
Under review as a conference paper at ICLR 2024

MUDREAMER: LEARNING PREDICTIVE WORLD
MODELS WITHOUT RECONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The DreamerV3 agent recently demonstrated state-of-the-art performance in di-
verse domains, learning powerful world models in latent space using a pixel re-
construction loss. However, while the reconstruction loss is essential to Dreamer’s
performance, it also necessitates modeling unnecessary information. Conse-
quently, Dreamer sometimes fails to perceive crucial elements which are neces-
sary for task-solving, significantly limiting its potential. In this paper, we present
MuDreamer, a reinforcement learning agent that builds upon the DreamerV3 al-
gorithm by learning a predictive world model without the need for reconstructing
input signals. Rather than relying on pixel reconstruction, hidden representations
are instead learned by predicting the environment value function and previously
selected actions. Similar to predictive self-supervised methods for images, we find
that the use of batch normalization is crucial to prevent learning collapse. We also
study the effect of KL balancing between model posterior and prior losses on con-
vergence speed and learning stability. We evaluate MuDreamer on the widely used
DeepMind Visual Control Suite and achieve performance comparable to Dream-
erV3. MuDreamer also demonstrates promising results on the Atari100k bench-
mark. Research code will be made available publicly.

1 INTRODUCTION

Deep reinforcement learning has achieved great success in recent years, solving complex tasks in
diverse domains. Researchers made significant progress applying advances in deep learning for
learning feature representations (Mnih et al., 2013). The use of deep neural networks as function ap-
proximations made it possible to train powerful agents directly from high-dimensional observations
like images, achieving human to superhuman performance in challenging and visually complex
domains like Atari (Mnih et al., 2015; Hessel et al., 2018), visual control (Lillicrap et al., 2016;
Barth-Maron et al., 2018), the game of Go (Silver et al., 2018; Schrittwieser et al., 2020), StarCraft
II (Vinyals et al., 2019) and even Minecraft (Baker et al., 2022; Hafner et al., 2023). However,
these approaches generally require a large amount of environment interactions (Tassa et al., 2018)
or behavior cloning pretraining (Silver et al., 2016) to achieve strong performance.

To address this issue, concurrent works have chosen to focus on model-based approaches (Silver
et al., 2017; Watter et al., 2015), aiming to enhance the agent performance while reducing the num-
ber of necessary interactions with the environment. Reinforcement learning algorithms are typically
categorized into two main groups: model-free algorithms, which directly learn value and/or pol-
icy functions through interaction with the environment, and model-based algorithms, which learn a
model of the world by interacting with the environment. World models (Sutton, 1991; Ha & Schmid-
huber, 2018) summarize an agent’s experience into a predictive model that can be used in place of
the real environment to learn complex behaviors. Having access to a model of the environment
enables the agent to simulate multiple plausible trajectories in parallel, which not only enhances
generalization but also improves sample efficiency.

Recent works have shown that model-based agents can effectively be trained from images, lead-
ing to enhanced performance and sample efficiency compared to model-free approaches (Hafner
et al., 2019; 2020; Kaiser et al., 2020; Schrittwieser et al., 2020; Hafner et al., 2021; Ye et al., 2021;
Micheli et al., 2023). The DreamerV3 agent (Hafner et al., 2023) recently demonstrated state-of-
the-art performance across diverse domains, learning powerful world models in latent space using a

1

Under review as a conference paper at ICLR 2024

pixel reconstruction loss. The agent solves long-horizon tasks from image inputs with both contin-
uous and discrete action spaces. However, while the reconstruction loss is essential for Dreamer’s
performance, it also necessitates modeling unnecessary information (Okada & Taniguchi, 2021; Ma
et al., 2021; Nguyen et al., 2021; Paster et al., 2021; Deng et al., 2022; Bharadhwaj et al., 2022).
Consequently, Dreamer sometimes fails to perceives crucial elements which are necessary for task-
solving, significantly limiting its potential.

In this paper, we present MuDreamer, a reinforcement learning agent that builds upon the Dream-
erV3 (Hafner et al., 2023) algorithm by learning a predictive world model without the necessity of
reconstructing input signals. Taking inspiration from the MuZero (Schrittwieser et al., 2020) agent,
MuDreamer learns a world model in latent space by predicting the environment rewards, contin-
uation flags and value function, focusing on information relevant to the task. We also propose to
incorporate an action prediction branch to predict the sequence of selected actions from the ob-
served data. This additional task proves particularly beneficial for learning hidden representations
in scenarios where environment rewards are extremely sparse. Similar to predictive self-supervised
methods used for image data, we find that the use of batch normalization is crucial to prevent learning
collapse in which the model produces constant or non-informative hidden states. Following Paster
et al. (2021), we solve this issue by introducing batch normalization inside the model representa-
tion network. We also study the effect of KL balancing between model posterior and prior losses
on convergence speed and learning stability. We evaluate MuDreamer on the widely used Deep-
Mind Visual Control Suite (Tassa et al., 2018). Our approach achieves performance comparable
to DreamerV3 while being faster to train. Furthermore, we evaluate MuDreamer on the Atari100k
benchmark (Kaiser et al., 2020) and present promising results.

2 RELATED WORKS

2.1 MODEL-BASED REINFORCEMENT LEARNING

In recent years, there has been a growing interest in using neural networks as world models to
simulate environments and train reinforcement learning agents from hypothetical trajectories. Ini-
tial research primarily focused on proprioceptive tasks (Gal et al., 2016; Silver et al., 2017; Henaff
et al., 2017; Wang et al., 2019; Wang & Ba, 2019), involving simple, low-dimensional environments.
However, more recent efforts have shifted towards learning world models for environments with
high-dimensional observations like images (Kaiser et al., 2020; Hafner et al., 2019; 2020; Schrit-
twieser et al., 2020; Ye et al., 2021; Micheli et al., 2023). For example, SimPLe (Kaiser et al., 2020)
successfully demonstrated planning in Atari games by training a world model in pixel space, then uti-
lizing it to train a Proximal Policy Optimization (PPO) agent (Schulman et al., 2017). This approach
involves a convolutional autoencoder for generating discrete latent states and an LSTM-based recur-
rent network for autoregressively generating latent states. PlaNet (Hafner et al., 2019) proposed to
learn a Recurrent State-Space Model (RSSM) in latent space using a pixel reconstruction loss, plan-
ning using model predictive control. Dreamer (Hafner et al., 2020; 2021; 2023) extended PlaNet by
incorporating actor and critic networks trained from simulated trajectories and imaginary rewards.
MuZero (Schrittwieser et al., 2020) took a different approach, focusing on learning a model of the
environment by predicting quantities crucial for planning, such as reward, action-selection policy,
and value function. This approach allowed MuZero to excel in reinforcement learning tasks without
relying on the reconstruction of input observations. EfficientZero improved upon MuZero’s sam-
ple efficiency by incorporating a representation learning objective (Chen & He, 2021) to achieve
better performance with limited data. Lastly, IRIS (Micheli et al., 2023) proposed a discrete autoen-
coder (Van Den Oord et al., 2017) model for imagining trajectories, predicting discrete latent tokens
in an autoregressive manner, using a transformer model.

2.2 SELF-SUPERVISED REPRESENTATION LEARNING FOR IMAGES

Self-Supervised Learning (SSL) of image representations has attracted significant research attention
in recent years for its ability to learn hidden representations from large scale unlabelled datasets.
Reconstruction-based approaches proposed to learn hidden representations by reconstructing a cor-
rupted version of the input image (He et al., 2022; Xie et al., 2022; Feichtenhofer et al., 2022). Many
works focused on pixel space reconstruction while other proposed to predict hand-designed features
like Histograms of Oriented Gradients (HOG) (Wei et al., 2022). Contrastive approaches proposed to

2

Under review as a conference paper at ICLR 2024

learn hidden representations using joint embedding architectures where output features of a sample
and its distorted version are bought close to each other, while negative samples and their distortions
are pushed away (Hjelm et al., 2019; Oord et al., 2018; He et al., 2020; Chen et al., 2020). These
methods are commonly applied to Siamese architectures, where two identical networks are trained
together, sharing parameters. In contrast, SwAV (Caron et al., 2020) proposed a different approach
by ensuring consistency between cluster assignments produced for different augmentations of the
same image, rather than directly comparing features. Predictive approaches proposed to predict the
hidden representation of a similar view of the input signal without relying on negative samples (Grill
et al., 2020; Caron et al., 2021; Ermolov et al., 2021; Chen & He, 2021; Zbontar et al., 2021; Baevski
et al., 2022; Assran et al., 2023). These methods prevent learning collapse using various architec-
tural tricks such as knowledge distillation (Hinton et al., 2015), normalizing output representations,
or the application of additional constraints to output representations like VICReg (Bardes et al.,
2021).

2.3 RECONSTRUCTION-FREE DREAMER

Following advances in the area of self-supervised representation learning for image data, several
works proposed to apply reconstruction-free representation learning techniques to Dreamer. The
original Dreamer paper (Hafner et al., 2020) initially experimented with contrastive learning (Oord
et al., 2018) to learn representations having maximal mutual information with the encoded observa-
tion but found that it did not match the performance of reconstruction-based representations. Subse-
quently, several works proposed Dreamer variants using contrastive learning (Okada & Taniguchi,
2021; Ma et al., 2021; Nguyen et al., 2021; Okada & Taniguchi, 2022; Bharadhwaj et al., 2022), suc-
cessfully competing with Dreamer on several tasks of the Visual Control Suite. Dreaming (Okada
& Taniguchi, 2021) proposed to use a multi-step InfoNCE loss to sequentially predict future time
steps representations of augmented views. Temporal Predictive Coding (TPC) (Nguyen et al., 2021)
followed a similar approach using contrastive learning to maximize the mutual information between
past and the future latent states. Similar to SwAV, DreamerPro (Deng et al., 2022) proposed to en-
courage uniform cluster assignment across batches of samples, implicitly pushing apart embeddings
of different observations. Concurrently, BLAST (Paster et al., 2021) proposed to learn hidden rep-
resentation using a slow-moving teacher network to generate target embeddings (Grill et al., 2020).
BLAST also demonstrated that batch normalization was critical to the agent performance. In this
paper, we present a reconstruction-free variant of DreamerV3 achieving comparable performance
without using negatives samples, augmented views of images, or an additional teacher network.

3 BACKGROUND

3.1 DREAMER

Our method is built on the DreamerV3 (Hafner et al., 2023) algorithm which we refer to as Dreamer
throughout the paper. Dreamer (Hafner et al., 2020) is an actor-critic model-based reinforcement
learning algorithm learning a powerful predictive world model from past experience in latent space
using a replay buffer. The world model is learned from self-supervised learning by predicting the
environment reward, episode continuation and next latent state given previously selected actions.
The algorithm also uses a pixel reconstruction loss using an autoencoder architecture such that all
information about the observations must pass through the model hidden state. The actor and critic
neural networks learn behaviors purely from abstract sequences predicted by the world model. The
model generate simulated trajectories from replayed experience states using the actor network to
sample actions. The value network is trained to predict the sum of future reward while the actor
network is trained to maximize the expected sum of future reward from the value network.

DreamerV2 (Hafner et al., 2021) applied Dreamer to Atari games, utilizing categorical latent states
with straight-through gradients (Bengio et al., 2013) in the world model to improve performance,
instead of Gaussian latents with reparameterized gradients (Kingma & Welling, 2013). It also intro-
duced KL balancing, separately scaling the prior cross entropy and the posterior entropy in the KL
loss to encourage learning an accurate temporal prior.

DreamerV3 (Hafner et al., 2023) mastered diverse domains using the same hyper-parameters with
a set of architectural changes to stabilize learning across tasks. The agent uses Symlog predictions

3

Under review as a conference paper at ICLR 2024

for the reward and value function to address the scale variance across domains. The networks also
employ layer normalization (Ba et al., 2016) to improve robustness and performance while scaling
up to larger model sizes. It regularizes the policy by normalizing the returns and value function
using an Exponential Moving Average (EMA) of the returns percentiles. Using these modifications,
the agent solves Atari games and DeepMind Control tasks while collecting diamonds in Minecraft.

3.2 MUZERO

MuZero (Schrittwieser et al., 2020) is a model-based algorithm combining Monte-Carlo Tree Search
(MCTS) (Coulom, 2006) with a world model to achieve superhuman performance in precision plan-
ning tasks such as Chess, Shogi and Go. The model is learned by being unrolled recurrently for K
steps and predicting environment quantities relevant to planning. All parameters of the model are
trained jointly to accurately match the TD value (Sutton, 1988) and reward, for every hypothetical
step k. The MCTS algorithm uses the learned model to simulate environment trajectories and output
an action visit distribution over the root node. This potentially better policy compared to the neu-
ral network one is used to train the policy network. MuZero excels in discrete action domains but
struggles with high-dimensional continuous action spaces, where a discretization of possible actions
is required to apply MCTS (Ye et al., 2021). Our proposed method, MuDreamer, draws inspiration
from MuZero to learn a world model by predicting the expected sum of future rewards. MuDreamer
solves tasks in both continuous and discrete action spaces, without the need for a reconstruction loss.

4 MUDREAMER

We present MuDreamer, a reconstruction-free version of the Dreamer algorithm, which learns a
world model in latent space by predicting not only rewards and continuation flags but also the envi-
ronment value function and previously selected actions. Figure 1 illustrates the learning process of
the MuDreamer world model. Similar to Dreamer, MuDreamer comprises three neural networks: a
world model, a critic network, and a policy network. These three networks are trained concurrently
using an experience replay buffer that collects past experiences. This section provides an overview
of the world model and the modifications applied to the Dreamer agent. We also detail the learning
process of the critic and actor networks.

Encoder Encoder

min KL

Encoder

min KLmin KL

stop
gradient

stop
gradient

stop
gradient

R
ew

ar
d

Va
lu

e

Decoder Decoder Decoder

Va
lu

e

Va
lu

e

R
ew

ar
d

R
ew

ar
d

Ac
tio

n

Ac
tio

n

Ac
tio

n

Encoder

min KL

stop
gradient

Decoder

Va
lu

e

R
ew

ar
d

Ac
tio

n

C
on

tin
ue

C
on

tin
ue

C
on

tin
ue

C
on

tin
ue

Figure 1: MuDreamer world model training. A sequence of image observations o1:T is sampled from
the replay buffer. The sequence is mapped to hidden representations x1:T using a CNN encoder. At
each step, the RSSM computes a posterior state zt representing the current observation ot and a prior
state ẑt that predict the posterior without having access to the current observation. Unlike Dreamer,
the decoder gradient is not back-propagated to the rest of the model. The hidden representations are
learned solely using value, reward, episode continuation and action prediction heads.

4

Under review as a conference paper at ICLR 2024

4.1 WORLD MODEL LEARNING

Following DreamerV3, we learn a world model in latent space, using a Convolutional Neural Net-
works (CNN) (LeCun et al., 1989) encoder to map high-dimensional visual observations ot to
hidden representations xt. The world model is implemented as a Recurrent State-Space Model
(RSSM) (Hafner et al., 2019) composed of three sub networks: A sequential network using a
GRU (Cho et al., 2014) to predict the next hidden state ht given past action at−1. A representa-
tion network predicting the current stochastic state zt using both ht and encoded features xt. And a
dynamics network predicting the stochastic state zt given the current recurrent state ht. The concate-
nation of ht and zt forms the model hidden state st = {ht, zt} from which we predict environment
rewards rt, episode continuation ct ∈ {0, 1} and value function vt. We also learn an action predictor
network using encoded features xt and preceding model hidden state st−1 to predict the action which
led to the observed environment change. The trainable world model components are the following:

Encoder: xt = encϕ(ot)

RSSM


Sequential Network: ht = fϕ(ht−1, zt−1, at−1)

Representation Network: zt ∼ qϕ(zt | ht, xt)
Dynamics Predictor: ẑt ∼ pϕ(ẑt | ht)
Reward Predictor: r̂t ∼ pϕ(r̂t | ht, zt)
Continue Predictor: ĉt ∼ pϕ(ĉt | ht, zt)
Value Predictor: v̂t ∼ pϕ(v̂t | ht, zt)
Action Predictor: ât−1 ∼ pϕ(ât−1 | xt, ht−1, zt−1)

Decoder: ôt ∼ pϕ(ôt | sg(ht), sg(zt))

(1)

Given a sequence batch of inputs x1:T , actions a1:T , rewards r1:T , and continuation flags c1:T , the
world model parameters (ϕ) are optimized end-to-end to minimize a prediction loss Lpred, dynamics
loss Ldyn, and representation loss Lrep with corresponding loss weights βpred = 1.0, βdyn = 0.95
and βrep = 0.05. The loss function for learning the world model is:

Lmodel(ϕ) = Eqϕ

[∑T
t=1(βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ))

]
(2)

The prediction loss trains the reward, continue, value and action predictors to learn hidden repre-
sentations. We optionally learn a decoder network to reconstruct the sequence of observations while
using the stop gradient operator sg(.) to prevent the gradients from being back-propagated to other
network parameters. The dynamics loss trains the dynamics predictor to predict the next represen-
tation by minimizing the KL divergence between the predictor pϕ(zt | ht) and the next stochastic
representation qϕ(zt | ht, xt). While the representation loss trains the representations to become
more predictable if the dynamics cannot predict their distribution:

Lpred(ϕ) =− ln pϕ(rt | zt, ht)
reward log loss

− ln pϕ(ct | zt, ht)
continue log loss

− yt ln pϕ(· | zt, ht)
discrete returns regression

− ln pϕ(at−1 | xt, zt−1, ht−1)

action log loss

− ln pϕ(ot | sg(zt), sg(ht))
image log loss

Ldyn(ϕ) = max(1,KL[sg(qϕ(zt | ht, xt)) || pϕ(zt | ht)])
Lrep(ϕ) = max(1,KL[qϕ(zt | ht, xt)) || sg(pϕ(zt | ht)])

(3)

Value Predictor We use a value network to predict the environment value function from the model
hidden state. The value function aims to represent the expected λ-returns (Sutton, 1988) with λ set
0.95, using a slow moving target value predictor v′ϕ′ with EMA momentum τ = 0.01:

Rλt = rt+1 + γct+1

{
(1− λ)v′ϕ′(st+1) + λRλt+1 if t < T − 1

v′ϕ′(sT) if t = T − 1
(4)

Following previous works (Schrittwieser et al., 2020; Hafner et al., 2023), we set the discount factor
γ to 0.997 and use a discrete regression of λ-returns to let the critic maintain and refine a distribution
over potential returns. The λ-return targets are first transformed using the Symlog function and
discretized using a twohot encoding. Given twohot-encoded targets yt = sg(twohot(symlog(Rλt)))
the value predictor minimizes the categorical cross entropy loss with the predicted value logits.

5

Under review as a conference paper at ICLR 2024

M
od

el
O
rig

in
al

Context 6 10 15 20 25 30 35 40 45 50 55 60 64

M
od

el
O
rig

in
al

Figure 2: Reconstruction of MuDreamer model predictions over 64 time steps. We take 5 context
frames and generate trajectories of 59 steps into the future using the model sequential and dynamics
networks. Actions are predicted using the policy network given generated latent states. MuDreamer
generates accurate long-term predictions similar to Dreamer without requiring reconstruction loss
gradients during training to compress the observation information into the model hidden state.

Action Predictor The action predictor network learns to identify the previously selected actions for
each time step of the sampled trajectory. It shares the same architecture as the actor network but
takes the current encoded features xt and preceding model hidden state st−1 as inputs. Since the
current model hidden state st already depends of the action target at.

Batch Normalization In order to prevent learning collapse to constant or non-informative model
states, like observed in predictive self-supervised learning for image data (Grill et al., 2020; Chen
et al., 2020), we apply batch normalization (Ioffe & Szegedy, 2015) to MuDreamer. Following
BLAST (Paster et al., 2021), we replace the hidden normalization layer inside the representation
network by a batch normalization layer. We find that it is sufficient to prevent collapse on all tasks.

4.2 BEHAVIOR LEARNING

Following DreamerV3 (Hafner et al., 2023), MuDreamer policy and value functions are learned by
imagining trajectories using the world model (Figure 2). Actor-critic learning takes place entirely
in latent space, allowing the agent to use a large batch size of imagined trajectories. To do so, the
model hidden states of the sampled sequence are flattened along batch and time dimensions. The
world model imagines H = 15 steps into the future using the sequential and dynamics networks,
selecting actions from the actor. The actor and critic use parameter vectors (θ) and (ψ), respectively:

Actor: ât ∼ πθ(ât|ŝt)
Critic: vψ(ŝt) ≈ Epϕπθ

[R̂λt]
(5)

Critic learning Similarly to the value predictor branch, the critic is trained by predicting the dis-
cretized λ-returns, but using rewards predictions imagined by the world model:

R̂λt = r̂t+1 + γĉt+1

{
(1− λ)vψ(ŝt+1) + λR̂λt+1 if t < H
vψ(ŝH+1) if t = H

(6)

The critic also do not use a target network but relies on its own predictions for estimating rewards
beyond the prediction horizon. This requires stabilizing the critic by adding a regularizing term of
the predicted values toward the outputs of its own EMA network:

Lcritic(ψ) =
∑H
t=1

(
− ŷt ln pψ(· | ŝt)

discrete returns regression

− v′ψ′(ŝt) ln pψ(· | ŝt)
critic EMA regularizer

)
(7)

Actor learning The actor network learns to select actions that maximize advantages Aλt = Rλt −
vψ(ŝt) while regularizing the policy entropy to ensure exploration both in imagination and during
data collection. In order to use a single regularization scale for all domains, DreamerV3 stabilizes
the scale of returns using moving statistics. The actor loss computes policy gradients using stochastic
back-propagation thought the model sequential and dynamics networks for continuous actions (ρ =
0) and using reinforce (Williams, 1992) for discrete actions (ρ = 1):

Lactor(θ) = Eπθ,pϕ

[∑H
t=1

(
− ρ lnπθ(ât | ŝt)sg(Aλt)

reinforce

− (1− ρ)Aλt
dynamics backprop

− ηH[πθ(ât | ŝt)]
entropy regularizer

)]
(8)

6

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

In this section, we aim to evaluate the performance of our MuDreamer algorithm compared to its
reconstruction-based version and other published model-based and model-free methods. We eval-
uate MuDreamer on the Visual Control Suite from DeepMind (Table 1) as well as the atari100k
benchmark (Table 2). We also proceed to a detailed ablation study on the Visual Control Suite,
studying the effect of batch normalization, action-value predictors and KL balancing on performance
and learning stability (Table 3). Our PyTorch (Paszke et al., 2019) implementation of MuDreamer
takes 4 hours to reach 1M steps on the ’walker run’ visual control task using a single NVIDIA RTX
3090 GPU and 16 CPU cores, while DreamerV3 takes 4 hours and 20 minutes. The total amount of
trainable parameters for MuDreamer and DreamerV3 are 15.3M and 17.9M, respectively.

5.1 RESULTS

Visual Control Suite The DeepMind Control Suite was introduced by Tassa et al. (2018) as a
set of continuous control tasks with a standardised structure and interpretable rewards. The suite
is intended to serve as performance benchmarks for reinforcement learning agents in continuous
action space. The tasks can be solved from low-dimensional inputs and/or pixel observations. In
this work, we evaluate our method on the Visual Control Suite benchmark which contains 20 tasks
where the agent receives only high-dimensional images as inputs and a budget of 1M environment
steps. Similarly to DreamerV3 (Hafner et al., 2023), we use 4 environment instances during training
with a training ratio of 512 replayed steps per policy step.

Table 1 compares MuDreamer with DreamerV3 and other recent methods on the Visual Control
Suite using 1M environment steps. MuDreamer achieves performance comparable to DreamerV3
without reconstructing the input signal, outperforming SAC (Haarnoja et al., 2018), CURL (Laskin
et al., 2020) and DrQ-v2 (Yarats et al., 2021). As shown in Figure 2, although the reconstruction
gradients are not propagated to the whole network, the decoder easily reconstruct the input image,
meaning that the model hidden state contains all necessary information about the environment. Mu-
Dreamer shows faster convergence on the Quadruped task. However, we found it to be slightly
slower to converge on Cheetah and Walker where the agent body occupy a large portion of the im-
age input, diminishing the impact of the background on the reconstruction loss. Performance curves
showing a comparison of MuDreamer and DreamerV3 over the 20 tasks using 3 different seeds can
be found in Appendix B.

Task SAC‡ CURL‡ DrQ-v2‡ DreamerV3 DreamerV3† MuDreamer
Acrobot Swingup 5.1 5.1 128.4 210.0 227.7 191.8
Cartpole Balance 963.1 979.0 991.5 996.4 995.8 994.4
Cartpole Balance Sparse 950.8 981.0 996.2 1000.0 1000.0 1000.0
Cartpole Swingup 692.1 762.7 858.9 819.1 843.7 852.7
Cartpole Swingup Sparse 154.6 236.2 706.9 792.9 802.8 554.8
Cheetah Run 27.2 474.3 691.0 728.7 828.6 675.5
Cup Catch 163.9 965.5 931.8 957.1 961.3 962.1
Finger Spin 312.2 877.1 846.7 818.5 460.9 507.5
Finger Turn Easy 176.7 338.0 448.4 787.7 677.2 888.2
Finger Turn Hard 70.5 215.6 220.0 810.8 369.0 637.7
Hopper Hop 3.1 152.5 189.9 369.6 239.4 247.4
Hopper Stand 5.2 786.8 893.0 900.6 923.7 896.7
Pendulum Swingup 560.1 376.4 839.7 806.3 834.1 843.2
Quadruped Run 50.5 141.5 407.0 352.3 513.7 723.4
Quadruped Walk 49.7 123.7 660.3 352.6 723.0 909.8
Reacher Easy 86.5 609.3 910.2 898.9 950.3 823.3
Reacher Hard 9.1 400.2 572.9 499.2 445.7 142.3
Walker Run 26.9 376.2 517.1 757.8 585.1 542.7
Walker Stand 159.3 463.5 974.1 976.7 973.7 960.7
Walker Walk 38.9 828.8 762.9 955.8 950.7 939.9
Mean 225.3 504.7 677.4 739.6 715.3 714.7
Median 78.5 431.8 734.9 808.5 816.5 829.6

Table 1: Visual Control Suite scores (1M environment steps). † denotes our implementation of
DreamerV3. ‡ results were taken from Hafner et al. (2023). We use 3 different seeds per experiment.

Atari100k The Atari100k benchmark was proposed in Kaiser et al. (2020) to evaluate reinforcement
learning agents on Atari games in low data regime. The benchmark includes 26 Atari games with a
budget of 400K environment steps, amounting to 100K steps using action repeat. This represents 2

7

Under review as a conference paper at ICLR 2024

hours of real-time play. The current state-of-the-art is held by EfficientZero (Ye et al., 2021), which
uses look-ahead search to select the best action, with a human mean score of 190% and median of
116%. Concerning the Atari100k benchmark, we only use a single environment instance during
training with a training ratio of 1024 replayed steps per policy step.

Table 2 compares MuDreamer with DreamerV3 and other methods on the Atari100k benchmark.
We compare the returns across games using human-normalized metrics. MuDreamer fails to solve
Boxing, which severely penalizes the final human-normalized score. It nevertheless demonstrates
promising results, improving DreamerV3 performance on Battle Zone and Frostbite. To obtain
a more meaningful comparison with respect to DreamerV3, we compare DreamerV3-normalized
metrics, excluding Freeway and Chopper Command since DreamerV3 does not achieve better than
random score in these games. Our MuDreamer agent achieves a DreamerV3-normalized mean score
of 95%, reaching better performance than model-free algorithms like SimPLe (Kaiser et al., 2020)
and CURL (Laskin et al., 2020). Performance curves showing a comparison of MuDreamer and
DreamerV3 over the 26 games using 3 different seeds can be found in Appendix C.

Task Random Human SimPLe CURL‡ EfficientZero IRIS DreamerV3 DreamerV3† MuDreamer
Alien 228 7128 617 711 1140 420 959 908 713
Amidar 6 1720 74 114 102 143 139 125 114
Assault 222 742 527 501 1407 1524 706 635 594
Asterix 210 8503 1128 567 16844 854 932 997 813
Bank Heist 14 753 34 65 362 53 649 950 561
Battle Zone 2360 37188 4031 8998 17938 13074 12250 13933 22633
Boxing 0 12 8 1 44 70 78 68 -8
Breakout 2 30 16 3 406 84 31 19 13
Chopper Com. 811 7388 979 784 1794 1565 420 1213 780
Crazy Climber 10780 35829 62584 9154 80125 59324 97190 77360 80017
Demon Attack 152 1971 208 646 13298 2034 303 264 237
Freeway 0 30 17 28 22 31 0 7 0
Frostbite 65 4335 237 1226 314 259 909 938 2306
Gopher 258 2412 597 401 3518 2236 3730 3097 1347
Hero 1027 30826 2657 4988 8530 7037 11161 13451 4521
James Bond 29 303 100 331 459 463 445 282 227
Kangaroo 52 3035 51 740 962 838 4098 2967 3993
Krull 1598 2666 2205 3049 6047 6616 7782 5900 6408
Kung Fu Master 258 22736 14862 8156 31112 21760 21420 24933 20117
Ms Pacman 307 6952 1480 1064 1387 999 1327 2279 1460
Pong –21 15 13 -18 21 15 18 18 11
Private Eye 25 69571 35 82 100 100 882 6488 3607
Qbert 164 13455 1289 727 15458 746 3405 1905 3128
Road Runner 12 7845 5641 5006 18512 9615 15565 9960 9003
Seaquest 68 42055 683 315 1020 661 618 491 389
Up N Down 533 11693 3350 2646 16096 3546 7600 5199 4766
Human Mean 0% 100% 33% 26% 190% 105% 112% 93% 62%
Human Median 0% 100% 13% 9% 116% 29% 49% 44% 36%
DreamerV3 Mean 0% 981% 43% 50% 623% 130% 100% 120% 95%
DreamerV3 Median 0% 137% 37% 35% 107% 74% 100% 86% 79%

Table 2: Atari100k scores (400K environment steps). † denotes our implementation of DreamerV3.
‡ results were taken from Micheli et al. (2023). We use 3 different seeds per experiment.

5.2 ABLATION STUDY

In order to understand the necessary components of MuDreamer, we conduct ablation studies apply-
ing one modification at a time. We study the impact of using value and action prediction branches,
removing one or both branches during training. We study the effect of using batch normalization in
the representation network to stabilize learning and avoid collapse without the reconstruction loss.
We also study the effect of KL balancing hyper-parameters on learning speed and stability. We per-
form all these ablation studies on the Visual Control Suite, observing the effect of each modification
for diverse tasks. The mean and median score results of these studies are summarized in Table 3 and
Figure 3. Please refer to the appendix for the score curves of individual tasks.

Action-Value predictors We study the necessity of using action and value prediction branches
to learn hidden representations and successfully solve the tasks without reconstruction loss. We
observed that removing the action or value prediction heads led to a degradation of MuDreamer
performance and decoder reconstruction quality on most of the Visual Control tasks. The action

8

Under review as a conference paper at ICLR 2024

0 500K 1M

100

200

300

400

500

600

700

Action and Value Predictors Ablation

MuDreamer
No Value

No Action
No Action, No Value

0 500K 1M

100

200

300

400

500

600

700

Batch Norm Ablation

MuDreamer No Batch Norm

0 500K 1M

100

200

300

400

500

600

700

KL Balancing Ablation

MuDreamer
rep=0.1, dyn=0.9
rep=0.1, dyn=0.5

rep=0.2, dyn=0.8
rep=0.0, dyn=1.0

Figure 3: Ablations mean scores on the Visual Control Suite using 1M environment steps.

Agent Mean Median Tasks Score ≥ MuDreamer
MuDreamer 714.7 829.6 –
No Value Predictor 551.3 579.7 3 / 20
No Action Predictor 498.4 543.6 2 / 20
No Action and Value Predictors 401.5 336.6 2 / 20
No Batch Normalization 495.0 591.6 1 / 20
βrep = 0.0, βdyn = 1.0 589.7 643.4 4 / 20
βrep = 0.1, βdyn = 0.9 577.3 561.9 1 / 20
βrep = 0.1, βdyn = 0.5 494.6 506.9 2 / 20
βrep = 0.2, βdyn = 0.8 471.8 457.6 1 / 20

Table 3: Ablations to MuDreamer evaluated on the Visual DeepMind Control Suite using 1M envi-
ronment steps. Each ablation applies only one modification to the MuDreamer agent.

and value prediction losses require the model to learn environment dynamics which leads to a more
accurate model and better performance.

batch normalization We study the effect of using batch normalization inside the representation
network to stabilize representation learning. We find that batch normalization prevents collapse in
which the model produces constant or non-informative hidden states. Without batch normalization,
we observe that MuDreamer fails to learn representations for some of the tasks. Batch normalization
solves this problem by stabilizing dynamics and representation losses.

KL balancing We find that applying the default KL balancing parameters of DreamerV3 (βdyn =
0.5, βrep = 0.1) slows down convergence for some of the tasks, restraining the model from learning
representations. Similar to BLAST and predictive SSL approaches (Grill et al., 2020; Chen et al.,
2020), we experiment using the stop gradient operation with βrep = 0.0. We find that this solves
the issue but generates learning instabilities with spikes for the dynamics and prediction losses. We
also observed a degradation of the agent performance after a certain amount of steps. Using a slight
regularization of the representations toward the prior with βrep = 0.05 solved both of these issues.

6 CONCLUSION AND FUTURE WORK

We presented MuDreamer, a variant of DreamerV3 solving tasks from image inputs with both con-
tinuous and discrete action spaces, all without the need to reconstruct input signals. MuDreamer
learns a world model by predicting environment rewards, value function, and continuation flags,
focusing on information relevant to the task. We also proposed to incorporate an action prediction
branch to predict the sequence of selected actions. Our approach is faster to train than DreamerV3,
as it does not require training an additional decoder network for generating video sequences. Mu-
Dreamer achieves performance comparable to DreamerV3 on the DeepMind Visual Control Suite.
Furthermore, it demonstrates promising results on the Atari100k benchmark using limited data.

Looking ahead, our future research will explore the impact of multi-step predictions on performance
by unrolling the world model recurrently for several steps. We also plan to apply MuDreamer to
control tasks with random background and more complex environments like Minecraft.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619–15629, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec:
A general framework for self-supervised learning in speech, vision and language. In International
Conference on Machine Learning, pp. 1298–1312. PMLR, 2022.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva
TB, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributional policy gradients. In
International Conference on Learning Representations, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Homanga Bharadhwaj, Mohammad Babaeizadeh, Dumitru Erhan, and Sergey Levine. Information
prioritization through empowerment in visual model-based rl. In International Conference on
Learning Representations, 2022.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Fei Deng, Ingook Jang, and Sungjin Ahn. Dreamerpro: Reconstruction-free model-based rein-
forcement learning with prototypical representations. In International Conference on Machine
Learning, pp. 4956–4975. PMLR, 2022.

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for self-
supervised representation learning. In International Conference on Machine Learning, pp. 3015–
3024. PMLR, 2021.

10

Under review as a conference paper at ICLR 2024

Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as spatiotemporal
learners. Advances in neural information processing systems, 35:35946–35958, 2022.

Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving pilco with bayesian neural
network dynamics models. In Data-efficient machine learning workshop, ICML, volume 4, pp.
25, 2016.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. In International Conference on Learning Representations, 2021.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Mikael Henaff, William F Whitney, and Yann LeCun. Model-based planning with discrete and
continuous actions. arXiv preprint arXiv:1705.07177, 2017.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In International Conference on Learning Representations, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. In International Conference on Learning Representations, 2020.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017.

11

Under review as a conference paper at ICLR 2024

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International Conference on Machine Learning, pp. 5639–
5650. PMLR, 2020.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations, 2016.

Xiao Ma, Siwei Chen, David Hsu, and Wee Sun Lee. Contrastive variational reinforcement learning
for complex observations. In Conference on Robot Learning, pp. 959–972. PMLR, 2021.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample efficient world models.
In International Conference on Learning Representations, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Tung D Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Temporal predictive coding
for model-based planning in latent space. In International Conference on Machine Learning, pp.
8130–8139. PMLR, 2021.

Masashi Okada and Tadahiro Taniguchi. Dreaming: Model-based reinforcement learning by la-
tent imagination without reconstruction. In 2021 ieee international conference on robotics and
automation (icra), pp. 4209–4215. IEEE, 2021.

Masashi Okada and Tadahiro Taniguchi. Dreamingv2: Reinforcement learning with discrete world
models without reconstruction. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 985–991. IEEE, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Keiran Paster, Lev E McKinney, Sheila A McIlraith, and Jimmy Ba. Blast: Latent dynamics models
from bootstrapping. In Deep RL Workshop NeurIPS 2021, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

12

Under review as a conference paper at ICLR 2024

David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-
Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-end
learning and planning. In International Conference on Machine Learning, pp. 3191–3199. PMLR,
2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649, 2019.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. arXiv preprint arXiv:1907.02057, 2019.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. Advances in neural information
processing systems, 28, 2015.

Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichten-
hofer. Masked feature prediction for self-supervised visual pre-training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14668–14678, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9653–9663, 2022.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning, pp. 12310–
12320. PMLR, 2021.

13

Under review as a conference paper at ICLR 2024

A WORLD MODEL PREDICTIONS

M
od

el
O
rig

in
al

Context 6 10 15 20 25 30 35 40 45 50 55 60 64
M
od

el
O
rig

in
al

M
od

el
O
rig

in
al

M
od

el
O
rig

in
al

M
od

el
O
rig

in
al

M
od

el
O
rig

in
al

M
od

el
O
rig

in
al

M
od

el
O
rig

in
al

M
od

el
O
rig

in
al

M
od

el
O
rig

in
al

M
od

el
O
rig

in
al

Figure 4: Trajectories imagined by the world model over 64 time steps using 5 context frames. Mu-
Dreamer generates accurate long-term predictions for various tasks without requiring reconstruction
loss gradients during training to compress the observation information into the model hidden state.
Although the reconstruction gradients are not propagated to the whole network, the decoder suc-
cessfully reconstruct the input image, meaning that the model hidden state contains all necessary
information about the environment.

14

Under review as a conference paper at ICLR 2024

B VISUAL CONTROL COMPARISON

0 500K 1M
0

50

100

150

200

250
Acrobot Swingup

0 500K 1M

200

400

600

800

1000

Cartpole Balance

0 500K 1M
0

250

500

750

1000

Cartpole Balance Sparse

0 500K 1M

200

400

600

800

Cartpole Swingup

0 500K 1M
0

200

400

600

800
Cartpole Swingup Sparse

0 500K 1M
0

200

400

600

800

Cheetah Run

0 500K 1M
0

200

400

600

800

1000
Cup Catch

0 500K 1M
0

200

400

600
Finger Spin

0 500K 1M
0

200

400

600

800

1000 Finger Turn Easy

0 500K 1M
0

200

400

600

Finger Turn Hard

0 500K 1M
0

100

200

300 Hopper Hop

0 500K 1M
0

200

400

600

800

1000
Hopper Stand

0 500K 1M

0

200

400

600

800

1000 Pendulum Swingup

0 500K 1M
0

200

400

600

800 Quadruped Run

0 500K 1M
0

200

400

600

800

Quadruped Walk

0 500K 1M
0

200

400

600

800

1000
Reacher Easy

0 500K 1M
0

200

400

600

Reacher Hard

0 500K 1M
0

200

400

600
Walker Run

0 500K 1M

200

400

600

800

1000
Walker Stand

0 500K 1M
0

200

400

600

800

1000
Walker Walk

0 500K 1M

200

400

600

Mean

0 500K 1M
0

200

400

600

800
Median

DreamerV3 MuDreamer

Figure 5: Comparison of MuDreamer and DreamerV3 scores on the Deep Mind Control Suite (1M
environment steps). The curves show mean and standard deviation across 3 different seeds. While
MuDreamer demonstrates faster convergence on Quadruped tasks, it is slightly slower to converge
on Walker and Cheetah. Overall, MuDreamer achieves comparable performance to DreamerV3 in
aggregated score metrics after 1M environment steps.

15

Under review as a conference paper at ICLR 2024

C ATARI100K COMPARISON

0 200K 400K
0

250

500

750

1000

Alien

0 200K 400K
0

50

100

150
Amidar

0 200K 400K200

400

600

800
Assault

0 200K 400K

500

1000

Asterix

0 200K 400K
0

250

500

750

1000
Bank Heist

0 200K 400K
0

5000

10000

15000

20000

Battle Zone

0 200K 400K

50

0

50

Boxing

0 200K 400K
0

20

40

60

80
Breakout

0 200K 400K

500

1000

Chopper Command

0 200K 400K
0

25000

50000

75000

Crazy Climber

0 200K 400K
0

250

500

750

1000
Demon Attack

0 200K 400K

0

5

10

15

Freeway

0 200K 400K
0

1000

2000

Frostbite

0 200K 400K
0

1000

2000

3000

4000

Gopher

0 200K 400K
0

5000

10000

Hero

0 200K 400K
0

100

200

300

James Bond

0 200K 400K
0

2500

5000

7500

Kangaroo

0 200K 400K
0

2000

4000

6000

8000
Krull

0 200K 400K
0

10000

20000

30000

Kung Fu Master

0 200K 400K
0

1000

2000

3000
Ms Pacman

0 200K 400K

20

10

0

10

20
Pong

0 200K 400K

0

5000

10000

Private Eye

0 200K 400K
0

1000

2000

3000

4000
Qbert

0 200K 400K
0

5000

10000

Road Runner

0 200K 400K
0

200

400

Seaquest

0 200K 400K
0

2000

4000

6000

Up N Down

DreamerV3 MuDreamer

0 200K 400K

0.0

0.5

1.0
Gamer Mean

0 200K 400K
0.0

0.2

0.4

Gamer Median

Figure 6: Comparison of MuDreamer and DreamerV3 on the Atari100k benchmark (400K environ-
ment steps). The curves show mean and standard deviation across 3 different seeds. MuDreamer
fails to solve Boxing, which severely penalizes the final human-normalized score. It nevertheless
demonstrates promising results, improving DreamerV3 performance on Battle Zone and Frostbite.

16

Under review as a conference paper at ICLR 2024

D BATCH NORMALIZATION ABLATION

0 500K 1M
0

50

100

150

200

250
Acrobot Swingup

0 500K 1M

200

400

600

800

1000

Cartpole Balance

0 500K 1M

0

250

500

750

1000

Cartpole Balance Sparse

0 500K 1M
0

200

400

600

800

Cartpole Swingup

0 500K 1M
0

200

400

600

800
Cartpole Swingup Sparse

0 500K 1M
0

200

400

600

Cheetah Run

0 500K 1M

0

250

500

750

1000
Cup Catch

0 500K 1M

0

200

400

600

Finger Spin

0 500K 1M
0

200

400

600

800

1000 Finger Turn Easy

0 500K 1M
0

200

400

600

Finger Turn Hard

0 500K 1M
0

100

200

300 Hopper Hop

0 500K 1M
0

200

400

600

800

Hopper Stand

0 500K 1M

0

200

400

600

800

1000 Pendulum Swingup

0 500K 1M
0

200

400

600

800 Quadruped Run

0 500K 1M
0

200

400

600

800

Quadruped Walk

0 500K 1M
0

200

400

600

800

Reacher Easy

0 500K 1M

0

100

200

300
Reacher Hard

0 500K 1M
0

100

200

300

400

500

Walker Run

0 500K 1M

200

400

600

800

1000
Walker Stand

0 500K 1M
0

200

400

600

800

1000 Walker Walk

0 500K 1M

200

400

600

Mean

0 500K 1M
0

200

400

600

800
Median

MuDreamer No Batch Norm

Figure 7: Comparison of MuDreamer, using layer normalization instead of batch normalization
in the representation network. Removing the batch normalization layer leads to optimization dif-
ficulties for some of the tasks. The model hidden states collapse to constant or non-informative
representations. This makes it impossible for the decoder to reconstruct the input observations.

17

Under review as a conference paper at ICLR 2024

E ACTION AND VALUE PREDICTORS ABLATION

0 500K 1M
0

50

100

150

200

250
Acrobot Swingup

0 500K 1M

200

400

600

800

1000

Cartpole Balance

0 500K 1M

0

250

500

750

1000

Cartpole Balance Sparse

0 500K 1M

200

400

600

800

Cartpole Swingup

0 500K 1M

0

200

400

600

800
Cartpole Swingup Sparse

0 500K 1M
0

200

400

600

800
Cheetah Run

0 500K 1M

0

250

500

750

1000

Cup Catch

0 500K 1M

0

200

400

600

800
Finger Spin

0 500K 1M

0

200

400

600

800

1000 Finger Turn Easy

0 500K 1M

0

200

400

600

Finger Turn Hard

0 500K 1M

0

100

200

300

Hopper Hop

0 500K 1M

0

200

400

600

800

Hopper Stand

0 500K 1M

0

250

500

750

1000
Pendulum Swingup

0 500K 1M
0

200

400

600

800
Quadruped Run

0 500K 1M
0

200

400

600

800

1000
Quadruped Walk

0 500K 1M
0

200

400

600

800

1000
Reacher Easy

0 500K 1M

0

100

200

300

400

Reacher Hard

0 500K 1M
0

200

400

600
Walker Run

0 500K 1M

200

400

600

800

1000

Walker Stand

0 500K 1M
0

200

400

600

800

1000 Walker Walk

0 500K 1M

200

400

600

Mean

0 500K 1M
0

200

400

600

800
Median

MuDreamer No Value No Action No Action, No Value

Figure 8: Comparison of MuDreamer, removing the action and/or value prediction heads. Removing
the action and/or value heads during training deteriorates MuDreamer performance. We find that
action prediction significantly helps tasks with sparse rewards like Hopper Hop or Cartpole Swingup
Sparse. The value prediction head improves stability, leading to more stable learning. Both heads
help the model to learn representations, leading to faster convergence and lower reconstruction loss.

18

Under review as a conference paper at ICLR 2024

F KL BALANCING ABLATION

0 500K 1M

0

50

100

150

200

250
Acrobot Swingup

0 500K 1M

200

400

600

800

1000

Cartpole Balance

0 500K 1M
0

250

500

750

1000

Cartpole Balance Sparse

0 500K 1M

200

400

600

800

Cartpole Swingup

0 500K 1M

0

200

400

600

800
Cartpole Swingup Sparse

0 500K 1M
0

200

400

600

Cheetah Run

0 500K 1M

0

250

500

750

1000

Cup Catch

0 500K 1M
0

200

400

600

800

Finger Spin

0 500K 1M
0

200

400

600

800

1000 Finger Turn Easy

0 500K 1M
0

200

400

600

Finger Turn Hard

0 500K 1M
0

100

200

300
Hopper Hop

0 500K 1M
0

200

400

600

800

Hopper Stand

0 500K 1M

0

200

400

600

800

1000
Pendulum Swingup

0 500K 1M
0

200

400

600

800 Quadruped Run

0 500K 1M
0

200

400

600

800

Quadruped Walk

0 500K 1M
0

200

400

600

800

Reacher Easy

0 500K 1M

0

100

200

300
Reacher Hard

0 500K 1M
0

100

200

300

400

500

Walker Run

0 500K 1M

200

400

600

800

1000
Walker Stand

0 500K 1M
0

200

400

600

800

1000
Walker Walk

0 500K 1M

200

400

600

Mean

0 500K 1M
0

200

400

600

800
Median

MuDreamer rep=0.1, dyn=0.9 rep=0.1, dyn=0.5 rep=0.2, dyn=0.8 rep=0.0, dyn=1.0

Figure 9: Comparison of MuDreamer, studying the effect of βdyn and βrep. We find that applying
the default KL balancing parameters of DreamerV3 slows down convergence for some of the tasks,
restraining the world model from learning representations. Setting βrep to zero improves learning
speed but results in instabilities and a degradation of performance after a certain amount of steps.
Using a slight regularization of the representations toward the prior with βrep = 0.05 improved
convergence speed while maintaining stability.

19

Under review as a conference paper at ICLR 2024

G MUDREAMER HYPER PARAMETERS

Name Symbol Value

General

Replay Buffer Capacity (FIFO) — 106

Batch Size B 16

Batch Length T 64

Activation — LayerNorm + SiLU

Model Size — DreamerV3 Small

Input Image Resolution — 64× 64 RGB

World Model

Number of Latents — 32

Classes per Latent — 32

Prediction Loss Scale βpred 1.0

Dynamics Loss Scale βdyn 0.95

Representation Loss Scale βrep 0.05

Learning Rate — 10−4

Adam Epsilon ϵ 10−8

Gradient Clipping — 1000

Slow Value Momentum τ 0.99

Model Discount γ 0.997

Model Return Lambda λ 0.95

Activation Representation Network — BatchNorm + SiLU

BatchNorm Momentum — 0.9

Actor Critic

Imagination Horizon H 15

Discount γ 0.997

Return Lambda λ 0.95

Critic EMA Decay — 0.98

Critic EMA regularizer — 1.0

Return Normalization Percentiles — 5th and 95th

Return Normalization Decay — 0.99

Actor Entropy Scale η 3 · 10−4

Learning Rate — 3 · 10−5

Adam Epsilon ϵ 10−5

Gradient Clipping — 100

Table 4: MuDreamer Hyper parameters. We apply the same hyper-parameters for the DeepMind
Visual Control Suite and Atari100k benchmark. Discount and Return Lambda values are kept the
same for World Model and Actor Critic training.

20

Under review as a conference paper at ICLR 2024

H VISUAL CONTROL SCORES (5M ENVIRONMENT STEPS)

Task PlaNet‡ DreamerV1 DreamerV3† MuDreamer
Acrobot Swingup 3.2 365.3 411.2 422.7
Cartpole Balance 452.6 979.6 999.2 999.0
Cartpole Balance Sparse 164.7 941.9 1000.0 1000.0
Cartpole Swingup 312.6 833.7 866.7 851.2
Cartpole Swingup Sparse 0.6 812.2 841.2 847.8
Cheetah Run 496.1 894.6 916.1 891.6
Cup Catch 456.0 962.5 967.5 961.4
Finger Spin 495.3 498.9 388.9 785.4
Finger Turn Easy 451.2 825.9 823.3 894.9
Finger Turn Hard 312.6 891.4 896.6 936.1
Hopper Hop 242.0 369.0 640.2 328.4
Hopper Stand 6.0 923.7 943.0 909.8
Pendulum Swingup 3.3 833.0 793.6 849.0
Quadruped Run 280.5 888.4 918.2 845.3
Quadruped Walk 238.9 931.6 940.7 943.5
Reacher Easy 468.5 935.1 972.9 965.2
Reacher Hard 187.0 817.1 974.9 644.0
Walker Run 626.3 824.7 827.0 803.4
Walker Stand 759.2 978.0 986.0 977.0
Walker Walk 944.7 961.7 973.3 963.5
Mean 333.0 823.4 854.0 841.0
Median 312.6 889.9 917.2 893.3

Table 5: Visual Control Suite scores (5M environment steps). † denotes our implementation of
DreamerV3. ‡ results were taken from Hafner et al. (2020). We train MuDreamer for 5M environ-
ment steps on the Visual Control Suite using a single seed. MuDreamer achieves results comparable
to state-of-the-art, competing with DreamerV1 with mean score of 841.0 and median score of 893.3.

21

Under review as a conference paper at ICLR 2024

I NATURAL BACKGROUND SETTING

While the reconstruction loss is essential for Dreamer’s performance, it also necessitates model-
ing unnecessary information. Consequently, Dreamer sometimes fails to perceives crucial elements
which are necessary for task-solving when visual distractions are present in the observation, sig-
nificantly limiting its potential. This object vanishing phenomenon arises particularly when crucial
elements are small like the ball in ’Cup Catch’. In order to study the effect of visual distractions on
DreamerV3 and MuDreamer performance, we experiment with the natural background setting (Ma
et al., 2021; Nguyen et al., 2021; Deng et al., 2022; Bharadhwaj et al., 2022), where the DeepMind
Control tasks background is replaced with natural videos. Following Nguyen et al. (2021) and Deng
et al. (2022), we replace the background by task-irrelevant natural videos randomly sampled from
the ’driving car’ class in the Kinetics 400 dataset (Kay et al., 2017). We also use two separate sets of
background videos for training and evaluation in order to test generalization to unseen distractions.
Figure 10 shows the comparison of MuDreamer with DreamerV3 under the natural background
setting. MuDreamer successfully learn a policy while DreamerV3 fails on every task. Figure 11
shows the decoder reconstruction of observations by DreamerV3 and MuDreamer for the Walker
Run and Finger Spin tasks. MuDreamer correctly reconstruct the agent body with a monochrome
or blurry background while DreamerV3 focus on the background details, discarding the agent body
and necessary information.

0 2.5M 5M
0

100

200

300

400

500

600

Walker Run

0 2.5M 5M
100

200

300

400

500

600

700

Cartpole Swingup

DreamerV3 MuDreamer

0 2.5M 5M
0

200

400

600

800

Finger Spin

0 2.5M 5M
0

100

200

300

400

Cheetah Run

Figure 10: Comparison of MuDreamer and DreamerV3 scores using natural backgrounds (5M en-
vironment steps).

22

Under review as a conference paper at ICLR 2024

Figure 11: Agents reconstruction of observations using natural backgrounds for Walker Run and
Finger Spin tasks. First row shows original sequence of observation, second row shows DreamerV3
reconstruction and third row MuDreamer reconstruction.

23

	Introduction
	Related Works
	Model-based Reinforcement Learning
	Self-Supervised Representation Learning for Images
	Reconstruction-Free Dreamer

	Background
	Dreamer
	MuZero

	MuDreamer
	World Model Learning
	Behavior Learning

	Experiments
	Results
	Ablation Study

	Conclusion and Future Work
	World Model Predictions
	Visual Control Comparison
	Atari100k Comparison
	Batch Normalization Ablation
	Action and Value Predictors Ablation
	KL Balancing Ablation
	MuDreamer Hyper Parameters
	Visual Control Scores (5M environment steps)
	Natural Background Setting

