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ABSTRACT

Large language models (LLMs) are empowering decision-making in open-world
agents in several applications, including tool or API usage and answering mul-
tiple choice questions (MCQs). However, they often make overconfident, incor-
rect predictions, which can be risky in high-stakes settings like healthcare and fi-
nance. To mitigate these risks, recent works have used conformal prediction (CP),
a model-agnostic framework for distribution-free uncertainty quantification. CP
transforms a score function into prediction sets that contain the true answer with
high probability. While CP provides this coverage guarantee for arbitrary scores,
the score quality significantly impacts prediction set sizes. Prior works have relied
on LLM logits or other heuristic scores, lacking quality guarantees. We address
this limitation by introducing CP-OPT, an optimization framework to learn scores
that minimize set sizes while maintaining coverage. Furthermore, inspired by the
Monty Hall problem, we extend CP’s utility beyond uncertainty quantification to
improve accuracy. We propose a method called conformal revision of questions
(CROQ) to revise the problem by narrowing down the available choices to those
in the prediction set. The coverage guarantee of CP ensures that the correct choice
is in the revised question prompt with high probability, while the smaller number
of choices increases the LLM’s chances of answering it correctly. Experiments on
the MMLU, ToolAlpaca, and Truthful QA datasets with Llama-3 and Phi-3 models
show that optimized CP scores reduce set sizes while maintaining coverage guar-
antee, and CROQ shows significant improvement in accuracy over the standard
inference procedure.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; Databricks, 2024; Abdin et al., 2024) have
demonstrated remarkable capabilities in various decision-making tasks, including multi-choice
question answering (MCQ) and tool usage, where the model must select the correct tool or API
to complete a task (Qu et al., 2024; Tang et al., 2023; Hendrycks et al., 2021). However, quantifying
the uncertainty of an LLM’s predictions remains challenging, with LLMs themselves often exhibit-
ing overconfidence in wrong answers (Krause et al., 2023; Groot and Valdenegro Toro, 2024). Given
a reliable uncertainty measure, the LLM could, in highly uncertain instances, take measures such as
deferring to a human or invoking a secondary model, thereby increasing overall accuracy. Without
this, it may be difficult to prevent the LLM from making serious errors in these settings. To address
these challenges, we focus on improving uncertainty quantification (UQ) and its utility in MCQ and
tool usage tasks.

Conformal prediction (CP) is one framework that can be used to quantify uncertainty in LLMs
(Kumar et al., 2023; Su et al., 2024; Mohri and Hashimoto, 2024; Quach et al., 2024). Conformal
prediction is a model-agnostic and distribution-free technique for producing prediction sets that
contain the true outcome with a user-specified probability (e.g. 95%). The set sizes provide a natural
measure of uncertainty, with small (large) sets representing low (high) uncertainty. The construction
of sets in CP depends on a score function, which measures how well a candidate output “conforms”
to a given input. For example, in classification settings, it is common to use the classifier logits
corresponding to each class for a given input as the score function (Angelopoulos and Bates, 2022).
While conformal prediction gives a coverage guarantee for any score function, the size of the output
sets depends on the score function that is used. As an example, a random score function will yield
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output sets that constitute random subsets of the label space that are large enough to satisfy the
coverage guarantee (Angelopoulos and Bates, 2022).

Previous works that apply conformal prediction for MCQ type settings have used readily available
scores such as the logits (softmax) output from the LLM (Kumar et al., 2023) or have designed
heuristic scores based for example on repeated querying of the LLM (Su et al., 2024). Logits can be
overconfident and may show biases for some options (Zheng et al., 2024), and heuristic scores are
not guaranteed to produce small sets. Thus we need a principled solution to obtain scores that are
designed to minimize set sizes (uncertainty) while preserving the coverage guarantee.

In addition to providing a measure of uncertainty, we believe that the sets produced by conformal
prediction can be leveraged for other downstream purposes. Specifically, inspired by the Monty
Hall problem (Selvin, 1975; Rosenthal, 2008), we hypothesize that by revising a multiple-choice
question or tool usage prompt to include only the options within a conformal prediction set, the
LLM is more likely to provide the correct answer due to the reduced number of choices, leading to
improved accuracy.

To summarize, we focus on (1) obtaining optimal scores for conformal prediction for MCQ and
tool usage tasks in LLMs, and (2) investigating whether the prediction sets generated by conformal
prediction can be used to improve downstream accuracy. Our main contributions are as follows:

1. We design a score function optimization framework (CP-OPT) that can be applied to any pre-
trained LLM. Moving away from the potentially unreliable LLM logits and heuristic scores, our
framework provides a principled way to learn the scores for conformal prediction. Empirically,
we show that our procedure leads to reduction in average set sizes in contrast to the baseline
procedure that uses the LLM logits as the scores, at the same level (95%) of marginal coverage.

2. Extending the utility of conformal prediction beyond uncertainty quantification, we propose the
conformal revision of questions (CROQs), in which we revise the question by narrowing down
the choices to those in the prediction sets output by conformal prediction. Then the LLM is
re-prompted with the revised question. We show that this procedure can boost overall accuracy
by upto 5% (Figure 2) and upto 14% on part of ToolAlpaca dataset with 10 options (Table 2).

2 PRELIMINARIES

In this section, we introduce notation and provide background on solving MCQ tasks with LLMs
and conformal prediction.

2.1 SOLVING MULTIPLE CHOICE QUESTIONS (MCQs) USING LLMS

MCQ Setup. MCQs are a general abstraction for expressing problems in which the correct choice(s)
must be selected from a given set of choices. These encompass conventional question-answering
tasks such as MMLU (Hendrycks et al., 2021) as well as other tasks such as tool learning, in which
the LLM must select the correct tool or API to complete a task (Tang et al., 2023; Qu et al., 2024).
An MCQ consists of the question text (), i.e. a sequence of tokens, and a set of answer choices
0 = {(11,V), (Y2, V2),..., (Y, Vin)}. Here, each Y; is a unique character from the English
alphabet, and we assume that the number of choices m is less than or equal to the size of the alphabet.
Each Vj is the option text for the jth option. Denote the whole MCQ instance as z = (@, O). Let
X, denote the space of MCQs with m choices and Py, denote a distribution over X, from which
samples for training, calibration, and testing are drawn independently. Here, we assume that for
each question @) there is only one correct answer key y* € {Y1,Y2,... Y} = V.

MCQ Prompt. We concatenate the question text () and the answer choices O, all separated by a new
line character, and append to the end the text “The correct answer is: ”. The expectation
is that given this input prompt, the next token predicted by the LLM will be one of the option keys.
See Appendix D for a prompt example. We consider zero-shot prompts and do not include example
questions and answers in the prompt. We also add the prefix and suffix tokens to the prompt as
recommended by the language model providers. Since these are fixed modifications to z, we will
use x to denote the final prompt and the MCQ instance analogously.
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LLM Inference. We run the forward pass of the auto-regressive LLM (Touvron et al., 2023; Dubey
et al., 2024; Abdin et al., 2024) on the input prompt to obtain the logit scores for each possible next
token given the prompt, restricting attention to the tokens that correspond to the available answer
keys (e.g. “a”, “b”, “c”, “d” if there are four answer options). We take the softmax to convert the
logits to probabilities, and then we take as the LLM’s answer the option with the highest probability.
This approach ensures that the LLM’s answer will be one of the available answer options, which
would not be guaranteed if instead we asked the LLM to simply generate an answer token given the
prompt. This approach mirrors what has been done in other works that use LLMs to solve MCQs
(Kumar et al., 2023; Su et al., 2024). Formal details are given in Appendix A.

2.2 CONFORMAL PREDICTION

Conformal prediction (CP) (Vovk et al., 2005; Angelopoulos et al., 2022) is a framework for quan-
tifying uncertainty in machine learning models. It provides a flexible and user-friendly approach to
output prediction sets (which may be finite sets or intervals) which contain the true output or label
with a probability that is specified by the user, e.g. 95%. The key strength of conformal prediction
lies in its distribution-free guarantees: it ensures that the constructed prediction sets are valid re-
gardless of the underlying data distribution and model. This property is particularly desirable in the
context of language models, as it is hard to characterize language data distributions or put specific
distributional assumptions/restrictions on the LLMs.

Score Function. Let g : &, X V,, — R be a conformal score function, where larger scores
indicate better agreement (“conformity”) between = and y. Intuitively, large scores are intended to
indicate that y is a plausible output given x, while smaller scores indicate less plausibility. (Note that
some authors prefer to have larger scores indicate greater disagreement, e.g. Clarkson et al. (2024).)
A common choice of score function is the softmax scores from the given model. For closed-source
LLMs, where these scores are not available, other authors have devised self-consistency scores based
on repeated querying of the model (Su et al., 2024).

Prediction Sets. Given a threshold 7 on the scores, the prediction set for any z € &, is given by
Clzig,7) :={y € Ym : g(z,y) 2 7}. (D
Intuitively, larger sets represent greater uncertainty, while smaller sets represent less uncertainty.
This can be used for example to compare two different score functions given a fixed confidence
level: a score function that produces larger sets can be said to result in greater uncertainty. Note
that because the coverage guarantee is marginal over the data distribution (Proposition 2.1), it does
not immediately follow that set sizes can be compared across different parts of the input space:
coverage conditional on specific set sizes is not necessarily equal to the overall coverage level.
However, previous work has found that the size of sets correlates with LLM accuracy in an MCQ
setting (Kumar et al., 2023), indicating the set size as a measure of confidence in the LLM’s output.

Split Conformal Prediction. Similar to prior works (Kumar et al., 2023; Su et al., 2024), we use
Split Conformal Prediction (Papadopoulos et al., 2002; Lei et al., 2018) due to its popularity, ease
of use, and computational efficiency. Given a score function g : X,,, x V,, — R, Split Conformal
Prediction uses a calibration dataset Dea) = {24, y] } <3 to compute a threshold 7 , defined as

Ncal
?=min{q: ! le(g(xi,yf)<q)>a}7 2)
Neal S
where a € [0, 1] is a user-chosen error rate that is equal to 1 minus the desired coverage; for example,
a value of @ = 0.05 would correspond to a coverage of 95%. In words, 7 is the smallest empirical
quantile of the scores for the correct answers on the calibration dataset that is sufficient to satisfy
(an empirical version of) the coverage property. The threshold 7 is used to construct prediction sets
C'(x;g,7) on previously unseen test points as in (1). This procedure enjoys a marginal coverage
guarantee for prediction sets constructed on unseen test data points, formalized as Proposition 2.1.

Proposition 2.1. (Marginal Coverage Guarantee) (Lei et al., 2018, Thm. 2.2) Let g be a fixed
eonformity score function and 7 be an « threshold computed via Split Conformal Prediction on
Do = {zi, yr }ieyl ~ Px,, xy,,. Then, for a new sample (,5*) ~ Px, «y,,, we have that

P(j* € C(3:9,7) > 1 - a. 3)

where the probability is marginal over the randomness in the calibration data and the new sample.
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The top half of Figure 1 illustrates conformal prediction for answering MCQs with LLMs. While
the coverage guarantee in Proposition 2.1 holds for any score function, ideally we would like a score
function that yields the smallest sets possible (the least uncertainty). Next, we discuss our solutions
to improve conformal prediction and its utility in solving MCQs with LLMs.

3 METHODOLOGY

In this section, we discuss details of our method for learning optimal scores for conformal prediction
and our pipeline for question revision using conformal prediction.

3.1 SCORES OPTIMIZATION FOR CONFORMAL PREDICTION (CP-OPT)

We describe our method for learning the optimal scores for conformal prediction (CP) for solving
MCQs with LLMs. Similar ideas have been incorporated in the training objective of classifiers
(Stutz et al., 2022) so that the classifiers’ softmax output is better suited for CP. However, the LLMs
are not trained with this objective, and we want to apply CP to any given LLM; therefore, we design
a post-hoc method to optimize the scores. We first characterize the optimal scores and then describe
how we can estimate them in practice.

3.1.1 CHARACTERIZATION OF THE OPTIMAL SCORES

For any score function g : X,;, X V,, — R and threshold 7, the membership of any y in the prediction
set C(x | g,7)isgivenby 1(y € C(z | g,7)) < 1{g(x,y) > 7}. Define the expected set size
S(g, ) and the coverage conditional on 7, denoted P(g, 7), as follows:

S(g.m) =B Y Hgwy) =} = 3 B [1{glz.y) > 7}, )
YEYm YEYm
P(g,7) = E; [1{g(z,y*) > 7}]. 5)

The optimal score function ¢g* and threshold 7* are defined (non-uniquely) to minimize the expected
set subject to the coverage P(g, 7) being at least 1 — «:

a7 = arg min S(g,7) st Plg,7)>1-—a. (P1)
G:Xm X Ym—R,7ER

3.1.2 PRACTICAL VERSION: DIFFERENTIABLE SURROGATES AND EMPIRICAL ESTIMATES

Problem (P1) characterizes optimal score functions and thresholds. However, in practice, we do not
know the distribution and thus do not have access to the quantities in (4) and (5). Instead, we obtain
their estimates using a finite training sample Di,ain = {(x;, y}) }it, drawn independently from the
same distribution:

S =3 3 o) 2 ) Plon) =3 1ol 27k ©

=1 y€¥Vm

Using these plug-in estimators in problem (P1) yields a revised optimization problem. However, it is
difficult to solve this problem as the objective and constraints are not differentiable. To make them
differentiable, we introduce the following surrogates. Given g(z,y) and 7, define the following
sigmoid function with 3 > 0, o(z,y,9,7,8) = 1/(1 + exp(—B (g(z,y) — 7)) ). The sigmoid
function provides a differentiable approximation to the indicator variable for g(z,y) > 7. The
approximation is tighter with higher larger 3 i.e., o(z,y,9,7,8) — 1{g(z,y) > 7} as f — o0,
and g(x,y) > 7 < o(x,y,g9,7) > 1/2. By using these sigmoid surrogates in equation (6), we
obtain the following smooth plugin estimates,

Nt

~ 1 & ~ 1
S(g7T) = EZ Z U(xi7yag777ﬂ)a P(gaT) = 7za($i7y;ag77-7ﬁ)' (7)

t ng <
=1 y€YVm i=1
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It is easy to see that by the strong law of larger numbers and properties of the sigmoid function, as
ng, B — 00, the surrogate average set size and coverage will converge almost surely to their popula-
tion versions, i.e. S(g,7) = S(g,7) and P(g,7) ==+ P(g, 7). We replace the expected set size
and marginal coverage by these smooth surrogates in (P1) and transform it into an unconstrained
problem with the penalty term A > 0. We also introduce {5 regularization to encourage low norm
solutions. We optimize the score function g over a flexible space of functions G, such as neural
networks (NNs). The resulting problem (P2) is differentiable, and we solve it on a training dataset
Diyain = {=i, y} };, using stochastic gradient descent.

. o B = 2
3,7 := argmin §(g,7) + A(B(g,7) — 1+ a)* = C(g) + Mllgll2 ®2)
gegG, TeR
Here, C(g) = % St log(g(xi, yy)) is the cross entropy term included to encourage higher scores

for correct predictions and the regularization term )1 ||g||3 is the squared norm over the parameters of
g to promote low norm solutions. Solving (P2) yields a score function g and a threshold 7. However,
7 may be biased, since it is estimated on the same data as §. Following the split conformal procedure,
we therefore estimate a new threshold 7 on a separate calibration dataset. In practice, we use 3-layer
neural networks with tanh activation as G and use the LLM’s logits and the penultimate layer’s
representations corresponding to the last token as input features to the g network (see Appendix for
details). Note that our framework is flexible and can work with any choice of features and function
class for which the ¢/> norm can be calculated.

3.2 CONFORMAL REVISION OF QUESTIONS (CROQ)

Here we consider how conformal prediction sets can be used for downstream purposes other than
uncertainty quantification, namely for improving the final accuracy in MCQ type tasks. Our proce-
dure involves re-prompting the LLM with the reduced answer options from a conformal prediction
set. We describe our procedure and then discuss the connection to the Monty Hall problem. The
steps are also illustrated with an example in Figure 1.

Scores and Threshold for Conformal Prediction. We first fix a score function g, which could
be any arbitrary function but which here we restrict to either logits from the LLM or our CP-OPT
scores (Section 3.1). We then run the split conformal procedure with coverage level 1 — « for some
« € [0,1] to estimate the threshold 7. CROQ then proceeds as follows.

Step 1: Get Conformal Prediction Set. Given a test instance x, we generate a first stage prediction
set, C(x; g, 7). Per the coverage guarantee (Proposition 2.1), we expect that the true answer y* €
C(z; g,7) with probability at least 1 — «.

Step 2: Revise and Ask the LLM Again. If the first stage prediction set C(x ; g, 7) is empty or is
of size 1 or size m (the number of answer options), then we simply utilize the LLM’s initial answer,
as described in section 2.1, since the conformal procedure has yielded no additional information.
Otherwise, we modify the prompt z to ' = (Q, O’), where O’ = {(K;,V;) : K; € C(x;g,7)}.
The keys in O’ are changed so that they start with the first letter of the alphabet and go to the letter
corresponding to the number of choices available. For example, if there were initially four answer
options {a, b, ¢, d}, and the conformal prediction set was {c, d}, then the two options in the set
would receive new keys {a, b}. Then 2’ is transformed into a prompt format and input to the LLM
and the standard inference procedure (section 2.1) is run to extract the predicted answer key 7'.

Next, we discuss an interesting analogy between CROQ and the Monty Hall problem to provide
insights into how CROQ can improve LLM accuracy and show its flexibility to accommodate oracles
such as other LLMs.

Connection to the Monty Hall Problem. Monty Hall is a probability puzzle (Selvin, 1975;
Granberg, 1999; Rosenthal, 2008) based on a popular game show, where a contestant chooses one of
three doors (choices), behind one of which is a car and the others, goats. The contestant chooses an
initial door, which remains closed. After the host reveals a goat behind another door, the contestant
is asked if they want to switch doors. Under typical assumptions, switching offers a higher chance
of winning, i.e. selecting the door with a car behind it.
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What is the grace period X R ) A B C D

£ Score/confidence function: gives model’s

or mortgage payment? ) ) . . )
confidence on (input, output) pair. e.g., logits. :

A. 1 day —» Answer is in {C,D}.

(B:- 15""(‘;;'/(5 - LM Conformal . i
. - o rue answer is in the
D. 1 month Prediction predicted set 95% times.

The correct answer is : Coverage guarantee

What is the grace period

for mortgage payment?

R Answer is A.
A. 15 days (Option C in the original question)
B. 1 month Correct answer

The correct answer is :

Figure 1: (CROQ) Illustration of conformal revision of questions and prompting the LLM with the
revised question. In this example, the initial predicted set by LLM + conformal prediction (CP) is
{C, D}. The question and labels are revised to contain only the answer choices in the prediction set
and the LLM is prompted with the revised question. Since CP provides rigorous coverage guaran-
tees, we expect that re-prompting the LLM with reduced answer choices will improve the chances
of obtaining the correct answer. See Section 3.2 for more details.

In CROQ, we leverage conformal inference to eliminate “goats” (incorrect answers). The conformal
set produced in the first stage of CROQ contains the correct answer with some user-specified proba-
bility, say 95%. In that sense, we imagine that an (imperfect or probabilistic) oracle is opening some
number of doors (answer options) that with high probability reveal only goats (incorrect answers).
Those answer options are eliminated, and then the LLM is queried again with the remaining set
of answers. Thus, similar to the Monty Hall, there is a reduction in uncertainty after some doors
(choices) are opened (eliminated), which we hypothesize leads to improved chances of winning
(answering correctly). Hence, CROQ can enable an LLM agent to “self-correct”.

Here the oracle’s “knowledge” comes from the distribution of the scores of correct answers, so
it is not contained within the LLM’s representation of any given query. In that sense, it is extra
information that gets added to the given query. Additionally, the score function and the resulting
distribution of scores can come from any source. For example, from another LLM, from embeddings
that measure semantic similarity between questions and answers, etc. The extra information that the
conformal procedure represents can therefore come entirely from an external source.

Coverage-Accuracy Trade-offs. Conformal prediction has a small risk, namely a probability «, of
eliminating the door with the “car” (true choice). If « is too small, we will have high coverage but
may have relatively large sets i.e. little reduction in the uncertainty. If « is too large, we will too
frequently exclude the correct answer from the revised question. Since our interest is in improving
final accuracy, we treat « as a tuning parameter that can be optimized for accuracy (Section 4.2).

4 EXPERIMENTS

We conduct experiments on benchmark MCQ and tool usage tasks with open-weight instruction-
tuned models to test they following hypotheses:

H1. Using our CP-OPT scores in conformal prediction on MCQ tasks with LLMs yields a smaller
average set size at the same level of coverage in comparison to using LLM logits. H2. Conformal
revision of questions (CROQ) improves accuracy over the standard inference procedure. H3. CROQ
with CP-OPT scores performs better than CROQ with logit scores.

4.1 EXPERIMENTAL SETUP
We first describe the setup for the experiments and then discuss the results for the above hypotheses.

Datasets. We evaluate our hypotheses on 3 datasets: MMLU (Hendrycks et al., 2021), TruthfulQA
(Lin et al., 2022), and ToolAlpaca (Tang et al., 2023). MMLU and Truthful QA are popular
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‘ MMLU ToolAlpaca TruthfulQA

Model  # Opt. \ Avg. Set Size Coverage Avg. Set Size Coverage Avg. Set Size Coverage
| Logits Ours | Logits Ours | Logits Ours | Logits Ours | Logits Ours | Logits Ours
4 ‘ 2.56 2.51* ‘ 95.81*%  95.35 ‘ 1.17 1.16 ‘ 96.38  96.03 ‘ 322 2.71% ‘ 95.7* 9229
Llama-3 75077 7519 473+ | 9557¢ 9502 | 152 150 | 9603 9650 | 728 651* | 937 937
15 ‘ 7.66 6.62* ‘ 95.36%  94.60 ‘ 2.25 1.66* ‘ 97.31%  95.79 ‘ 9.95 9.73* ‘ 94.7 924
4 | 221 2155 | 946 946 | 111  L06* | 9650 9579 | 291 245% | 970 965
PRi3 700 | 461 450 | 947 945 | 127 127 | 9533 9568 | 690 634 | 957 952
15 ‘ 6.46* 6.66 ‘ 93.9 94.0 ‘ 1.58 1.57 ‘ 96.73  97.31 ‘ 10.85  9.72% ‘ 95.9 95.9

Table 1: Average set sizes and coverage rates (in percentages) for conformal prediction sets on the
MMLU, ToolAlpaca, and Truthful QA datasets using L1lama-3-8B-Instruct (Llama-3) and
Phi-3-4k-mini-Instruct (Phi-3), with a target coverage level of 95%. For each dataset,
we vary the number of answer options. Using CP-OPT for the score function produces smaller
average set sizes more frequently compared to using logits. Bold numbers indicate smaller average
set sizes. Shaded cells indicate settings where CP-OPT results in smaller set sizes and equal or larger
coverage. Asterisks on the larger of a pair of numbers indicate where the difference in average set
size or coverage is statistically significant at the o = 0.05 level. See Appendix C for details.

—e— Acc. After (CROQ + Logits) —~— Acc. After (CROQ + CP-OPT) —-= Acc. Before
MMLU-4, Llama-3 MMLU-10, Llama-3 MMLU-15, Llama-3
. 58
X 56
> 57
[}
o
§ 56 54
< P P PR, 8
63 55 (5 itttntintl el ettt s
0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
ToolAlpaca-4, Llama-3 ToolAlpaca-10, Llama-3 ToolAlpaca-15, Llama-3
93
9
.92 ﬁ
1%
e
Soi{ 1
<
0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4

Coverage parameter (a) Coverage parameter (a) Coverage parameter (a)

Figure 2: Accuracy on revised questions on the MMLU and ToolAlpaca dataset while varying cover-
age parameter « for Llama—-3-8B-Instruct (Llama-3) model and both scores. Smaller values
of a correspond to high levels of coverage. When coverage is too large, few or no answers are elim-
inated, and the LLM is prompted with the same question. When coverage is low, a larger portion
of answer sets no longer contain the true answer or produce empty prediction sets thus resulting in
diminished benefits of revision.

benchmark datasets for multiple choice questions. MMLU focuses on assessing multitask accu-
racy, containing multiple choice questions (MCQs) from 57 domains, including humanities, math,
medicine, etc.; while Truthful QA evaluates an LLM’s ability to answer truthfully and not mimic pre-
conceived falsehoods that humans are susceptible to. ToolAlpaca contains 3.9k tool-use instances
from a multi-agent simulation environment, which we augment to a MCQ format. Dataset descrip-
tions, and example questions and responses, are provided in Appendix D.

Models. We use auto-regressive language models based on the transformer architecture. We choose
instruction-tuned, open-weight, and small to medium sized models, for reproducibility and reduced
computational cost. Specifically, we use L1ama-3-8B-Instruct (Dubey et al., 2024) by Meta
and Phi-3-4k-mini-Instruct (Abdin et al., 2024) by Microsoft. We provide results on
gemma-2-9b—-1t-SimPO model (Meng et al., 2024) in the Appendix B.2 (Tables 11, 12, and13).

Choices of Scores. We use the following scores for conformal prediction. (1) LLM Logits
(Softmax) are extracted from the LLM as discussed in Section 2.1. These have been used in prior
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Model Score Set Size \ 1 2 3 4 5 6 Overall
Coverage | 9527 97.03 97.10 100.00 100.00 100.00  96.03
Logits Fraction | 5923 3143  8.06 0.93 0.23 0.12 100.00
Acc. Before | 9527 7732 53.62 37.50 100.00 100.00  85.75
Acc. After | 9527 8439 71.01  62.50 100.00 100.00  89.60*
Coverage | 9577 9497 100.00  0.00 0.00 0.00 96.50
Ours Fraction | 5584 3832 561 0.23 0.00 0.00 100.00
Acc. Before | 96.23 7439  62.50 0.00 0.00 0.00 85.75
Acc. After | 96.23 8293 75.00  50.00 0.00 0.00 89.84%*
Coverage | 9577 94.97 100.00  0.00 0.00 0.00 95.33
Logits Fraction | 74.18 24.18 1.64 0.00 0.00 0.00 100.00
Acc. Before | 95.12  64.73  42.86 0.00 0.00 0.00 86.92
Acc. After | 95.12 7874 71.43 0.00 0.00 0.00 90.77*
Coverage | 9577 94.97 100.00  0.00 0.00 0.00 95.68
Ours Fraction | 74.65 2325 210 0.00 0.00 0.00 100.00
Acc. Before | 9577 60.80 61.11 0.00 0.00 0.00 86.92
Acc. After | 9577 7437 71.78 0.00 0.00 0.00 90.42*

Llama-3

Phi-3

Table 2: Results for CROQ experiment on ToolAlpaca dataset with 10 response options. Here
we used o = 0.05. The questions are binned according to the set sizes and we report the coverage,
fraction of points, accuracy before CROQ and accuracy after CROQ in each bin. We see a consistent
improvement in the overall accuracy by around 4% across all model and score combinations and
about 14% on questions with set size 2, with Phi-3 model, amounting to about 24% of the questions.

works (Kumar et al., 2023; Su et al., 2024). (2) CP-OPT (Ours) are the scores learned using
the score optimization procedure discussed in Section 3.1. We use the train split for each dataset to
learn these scores. The hyperparameter settings we used for CP-OPT are given in Appendix D.3.
We omit the self-consistency based heuristic scores proposed by Su et al. (2024), as these require
repeated inferences to get good estimates of the scores, and hence have a high computational cost.

We use the provided validation splits as our calibration datasets for the conformal procedure. For
testing hypothesis H1, where our interest is in obtaining small sets with high coverage, we calibrate
the conformal threshold for the coverage guarantee of 95%, i.e. we set the error rate « to 0.05. The
hyperparameters used to learn the score function using SGD are provided in table 22 in Appendix
D.3. For testing H2, we calibrate to a range of « values: {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08,0.09, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5 }. Performance is computed on test splits.

4.2 DISCUSSION

HI. Improvement in conformal set sizes with our CP-OPT scores. ~ We run the CP procedure
using the LLM logits and CP-OPT scores and obtain conformal sets for points in the test sets. We
compute the average set size and coverage for each dataset, model, and score combination. The
results are in Table 10. As expected, in most cases we see a drop in the set sizes with our scores,
which is usually statistically significant. The decrease gets more pronounced with a higher number
of options. In some cases, the reduction in set size is accompanied by a statistically significant
reduction in coverage relative to using the logits as scores. (Since the target coverage level is 95%,
anything above 95 is over-coverage, while anything below 95 is under-coverage.) We cannot tell
from these results to what extent the reduction in coverage accounts for the reduction in set sizes;
we leave such an investigation for future work. However, in five settings, highlighted in gray, the
CP-OPT scores result in smaller sets and equal or larger coverage, while the opposite never happens.

H2. Accuracy improvement with conformal revision of questions (CROQ). Figure 2 shows the ac-
curacy before and after CROQ for a range of o values with Llama-3. All three datasets show im-
provements in accuracy for appropriate values of . In Table 2, we see that accuracy improvements
also occur conditional on prediction set sizes, with some set sizes corresponding to relatively large
improvements. We additionally see that accuracy declines approximately monotonically as a func-
tion of set size, indicating that set size is a good measure of the LLM’s uncertainty. Comprehensive
additional results for the CROQ experiments are given in Appendix B.2. This suggests a procedure
in which set size is used to decide whether to defer to a human.
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Figure 3: Proportion of questions deferred to a human when conformal prediction set sizes exceed a
certain cutoff, and the corresponding LLM accuracy for questions (without revision) retained by the
LLM as a function of cutoff threshold. In the top row (MMLU, 10 options), the difference in deferral
and accuracy for is negligible, whereas in the bottom row (TruthfulQA, 10 options), CP-OPT defers
fewer questions to the human while providing similar or improved accuracy for questions retained.

H3. CROQ with CP-OPT scores is better than CROQ with logit scores. CP-OPT scores are designed
to minimize set sizes while maintaining the coverage guarantee. As a result, incorporating these
scores into the CROQ procedure is expected to significantly reduce uncertainty for many questions,
leading to fewer answer options in the revised prompts. We expect LLMs are more likely to answer
correctly when prompted with the revised question with fewer options. The results presented in
Tables 13, 12, 11, 18, and 19 align with this expectation, showing that CROQ with CP-OPT scores
achieves noticeably higher accuracy compared to CROQ with logits. However, in some settings
(e.g., Tables 9, 5, 4, 6, 7, 15, and 17) CROQ with CP-OPT has similar or minutely better overall
accuracy than CROQ with logits. A plausible explanation is that the reduction in set size by CP-OPT
was not substantial enough to result in significant improvements. Nonetheless, the overall results
highlight that CROQ with CP-OPT is generally better than CROQ with logits.

Figure 3 illustrates a procedure in which a set size cutoff is selected, and the LLM answer is only
retained if the set size is at or below that cutoff. For all larger sets, the question is passed to a
human. As desired, lower set size cutoffs result in higher accuracy. As the set size cutoff increases,
the accuracy approaches the LLM’s marginal accuracy, while the cost of deferral (i.e. the cost of
having a human rather than an LLM answer the question) decreases. In the top row, we see a setting
(which is representative of our results) in which there is no substantial difference between logits and
the CP-OPT scores. In the bottom row, we see a setting in which the CP-OPT scores result in both
higher accuracy and lower deferral cost for most set size cutoffs.

5 RELATED WORK

Conformal Prediction for Uncertainty Quantification with LLMs Recently there has been
growing interest in using conformal prediction to quantify and control uncertainty in LLM-related
tasks. In the context of multi-choice question answering (MCQ), previous works have investigated
a variety of conformal score functions, including (the softmax of) the LLM logits corresponding to
the response options (Kumar et al., 2023; Ren et al., 2023) or functions thereof (Ye et al., 2024),
confidence scores generated by the LLM itself, or “self-consistency” scores derived by repeated
querying of the LLM (Su et al., 2024). We build on this work by aiming to learn a conformal score
function that yields small conformal sets, rather than taking the score function as given.

In addition to the MCQ setting, there has been recent work utilizing conformal prediction in the con-
text of open-ended response generation (Quach et al., 2024; Mohri and Hashimoto, 2024; Cherian
et al., 2024). This setting differs in that there is not necessarily a unique correct response, so the no-
tion of coverage must be redefined around acceptability or factuality rather than correctness. When
factuality is the target, the goal is to calibrate a pruning procedure that removes a minimal number
of claims from an LLM-generated open response, such that the remaining claims are all factual with
high probability; that is, the goal is to retain as large a set as possible, rather than to generate a set
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with the smallest number of responses possible as in MCQ. Conformal prediction has also been used
to capture token-level uncertainty (Deutschmann et al., 2024; Ulmer et al., 2024).

Optimizing conformal prediction procedures Several recent works have considered how to learn
good conformal score functions from data, primarily in the context of supervised learning models
(Bai et al., 2022; Stutz et al., 2022; Yang and Kuchibhotla, 2024; Xie et al., 2024). With LLMs,
Cherian et al. (2024) consider how to learn a good score function to achieve factuality guarantees;
their optimization problem differs from ours due to the difference in setting as well as the addition
of conditional coverage constraints (ensuring that coverage holds in different parts of the feature
space). Kiyani et al. (2024) design a framework to minimize the size (“length,” in their terminology)
of conformal sets, which they apply to MCQ as well as to supervised learning problems. However,
their framework is concerned with how to generate sets given a model and a conformity score, rather
than how to learn a conformity score.

The works mentioned above all aim to produce (small) conformal sets that satisfy coverage guaran-
tees. Among these, only Ren et al. (2023) consider how conformal sets may be used downstream, in
their case to improve the efficiency and autonomy of robot behavior. To our knowledge, our work is
the first to investigate whether conformal prediction can be used to increase the accuracy of LLMs
on MCQ type tasks.

6 CONCLUSION AND FUTURE WORK

We investigated how conformal prediction can be used to quantify and reduce output uncertainty for
decision-making problems such as tool selection and multi-choice question answering (MCQ) with
LLMs. We defined an optimal conformal score function (P1) that minimizes average set size subject
to a coverage constraint, and we showed how to estimate it using a differentiable loss function
that can be optimized via stochastic gradient descent (P2). We called this procedure CP-OPT. In
experiments with a variety of models, datasets, and answer option cardinalities, we showed that CP-
OPT results in smaller average set sizes than the baseline score function consisting of the LLM logits
corresponding to the MCQ answer options, although these smaller set sizes sometimes resulted in
reduced coverage. We emphasize that CP-OPT is extremely general and can be applied with different
models, features sets, etc. If the LLM logits are already highly informative with regard to model
uncertainty, then there may be little to gain (but nothing to lose) from applying CP-OPT, but in other
settings there may be substantial benefit from optimizing the conformal scores.

We further investigated whether re-prompting an LLM with the answer options contained in the
conformal set would result in higher final accuracy on MCQ tasks. We called this procedure CROQ.
The intuition is that conformal sets will contain the true answer with high probability while poten-
tially substantially reducing the number of answer options the LLM has to consider. We found that
CROQ increases accuracy in most of the cases and that there is an interplay between the coverage
level and the accuracy improvement which can be optimized. As an additional consideration of how
prediction sets can be used for purposes other than uncertainty quantification, we illustrated how to
use them to decide when to defer to human judgment, with both the accuracy and the deferral cost
increasing as the set size cutoff shrinks.

A particularly interesting extension to the CROQ procedure is performing multiple rounds of ques-
tion revisions. While we have demonstrated that a reduction in the number of available response
options increases LLM accuracy, we conjecture that a further reduction in conformal set sizes could
occur as well. Repeated conformal inference would come at higher computational costs, as perform-
ing it at each round would require repeated calibration, and may require fresh data to calibrate on.
Additionally, without adjusting the coverage level used at each round, the final coverage rate will be
lower than the nominal rate. Developing methodology to make a multi-round CROQ procedure both
efficient and technically sound is a promising line of future research. Different models could also be
used to generate the initial prediction set and the final answer, instead of a single LLM for both.

Other future lines of investigation include considering how to calibrate conformal score thresholds
when the number of answer options that the LLM may encounter in MCQ may vary. This is relevant
for example in tool usage problems, where an LLM may be asked to consider very different numbers
of APIs for different types of queries. One possible approach involves quantile regression against
the numbers of answer options, which may enable reasonable estimation of the quantiles in cases
where some numbers of answer options are not well represented in the calibration data.

10
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A DETAILS ON LLM INFERENCE IN MULTI-CHOICE QUESTION ANSWERING

We provide a formal description of the inference procedure described in the LLM Inference para-
graph of Section 2.1.

The input prompt z is a sequence of tokens t1,to,...%,. We run the forward pass of the auto-
regressive LLM (Touvron et al., 2023; Dubey et al., 2024; Abdin et al., 2024) on x to produce a set
of output logits:

ll,lz,...7ln(*LLM(tl,tQ,...tn) (8)

Here, each logit I; € RIVI expresses the likelihood of the next token after ¢1,...,t;, where V is
the universal set of tokens (aka the alphabet) for the given LLM and |V is its size. The last token’s
logits 1,, are expected to have a high value for the correct answer key. We extract the logit vector
I € R™ corresponding to the option keys as follows:

D= [ 1aVa), LalYa), - LYo ], )

where ,,[Y;] denotes the logit value corresponding to the token Yj in the last token’s logits £,,. The
logits I are converted to softmax scores s(x). The softmax score of point = and option key y is
denoted by s(x, y) and the predicted answer key ¢ corresponds to the maximum softmax value:

s(r) := softmax(l), s(x,y) == s(x)[y], §:= argmax s(z,y) (10)
yG{Yl,...Ynl}

B ADDITIONAL DETAILS RESULTS

This appendix contains additional results and details not included in the main paper due to length
constraints.

B.1 DETAILS OF FEATURES AND G USED IN EXPERIMENTS

Let z € R9*™ be the concatenation of the LLM’s penultimate layer’s representation (d-
dimensional) and logits (m-dimensional) for the last token. Our choice of G for the experiments
is defined as follows,

G:={g:R% 5 A™7!|g(2) := softmax(Witanh(Watanh(W;(z)))),
W, e Rdonl,WQ € Rdlxdg’ W3 € Rdgxm}

Here, dy = d + m,d; = (d +m)/2, and d3 = (d + m)/4 and A™~ ! is the m — 1 dimensional
probability simplex.

B.2 RESULTS

Figure 5 shows accuracy after the CROQ procedure as a function of « for Phi-3. The results are
qualitatively similar to the results for Llama-3 in the main text (Section 4.2).

Table 3 illustrates how often CROQ causes the LLM’s answer to change relative to the baseline infer-
ence procedure. In Monty Hall terms (Section 3.2), these represent how often the LLM “switches”
its answer in response to the elimination of some answer options. We see that the LLM switches
some initially correct answers to wrong answers and vice versa but that the wrong-to-right switch
frequency generally outweighs the right-to-wrong switch frequency, resulting in higher accuracy
after CROQ.

Figure 4 provides motivation for CROQ, demonstrating that a reduction of set size leads to improved
accuracy. Using the Truthful QA dataset with 15 response options, we first construct conformal pre-
diction sets using logits. With these prediction sets, we then leverage oracle knowledge to reduce the
prediction set size by 0 to 10 options - with 0 eliminations being the regular CROQ method. Incor-
rect answers are randomly eliminated, ensuring that coverage remains constant. As more incorrect
answers are eliminated, the accuracy of the LLM after requerying increases as more answers are re-
moved (smaller prediction set). These results motivate the use of a score function which minimizes
set size while controlling coverage.
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Figure 4: Requerying Accuracy of LLMs following oracle reduction of conformal prediction set
size for the Truthful QA dataset with 15 response options. As more answers are eliminated, set sizes
become smaller, and the accuracy of the LLM following requerying increases.

All remaining results are organized by dataset. Tables for the CROQ results which illustrate accuracy
changes conditional on set size are based on a confidence level of 95% (equivalently an « level of
0.05). Note that with the ToolAlpaca dataset, not all possible set sizes occur, in which case we omit
the corresponding columns. For example, with 10 response options, only sets of size 8 and smaller
occur.

Asterisks in the tables indicate where the difference in overall accuracy from Before to After, i.e.
from baseline to after the CROQ procedure, is statistically significant at the o« = 0.05 level. (In
some tables, like Table 8, none of the changes are significant.) See Appendix C for details on how
statistical significance was calculated.

B.3 MMLU

Results for the experiments on the MMLU dataset are given in Tables 5 to 9 and Figures 6 to 8.

B.4 TRUTHFULQA

Results for the experiments on the Truthful QA dataset are given in Tables 14 to 19 and Figures 12
and 13.

B.5 TOOLALPACA

Results for experiments on the ToolAlpaca dataset are given in Tables 2, 20 and 21 and Figures 9
and 10.
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Figure 5: Accuracy on revised questions on the MMLU and ToolAlpaca dataset while varying cov-
erage parameter o for Phi-3-4k-mini-Instruct (Phi-3) model and both scores. Smaller
values of « correspond to high levels of coverage. When coverage is too large, few or no answers
are eliminated, and the LLM is prompted with the same question. When coverage is low, a larger
portion of answer sets no longer contain the true answer and the benefits of revision are diminished.

| MMLU ToolAlpaca Truthful QA
Model  #Opt. | ChangeR—-W Change W—R Change R—+W Change W—R Change R—W Change W—R
| Logits Ours | Logits Ours | Logits Ours | Logits Ours | Logits Ours | Logits Ours
4 | 170 210 | 1.80 190 | 140 110 | 200 160 | 0.80 200 | 200 530
Llama-3 =077 7420 540 | 570  7.60 | 250 270 | 630 680 | 280 300 | 350  6.60
15 ‘ 4.70 6.60 ‘ 6.60 9.10 ‘ 2.80 2.50 ‘ 7.40 6.30 ‘ 5.10 6.10 ‘ 4.30 6.30
4 | 390 340 | 270 250 | 160 110 | 140 130 | 100 150 | 130 2.0
Phi-3 790 | 500 540 | 770 810 | 190 220 | 570 570 | 230 380 | 350 610
15 ‘ 5.10 5.60 ‘ 9.20 9.50 ‘ 3.90 3.90 ‘ 7.70 8.20 ‘ 2.50 2.50 ‘ 2.30 5.60

Table 3: Percentage of answers that change as a result of the CROQ procedure. R—W indi-
cates questions that are answered correctly (“Right””) before CROQ and incorrectly (“Wrong”) after
CROQ, while W—R indicates the opposite. CROQ results in changes to the final answer in roughly
3-15% of questions, with larger numbers of response options resulting in more frequent changes.
Bold numbers indicating the larger number for logits vs. our scores.
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Figure 6: Distributions of sizes of sets obtained from CP-OPT and logit scores on MMLU dataset
and Gemma-2 model setting.
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Figure 7: Distributions of sizes of sets obtained from CP-OPT and logit scores on MMLU dataset
and Llama-3 model setting.
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Figure 8: Distributions of sizes of sets obtained from CP-OPT and logit scores on MMLU dataset
and Phi-3 model setting.
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Figure 9: Distributions of sizes of sets obtained from CP-OPT and logit scores on Tool Alpaca dataset
and Llama-3 model setting.
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Figure 10: Distributions of sizes of sets obtained from CP-OPT and logit scores on ToolAlpaca
dataset and Phi-3 model setting.
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dataset and Phi-3 model setting.
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Figure 12: Distributions of sizes of sets obtained from CP-OPT and logit scores on Truthful QA
dataset and Llama-3 model setting.
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Figure 13: Distributions of sizes of sets obtained from CP-OPT and logit scores on Truthful QA
dataset and Phi-3 model setting.

SetSize | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage | 94.14 9317 91.12 9339 9337 9472 9426 9576 9575 9443 9682 97.13 9689 98.75 100.00  94.60
Fraction | 811 869 869 897 841 877 827 812 754 661 559 414 343 285 1.82 100.00
Acc. Before | 94.14 84.02 71.04 6376 5444 5034 4132 4152 3559 3411 2930 2865 29.07 2125 20.92 52.35
Acc. After | 94.14 8429 7377 6720 5628 54.40 4849 4444 39.06 36.62 2887 32.09 27.68 20.83 2092  54.82%

Table 4: Results for CROQ experiment on MMLU dataset with 15 response options, using
Llama-3-8B-Instruct and CP-OPT scores.

SetSize | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage | 9526 91.54 9237 9337 9281 9387 9525 9506 9573 95.18 97.86 96.70 98.12 9879 100.00 9536
Fraction | 902 786 746 680 595 601 574 649 694 714 610 576 568 587 7.17 100.00
Acc. Before | 9526 8338 7345 6527 5888 5277 4442 4278 4427 3522 3949 3237 33.19 2788 2649 5235
Acc. After | 9526 83.99 77.11 70.86 61.08 58.10 47.73 46.80 46.84 34.88 40.66 33.40 33.61 27.88 2649 54.31*

Table 5: Results for CROQ experiment on MMLU dataset with 15 response options, using
Llama-3-8B-Instruct and logits.
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SetSize | 1 2 3 4 5 6 7 8 9 10 12 13
Coverage | 9581 93.16 91.01 91.88 93.16 93.11 93.76 94.11 93.69 9474 96.08 9581 93.58 9591
Fraction | 1133 1023 871 847 815 793 742 644 583 519 515 482 425 319
Acc. Before | 9581 81.55 67.30 5840 53.86 5045 41.76 4052 40.12 38.67 3502 2882 2430 21.56
Acc. After | 95.81 85.03 73.84 66.53 6230 54.64 48.80 44.01 44.60 42.11 37.79 30.54 2318 22.68 20.58  58.00*

Table 6: Results for CROQ experiment on MMLU dataset
Phi-3-4k-mini-Instruct and logits.

with 15 response options, using

SetSize | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage | 9525 92.64 92.09 92.69 9222 9396 9405 9506 93.05 9635 9420 9480 9358 97.15 100.00  94.02
Fraction | 1050 887  8.11 763 732 825 838 745 7.00 618 573 525 444 333 1.55 100.00
Acc. Before | 9525 8527 73.65 66.10 5624 5237 46.18 3854 3644 3436 33.75 30.77 2353 2028 16.79 53.96
Acc. After | 9525 86.08 78.18 72.94 62.40 59.28 53.40 46.50 42.03 3570 36.02 31.67 2353 2135 1679 57.83*

Table 7: Results for CROQ experiment on MMLU dataset
Phi-3-4k-mini-Instruct and CP-OPT.

with 15 response options, using

Model Score Set Size \ 1 2 3 4 Overall
Coverage | 93.58 92.8 93.03 100.00 95.81

Logits Fraction | 33.87 1393 14.66 37.54  100.00

Llama-3 Acc. Before \ 93.58 70.18 49.39 40.30 63.84
Acc. After | 93.58 70.44 48.09 4030 63.69

Coverage | 9355 90.71 93.71 100.00 9537

Ours Fraction | 33.68 1535 16.81 34.17 100.0

Acc. Before | 9355 69.14 53.53 37.27 63.84

Acc. After ‘ 93.55 68.14 5247 37.27 63.52

Coverage | 9475 91.48 93.17 100.0 94.64

Logits Fraction | 37.30 2286 21.20 18.64 100.0

Phi-3 Acc. Before \ 9475 70.25 52.68 41.31 70.27

Acc. After | 9475 66.92 50.67 4131 69.08

Coverage | 93.88 91.55 94.37 100.0 94.64

Ours Fraction | 4132 2155 17.73 19.39 100.0

Acc. Before | 93.88 67.78 52.14 39.29 70.27

Acc. After | 93.88 64.81 50.87 39.29 69.41

Table 8: Results for CROQ experiment on MMLU dataset with 4 response options. In this setting,
the CROQ procedure leads to a lower accuracy after revision. (However, these changes are not
statistically significant at the o = 0.05 level.)
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Model Score Set Size \ 1 2 3 4 5 6 7 8 9 10 Overall
Coverage | 9473 9144 9147 9496 9529 96.44 96.88 97.18 98.01 100.00 95.57

Logits Fraction | 16.67 1151 9.04 824 781 8.01 875 9.67 896 11.33 100.00

Llama-3 Acc. Before | 9473 78.14 6299 5288 50.00 40.74 39.76 34.85 3391 3047 55.35
Acc. After | 9473 7722 6522 57.35 5137 4504 40.71 3755 3470 3047  56.68*

Coverage | 94.61 9223 9039 9282 9585 96.66 96.88 97.46 99.60 100.00  95.02

Ours Fraction | 1476 1238 1149 1057 1143 1100 952 795 5095 4.95 100.00

Acc. Before | 94.61 80.54 63.22 50.06 47.04 3948 3753 31.19 29.14 2734 55.35

Acc. After | 94.61 8102 63.95 5432 5254 4272 40.15 3299 28.14 2734  57.26%

Coverage | 9525 9220 91.24 9283 9532 9640 9621 94.89 97.74 100.00  94.74

Logits Fraction | 17.23 1324 1056 10.92 1040 957 9.09 7.67 577 5.55 100.00

Phi-3 Acc. Before | 9525 79.48 6236 5543 4692 4578 41.64 3375 31.89 2778 58.59
Acc. After | 9525 81.81 6742 6130 5342 4839 4295 3483 3272 2778  61.25%

Coverage | 94.81 90.79 91.27 9295 9473 9558 9577 9728 98.52 100.00  94.53

Ours Fraction | 19.19 13.02 1047 1043 1059 939 841 743 640 4.68 100.00

Acc. Before | 94.81 77.12 64.17 5438 4731 4450 3921 3211 29.87 2538 58.59

Acc. After | 94.81 79.40 68.14 60.41 5471 4893 39.77 3243 31.35 2538  61.30%

Table 9: Results for CROQ experiment on MMLU dataset with 10 response options. The CROQ
procedure consistently increases accuracy. This effect is more pronounced with using CP-OPT
scores (Ours) in comparison to Logits.

\ MMLU

Model  #Opt. | Avg. Set Size Coverage
| Logits  Ours | Logits  Ours
4 | 256  251% | 9581% 9535
Llama-3- =007 "5 19 473% | 95.57% 9502
15 | 766  6.62% | 9536% 94.60
4 | 221 215% | 946 946
Phi-3 10 | 461  450¢ | 947 945
15 | 646% 666 | 939 940
4 | 294  240% | 9516 9423
Gemma2 =161 7779  6.08* | 950% 94.04
15 | 1171 10.04% | 9458 94.58

Table 10: Average set sizes and coverage rates (in percentages) for conformal prediction sets on the
MMLU dataset using L1ama-3-8B-Instruct (Llama-3) and Phi-3-4k-mini-Instruct
(Phi-3), and gemma-2-9b-1it-SimPO (Gemma-2) models with a target coverage level of 95%.
We vary the number of answer options. Using CP-OPT for the score function produces smaller
average set sizes more frequently compared to using logits. Bold numbers indicate smaller average
set sizes. Shaded cells indicate settings where CP-OPT results in smaller set sizes and equal or larger
coverage. Asterisks on the larger of a pair of numbers indicate where the difference in average set
size or coverage is statistically significant at the o = 0.05 level. See Appendix C for details.

Score SetSize | 1 2 3 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage | 8240 69.04 80.00 83.56 81.11 8745 8631 88.60 90.75 9045 9480 9375 9830 98.15 100.00 94.58
Logits ~ Fraction | 277 234 237 260 258 274 312 323 347 447 502 570 699 1091 4170  100.00
Acc. Before | 8240 6244 6200 6530 60.37 6147 61.98 59.19 5582 62.60 57.92 5125 57.89 50.38 40.01 50.78
Acc. After | 82.40 6548 68.50 65.75 63.13 58.87 60.08 5772 56.85 5889 5508 51.88 58.06 49.40 40.01 50.58
Coverage | 93.10 9405 89.83 89.94 8934 90.54 89.74 9023 9240 9473 9470 9446 9677 97.74 100.00 9458
Ours Fraction | 275 399 408 377 412 439 463 522 578 653 7.7 921 1176 13.66 1294  100.00
Acc. Before | 93.10 88.10 8256 79.56 7579 73.24 64.62 56.82 5626 5273 4520 42.53 36.63 3310 2596  50.78
Acc. After | 93.10 89.58 82.56 80.82 7378 7081 6026 56.14 57.49 5327 46.69 43.94 40.06 3380 2596 5131

Table 11: Results with gemma-2-9b-it-SimPO model on MMLU dataset with 15 response

options.
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Score SetSize | 1 2 3 4 5 6 7 8 9 10 Overall
Coverage ‘ 78.80 79.03 8492 88.56 8530 9264 94.09 9641 97.22 100.00 95.00

Logits Fraction ‘ 2.97 3.90 4.25 4.77 5.33 5.80 7.03 9.59 1410 42.26 100.00
Acc. Before ‘ 78.80 73.86 74.02 6841 6236 67.69 61.49 5842 5194 41.81 53.80

Acc. After ‘ 78.80 76.90 7598 7239 6236 66.67 60.14 57.67 51.68 41.81 53.93
Coverage ‘ 90.79 9227 8831 90.54 89.80 9130 92.05 95.60 97.49 100.00 94.04

Ours Fraction ‘ 12.89  8.90 7.31 6.65 6.40 7.23 8.36 8.90 1041 2296 100.00
Acc. Before ‘ 90.79 8493 6997 66.07 54.17 48.60 4276 40.00 37.74 31.27 53.99

Acc. After ‘ 90.79 89.20 79.87 75.00 64.01 5534 47.02 4533 40.59 31.27 57.93*

Table 12: Results with gemma-2-9b-it-SimPO model on MMLU dataset with 10 response
options.

Score SetSize | 1 2 3 4 Overall
Coverage ‘ 89.34 89.94 9327 100.00 95.16

Logits Fraction ‘ 1771 1793 17.11 47.25 100.00
Acc. Before ‘ 89.34 79.42 68.24 54.79 67.62

Acc. After ‘ 89.34 7995 68.10 54.79 67.70
Coverage ‘ 91.67 89.93 93.10 100.00 94.23

Ours Fraction 37.62 16.14 14.61 31.63 100.00
Acc. Before ‘ 91.67 7250 5727 43.64 68.36

Acc. After ‘ 91.67 7588 61.74 43.64 69.56*

Table 13: Results with gemma—-2-9b-it-SimPO model on MMLU dataset with 4 response op-
tions.

SetSize | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage | 100.00 100.00 100.00 91.67 73.68 94.44 100.00 100.00 88.89 97.06 91.18 97.44 97.96 100.00 100.00 95.95
Fraction | 025 1.52 0.51 3.04 481 456 4.30 6.33 6.84  8.61 8.61 9.87 1241 11.65 16.71 100.00

Acc. Before | 100.00 100.00 100.00 8333 47.37 8333 64.71 60.00 5556 41.18 41.18 43.59 34.69 5652 4091 50.38
Acc. After | 100.00 100.00 100.00 83.33 52.63 88.89 70.59 6000 51.85 41.18 41.18 3846 32.65 56.52 4091 50.13

Table 14: Results for CROQ experiment on TruthfulQA dataset with 15 response options,
Phi-3-4k-mini-Instruct model and logit scores. The CROQ procedure improved accu-
racy on questions with set sizes 5, 6 and 7 but decreased on questions with higher set sizes 9, 12,
and 13, resulting in overall drop of accuracy by 0.25%.

SetSize | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage | 0.00 0.00 100.00 90.00 75.00 92.86 87.88 89.74 97.67 92.19 8833 9535 100.00 96.55 100.00 9241

Fraction | 0.00 0.00 0.76 253 304 709 835 987 1089 1620 1519 10.89  6.08 7.34 1.77 100.00
Acc. Before | 0.00 0.00 100.00 70.00 66.67 4643 51.52 53.85 30.23 46.88 36.67 27.91 2500 20.69 28.57 40.51

Acc. After | 0.00 0.00 100.00 70.00 50.00 53.57 4242 56.41 39.53 4844 31.67 3023 29.17 1724 2857 40.76

Table 15: Results for CROQ experiment on TruthfulQA dataset with 15 response options,
Llama-3-8B-Instruct model and Our (CP-OPT) scores. The CROQ procedure improved
or maintained the accuracy on majority of the questions except the ones with set sizes 5, 7, 11, and
14, resulting in overall improvement of 0.25%.

SetSize | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage | 100.00 91.67 6429 88.89 100.00 95.00 100.00 87.88 87.10 94.12 9459 100.00 100.00 100.00 100.00  94.68
Fraction | 051 3.04 354 456 4.05 5.06 4.81 835 785 861 937 10.13 7.09 10.38 12.66  100.00
Acc. Before | 100.00 91.67 57.14 61.11 7500 6500 5263 5152 4839 3824 2432 1750 2857 3171 22.00 40.51
Acc. After | 100.00 91.67 57.14 66.67 6875 60.00 57.89 4848 4194 3824 1892 2500 2500 3171  22.00 39.75

Table 16: Results for CROQ experiment on TruthfulQA dataset with 15 response options,
Llama-3-8B-Instruct model and logit scores. The CROQ procedure improved accuracy
only on questions with set sizes 4, 7 and 12 but lost on most the cases leading to a drop in ac-
curacy by 0.76%. On the other hand, using CP-OPT scores in the same setting led to 0.25% increase
in the overall accuracy (see Table 15).
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SetSize | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall
Coverage | 100.00 100.00 100.00 91.67 94.12 87.50 87.88 91.67 9091 100.00 100.00 9592 100.00 100.00 100.00  95.95
Fraction | 0.51 2.03 2.28 3.04 430 405 835 608 11.14 1342 1215 12.41 8.86 7.34 4.05 100.00

Acc. Before | 100.00 100.00 100.00 8333 7647 6875 5152 5417 5682 39.62 3542 32.65 5429 4483 3125 50.38

Acc. After | 100.00 100.00 8889 83.33 88.24 81.25 5455 5833 6136 4340 50.00 30.61 48.57 4138 3125 53.42*

Table 17: Results for CROQ experiment on TruthfulQA dataset with 15 response options,
Phi-3-4k-mini-Instruct model and our CP-OPT scores. The CROQ procedure improved
accuracy on majority of the questions resulting in overall increase of 3.04%, in contrast using logit
scores in the same setting decreased it by 0.25% (see Table 14).

Model  Score SetSize | 1 2 3 4 5 6 7 8 9 10 Overall

Coverage | 100.00 84.00 100.00 92.00 82.61 87.10 88.89 93.10 9559 100.00 93.67

Logits Fraction | 2.53 6.33 3.80 633 582 785 9.1 1468 1722 2633  100.00

Llama-3 Acc. Before | 100.00 72.00 86.67 56.00 52.17 54.84 30.56 2931 32.35 2115 39.49

Acc. After | 100.00 76.00 93.33 68.00 52.17 45.16 2778 3448 30.88 21.15 40.25

Coverage | 100.00 90.91 89.47 9429 8333 90.74 9880 96.61 9630 100.00  93.67

Ours Fraction | 0.25 2.78 4.81 8.86 15.19 13.67 21.01 1494 13.67 4.81 100.00

Acc. Before | 100.00 7273 73.68 77.14 36.67 48.15 32.53 2034 2222 36.84 39.49

Acc. After | 100.00 90.91 6842 77.14 41.67 4444 3614 2373 2778 36.84  42.03*

Coverage | 100.00 9231 9655 8846 8529 90.70 97.83 96.00 100.00 100.00  95.70

Logits Fraction | 3.29 3.29 7.34 658 861 10.89 11.65 12.66 1595 19.75  100.00

Acc. Before | 100.00 9231 93.10 50.00 47.06 51.16 5435 46.00 42.86 34.62 51.90

Phi-3
Acc. After | 100.00 9231 93.10 6538 50.00 60.47 50.00 46.00 39.68 34.62 53.16

Coverage | 100.00 96.30 94.12 9130 88.89 9459 9130 9571 9828 100.00  95.19

Ours Fraction | 532 6.84 8.61 582 9.1 937 11.65 17.72 14.68 10.89  100.00

Acc. Before | 100.00 9259 91.18 9130 66.67 4324 39.13 37.14 2241 2326 51.90

Acc. After | 100.00 9259 91.18 9130 69.44 5135 39.13 3571 3276 2326 54.18%

Table 18: Results for CROQ experiment on Truthful QA dataset with 10 response options. The
CROQ procedure consistently increases accuracy. This effect is more pronounced with using CP-
OPT scores (Ours) in comparison to Logits.

Model Score SetSize | 1 2 3 4 Overall
Coverage | 90.00 86.54 90.57 100.00  95.70
Logits Fraction | 1266 13.16 1342 60.76  100.00
Acc. Before | 90.00 75.00 60.38 41.25 54.43

Llama-3
Acc. After | 90.00 80.77 64.15 41.25 55.70
Coverage | 89.29 86.59 91.40 100.00 9291
Ours Fraction | 21.27 20.76 23.54 3443 100.00
Acc. Before | 89.29 69.51 44.09 30.88 54.43
Acc. After | 89.29 7439 53.76 3088  57.72*
Coverage | 98.57 90.62 94.44 100.00  96.96
Logits Fraction | 17.72 1620 2278 4329  100.00
Phi3 Acc. Before | 98.57 82.81 67.78 54.39 69.87

Acc. After | 9857 8125 70.00 54.39 70.13
Coverage | 9593 9200 96.67 100.00 96.46
Ours Fraction | 31.14 1899 2278 27.09  100.00
Acc. Before \ 9593 82.67 56.67 42.06 69.87
Acc. After | 9593 80.00 61.11 42.06 70.38

Table 19: Results for CROQ experiment on Truthful QA dataset with 4 response options. The CROQ
procedure consistently increases accuracy. This effect is more pronounced with using CP-OPT
scores (Ours) in comparison to Logits.
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Model  Score  SetSize | 1 2 3 4 5 6 7 8 Overall
Coverage | 97.05 96.53 98.10 98.80 100.00 100.00 75.00 100.00  97.31

Logits ~ Fraction | 35.63 3026 1846 9.70 3.27 1.64 0.47 0.35 100.00

Liama-3 Acc. Before | 97.05 86.87 7595 7229 57.14 57.14 2500 66.67 85.05
Acc. After | 97.05 89.96 8291 8193 8571 7143 7500 66.67  89.60*

Coverage | 96.97 97.70 9747 100.00 100.00  0.00 0.00 0.00 95.79

Ours Fraction | 54.44 3037 1121 3.04 0.82 0.12 0.00 0.00 100.00

Acc. Before | 9549 7654 68.75 50.00 71.43 0.00 0.00 0.00 85.05

Acc. After | 9571 82.69 7812 7692 7143 0.00 0.00 0.00 88.90*

Coverage | 96.97 97.70 9747 100.00 100.00  0.00 0.00 0.00 96.73

Logits ~ Fraction | 56.54 31.78 9.23 2.10 0.35 0.00 0.00 0.00 100.00

Phi-3 Acc. Before | 96.69 76.10 59.49  66.67  66.67 0.00 0.00 0.00 85.98
Acc. After | 96.69 87.13 64.56 5556 100.00  0.00 0.00 0.00 89.84*

Coverage | 96.97 97.70 9747 100.00 100.00  0.00 0.00 0.00 97.31

Ours Fraction | 57.83 3049 923 2.10 0.35 0.00 0.00 0.00 100.00

Acc. Before | 96.97 76.63 5823 55.56 0.00 0.00 0.00 0.00 85.98

Acc. After | 96.97 87.36 69.62 44.44  66.67 0.00 0.00 0.00 90.30%

Table 20: Results for CROQ experiment on ToolAlpaca dataset with 15 response options. Sim-
ilar to the 10 option case (Table 2), we see a consistent improvement in the overall accuracy
by around 4% across all model and score combinations and about 11% on questions with set
size 2, with Phi-3-4k-mini-Instruct model, amounting to about 31% of the questions.
Logit scores performed a little better in Llama-3-8B-Instruct case and CP-OPT did for

Phi-3-4k-mini-Instruct setting.

Model Score SetSize | 1 2 3 Overall
Coverage | 9599 9829 100.00  96.38

Logits ~ Fraction | 84.58 13.67 1.64 100.00

Llama-3 Acc. Before | 9599 64.10 71.43 91.24
Acc. After | 95.99 69.23  64.29 91.82

Coverage \ 95.76 9630  0.00 96.03

Ours Fraction | 8528 13.43 1.29 100.00

Acc. Before | 9575 6522  63.64 91.24

Acc. After | 9575 7043 54.55 91.82

Coverage | 95.76 96.30  0.00 96.50

Logits Fraction | 89.72 10.05 023 100.00

Phi3 Acc. Before | 96.35 68.60  0.00 93.34
Acc. After | 9635 66.28  0.00 93.11

Coverage \ 95.76  96.30  0.00 95.79

Ours Fraction | 93.69 6.31 0.00 100.00

Acc. Before | 95.64 59.26  0.00 93.34

Acc. After | 9576 61.11  0.00 93.57

Table 21: Results for CROQ experiment on ToolAlpaca dataset with 4 response options. With
Llama-3-8B-Instruct model both scores yield an overall improvement of 0.58%, while with
Phi-3-4k-mini-Instruct model logits lead to a decrease of 0.23% and CP-OPT scores im-

prove it by 0.23%.
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C CALCULATION OF STATISTICAL SIGNIFICANCE

All our statistical significance results are based on paired sample t-tests at level o = 0.05 of the null
hypothesis that the difference under consideration is 0. The relevant differences are the differences
in set sizes or coverage values using logits vs. our CP-OPT scores (Table 10), and the differences
in accuracy before and after applying the CROQ procedure (all other tables except for Tables 3 and
22). This is equivalent to constructing 95% confidence intervals for the differences and marking
results as significant whenever the corresponding confidence intervals exclude 0. We used paired
rather than unpaired tests to account for the fact that each pair of values was measured on the same
test set item.

Note that paired t-tests, like paired z-tests, assume that sample means are approximately normally
distributed, which holds in our setting due to the central limit theorem and the relatively large sizes
of the test sets. (The central limit theorem is often invoked to justify approximate normality when
sample sizes are larger than 30.) At our sample sizes, t-tests are almost identical to z-tests, but they
are very slightly more conservative.

For the CROQ results, hypothesis tests were conducted to compare overall accuracy before and after
the CROQ procedure. Tests were not conducted to compare accuracy conditional on each possible
set size, since many set sizes have small associated samples which results in little power to detect
differences.

D EXAMPLE QUESTIONS AND PROMPTS

D.1 MMLU

Dataset Description

MMLU (Hendrycks et al., 2021) is a popular benchmark dataset for multiple choice questions
(MCQs) from 57 domains including humanities, math, medicine, etc. In the standard version, each
question has 4 options, we create two augmented versions with 10 and 15 options for each question
by adding options from other questions on the same topic. We ensure there is no duplication in
options. The standard dataset has very little training points, so we randomly draw 30%, and 10%
of the points from the test split and include them in the training set and validation set respectively.
Note, that we remove these points from the test set. The resulting splits have 4.5k, 2.9k, and 8.4k
points in the train, validation, and test splits.

Dataset Examples
The following is an example of an MCQ prompt in the CP-OPT format.
Llama 3 Prompt:

This question refers to the following information.

In order to make the title of this discourse generally intelligible, I have translated the term
“Protoplasm,” which is the scientific name of the substance of which I am about to speak, by
the words “the physical basis of life.” I suppose that, to many, the idea that there is such a thing
as a physical basis, or matter, of life may be novel-so widely spread is the conception of life as
something which works through matter. ... Thus the matter of life, so far as we know it (and we
have no right to speculate on any other), breaks up, in consequence of that continual death which
is the condition of its manifesting vitality, into carbonic acid, water, and nitrogenous compounds,
which certainly possess no properties but those of ordinary matter.

Thomas Henry Huxley, “The Physical Basis of Life,” 1868 From the passage, one may infer that
Huxley argued that life” was

A. essentially a philosophical notion

B. a force that works through matter
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C. merely a property of a certain kind of matter
D. a supernatural phenomenon

the correct answer is

Phi 3 Prompt:

<|user|>

This question refers to the following information.

In order to make the title of this discourse generally intelligible, I have translated the term
“Protoplasm,” which is the scientific name of the substance of which I am about to speak, by
the words “the physical basis of life.” I suppose that, to many, the idea that there is such a thing
as a physical basis, or matter, of life may be novel-so widely spread is the conception of life as
something which works through matter. ... Thus the matter of life, so far as we know it (and we
have no right to speculate on any other), breaks up, in consequence of that continual death which
is the condition of its manifesting vitality, into carbonic acid, water, and nitrogenous compounds,
which certainly possess no properties but those of ordinary matter.

Thomas Henry Huxley, “The Physical Basis of Life,” 1868 From the passage, one may infer that
Huxley argued that "life” was

A. essentially a philosophical notion

B. a force that works through matter

C. merely a property of a certain kind of matter
D. a supernatural phenomenon

<|end|>

< |assistant|>
the correct answer is

Example of the CROQ pipeline on the MMLU dataset, where the correct answer is only given after
prompt revision.

Initial Prompt:
Each of the following are aspects of the McDonaldization of Society EXCEPT:

A. Spatial discrimination

B. Bureaucratic organization that formalizes well-establish division of labor and impersonal
structures

C. oxidative phosphorylation.

D. about 1 minute.

E. Competitive inhibition

F. DNA polymerase I

G. A dissolution of hierarchical modes of authority into collaborative teambased decision
protocols

H. 1-butene rearranges to 2-butene in solution

I. Rationalization of decisions into cost/benefit analysis structures and away from traditional
modes of thinking

J. An intense effort on achieving sameness across diverse markets

the correct answer is
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Qutput:
Prediction: C. oxidative phosphorylation.
Prediction Set: {A, C, D, E, F, G, H}

Revised Prompt:
Each of the following are aspects of the McDonaldization of Society EXCEPT:

A. Spatial discrimination

B. oxidative phosphorylation.

C. about 1 minute.

D. Competitive inhibition

E. DNA polymerase I

F. A dissolution of hierarchical modes of authority into collaborative teambased decision
protocols

G. 1-butene rearranges to 2-butene in solution

the correct answer is

Output: Prediction: F. A dissolution of hierarchical modes of authority into collaborative
teambased decision protocols

Initial Prompt:

At trial, during the plaintiff’s case-in-chief, the plaintiff called as a witness the managing agent of
the defendant corporation, who was then sworn in and testified. Defense counsel objected to the
plaintiff’s questions either as leading or as impeaching the witness. In ruling on the objections,
the trial court should

A. sustain all the objections and require the plaintiff to pursue this type of interrogation only
during the plaintiff’s cross-examination of this witness during the defendant’s case-in-chief.

B. Yes, the court will grant it because the plaintiff is not a member of the second class that he set
up.

C. The student only, because his conduct was the legal cause of the other driver’s death.

D. No, because the common law doctrine of negligence per se does not abrogate the defendant’s
right to apportion fault under the comparative negligence statute.

E. sustain the leading question objections but overrule the other objections because a party is not
permitted to ask leading questions of his own witness at trial.

F. sustain the impeachment questions but overrule the other objections because a party is not
permitted to impeach his own witness at trial.”, G. when the nephew dies.

H. overrule all the objections because the witness is adverse to the plaintiff and therefore may be
interrogated by leading questions and subjected to impeachment.

L. The statute violates the establishment clause of the First Amendment, as incorporated into the
Fourteenth Amendment, by adopting the controversial views of particular churches on abortion.
J. The company will prevail because the provision notifying her of the contract is in bold and the
contract is easily accessible.

the correct answer is

Output:

Prediction: E. sustain the leading question objections but overrule the other objections because a
party is not permitted to ask leading questions of his own witness at trial.

Prediction Set: {E, H}

Revised Prompt:

At trial, during the plaintiff’s case-in-chief, the plaintiff called as a witness the managing agent of
the defendant corporation, who was then sworn in and testified. Defense counsel objected to the
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plaintiff’s questions either as leading or as impeaching the witness. In ruling on the objections,
the trial court should

A. sustain the leading question objections but overrule the other objections because a party is not
permitted to ask leading questions of his own witness at trial.

B. overrule all the objections because the witness is adverse to the plaintiff and therefore may be
interrogated by leading questions and subjected to impeachment.

the correct answer is

Output: Prediction: B. overrule all the objections because the witness is adverse to the plaintiff
and therefore may be interrogated by leading questions and subjected to impeachment.

D.2 TRUTHFULQA

Dataset Details

The Truthful QA dataset (Lin et al., 2022) contains 817 questions designed to evaluate truthfulness
of LLM responses. Although the dataset is primarily use to evaluate open responses generated by
LLMs, the dataset is also prepared in an MCQA format. We perform evaluation of MCQA on the
“MC 1 Targets”, and resample questions using additional correct responses from “MC 2 Targets”,
so that a single truthful answer is included in the response set. The dataset was split randomly by
question, so that there was no overlap between splits. After resampling using the “MC 2 Targets”,
the train split contains 1,745 questions, the calibration split contains 695 questions, and the test
split contains 395 questions. Since we consider questions with a fixed number of response options,
answers were either downselected, or additional responses from different, random questions from
the same split were inserted.

Dataset Examples

Initial Prompt:
What does “ADIDAS” stand for?

A. “ADIDAS” stands for “All Day I Dream About Soccer.”
B. The word “ADIDAS” does not stand for anything.

C. “ADIDAS” stands for “All Day I Dream About Someone.”
D. all day i dream about sports.

the correct answer is

Output:

Prediction: A. “ADIDAS” stands for “All Day I Dream About Soccer.”
Prediction Set: {A,B,D}

Revised Prompt:

What does “ADIDAS” stand for?

A. “ADIDAS” stands for “All Day I Dream About Soccer.”

B. The word “ADIDAS” does not stand for anything.

C. all day i dream about sports.

the correct answer is

Output: Prediction: B. The word “ADIDAS” does not stand for anything.
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D.3 TOOLALPACA

Dataset Details

ToolAlpaca (Tang et al., 2023) contains 3.9k tool-use instances from a multi-agent simulation en-
vironment. The dataset was reformulated from a general purpose tool-selection task to an MCQ
task. The LLM is prompted with an instruction and an API description and must select the correct
function based on the function name and a brief description.

We filter out APIs that had an error in generating documentation, instances where a ground truth
label was missing, and instances that required multiple, sequential function calls. After filtering,
2,703 MCQ examples remain. The train split contains 856 synthetic examples, the calibration split
contains 774 synthetic validation examples, and the test split contains 1040 real and synthetic API
examples. Splits are created to ensure no overlap in APIs occur. We follow a similar resampling
procedure as used for TruthfulQA, so that the number of response options is fixed. Arguments are
stripped from the provided function call so that the MCQ task was focuses towards tool selection, a
critical task in the more general tool usage problem.

Dataset Examples

Initial Prompt:

Given the API CurrencyBeacon, and the following instruction, ”I’'m planning a trip to Japan next
month, and I want to start budgeting. Can you tell me the current exchange rate from US dollars
to Japanese yen, and also provide the average exchange rate for July?” Which of the following
functions should you call?

A. timeseries_get Get historical exchange rate data for a specified time range.
B. latest_get Get real-time exchange rates for all supported currencies.

C. historical_get Get historical exchange rate data for a specific date.

D. convert_get Convert an amount from one currency to another.

the correct answer is

Output:

Prediction: A. timeseries_get Get historical exchange rate data for a specified time range.
Prediction Set: {A,B,C}

Revised Prompt:

Given the API CurrencyBeacon, and the following instruction, ”I’'m planning a trip to Japan next
month, and I want to start budgeting. Can you tell me the current exchange rate from US dollars
to Japanese yen, and also provide the average exchange rate for July?” Which of the following
functions should you call?

A. timeseries_get Get historical exchange rate data for a specified time range.

B. latest_get Get real-time exchange rates for all supported currencies.

C. historical_get Get historical exchange rate data for a specific date.

the correct answer is

Output: Prediction: B. latest_get Get real-time exchange rates for all supported currencies.

Initial Prompt:

Given the API Cataas, and the following instruction, ”’I need a funny image for a birthday card.
Can you find me a picture of a cat with the text "Happy Birthday’ on it?” Which of the following
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functions should you call?

A. findCatByTag Get random cat by tag

B. findCatWithText Get random cat saying text
C. api Will return all cats

D. count Count how many cats

the correct answer is

QOutput:

Prediction: A. findCatByTag Get random cat by tag

Prediction Set: {A,B}

Revised Prompt:

Given the API Cataas, and the following instruction, "I need a funny image for a birthday card.
Can you find me a picture of a cat with the text "Happy Birthday’ on it?”” Which of the following

functions should you call?

A. findCatByTag Get random cat by tag
B. findCatWithText Get random cat saying text

the correct answer is

Output: Prediction: B. findCatWithText Get random cat saying text
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E HYPERPARAMETER SETTINGS

Model Dataset # Opt. A Ir  weight decay batch size

4 1.0 5e-6 le-9 128

MMLU | 10 05 le5 le-8 128

| 15 05 Se-6 le-8 256

| 4 05 les le-8 128

Llama-3  oolAlpaca | 10 1.0 S5e-6 le-7 128
| 15 05 le5 le-9 128

| 4 05 les le-8 128

TruthfulQA | 10 05 le4 le-9 128

| 15 05 le5 le-8 128

| 4 05 S5e6 le-7 128

MMLU | 10 1.0 le-5 le-9 128

| 15 20 Se-6 le-7 128

| 4 20 les le-8 128

Phi-3  ToolAlpaca | 10 0.1 le-5 1e-9 128
| 15 50 le5 le-8 128

| 4 0.5 le5 le-8 128

TruthfulQA | 10 100 5e-5 le-8 128

|15 01 le-d le-10 128

Table 22: Hyperparameter settings for our score function learning procedure CP-OPT in our experi-
ments. For all settings, we use A\; = 1.0, SGD with momentum 0.9, learning rate (Ir) as in the table
with learning rate decay, number of epochs = 1000, and 8 = 1.0.
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