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ABSTRACT

Spiking Neural Networks (SNNs) are a promising approach for neuromorphic
hardware deployment due to high energy efficiency and biological plausibility.
However, existing ANN–SNN conversion methods suffer notable accuracy degra-
dation under low-latency inference, primarily caused by the unevenness error. To
mitigate this error, prior works commonly adopt trade-off strategies at the cost of
higher latency and energy consumption, such as longer time-steps, more complex
spiking neuron models, or two-stage inference mechanisms. In this paper, we
present a principled and efficient solution to the unevenness error. Specifically,
we first develop a unified framework to quantify the unevenness error and then
derive a sufficient condition for eliminating it: under an approximately constant
input current, matching the ANN quantization function (floor, round, ceil) with
the SNN’s initial membrane potential (0, θ

2 , θ), where θ is the firing threshold, and
setting the quantization level L equals to the number of time-steps T , which en-
sures exact ANN–SNN correspondence. This finding challenges the prevailing be-
lief that more time-steps always yield better accuracy; instead, it reveals that there
exists an optimal time-step that matches the ANN’s quantization characteristics,
avoiding redundant inference latency from excessive time-steps. Extensive exper-
iments on CIFAR-100, ImageNet-1K, CIFAR10-DVS, and DVS-Gesture validate
our theory. For example, our method achieves a state-of-the-art 74.74% top-1 ac-
curacy on ImageNet-1K using ResNet-34 with only 8 time-steps, demonstrating
the effectiveness of our approach in low-latency SNN inference.

1 INTRODUCTION

Spiking neural networks (SNNs) emulate the spike-based communication of biological neurons and
offer high energy efficiency on neuromorphic hardware (Maass, 1997; Merolla et al., 2014; Davies
et al., 2018; DeBole et al., 2019; Pei et al., 2019). Recent advances in SNNs learning methods
have enabled direct training of large-scale networks (Neftci et al., 2019). However, directly training
SNNs remains challenging due to the non-differentiable nature of the spike generation. A common
workaround is to use surrogate gradients (Fang et al., 2021a; Li et al., 2021b; 2022; 2024; Huang
et al., 2024) to circumvent this training dilemma. As a result, the model accuracy become much
inferior to counterpart ANNs and the training time is inevitably prolonged.

Alternatively, the ANN–SNN conversion paradigm provides a practical solution by transferring pre-
trained ANNs into SNNs, which overcomes the issues of accuracy degradation and prolonged train-
ing time. The current mainstream conversion methods map continuous activations of ANNs to the
spike firing rates of SNNs (Cao et al., 2015; Han et al., 2020; Hao et al., 2023a; Bu et al., 2023;
Wang et al., 2025). However, prior works require hundreds of time-steps to maintain the conver-
sion accuracy. To address this issue, three types of error have been identified (Li et al., 2021a; Bu
et al., 2023), namely: quantization error, clipping error, and unevenness error. Several studies have
attempted to mitigate these errors. Li et al. (2021a) proposed a search-based layer-wise calibration
method, but it requires tens to hundreds of long time-steps and ignores the unevenness error. Bu
et al. (2022; 2023) first identified the unevenness error and introduced initial membrane-potential
shift factors to drive the expected conversion error to zero; however, the performance degrades sig-
nificantly at low time-steps. Hao et al. (2023a;b) proposed a two-stage method that estimates spike
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offsets based on the residual membrane potential, which eliminates the unevenness error by shifting
the initial membrane potential. However, the two-stage simulation introduces additional inference
latency.

This paper aims to systematically address the unevenness error. We first develop a mathematical
framework to quantify the unevenness error and identify its main contributing factors: the temporal
distribution of input spikes, the amplitude of input currents, and the initial membrane potential of
neurons. Based on this analysis, we then derive the sufficient conditions for eliminating unevenness
error, establishing that the ANN quantization method (floor, round, ceil) must match the initial
membrane potential (0, θ

2 , θ)—a principle we denote as Quantization–Voltage Matching (QVM),
and extensive experiments verify the theory. In summary, the main contributions of this paper are as
follows:

• We propose the QVM, which establishes a theoretical conversion framework for quantify-
ing the unevenness error and derives sufficient conditions to eliminate it (Theorem 3).

• We challenge the prevailing concept that more time-steps always yield better conversion
accuracy. Instead, there exists an optimal time-step that matches the ANN’s quantization
characteristics, avoiding redundant inference latency.

• We conduct experiments across CIFAR-100, ImageNet-1K, CIFAR10-DVS, and DVS-
Gesture. On ImageNet-1K with ResNet-34, our method attains a top-1 accuracy of 74.74%
with only 8 time-steps, enabling theoretically error-free conversion.

2 RELATED WORK

ANN–SNN conversion typically relies on rate coding, mapping ANN activations to spike rates.
Cao et al. (2015) first studied ANN–SNN conversion by replacing ANN activations with spiking
neurons. Han et al. (2020) introduced residual-membrane-potential neurons with soft resets and
adaptive thresholds to reduce conversion error. Deng & Gu (2021) decomposed the conversion
error into inter-layer activation mismatches and added bias compensation. Ding et al. (2021) pro-
posed a rate-norm layer to replace ReLU activation function, and Ho & Chang (2021) introduced
a trainable clip-floor activation to narrow the accuracy gap. All these works laid a solid founda-
tion for ANN–SNN conversion but still require hundreds of inference time-steps, limiting practical
deployment. Subsequent studies built on these approaches and refined them, reducing the required
time-steps to dozens. Li et al. (2021a) analyzed quantization and clipping errors, calibrating ac-
tivations under an assumption of uniform input currents. Bu et al. (2022) proved that setting the
initial membrane potential to half the threshold can theoretically drive the expected conversion error
to zero. However, both of their proofs rely on the assumption that residual membrane potentials
remain bounded. Bu et al. (2023) formally defined unevenness error and proposed initial mem-
brane potential shifting strategies, but the accuracy gaps persisted under low-latency. Hao et al.
(2023a;b) further categorized unevenness error and introduced two-stage inference strategies based
on residual membrane potentials, but the excessive inference stage increase both latency and over-
head. Recently, Wang et al. (2025) introduced adaptive firing neuron models that search for optimal
firing patterns, but this comes at the cost of increased model complexity and fails to fully eliminate
the unevenness error. In summary, prior works provide valuable insights but either require exces-
sively long time-steps or leave unevenness error unresolved. Our work addresses these limitations
within a unified theoretical framework and achieves theoretically eliminate the unevenness error.

3 PRELIMINARY

The equations for an integrate-and-fire (IF) neuron with soft reset are as follows:

U l
t = V l

t−1 + ql
t

slt = 1[U l
t ≥ θl]

V l
t = U l

t − θl · slt

(1)

where U l
t is the membrane potential of the l-th layer neuron before firing spike, ql

t = W lsl−1
t θl−1 is

the input current of the l-th layer, slt ∈ {0, 1} is the spike firing indicator function, W l is the weight
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matrix connecting the (l − 1)-th layer to the l-th layer, and θl−1 is the threshold of the (l − 1)-th
layer, which is used to scale the current formed by the input spikes.

When U l
t ≥ θl, the neuron fires a spike, and V l

t is the membrane potential after soft reset following
spike firing. By substituting U l

t in equation 1, we can write the recurrence form as V l
t = V l

t−1 +

ql
t − θl · slt. Then, by summing over t = 1, . . . , T , we can obtain the following equation:

V l
t = V l

0 +

T∑
t=1

ql
t − θl

T∑
t=1

slt

= V l
0 +Ql

tot − θl ·N l

(2)

where V l
0 is the initial membrane potential of the l-th layer neuron, N l is the total spike count fired

by the l-th layer neuron in T time-steps, and Ql
tot is the cumulative input current of the l-th layer

neuron over T time-steps.

This equation indicates that the membrane potential is conserved during the spike firing process of
the IF neuron, that is: the final membrane potential is equal to the initial membrane potential plus
the total input current, minus the total reset amount caused by spike firing.

The key of ANN-SNN conversion is to map the activation value al of the ANN using the threshold-
scaled firing rate ϕl of the SNN, i.e., al ≈ ϕl. The error arises from the deviation from the ideal
relationship, where ϕl is as shown in equation 3:

ϕl =
θl

T
·N l, N l ∈ {0, 1, . . . , T} (3)

where N l =
∑T

t=1 s
l
t is the spike count over T time-steps.

Ho & Chang (2021); Bu et al. (2022; 2023); Hao et al. (2023b) use a quantized activation function
to train and optimize the ANN, so that quantization errors and clipping errors are absorbed into the
training weights. and use the method of initial membrane potential offset to mitigate unevenness
error. The clip-floor-shift equation of this method is al = γl

L · clip(floor(
W lal−1L

γl + 1
2 ), 0, L),

where L is the quantization level of the ANN, and γl is the trainable threshold of the l-th layer of the
ANN. Bu et al. (2023) proves that when L is equal to the time-step T of the SNN and γl is equal to
the threshold θl of the SNN, the conversion error is zero. However, due to the persistent unevenness
error, zero-error conversion cannot be achieved. As shown in Figure 1, when L = T and γl = θl,
there exists the unevenness error; when (L ̸= T, γl ̸= θl), there exist quantization error, clipping
error and unevenness error.

Motivation: While existing ANN-SNN conversion methods have effectively mitigated quantization
errors and clipping errors via trainable activation quantization strategies, they lack systematic theo-
retical modeling and analysis of the unevenness errors arising from the uneven temporal distribution
of spikes in SNNs. This temporal unevenness error is particularly pronounced in low-time-step
inference, significantly compromising conversion accuracy. This work conducts theoretical mod-
eling and quantitative analysis of such unevenness error, and deduces the sufficient conditions for
achieving zero unevenness error, thereby enabling high accuracy conversion under low-latency.

4 UNEVENNESS ERROR IN ANN-SNN CONVERSION

In this paper, we consider a unified quantization function Q ∈ {floor, round, ceil}, where floor(·)
is the floor function, round(·) is the rounding function, and ceil(·) is the ceiling function. To align
ANN activations with SNN spike firing rates, similar to the representations in Bu et al. (2022; 2023),
we quantize the weighted activations using a trainable threshold γl and a quantization level L, as
shown in equation 4:

al =
γl

L
·M l, M l ∈ {0, 1, . . . , L} (4)

where M l = clip
(
Q
(
W lal−1 · L

γl

)
, 0, L

)
is an integer tensor, indicating that the output activa-

tion of the ANN is quantized into M l candidate values, i.e., al ∈
{

γl

L ·M
l
∣∣M l = {0, 1, . . . , L}

}
.

3
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Figure 1: (a) shows the unevenness error (L = T, γl = θl), and (b) shows the quantization error and
unevenness error (L ̸= T, γl ̸= θl)

The input activation of the l-th layer is al−1. The quantization function Q quantizes the weighted
sum of al−1, and the clip function ensures that M l is constrained within the range [0, L].

Based on equation 3 and equation 4, the conversion error of the l-th layer in the ANN-SNN conver-
sion is defined as: ξl = |al − ϕl| = |γ

l

L ·M
l − θl

T ·N
l|, where L is the quantization parameter of

the ANN, and T is the time-step of the SNN. This conversion error primarily originates from three
components (Li et al., 2021a; Bu et al., 2023), detailed as follows:

Quantization Error: Since ϕl = θl

T ·N
l with N l ∈ {0, 1, . . . , T}, the value interval of ϕl is θl

T .

In contrast, the activation of the ANN is al = γl

L ·M
l with M l ∈ {0, 1, . . . , L}, and its value

interval is γl

L . When L ̸= T , a mismatch between the two discrete intervals arises, giving rise to the
quantization error.

Clipping Error: Clipping error occurs only when the upper bounds of al and ϕl do not coincide.
Assuming the upper bound of the quantized ANN activation al is γl. While, the SNN output ϕl is
bounded by θl. This discrepancy leads to a range mismatch, which manifests as clipping error.

Unevenness Error: When L = T and γl = θl, the quantization levels of ANN activations align
with the threshold-scaled firing rates of the SNN. This alignment removes other error components.
However, al and ϕl still do not coincide, leaving only the unevenness error, as illustrated in Figure 1.
We formally define the unevenness error as:

ξl =
∣∣al − ϕl

∣∣ = θl

T
·
∣∣M l −N l

∣∣ (5)

Due to the randomness of the input spike sequence {sl−1
t }, N l may deviate from the ideal value

M l, resulting in error fluctuations. Figure 3 presents the unevenness error of each layer and presents
the average value of the unevenness error across all neurons in each layer. As illustrated in the figure,
after adopting our proposed QVM method, the unevenness error of each layer approaches zero.

Factors Influencing the Spike Count N l: The membrane potential conservation equation 2 indi-
cates that the output spike sequence {slt}Tt=1 of the l-th layer neurons depends on the initial mem-
brane potential V l

0 and time-varying input current ql
t = W lsl−1

t θl−1 and affects the residual mem-
brane potential V l

t . Specifically, N l is determined by the following three factors: (1) Temporal
distribution of the input spike sequence {sl−1

t }Tt=1: Uneven distribution fluctuates membrane po-
tential accumulation, deviating N l from M l; (2) Input current amplitude

∣∣ql
t

∣∣: Excessively large
or small amplitudes cause premature or delayed firing, disrupting ideal N l; (3) Initial membrane
potential V l

0 : Inappropriate values alter threshold crossing time, leading to early or delayed spikes
and mismatches between N l and M l, as illustrated in Figure 2.

The conversion error can be reduced in two ways: (1) Making N l = M l to achieve zero conversion
error; (2) Increasing the number of time-steps can also make the error approach zero, i.e., ξl T→∞−→ 0,
but this will lead to unacceptable inference latency.

4
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Figure 2: (a) illustrates the process of weighted summation of input spikes, where the upper part
shows the uneven current and the lower part shows the uniform current; (b) depicts the process
of spike accumulation and firing when the input current is uneven; (c) shows the process of spike
accumulation and firing when the input current is uniform

5 METHOD

In this section, we first present the proof of the boundedness of membrane potential under bounded
input, as well as the proof of the spike count equation, and finally derive the sufficient conditions for
zero unevenness error.

5.1 BOUNDED MEMBRANE POTENTIAL UNDER BOUNDED INPUT

Theorem 1. For a bounded input current 0 ≤ ql
t ≤ θl, when the initial membrane potential V l

0
satisfies 0 ≤ V l

0 ≤ θl, the membrane potential V l
t of the IF neuron after spike firing at any time t

always satisfies 0 ≤ V l
t ≤ θl.

Proof. The proof is by mathematical induction. The initial membrane potential 0 ≤ V l
0 ≤ θl

obviously holds. Assume that at time t−1, the membrane potential after spike satisfies 0 ≤ V l
t−1 ≤

θl. Since 0 ≤ ql
t ≤ θl and 0 ≤ V l

t−1 ≤ θl, according to equation 1: U l
t = V l

t−1 + ql
t, thus we have

0 ≤ U l
t ≤ 2θl. According to whether the U l

t exceeds θl, there are two cases: no spike firing and
spike firing.

Case 1: If 0 ≤ U l
t < θl, then slt = 0. Thus, 0 ≤ V l

t = U l
t − θl · slt < θl.

Case 2: If θl ≤ U l
t ≤ 2θl, then slt = 1[U l

t ≥ θl]. Thus, 0 ≤ V l
t = U l

t − θl · slt ≤ θl.

Combining Case 1 and Case 2, we obtain 0 ≤ V l
t ≤ θl. When t = T , the residual membrane

potential satisfies 0 ≤ V l
t ≤ θl.

5.2 SPIKE COUNT EQUATION

Theorem 2. Suppose the input current is bounded by 0 ≤ ql
t ≤ θl and the initial membrane

potential satisfies 0 ≤ V l
0 ≤ θl, the number of spikes within T time-steps is:

N l =

⌊
V l
0 +Ql

tot

θl

⌋
(6)

where Ql
tot =

∑T
t=1 q

l
t is the total input current and ⌊·⌋ is the floor function.

Proof. From Theorem 1 we know that 0 ≤ V l
t ≤ θl, and V l

T can be discussed in two cases:

Case 1: 0 ≤ V l
t < θl: According to the membrane potential conservation equation 2 we have

0 ≤ V l
0 +Ql

tot − θl ·N l < θl, thus:

0 ≤ V l
0+Ql

tot − θl ·N l < θl (7)

Since the number of spikes N l must be an integer, thus N l =
⌊
V l

0+Ql
tot

θl

⌋
.

5
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Figure 3: presents the unevenness error of VGG-16 and ResNet-34 on ImageNet-1k: green bars in-
dicate per-layer error without the QVM method, and orange bars denote that with our QVM method.
Zooming in on the near-zero data area shows the QVM method’s per-layer error is close to zero.

Case 2: V l
t = θl: This holds only under the extreme input condition where V l

0 = θl and the input
at every time-step t is ql

t = θl. In this case, the number of spikes can be derived from equation 2,
where Ql

tot = T · θl, and the spike count is N l = T . If there exists a moment when 0 ≤ ql
t < θl,

then N l =
⌊
V l

0+Ql
tot

θl

⌋
holds.

5.3 SUFFICIENT CONDITIONS FOR ELIMINATE UNEVENNESS ERROR

Theorem 3. Suppose the time-steps T and threshold θl of SNN satisfy T = L and θl = γl,
and the initial membrane potential V l

0 of SNN matches the ANN quantization method Q ∈
{floor, round, ceil} as follows:

V l
0 =


0, Q = floor
θl

2 , Q = round

θl, Q = ceil

(8)

If the input current to the SNN is given by ql
t =

1
T ·Q

l
tot, then the ANN-SNN conversion unevenness

error satisfies ξl = 0.

Proof. To achieve ξl = 0, it suffices to ensure N l = M l, since the conversion error is defined
as ξl = θl

T ·
∣∣M l − N l

∣∣. Recall from equation 4 that the ANN quantization level is M l =

clip
(
Q
(

W lM l−1θl−1

θl

)
, 0, T

)
. The SNN spike count is given by equation 6 N l =

⌊
V l

0+Ql
tot

θl

⌋
,

where the total input current Ql
tot =

∑T
t=1 q

l
t = W lN l−1θl−1.

For equation 6 to hold, the input current ql
t must satisfy 0 ≤ ql

t ≤ θl for all t ∈ {1, 2, . . . , T},
this constraint ensures the membrane potential dynamics follow the SNN operation rules defined in
Theorem 2. To satisfy this per-time-step current constraint while maintaining the total input current
Ql

tot = W lN l−1θl−1, the most straightforward and effective way is to distribute the total current
uniformly across all time-steps:

ql
t =

1

T
·Ql

tot (9)

When the previous layer matches ϕl−1 = al−1, we have N l−1 = M l−1. Let z = W lN l−1θl−1

θl ,

thus N l =
⌊
V l

0+W lN l−1θl−1

θl

⌋
=

⌊
V l

0

θl + z
⌋

. To ensure N l = M l, the following must hold:⌊
V l
0

θl
+ z

⌋
= clip(Q(z), 0, T ) (10)

We only need to find the values of V l
0 for the three quantization functions Q to satisfy equation 10:

Case 1: For Q = floor, we have V l
0 = 0.

6
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The quantized value of ANN is defined as M l = clip(floor(z), 0, T ), where floor(z) = ⌊z⌋. A
real number z ∈ R can be decomposed into its integer part n = ⌊z⌋ and fractional part f ∈ [0, 1),

such that z = n+ f . The spike count of the SNN is given by N l =
⌊
V l

0

θl + n+ f
⌋

.

To ensure N l = M l, the following condition must hold: n ≤ V l
0

θl +n+f < n+1, which simplifies

to 0 ≤ V l
0

θl + f < 1. Substituting V l
0 = 0 yields: N l = ⌊n+ f⌋ = n = ⌊z⌋ = M l.

Thus, when Q = floor and V l
0 = 0, we have N l = M l and consequently ξl = 0.

Case 2: For Q = round, we have V l
0 = θl

2 .

The quantized value of ANN is defined as M l = clip(round(z), 0, T ), where round(z) =
⌊z + 0.5⌋. Recall that a real number z ∈ R can be decomposed as z = n + f , with n = ⌊z⌋
and f ∈ [0, 1). This implies M l = n when 0 ≤ f < 0.5 and M l = n+ 1 when 0.5 ≤ f < 1.

To ensure N l = M l, we select V l
0 = θl

2 , which gives V l
0

θl = 0.5. Substituting this into the spike
count equation yields: N l = ⌊n+ f + 0.5⌋ .
For 0 ≤ f < 0.5, we have n ≤ n+ f + 0.5 < n+ 1, thus N l = n = round(z) = M l.

For 0.5 ≤ f < 1, we have n+ 1 ≤ n+ f + 0.5 < n+ 2, thus N l = n+ 1 = round(z) = M l.

Thus, when Q = round and V l
0 = θl

2 , the conversion error satisfies ξl = 0.

Case 3: For Q = ceil, we have V l
0 = θl.

The quantized value of ANN is given by M l = clip (ceil(z), 0, T ), where ceil(z) = ⌊z⌋ + 1 if
z /∈ Z, and ceil(z) = z if z ∈ Z and z = n + f . Correspondingly, M l = n when f = 0 and
n+ 1 when 0 < f < 1.

To ensure N l = M l, we select V l
0 = θl, leading to V l

0

θl = 1 and spike count N l = ⌊1 + n+ f⌋.

For f = 0, we would have M l = ceil(z) = n and N l = ⌊n+ 1⌋ = n+ 1, implying N l ̸= M l.
However, z cannot be an integer, so f ̸= 0 in practice .

For 0 < f < 1, ceil(z) = n+ 1 and N l = ⌊n+ 1 + f⌋ = n+ 1 = ceil(z) = M l.

Thus, when Q = ceil and V l
0 = θl, N l = M l holds, resulting in ξl = 0.

6 EXPERIMENTS

6.1 EXPERIMENTS ON THE IMAGENET-1K DATASET

Table 1 presents the performance of the proposed method QVM on ImageNet-1k. For VGG-16,
the parameter is set to L = 8, and quantization function Q is the round. The ANN accuracy is
74.39%, and the SNN achieves the best accuracy of 74.30% when the time-step T is set equal to L
(i.e., T = L = 16). At T = 8, QVM maintains 73.77% accuracy—slightly outperforming AdaFire
(73.53%), comparable to COS (73.82% with T + τ = 16), and far exceeding baselines like QCFS
(19.12%) and FTBC (64.20%). Even with a reduced time-step of T = 4, the proposed method still
reaches an accuracy of 71.20%, which is 20.07% higher than FTBC (51.13%) and 4.73% higher
than SRP (66.47% with T + τ = 18).

For ResNet-34, the parameter is set to L = 8, and ANN accuracy is 74.32%. The highest SNN ac-
curacy of 74.74% is achieved at T = L = 8—surpassing all baselines including COS (74.17% with
T + τ = 16) and AdaFire (72.96%). When T = 4, QVM achieves 67.28% accuracy, outperforming
FTBC by 53.58% (13.70% vs. 67.28%) and exceeding SRP (66.71% with T + τ = 12) by 0.57%.
At T = 16, QVM achieves 72.98% accuracy (higher than SRP’s 68.02% and QCFS’s 59.35%).
When T = 8, it also outperforms QCFS by 39.68% (35.06% vs. 74.74%), AdaFire by 1.78% and
COS (74.17% with T + τ = 16) by 0.57%. These results demonstrate that the proposed method
is effective on large-scale datasets, enabling high accuracy ANN-SNN conversion with low latency.
The experimental results on CIFAR-100 (Appendix Table 2) also outperform previous works.
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Table 1: Comparison between our method and previous works on the ImageNet-1k dataset.

Model Method ANN T
4 8 16 32

VGG-16

Calibration(Li et al., 2021a) 75.36 − 25.33 43.99 62.14

SlipReLU(Jiang et al., 2023) 71.99 − − 51.54 67.48

QCFS(Bu et al., 2023) 74.29 − 19.12 50.97 68.47

SRP* (Hao et al., 2023a) 74.29 66.47 68.37 69.13 69.35

COS* (Hao et al., 2023b) 74.19 72.94 73.82 74.09 74.33
FTBC(Wu et al., 2024) 75.36 51.13 64.20 71.19 73.89

AdaFire (Wang et al., 2025) 75.36 − 73.53 74.25 74.98

QVM(L=16) 74.39 71.20 73.77 74.30 74.30

ResNet-34

Calibration(Li et al., 2021a) 75.66 − 0.25 34.91 61.43

SlipReLU(Jiang et al., 2023) 75.08 − − 43.76 66.61

QCFS(Bu et al., 2023) 74.32 − 35.06 59.35 69.37

SRP* (Hao et al., 2023a) 74.32 66.71 67.62 68.02 68.40

COS* (Hao et al., 2023b) 74.22 73.81 74.17 74.14 73.93
FTBC(Wu et al., 2024) 75.66 13.70 38.55 60.68 70.88

AdaFire (Wang et al., 2025) 75.66 − 72.96 73.85 75.04

QVM(L=8) 74.32 67.28 74.74 72.98 73.47

Note: Both SRP* and COS* require executing τ time-steps before inference, so the actual inference time-
steps should be T + τ . In SRP*, τ = 14 for VGG-16 and τ = 8 for ResNet-34; in COS*, τ = 8 for both
VGG-16 and ResNet-34.

6.2 ABLATION STUDIES ON INITIAL MEMBRANE POTENTIAL AND QUANTIZATION METHOD

To verify Theorem 3, we conduct ablation experiments on CIFAR-100 using ResNet-18, with
the ANN quantization level set to L = 8. Figure 4 shows how the SNN accuracy varies as the
number of time-steps T increases, when training the ANN with different quantization functions
Q ∈ {floor, round, ceil} under three initial membrane potentials V0 ∈ {0, θ

2 , θ}. The gray dashed
line denotes the ANN accuracy baseline, and the red vertical line marks the optimal time-step
(T = L) that achieves the best accuracy–latency trade-off. The details are as follows: (a) Floor
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Figure 4: Different quantization methods for ANNs and initial membrane potential settings for
SNNs on the variation of model accuracy with time-steps.

Quantization. The highest accuracy is obtained when V0 = 0, peaking at 78.62% at T = L, fol-
lowed by a slight decline as T increases. When V0 = θ

2 or V0 = θ, the peak accuracy is lower
than that with V0 = 0; although accuracy improves with larger T , it remains below the V0 = 0
case. (b) Round Quantization. The best accuracy–latency trade-off occurs at V0 = θ

2 , reaching
79.56% at T = L. While increasing T also improves accuracy for V0 = θ

2 and V0 = θ, the best
accuracy–latency trade-off remains at T = L for V0 = θ

2 . (c) Ceil Quantization. The highest
accuracy is achieved when V0 = θ, peaking at 78.45% at T = l. For V0 = θ

2 , accuracy varies little
as T increases; for V0 = 0, the accuracy is lower than that with V0 = θ. (d) Optimal matching.
According to (a)–(c), when each quantization function Q is matched with its corresponding initial
membrane potential V0 (see Eq. equation 8, i.e., the optimal matching), the accuracy curves indicate
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that all three quantization schemes achieve the optimal balance between accuracy and latency at
T = L. In this case, the unevenness error is eliminated, yielding the best trade-off, and time-steps
fewer or more than L lead to degraded accuracy, which is consistent with Theorem 3: different
ANN activation quantization methods require different initial membrane potentials to maximize the
recovery of SNN accuracy.

6.3 ANALYSIS OF THE RELATIONSHIP BETWEEN L AND T

To further investigate how the number of SNN inference time-steps T affects accuracy under differ-
ent settings of the quantization level L, we conduct ablation experiments with VGG-16, ResNet-18,
and ResNet-20 on the CIFAR-100 dataset. As shown in Figure 5, panels (a), (b), and (c) correspond
to L = 4, L = 6, and L = 8, respectively. In accordance with Theorem 3, we choose the quanti-
zation function Q to be floor and set the initial membrane potential to V0 = 0. In all panels (a)–(c),
the best conversion accuracy is achieved when T = L. When T ̸= L (i.e., T < L or T > L), the
conversion error increases. These findings challenge the common concept that larger time-steps T
invariably yields better conversion performance, for the following reasons.
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Figure 5: This figure shows the ablation experiments of ResNet-18, ResNet-20, and VGG-16 models
on the CIFAR-100 dataset, illustrating the variation of SNN accuracy with time T under a fixed L

Case 1: When T < L, the expected error is given by ξl = θl

T ·
[
T
L ·M

l −N l
]
. For T < L,

the quantization level M l of the ANN possesses a finer resolution with L discrete levels, while the
SNN’s firing rate ϕl has only T discrete values. Since T

L < 1, the term T
L ·M

l scales down M l,
which facilitates N l in approaching T

L ·M
l. As T increases (while still remaining less than L),

T
L → 1, and N l gets progressively closer to M l, thereby reducing the error. Case 2: When T > L,
the SNN has a greater number of time-steps and a finer quantization granularity ( θ

l

T < θl

L ). In this
scenario, since T

L > 1, T
L ·M

l scales up the quantized value M l of the ANN activation, which may
result in N l failing to match accurately. The condition T > L makes the SNN’s quantization interval
θl

T smaller than that of the ANN, and the higher resolution of the SNN might introduce additional
quantization errors. Furthermore, T

L ·M
l may be a non-integer, leading to N l ̸= ⌊TL ·M

l⌋. Case 3:
When T = L, the quantization intervals of the ANN and SNN are equal. As elaborated in Theorem
3, the unevenness error is eliminated through optimizing the expectation matching of V l

0 and Q.

7 CONCLUSION

In this paper, we propose a unified theoretical framework to systematically address the unevenness
error in ANN–SNN conversion. Unlike prior works that rely on prolonged time-steps or complex
inference schemes, our approach achieves theoretically error-free conversion under low-latency set-
tings by establishing the Quantization–Voltage Matching (QVM) principle. QVM aligns the ANN
quantization function with the SNN’s initial membrane potential and sets the number of time-steps to
match the quantization level; under constant-current input activations, this eliminates the unevenness
error and ensures precise ANN–SNN correspondence. Our work bridges the gap between theory and
practice in ANN–SNN conversion by providing a provably optimal remedy for the unevenness error,
offering both accuracy and efficiency for neuromorphic computing applications.
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A APPENDIX

A.1 IMPACT OF TEMPORAL DISTRIBUTION OF SPIKES ON CONVERSION ERROR

To investigate how the temporal distribution of input spikes affects the ANN-SNN conversion error,
we conducted experiments on a single-layer neural network with 1,000 neurons. The experimental
procedure and settings are detailed below, and results are presented in Figure 6.
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Figure 6: Impact of the temporal distribution of spikes on conversion error

Setup 1: ANN and SNN Signal Generation: The input activation al−1 of the ANN was sampled
from a uniform distribution U(0, θl−1). The ANN’s output activation al was computed using Eq.
equation 4. Using the ANN’s input al−1, we derived the corresponding SNN input spike count
N l−1 = al−1·T

θl−1 (where N l−1 =
∑T

t=1 s
l−1
t , with sl−1

t denoting the spike signal at time-step t) and
scaled spike firing rate ϕl−1 = θl−1·N l−1

T .

Setup 2: Input Spike or Currrent Scenarios: To isolate the impact of temporal distribution, we
tested four input scenarios for the SNN (under the condition al−1 = ϕl−1). For all scenarios, the
membrane potential accumulation and spike firing processes followed equation 1 identically.:

• Random distribution: Spikes were randomly assigned across T time-steps.

• Uniform distribution: Spikes were equally spaced at intervals of T
N l−1 within T time-steps.

• ANN input: The SNN received the ANN’s output activation al as input at each time-step.

• Constant expected current: The SNN received the constant expected current defined in
equation 9 at each time-step.
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The experimental parameters are configured as follows: the thresholds are set to θl−1 = 1.5 and
θl = 2.0, which are consistent with the parameter ranges of typical SNNs; the time-step T = 8
is adopted to simulate low-latency inference; the weights are sampled from a uniform distribution
U(−1, 1); the random seed is seed = 48 to ensure experimental reproducibility; and each group of
experiments is conducted for 1000 trials, with the results reported as the mean ± standard deviation.

The results are presented in Figure 6, with key observations as follows: Subfigures (a) and (b)
illustrate the relationship between the SNN’s output spike count and the ANN’s output activation
under random and uniform input spike sequences, respectively. Here, R denotes the Pearson linear
correlation coefficient, scatter plot shows that the correlation between the ANN’s output activation
al and the SNN’s scaled firing rate ϕl is higher under the random distribution (R = 0.971) than
under the uniform distribution (R = 0.944). Subfigure (e) shows that the average absolute error
under random input spikes is 0.1430, while subfigure (f) reveals that uniform spike coding achieves
superior performance with a lower average absolute error of 0.0912. Subfigures (c) and (g) display
the activation alignment and error distribution when the SNN input current is derived from the
ANN’s output al, the correlation coefficient R = 1.0 and the average absolute error is 0. Similarly,
subfigures (d) and (h) present the activation and error distribution under the constant expected current
input, which also yields R = 1.0 and zero average absolute error.

Notably, under the constant expected current scenario, ϕl and al are strictly distributed along the
diagonal of the scatter plot. This indicates that the SNN’s output activation exactly matches that of
the ANN, and the conversion error is completely eliminated.

A.2 IMPACT OF THE PREVIOUS LAYER’S ERROR δl−1

We analyze how the error from the previous layer, denoted δl−1, propagates to the current layer.
Assume there is a misalignment between the ANN activation al−1 and the SNN scaled firing rate
ϕl−1, i.e., N l−1 ̸= M l−1, where N l−1 represents the spike count of the previous layer and M l−1

denotes its quantization level. The error of the previous layer is defined as δl−1 = N l−1 −M l−1.
From equation 9, the total input current to the current layer is Ql

tot = W lN l−1θl−1, which can be
rewritten as:

Ql
tot = W lθl−1

(
M l−1 + δl−1

)
(11)

Substituting this into equation 6 yields:

N l =

⌊
V l
0 +W lθl−1

(
M l−1 + δl−1

)
θl

⌋
(12)

Define zl = W lθl−1M l−1

θl representing the ideal input to the quantization function and δlz =
W lθl−1δl−1

θl denoting the propagated error term . For the specific case where the quantization func-
tion Q is the floor function and the initial membrane potential V l

0 = 0, the quantization level of the
ANN is M l = clip(floor(zl), 0, T ). Ignoring the boundary effect of the clipping operation (which
only limits values to the range [0, T ] without increasing the error bound), thus:

M l =
⌊
zl
⌋
, N l =

⌊
zl + δlz

⌋
(13)

The error of the l-th layer is δl =
∣∣N l −M l

∣∣ = ∣∣ ⌊zl + δlz
⌋
−
⌊
zl
⌋ ∣∣. Based on the property of the

floor function, for any real numbers x and ∆,
∣∣⌊x+∆⌋ − ⌊x⌋

∣∣ ≤ ⌊|∆|⌋+ 1, we derive:∣∣N l −M l
∣∣ ≤ ⌊

|δlz|
⌋
+ 1 (14)

The conversion error of the current layer is defined as ξl = θl

T ·
∣∣M l −N l

∣∣, substituting δlz into the
conversion error formula yields the upper bound of the current layer’s error:

ξl ≤ θl

T
·
(⌊

W lθl−1|δl−1|
θl

⌋
+ 1

)
(15)

This result demonstrates that the current layer’s error is determined by four factors: the previous
layer’s error δl−1, the weight W l, the threshold ratio θl−1

θl , and the time-step T. Notably, a zero
error in the previous layer (δl−1 = 0) is a necessary condition for achieving N l = M l in the
current layer. Consistent with this theoretical analysis, experimental results in Figure 3 confirm that
when the first layer starts with δ0 = 0, the conversion error remains zero across all subsequent
layers.
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A.3 IMPLEMENTATION OF THE ANN-SNN CONVERSION ALGORITHM

The algorithm consists of three key steps: parameter alignment, which synchronizes the threshold
of each layer as θl = γl and unifies the time-step across all layers to T = L; membrane potential
initialization, which sets the initial membrane potential V l

0 based on the quantization method with
V l
0 = 0 for floor quantization, V l

0 = θl

2 for round quantization, and V l
0 = θl for ceil quantization;

and spike-driven simulation, which computes the constant expect input current, updates the mem-
brane potential, generates spikes when the membrane potential reaches the threshold, and applies a
soft-reset to ensure consistent dynamics for each layer and each time-step.

Algorithm 1 Quantization-Voltage Match (QVM) ANN-SNN Conversion Framework
Input: Quantized ANN {W l, γl,Q}Ll=1, quantization level L, desired timesteps T (set T = L)
Output: SNN {W l, θl,V l

0}Ll=1 with zero unevenness error
1: Step 1: Parameter Alignment
2: for l← 1 to L do
3: θl ← γl // share thresholds
4: T ← L // unified timesteps
5: end for
6: Step 2: Initialise Membrane Potentials
7: for l← 1 to L do
8: if Q = floor then
9: V l

0 ← 0
10: else if Q = round then
11: V l

0 ← θl

2
12: else if Q = ceil then
13: V l

0 ← θl

14: end if
15: end for
16: Step 3: Spike-Driven Forward Simulation
17: for l← 1 to L do
18: for t← 1 to T do

19: ql
t ←

W lN l−1θ l−1

T
// N l−1 =

∑T
t=1 s

l−1
t

20: U l
t ← V l

t−1 + ql
t

21: slt ← I[U l
t ≥ θl ]

22: V l
t ← U l

t − θlslt // soft-reset
23: end for
24: end for

A.4 DATASETS AND EXPERIMENTAL SETUPS

CIFAR-100 (Krizhevsky et al., 2009) is a small-scale dataset with 50,000 training and 10,000 testing
images, each with a spatial resolution of 32×32 pixels (3 channels) across 100 classes. Preprocessing
includes standard data augmentation: random cropping, Cutout (DeVries & Taylor, 2017), and Au-
toAugment (Cubuk et al., 2019). ResNet-18, ResNet-20, and VGG-16 were trained on this dataset
using the Stochastic Gradient Descent (SGD) optimizer (Bottou, 2012) with an initial learning rate
of 0.1, momentum of 0.9, and batch size of 300. Training ran for 300 epochs with a cosine annealing
scheduler (Loshchilov & Hutter, 2016) and weight decay of 5× 10−4.

For large-scale evaluation, we use the ILSVRC 2012 subset of ImageNet (Deng et al., 2009), con-
taining 1,281,167 training and 50,000 testing images (resized to 224×224 pixels). Preprocessing
applies the same augmentation as CIFAR-100. ResNet-34 and VGG-16 were trained here with a
batch size of 128 for 300 epochs, using SGD (initial learning rate 0.1, momentum 0.9), a cosine
annealing scheduler, and weight decay of 1× 10−4.

We also evaluate on neuromorphic datasets: DVS-CIFAR10 (Li et al., 2017), derived from CIFAR-
10 via Dynamic Vision Sensor (DVS) cameras, includes 9,000 training and 1,000 testing samples

14
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(128×128 resolution) with event-driven data. DVS128 Gesture (Amir et al., 2017), capturing 11
gestures from 29 participants under varying lighting, comprises 1,342 samples (1,208 training, 134
testing) with an average duration of 6.5 ± 1.7 seconds. Both neuromorphic datasets use SpikingJelly
(Fang et al., 2023) for event-to-frame integration and follow the data augmentation strategy in Hao
et al. (2024). A spiking version of ResNet-18 was tested on these datasets, trained for 300 epochs
with SGD (initial learning rate 0.1), cosine annealing, and weight decay of 5× 10−4.

A.5 COMPARISON WITH OTHER WORKS ON CIFAR-100 DATASET

We compare our method with state-of-the-art ANN-SNN conversion methods. Table 2 shows the
experimental results on CIFAR-100. For the VGG-16 model with training parameter L = 8, our
method achieves an accuracy of 76.20% at 4 time-steps, which is 0.78% higher than SRP. It should
be noted that SRP actually requires T +τ time-steps to reach 76.20% accuracy, thus needing 8 time-
steps and COS achieves 76.52% needing 12 time-steps. Our work can achieve 77.00% accuracy
at T = 8, which exceeds the accuracy of QCFS, SlipReLU, FTBC, and AdaFire at T = 32 time-
steps. ResNet-20 is a model with very few parameters, and our method also performs excellently.
With training parameter L = 8, our method reaches 64.57% accuracy at T = 4, which is much
higher than FTBC’s 58.08%, and achieves 68.24% accuracy at T = 8. For ResNet-18 with training
parameter L = 4, our method achieves 75.61% at T = 2, outperforming the existing methods of
SlipReLU 73.91% and QCFS 70.79%.

Table 2: Comparison between our method and previous works on CIFAR-100 dataset.

Model Method ANN T
1 2 4 8 16 32

VGG-16

CalibrationLi et al. (2021a) 77.89 − − − − − 73.55

QCFS(Bu et al., 2023) 76.28 − 63.79 69.62 73.96 76.24 77.01

SRP* (Hao et al., 2023a) 76.28 71.52 74.31 75.42 76.25 76.42 76.45

COS* (Hao et al., 2023b) 76.28 74.24 76.03 76.26 76.52 76.77 76.96

SlipReLU(Jiang et al., 2023) 68.46 64.21 66.30 67.97 69.31 70.09 70.19

FTBC(Wu et al., 2024) 77.87 32.79 48.99 60.68 69.52 74.05 76.39

QVM(L=8) 77.01 45.48 69.84 76.20 77.02 77.29 77.14

ResNet-20

Calibration(Li et al., 2021a) 77.16 − − − − − 76.32

QCFS(Bu et al., 2023) 69.94 − 19.96 34.14 55.37 67.33 69.82

SRP* (Hao et al., 2023a) 69.94 46.48 53.96 59.34 62.94 64.71 65.50

COS* (Hao et al., 2023b) 69.97 59.22 64.21 65.18 67.17 69.44 70.29

SlipReLU(Jiang et al., 2023) 50.79 48.12 51.35 53.27 54.17 53.91 53.11

FTBC*(Wu et al., 2024) 81.89 19.96 38.19 58.08 71.74 78.80 81.09

QVM(L=8) 68.25 11.39 43.81 64.57 68.24 68.41 68.70

ResNet-18
SlipReLU(Jiang et al., 2023) 74.01 71.51 73.91 74.89 75.40 75.41 75.30

QCFS(Bu et al., 2023) 78.80 − 70.79 75.67 78.48 79.48 79.62

QVM(L=8) 78.88 59.16 75.61 78.87 79.42 79.55 79.48

Both SRP* and COS* require executing τ time-steps before inference, so the actual inference time-steps
should be T + τ . In SRP* and COS*, τ = 4. FTBC* is not a standard ResNet-20.

A.6 COMPARISON WITH OTHER WORKS ON NEUROMORPHIC DATASET

On the DVS-Gesture dataset, PLIF and CLIF achieves accuracy of 97.57% and 97.92% but requires
T = 20; KLIF reaches 94.10% at T = 12. In contrast, the proposed method attains 93.75%
accuracy with only T = 4, significantly reducing computational overhead by minimizing the time-
steps. On the CIFAR10-DVS dataset, among existing methods, Dspike and DSR both operate at
T = 10, with accuracy of 75.40% and 77.30% respectively. PLIF achieves accuracy of 74.80% but
requires T = 20. AdaFire reduces the time-steps to T = 8 and increases the accuracy to 81.25%. In
contrast, the proposed method with T = 4 reaches an accuracy of 84.50%, which is 3.25% higher
than AdaFire, 7.20% higher than DSR, 9.10% higher than Dspike and 9.30% higher than PLIF.
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Table 3: Comparison between our method and previous works on neuromorphic datasets.
Dataset Method T Acc.(%)

DVS-Gesture

PLIF(Fang et al., 2021b) 20 97.57
KLIF(Jiang & Zhang, 2023) 12 94.10

CLIF(Huang et al., 2024) 20 97.92
QVM(L=4) 4 93.75

CIFAR10-DVS

PLIF(Fang et al., 2021b) 20 74.80

Dspike(Li et al., 2021b) 10 75.40

DSR(Meng, 2022) 10 77.30

AdaFire (Wang et al., 2025) 8 81.25

QVM(L=4) 4 84.50

A.7 ABLATION STUDY ON THREE QUANTIZATION METHODS UNDER DIFFERENT INITIAL
MEMBRANE POTENTIALS

Table 4 presents the results of an ablation study comparing the accuracy of ResNet-18 on the
CIFAR-100 dataset and L = 8. This study evaluates three ANN quantization methods (floor,round,
ceil) when mapped to SNNs, with variables including initial membrane potential settings (V0 = 0,
V0 = θ/2, V0 = θ) and inference time-steps (T = 1, 2, 4, 8, 16, 32). Each quantization method cor-
responds to a unique optimal initial membrane potential: floor achieves a peak accuracy of 78.62%
at V0 = 0 and T = 8; round reaches its highest accuracy of 79.81% at V0 = θ/2 and T = 16; ceil
attains a peak accuracy of 78.45% at V0 = θ and T = 8. Notably, all methods approach or exceed
their respective ANN accuracy baselines when T = 8. Additionally, increasing T beyond 8 does
not yield consistent accuracy improvements and may even cause a decline (e.g., floor quantization
drops to 71.59% at T = 32), which validates the efficiency of the proposed T = L (quantization
level) setting.

Table 4: ResNet-18 accuracy comparison on CIFAR-100 dataset.
ANN SNN

Method Acc.(%) V0 T=1 T=2 T=4 T=8 T=16 T=32

floor 78.58
0 1.00 1.11 69.03 78.62 75.32 71.59

θ/2 29.63 55.28 63.06 64.60 65.42 65.25
θ 1.06 1.42 6.33 24.52 45.58 56.63

round 79.56
0 1.00 1.00 2.68 66.93 77.89 79.62

θ/2 46.62 72.45 77.81 79.56 79.81 79.75
θ 1.09 1.67 14.63 59.66 74.73 78.08

ceil 78.51
0 1.00 1.00 1.00 1.10 10.58 37.07

θ/2 32.07 56.21 59.43 60.35 61.07 61.14
θ 1.05 4.11 59.79 78.45 77.41 72.94

A.8 DISCUSSION ABOUT PREVIOUS WORKS ON UNEVENNESS ERROR

Building on the concept of unevenness error introduced Bu et al. (2023), the authors mitigate this
issue by applying an initial membrane-potential offset so that the expected conversion error is zero.
However, setting the expectation conversion error to zero does not fully resolve the unevenness
error. As noted by the authors, due to this error there remains a non-negligible gap between ANN
and SNN accuracies even when the number of quantization levels equals the number of time steps,
i.e., L = T . In contrast, our method eliminates the unevenness error under L = T , thereby enabling
theoretically error-free conversion.

A.9 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are used to assist in writing, check for grammatical and spelling
errors, polish language expressions, and aid in the creation of academic paper figures.

16


	Introduction
	Related Work
	Preliminary
	Unevenness Error in ANN-SNN Conversion
	Method
	Bounded Membrane Potential Under Bounded Input
	Spike Count Equation
	Sufficient Conditions for Eliminate Unevenness Error

	Experiments
	Experiments on the ImageNet-1k Dataset
	Ablation Studies on Initial Membrane Potential and Quantization Method
	Analysis of the relationship between L and T

	Conclusion
	Appendix
	Impact of Temporal Distribution of Spikes on Conversion Error
	Impact of the Previous Layer's Error l-1
	Implementation of the ANN-SNN Conversion Algorithm
	Datasets and Experimental Setups
	Comparison with other Works on CIFAR-100 Dataset
	Comparison with other Works on Neuromorphic Dataset
	Ablation Study on Three Quantization Methods Under Different Initial Membrane Potentials
	Discussion about previous works On unevenness error
	The Use of Large Language Models (LLMs)


