vb with Vb = 2.5 cos(2x), which has two modes in almost the same positions as π, but

with equal weight.

2. Target distribution π2: We set π2 ∝ e−V2 with V2(x) = −6 cos(x). This distribution has one mode.
We consider two initial distributions:
(c) πc ∝ e−Vc with Vc = −V2, which has one mode in a location where π has little mass.
(d) πd ∝ e−Vd with Vd = 0, which is the uniform distribution.

Fig. 1 shows the target energies V1, V2 and the initial energies Va, Vb, Vc, Vd introduced above. Fig. 2 shows
the evolution of the KL divergence along the FR, WFR and W gradient flows. It also contains plots of
the dominant term κ2

2 e−2t of the approximation of the KL divergence decay for FR flows (see Theorem 1),
displayed as dotted lines. Table 1 shows the slopes of each curve from Fig. 2, at large times (see Appendix B
for details on the computation of slopes).

Some observations are in order:

• As predicted by Theorem 1, the curves KL(ρFR
t ∥π) approach the curves κ2

2 e−2t as t grows.

• For π1, the curves KL(ρFR
t ∥π) and KL(ρWFR

t ∥π) initialized at πb are very close for small times. The
reason is that ∇V1 and ∇Vb are very close in the regions where π1 and πb have most of the mass.
Consequently, the term ∇·

(
ρWFR

t (∇ log ρWFR
t +∇V1)

)
, which is the difference between the FR and

the WFR PDEs, is small at initialization.

• The curves KL(ρW
t ∥π) behave very differently for π1 and π2 (see Table 1). Indeed, since π1 is

bimodal CLSI(π1) is quite large (thus convergence is slow), whereas π2 is unimodal, with a much
smaller log-Sobolev constant.

9
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Figure 1: Energies of the target and initial distributions.

Figure 2: Evolution of the KL divergence with respect to π1 (left) and π2 (right) along their respective
FR (solid lines), WFR (dash-dotted lines) and W (dashed lines) gradient flows. Each plot contains flows
initialized at two probability measures: in the left plot these are πa (blue, top curves at t = 0) and πb

(orange); in the right plot, πc (blue, top curves at t = 0) and πd (orange). The dotted lines show the curves
κ2
2 e−2t (for the appropriate values κ2), introduced in Theorem 1.

• The curves KL(ρWFR
t ∥π) also behave differently for both target distributions. For π1, it decays only

slightly faster than KL(ρFR
t ∥π), while for π2 it goes down much faster than both KL(ρFR

t ∥π) and
KL(ρWFR

t ∥π). Interestingly, looking at Table 1 we observe that the asymptotic slopes of the WFR
are very close to the sum of the slopes for FR and W. This seems to indicate that at large times, the
KL divergence decays like e−2t− 2t

CLSI , i.e. that the W and FR terms act more or less independently.

Target π1 Target π2
Init. πa Init. πb Init. πc Init. πd

FR -2.0016 -2.0002 -2.0028 -2.0014
WFR -2.0771 -2.0759 -12.8190 -12.8632
W -0.0811 -0.0811 -10.7784 -10.8538

Table 1: Large-time slopes of the KL divergence vs. time curves in a semi-logarithmic plot (Fig. 2), for the
three flows. See Appendix B for details on the computation of the slopes.
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5 Conclusion

In this work, using a relatively simple proof technique, we showed that the Kullback-Leibler divergence
along its Fisher-Rao gradient flow (ρFR

t )t≥0 can be written as a power-series expansion, resulting in a tight
asymptotic convergence rate for large times. A similar expansion holds for Rq(ρFR

t ∥π), where Rq is any
q-Rényi divergence. Our findings were verified with simple numerical experiments, where we also simulated
Wasserstein and Wasserstein-Fisher-Rao gradient flows. Our simulations indicated that, in some cases, the
convergence rate of the WFR gradient flow scales like e−(2+(2/CLSI))t, an observation that we hope can be
made precise in future work. A second direction is to extend our proof technique from the KL divergence to
general Bregman divergences.
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A Remaining proofs

Proposition 4 (Uniqueness of the Fisher-Rao gradient flow of the KL divergence). Given a target potential
V∗ and an initial measure ρ0, the solution of Eq. (12) is unique.

Proof. Consider the PDE

∂tµt(x) = −
(

log(µt(x)) + V∗(x)
)
µt(x), µ0 = ρ0 (31)

Note that this is in fact an ODE for each point x, that we can rewrite as ∂t log µt(x) = −
(

log(µt(x))+V∗(x)
)
.

The unique solution of this ODE with initial condition log µ0(x) is log µt(x) = (log µ0(x)−V∗(x))e−t +V∗(x).
Thus, we conclude that Eq. (31) has a unique solution.

Now, given a solution ρt of Eq. (12) with initial condition ρ0, define ρ̃t as

log ρ̃t(x) = log ρt(x) +
∫ t

0
et−s

〈
log(ρs) + V∗

〉
ρs

ds (32)

Note that Rt := −
∫ t

0 et−s
〈

log(ρs)+V∗
〉

ρs
ds satisfies the ODE dRt

dt = −Rt−
〈

log(ρt)+V∗
〉

ρt
with the initial

condition R0 = 0. Using this, we observe that ρ̃t is a solution of Eq. (31):

∂t log ρ̃t(x) = ∂t log ρt(x) + ∂tRt = −
(

log(ρt(x)) + V∗(x)−
〈

log(ρt) + V∗
〉

ρt

)
+ ∂tRt

= −
(

log(ρt(x)) + Rt + V∗(x)
)

= −
(

log(ρ̃t(x)) + V∗(x)
)
.

Also, note that the map (ρt)t≥0 → (ρ̃t)t≥0 defined by Eq. (32) is invertible, as ρt(x) = ρ̃t(x)/
∫

ρ̃t(y) dy.
This follows from the fact that ρt and ρ̃t are proportional to each other, and that ρt integrates to 1.

Finally, suppose that ρa
t and ρb

t are two solutions of Eq. (12) with initial condition ρ0. Via the construction
Eq. (32), they yield solutions ρ̃a

t and ρ̃b
t of Eq. (31) with initial condition ρ0. The uniqueness of the solution

of Eq. (31) implies that ρ̃a
t = ρ̃b

t . Since the map (ρt)t≥0 → (ρ̃t)t≥0 is invertible, we obtain that ρa
t = ρb

t ,
which concludes the proof.
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Proof of Proposition 2 (Continued). We perform similar manipulations as in the case with the KL diver-
gence:

Rq(µτ∥π) = 1
q − 1 log

∫
e−qτ(V∗−V0)−qV0(Zτ )−q

e−qV∗(Z1)−q
dπ

= 1
q − 1 log

∫
eq(1−τ)(V∗−V0)

(
Zτ

Z1

)q

dπ

= 1
q − 1KY (1− τ)− q

q − 1(log Zτ − log Z1)

= 1
q − 1KY (1− τ)− q

q − 1KY (1− τ) ,

where in the last line we again used Eq. (25). This completes the proof.

Proof of Proposition 3. By (A1), the partition function F (t) =
∫
Rd e−tV∗(x) dx is differentiable at t = 1.

This is because F ′(t) = −
∫

V∗(x) dπ(x). Hence, F (t) is finite on an interval (1− 2ϵ1, 1] for some ϵ1.

Note that the assumption (A2) can be written equivalently as ξ := infx αV∗(x)− V0(x) > −∞. We obtain
that for all ϵ ∈ [0, ϵ1/α),

−ϵ(V∗(x)− V0(x))− V∗(x) = −ϵ((1 + α)V∗(x)− V0(x)) + (ϵα− 1)V∗(x)
≤ −ϵξ + (ϵα− 1)V∗(x) ≤ −ϵξ + (ϵ1 − 1)V∗(x)

(33)

Equivalently,

exp(KY (−ϵ)) =
∫
Rd

e−ϵ(V∗(x)−V0(x))−V∗(x) dx ≤ e−ϵξ

∫
Rd

e−(1−ϵ1)V∗(x) dx = e−ϵξF (1− ϵ1) < +∞. (34)

Also, for all ϵ ∈ [0, 1), using the convexity of the exponential function we have that

exp(KY (ϵ)) =
∫
Rd

eϵ(V∗(x)−V0(x))−V∗(x) dx =
∫
Rd

e−(1−ϵ)V∗(x)−ϵV0(x) dx (35)

≤
∫
Rd

(1− ϵ)e−V∗(x) + ϵe−V0(x) dx = (1− ϵ)Z1 + ϵZ0 < +∞. (36)

Hence, the cumulant-generating function KY (t) = logEetY is finite on a neighborhood (−ϵ0, ϵ0) with ϵ0 =
min{1, ϵ1/α}. Applying Lemma 1, we conclude that there exists ϵ > 0 such that for z ∈ Bϵ(0), we have that
KY (z) =

∑+∞
n=1

κn

n! zn.

The following lemma, which we make explicit, is a well-known fact in probability theory. In short, since the
moment-generating function is analytic in some neighborhood, and is non-negative, taking the logarithm is
safe as everything is analytic. The interested reader can consult e.g. (Shiryaev, 1984, Section II.12.8) which
dissects this in detail.
Lemma 1. Assume that the cumulant-generating function KY (t) = logEetY is finite on a neighborhood
(−ϵ0, ϵ0) of zero. Then, KY (z) = logEezY as a function on the complex plane is holomorphic on the open
ball Bϵ(0) of radius ϵ centered at zero, for some ϵ > 0. Moreover, for z ∈ Bϵ(0), we have that

KY (z) =
+∞∑
n=1

κn

n! zn. (37)

Lemma 2 (End of the proof of Theorem 1). We have that

|KL(ρt∥π)− κ2

2 e−2t| = O(e−3t), |Rq(ρt∥π)− qκ2

2 e−2t| = O(e−3t). (38)
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Proof. Lemma 1 implies that the series for KY centered at zero has convergence radius ϵ, for some ϵ > 0.
Since the derivative of a series has the same radius of convergence, we obtain that

H(z) := zK ′
Y (z)−KY (z) =

∑
n≥2

κn

n(n− 2)!z
n.

has convergence radius ϵ as well. Hence, by the Cauchy-Hadamard theorem, 1
ϵ ≥ lim supn→∞(|cn|1/n), where

cn := κn

n(n−2)! .

This implies that for all 0 < ϵ′ < ϵ, there exists a constant Cϵ′ > 0 such that for all n ≥ 0, |cn| ≤ Cϵ′/(ϵ′)n.
Consequently, for all z ∈ C with |z| < 1/ϵ′,

|H(z)− κ2

2 z2| =
∣∣ +∞∑

n=3

κn

n(n− 2)!z
n
∣∣ ≤ Cϵ′

+∞∑
n=3

( |z|
ϵ′

)n = Cϵ′

( |z|
ϵ′

)3

1− |z|
ϵ′

(39)

Using Eq. (23), we get that for any constant γ > 0, if t ≥ − log ϵ′ + γ (or equivalently, e−t ≤ ϵ′e−γ),

|KL(ρt∥π)− κ2

2 e−2t| ≤ Cϵ′

(
e−t

ϵ′

)3

1− e−t

ϵ′

= Cϵ′
e−3t

(ϵ′)3(1− e−γ) = O(e−3t), (40)

which concludes the proof for the KL divergence. For the Rényi divergence, the proof is analogous (note
that in that case the series 1

q−1 KY (qz)− q
q−1 KY (z) has convergence radius ϵ/q).

B Details on the numerical simulations

To run the simulations in Section 4, we discretized the interval [−π, π) in n = 2000 equispaced points.
Let h = 2π/n. For each algorithm and initialization, we construct sequences (xk)k≥0, where xk ∈ Rn

represents the normalized log-density at each point. We let v∗ ∈ Rn be the (non-normalized) energy of the
target distribution, obtained by evaluating V∗ at the discretization points. Similarly, ∇v∗, ∆v∗ ∈ Rn are
the evaluations of ∇V∗ and ∆V∗ at the n points (note that ∇V∗ is a scalar because the distributions are
one-dimensional).

We used the following discretizations for the Fisher-Rao, Wasserstein and Wasserstein-Fisher-Rao gradient
flows:

(i) Fisher-Rao GF: We use mirror descent in log-space. The update reads:

x̃k+1 ← xk + ϵ(−v∗ − xk),

xk+1 ← x̃k+1 − log
( n∑

i=1
e−x̃i

k+1

)
.

(ii) Wasserstein GF: We approximate numerically the gradient and the laplacian of the log-density:

∀i ∈ [n], (∇xk)i ← (xi+1
k − xi−1

k )/(2h),
∀i ∈ [n], (∆xk)i ← (xi+1

k + xi−1
k − 2xi

k)/h2,

xk+1 ← xk + ϵ(∆v∗ + ∆xk + (∇v∗ +∇xk)∇xk).
(41)

We use periodic boundary conditions, so that the first discretization point is adjacent to the last
one for the purposes of computing derivatives.

(iii) Wasserstein-Fisher-Rao GF: We combine the two previous updates. Letting ∇xk and ∆xk be as in
Eq. (41), we have

x̃k+1 ← xk + ϵ(−v∗ − xk + ∆v∗ + ∆xk + (∇v∗ +∇xk)∇xk),

xk+1 ← x̃k+1 − log
( n∑

i=1
e−x̃i

k+1

)
.
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We used stepsizes ϵ = 2.5× 10−6 and ϵ = 1× 10−6 for the experiments on target distributions (1) and (2),
respectively. The slopes in Table 1 are obtain by taking 0 < t1 < t2 and computing

log(KL(ρt2∥π))− log(KL(ρt1∥π))
t2 − t1

.

We use different values for t1 and t2 for each target distribution; t1 and t2 must be large enough to capture the
asymptotic slope of the curve, but not too large to avoid numerical errors. For all the curves corresponding
to target π1, we take t1 = 7.0 and t2 = 7.5. For target π2, we take: for FR, t1 = 6.875 and t2 = 7.0; for
WFR, t1 = 1.875 and t2 = 2.0; for W, t1 = 2.75 and t2 = 2.875.
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