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Abstract
When developing new large language models
(LLMs), a key step is evaluating their final perfor-
mance, often by computing the win-rate against a
reference model based on external feedback. Hu-
man feedback is the gold standard, particularly for
capturing nuanced qualities like coherence, read-
ability, and alignment with human expectations.
However, human evaluations are costly — even
for large tech companies — and when conducted
with active users, they may negatively impact user
experience. A promising alternative is synthetic
feedback, where evaluations are conducted by
other large language models, including reward
models. While this eliminates the need for costly
human annotations, it introduces biases that may
distort the evaluation process. In this work, we
propose a statistically principled framework that
integrates human and synthetic feedback to reduce
reliance on human annotations while maintaining
unbiased win-rate calculations. Our experiments
demonstrate a reduction in human annotations
by up to 12.2% with an off-the-shelf synthetic
evaluator and up to 24.8% with a finetuned vari-
ant. Apart from being generalizable, scalable, and
free of hyper-parameter tuning, our method offers
predictable annotation savings, which can be esti-
mated based on data-dependent characteristics.

1. Introduction
Accurately evaluating the performance of large language
models (LLMs) is crucial before large-scale deployment.
Human judgment remains the gold standard for this eval-
uation, as it captures nuanced qualities such as coherence,
harmlessness, and readability (Bai et al., 2022), while also
ensuring alignment with human values (Ouyang et al., 2022).
A widely accepted performance metric is the win rate, as-
sessed by humans against a reference model (Chiang et al.,
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2024). However, this approach demands substantial time
and financial resources due to human involvement. When
conducted with active system users, it may also diminish
user experience, see Figure 2.

In order to mitigate these challenges, recent works have
explored cost-efficient alternatives, most notably the use
of synthetic feedback generated by other LLMs, a concept
often referred to as “LLM-as-a-judge” (Zheng et al., 2023;
Dubois et al., 2024), to compute the head-to-head win rate.
This approach leverages the computational efficiency of
LLMs to evaluate other models, reducing the need for exten-
sive human involvement. Despite its promise, synthetic feed-
back often introduces biases since LLM can not perfectly re-
flect human preference, undermining the evaluation reliabil-
ity (Zheng et al., 2024). As a result, a critical need remains
for evaluation methods that reduce the cost of human anno-
tation while maintaining the reliability and generalizability.

Besides replacing the evaluator, recently there has been a
growing interest in accelerating LLM evaluation (Ye et al.,
2023; Polo et al., 2024a; Zhou et al., 2024) with smaller
datasets. However, previous methods only focused on
reducing the number of prompts in a specific benchmark
with predefined answers (e.g., math problems). Thus it is
unclear if these methods generalize or apply to other tasks.
For example, in math benchmark it is easy to find some
problems that are “representative” of the whole benchmark,
but in general the prompts are more diverse and less struc-
tured, and sometimes they are generated on the fly, such
as when a user interacts with a language model via APIs.

Towards reliable and cost-efficient LLM evaluation, in this
work we propose to leverage LLM generated synthetic feed-
back to reduce the number of human annotations, in the
standard head-to-head win rate setting (Chiang et al., 2024).
Specifically, we propose Control Variates Evaluation (Fig-
ure 1 left), an unbiased LLM evaluation method based on
the classical control variates technique (Lavenberg & Welch,
1981) that combines human annotations and synthetic feed-
back. Note that there are previous works (Chaganty et al.,
2018; Boyeau et al., 2024) that apply control variates to
machine learning evaluation, but they study settings like
single-response natural language evaluation or BT mod-
elling (Bradley & Terry, 1952). Therefore, the performance
of control variates in head-to-head win rate estimation still
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Figure 1: (Left) Illustration of Control Variates Evaluation, which makes use of a possibly inaccurate synthetic evaluator to
reduce the variance of evaluation, reducing the need of human annotations while preserving unbiasedness. (Right) Averaged
mean square error v.s. number of human annotations for Human Evaluation, Synthetic Evaluation and Control Variates
Evaluation using the finetuned Skywork-8B evaluator on Chatbot Arena. The Synthetic Evaluation has high bias, while
the bias of Human and Control Variates Evaluations are negligible. Control Variates Evaluation reduces the variance of
Human Evaluation.

requires thorough investigation.

In our work, we theoretically show that Control Variates
Evaluation enjoys a lower variance, and thus it requires
fewer human annotations to achieve the same level of
accuracy on the win rate estimation. Empirically, Control
Variates Evaluation enjoys significant human annotation
saving for various types of synthetic evaluators, from a small
reward model with 2B parameters to LLMs such as GPT-4.
In addition, we can further reduce human annotations
by finetuning the synthetic evaluators on existing human
annotations for other LLMs. Note that the cost of control
variates is minimal as it only requires some additional
synthetic feedbacks, which can be generated at a low
cost. Somehow surprisingly, the synthetic evaluators that
contribute to such achievement are inaccurate themselves
and have high prediction bias (c.f. Figure 1 right).

Besides the advantage of reducing the number of human
annotations, Control Variates Evaluation also has a
predictable saving, one that can be estimated from the
data and one which depends on how strongly the synthetic
feedback correlates with human judgments. This is in
contrast to the all existing methods that do not provide
predictions on the potential saving. Based on the theoretical
guarantee, we propose human annotation saving ratio as
a metric to evaluate our method, which can be computed
through a few human annotations without actually running
the evaluation. We demonstrate through experiments that
this metric perfectly reflects the practical variance reduction
effect in Control Variates Evaluation.

In summary, our contribution is three folds:

1. We introduce Control Variates Evaluation to reduce the
number of human annotations in head-to-head win rate
estimation with zero bias, resulting in a reliable, cost-
efficient and task-agnostic LLM evaluation method.

2. We demonstrate the viability of improving human an-
notation saving through fine-tuning.

3. We propose the human annotation saving ratio as the
data-dependent metric to predict the saving in human
data when using the Control Variates Evaluation.

We believe our work is a first step towards principled
efficient LLM evaluation and can be combined with
various existing and future works. Our code is avail-
able at https://github.com/Zanette-Labs/
control_variates_evaluation.

2. Related Work
2.1. LLM Evaluation: Metric, Benchmark and Systems

The earliest attempt for LLM evaluation includes rule based
metrics such as BLEU (Papineni et al., 2002) and ROUGE
(Lin, 2004), which only measures the similarity between
the model generation and the reference text. Going beyond
rule-based metrics, LLM evaluation has been proposed, with
earlier works using LLM to compute similarity (Zhang et al.,
2020; Yuan et al., 2021). Recently, LLM-as-a-judge has
been proposed to evaluate LLMs (Zheng et al., 2023; Dubois
et al., 2024; Gu et al., 2024; Li et al., 2024a; Lan et al., 2024),
by querying powerful LLMs to generateli2024generation
preference of generations between different models, with the
hope that the powerful LLMs can serve as a proxy for human
evaluation. Towards real human evaluation, very few public
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Figure 2: OpenAI’s prompting users for feedback; excessive requests may negatively impact user experience.

systems exist due to their high cost and time-consuming
nature, with the large-scale community collective effort
Chatbot Arena (Chiang et al., 2024) being the most notable
one.

2.2. Speeding Up LLM Evaluation

Recently there has been a surge of research on speeding up
LLM evaluation, with the goal of reducing the cost and time
of evaluating LLMs. One approach is to use heuristics to
minimize the number of prompts or tasks to evaluate, with
the hope that the selected subset can represent the whole
distribution of the prompts or tasks (Ye et al., 2023; Perlitz
et al., 2023; Polo et al., 2024a).

The other approach is to leverage active learning or ban-
dit algorithms to select a subset of the prompts: (Polo
et al., 2024b; Zhou et al., 2024; Li et al., 2024b). How-
ever, these methods are still limited by the requirement to
operate within a specific benchmark with prefined answers,
and thus can not be applied to human evaluation, the focus
of our work. In addition to the essential benefit that human
evaluation can provide, note that it is more challenging be-
cause it is task-agonistic and typically has less structure than
any specific benchmark.

2.3. Control Variates, Application, and related
techniques

Control variates is a well-known variance reduction tech-
nique in Monte Carlo sampling (Owen, 2013), with appli-
cations to finance (Broadie & Glasserman, 1998; Hester-
berg & Nelson, 1998; Kemna & Vorst, 1990; Glasserman,
2004). In recent years, it has also been applied to vari-
ous areas of machine learning, such as variational inference
(Geffner & Domke, 2018; Phan et al., 2023), bandits (Verma

& Hanawal, 2021), optimization (Yuan et al., 2024), com-
puter graphics (Rousselle et al., 2016; Müller et al., 2020).
In particular (Chaganty et al., 2018) uses control variates
to evaluate natural language metrics, but it is restricted to
single response evaluation. In our work, we extend control
variates evaluation to pairwise LLM comparison.

Prediction-Powered Inference (PPI, and PPI++) (An-
gelopoulos et al., 2023a;b; Boyeau et al., 2024) is a related
technique which uses variance reduction to improve the
MLE objective. (Boyeau et al., 2024) applies PPI++ to
estimate practical metrics in machine learning, such as accu-
racy, correlation and BT model (Bradley & Terry, 1952) in
pairwise model comparisons. It differs from our work which
conducts an in-depth study of control-variates to accelerate
head-to-head win rate estimation.

3. Preliminaries
3.1. LLM Evaluation

We consider the problem of evaluating LLMs performance
through head-to-head comparisons, via human preference
judgments. Given a set of prompt X , we compare two LLMs
ℓ1 and ℓ2 by estimating the win rate of ℓ1 over ℓ2 on X .

Formally, we independently sample a prompt x ∈ X , and
sample two responses y1 ∼ ℓ1(· | x) and y2 ∼ ℓ2(· | x)
from ℓ1 and ℓ2 respectively. We then ask human annotators
to choose the better response with label z

(
y1 ≻ y2

)
, where

z
(
y1 ≻ y2

)
=


1 if y1 is preferred over y2,
0 if y2 is preferred over y1,
0.5 if tie.

We will use the shorthand z sometimes in the rest of the text
when the context is clear. The win rate of ℓ1 over ℓ2 on the
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prompt x is defined as

p
(
ℓ1 ≻ ℓ2

)
:= Ex,y1,y2

[
z
(
y1 ≻ y2

)]
,

i.e., the averaged human preference over the prompt set, and
Ex,y1,y2 [·] := Ex∼Uniform(X )

[
Ey1∼ℓ1(·|x),y2∼ℓ2(·|x)[·]

]
. To

estimate p
(
ℓ1 ≻ ℓ2

)
empirically, we collect an evaluation

dataset Deval = {(xi, y
1
i , y

2
i )}ni=1, estimate human prefer-

ence zi = z(y1i ≻ y2i ) with zemi and output the empirical
average p̂em

(
ℓ1 ≻ ℓ2

)
= 1

n

∑n
i=1 z

em
i as the estimate of the

win rate. Our goal is to minimize the number of human anno-
tations involved in the process while keeping p̂em close to p.

3.2. Human and Synthetic Evaluation

Human Evaluation annotates every sample (xi, y
1
i , y

2
i ) in

Deval with human, i.e. let zemi := zi. This makes the eval-
uation unbiased. However, leveraging human annotator is
extremely expensive, but without enough amount of samples
n, the empirical mean p̂em(ℓ1 ≻ ℓ2) can be very noisy due
to high variance from a small sample size.

On the other hand, Synthetic Evaluation generates prefer-
ence estimates ẑ(y1i ≻ y2i ) using a reward model or LLM
(e.g., GPT-4) (Zheng et al., 2023) on every sample. Al-
though it completely obviates the need for human annota-
tions, the evaluation is biased and can lead to inaccurate win
rate prediction.

3.3. Other Notations

For two one-dimensional random variables x and y, we use
Cov[x, y], Corr[x, y] to denote the covariance and corre-
lation coefficient between x and y, respectively. We use
Var[x] to denote the variance of x. Let {xi}ni=1, {yi}ni=1 be
samples of x and y, respectively, we abuse the notation and
use Var [{xi}ni=1] for the empirical variance of {xi}ni=1,
and Cov [{xi}ni=1, {yi}ni=1], Corr [{xi}ni=1, {yi}ni=1] for
the empirical covariance and correlation coefficient between
{xi}ni=1 and {yi}ni=1 respectively.

4. Efficient LLM Evaluation via Control
Variates

In this section, we introduce Control Variates Evaluation,
which combines human and synthetic annotations to realize
a variance-reduced unbiased evaluation method, based on
control variates (Lavenberg & Welch, 1981). We first recap
the classical control variates method in the context of LLM
evaluation, and then formally describe how to adapt the
control variates method to make it applicable in practice.
Finally, we briefly discuss its application in the LLM-as-a-
judge setting (Zheng et al., 2023).

Algorithm 1 Control Variates Evaluation

1: Input: Evaluation dataset Deval =
{
(xi, y

1
i , y

2
i )
}n

i=1
,

human annotation budget k,
2: Optional Input: Finetune dataset Dfinetune ={

(xj , y
1
j , y

2
j )
}m

j=1
with human annotations {zj}mj=1.

3: (Optional) Finetune the synthetic evaluator on Dfinetune.

4: Get synthetic evaluations ẑ1, ẑ2, · · · , ẑn on Deval.
5: Sample k data from Deval and get human annotations

zi1 , zi2 , · · · , zik .
6: Estimate µẑ = 1

n

∑n
i=1 ẑi.

7: Estimate α using
{
zij

}k

j=1
and

{
ẑij

}k

j=1
by Equa-

tion (2)
8: Output the estimated win rate

1

k

k∑
j=1

zij − α

1

k

k∑
j=1

ẑij − µẑ

.

4.1. Control Variates

Given a sample (x, y1, y2) with human preference z and
synthetic preference ẑ, we treat z as the random variable for
which we want to estimate its mean. Using ẑ as the control
variate, the classical control variates approach (Lavenberg
& Welch, 1981) constructs a new estimated preference:

zem := zcv;α = z − α(ẑ − µẑ), (1)

where µẑ = Ex,y1,y2

[
ẑ
(
y1 ≻ y2

)]
is the synthetic win

rate, and α ∈ R is the control variates coefficient used to
control the variance of zcv;α. Intuitively, µẑ cancels out the
bias incurred by the control variate ẑ, keeping the estimate
unbiased. In addition, assuming that µẑ is known, we can
guarantee variance reduction compared to human evaluation,
as stated by

Proposition 4.1 (Control Variates Properties (Lavenberg
& Welch, 1981) ). Suppose the expectations, variances,
covariances and correlation coefficients, unless otherwise
stated, are taken under the distribution x ∼ Uniform(X ),
y1 ∼ ℓ1(· | x), y2 ∼ ℓ2(· | x). Then the control variates
estimate zcv;α enjoys the following properties

(1) (Unbiasedness) For any α ∈ R, we have
E[zcv;α] = p(ℓ1 ≻ ℓ2).

(2) (Variance Reduction) Let ρ = Corr[z, ẑ] be the corre-
lation coefficient between human and synthetic prefer-
ence. Then we have

min
α∈R

Var[zcv;α] =
(
1− ρ2

)
Var[z].
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The minimum is achieved if and only if α equals

α∗ =
Cov[z, ẑ]

Var[ẑ]
.

(3) (Human Annotation Saving) Given an evaluation
dataset Deval = {(xi, y

1
i , y

2
i )}ni=1, in which {xi}ni=1

are sampled i.i.d. from X , y1i ∼ ℓ1(· | xi), y2i ∼ ℓ2(· |
xi) (i ∈ [n]). Let {ij}mj=1 be independently sampled
from [n]. Then when m = (1− ρ2)n, we have

Var

 1

m

m∑
j=1

zcv;α
∗

ij

 = Var

[
1

n

n∑
k=1

zk

]

Here the variance on the right hand side is taken by the
randomness of sampling {(xi, y

1
i , y

2
i )}ni=1. The vari-

ance on the left hand side is taken by the randomness of
sampling {(xi, y

1
i , y

2
i )}ni=1 as well as that of sampling

{ij}mj=1.

We provide the proof in Appendix A for completeness.

Human annotation saving ratio. Proposition 4.1 imme-
diately suggests that the control variates method can reduce
the percentage of human annotations by ρ2 while maintain-
ing the same variance as that of Human Evaluation, with
negligible cost of querying the synthetic evaluator. There-
fore, ρ2 is an important metrics to measure the variance re-
duction effect and cost efficiency of control variates method.
We formally define it below.

Definition 4.2 (Human annotation saving ratio). The human
annotation saving ratio of a synthetic evaluator w.r.t. LLMs
ℓ1, ℓ2 and prompt set X is defined as

ρ2 =
(
Corrx,y1,y2 [z(y1 ≻ y2), ẑ(y1 ≻ y2)]

)2
.

Here z(y1 ≻ y2) is the human preference, and ẑ(y1 ≻ y2)
is the synthetic prefence. The correlation coefficient is
computed under the distribution x ∼ Uniform(X ), y1 ∼
ℓ1(· | x), y2 ∼ ℓ2(· | x).

Nonetheless, to apply control variates approach in the con-
text of LLM evaluation, we still face the following chal-
lenges: 1) How to estimate the synthetic win rate µẑ? 2)
How to compute the correlation coefficient α in practice to
achieve the lowest variance? 3) How to improve the cor-
relation coefficient if the off-the-shelf automatic evaluator
does not give a satisfactory human annotation saving ratio?
In the following, we discuss how to construct the control
variates for LLM evaluation.

4.2. Control Variates Evaluation

Algorithm 1 describes the full procedure of control
variates evaluation. Same as other evaluation methods,

control variates evaluation requires an evaluation dataset
Deval =

{
(xi, y

1
i , y

2
i )
}n

i=1
. The Control Variates Evaluation

consists of the following steps:

Synthetic annotation gathering (Line 4). We generate
synthetic preferences ẑi ∈ [0, 1] from an automatic anno-
tator for all samples in the evaluation dataset. Synthetic
preferences can be generated in various ways depending
on the type of automatic annotator. For an LLM annotator
like GPT-4, we query the model to directly generate the
preference in natural language. If the automatic annotator is
a reward model, we can query the rewards r1i and r2i from
the two responses y1i and y2i respectively, and then compute
the synthetic preference as the Bradley-Terry score of the
two rewards (Bradley & Terry, 1952), i.e.,

ẑi =
1

1 + exp(r2i − r1i )
.

Human annotation sampling (Line 5). We query the hu-
man annotator and obtain human preference z ∈ {0, 0.5, 1}.
Instead of annotating all the samples like in Human Evalua-
tion, we only annotate k samples randomly drawn from the
evaluation dataset, in which k is the number of human an-
notations we want to use. Increasing k lowers the variance
of the estimation but raises the cost of evaluation.

Synthetic win rate estimation (Line 6). Since µẑ is un-
known in practice, we estimate it by averaging the synthetic
evaluator’s preferences on the whole evaluation dataset. In
other words, µẑ := 1

n

∑n
i=1 ẑi.

Control variates coefficient computation (Line 7). Al-
though Proposition 4.1(2) already shows the optimal α, the
covariance between human and synthetic annotations as
well as the variance of synthetic annotations needs to be
estimated via sampling. Since human annotations are in-
volved in the computation, we reuse the human annotations{
zij

}k

j=1
:

α :=
Cov

[{
zij

}k

j=1
,
{
ẑij

}k

j=1

]
Var

[{
ẑij

}k

j=1

] . (2)

It is standard practice in control variates to estimate α
with Equation (2) (Owen, 2013, Chapter 8.9). Although
it introduces some correlation between α and the final
estimator, and thus the estimated win rate in Algorithm 1
is technically biased, the incurred bias is usually negligible,
and it is standard practice to ignore such bias (Owen,
2013, Chapter 8.9). We also validate this practice through
experiments in Section 5.2.
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Win rate estimation (Line 8). After we obtain estima-
tions of the synthetic win rate µẑ , and the control variates
coefficient α, we can apply Equation (1) to get the variance-

reduced preference estimates
{
zcv;αij

}k

j=1
for the samples

we collected with human annotations. Then we output the
win rate estimate by taking the average over the preference
estimates:

p̂em(ℓ1 ≻ ℓ2) =
1

k

k∑
j=1

zcv;αij

=
1

k

k∑
j=1

zij − α

1

k

k∑
j=1

ẑij − µẑ

 . (3)

(Optional) Synthetic evaluator finetuning (Line 3). On
many popular LLM evaluation benchmarks such as Chat-
bot Arena and MT Bench (Zheng et al., 2023), there are
abundant off-the-shelf human annotations for pre-generated
language model responses. Now suppose we have a new
LLM and we want to compare it with the existing ones in
the benchmark. Can we make use of these existing human
annotations to help reduce the human annotations needed in
Control Variates Evaluation?

Recall that the human annotation saving ratio is ρ2, the
square of correlation coefficient between human and syn-
thetic annotations. One natural idea is to raise the correlation
coefficient by finetuning the synthetic evaluator with exist-
ing human annotations, to save future human annotations.

Formally, suppose that we have a finetune dataset
Dfinetune =

{
(xj , y

1
j , y

2
j

}m

j=1
with precollected human an-

notations {zj}mj=1. We discard the ties and assume zj ∈
{0, 1} for all 1 ≤ j ≤ m. In case that the synthetic evaluator
is a reward model, we finetune the evaluator on Dfinetune to
maximize the Bradley-Terry score (Bradley & Terry, 1952)
on the chosen response:

BT
(
r1j , r

2
j , zj

)
=

zj
1 + exp(r2j − r1j )

+
1− zj

1 + exp(r1j − r2j )
.

After finetuning, we can expect an increase in the correlation
coefficient ρ and thus also the human annotation saving ratio
when we want to evaluate the win rate between a new LLM
pair on the same benchmark. Note that the dataset used
for finetuning the synthetic annotator contains responses
generated by LLMs that are different from the LLMs that we
wish to evaluate, i.e., the responses in evaluation dataset are
out of distribution w.r.t. the finetune dataset. We explain
in Section 5.1 how to guarantee this in our experiments.
Despite the out-of-distribution property, we show in the ex-
periment section (c.f. Section 5.4) that the finetuned model
still generalizes well in terms of the correlation coefficient
to the human annotations.

Summary. We offer several remarks:

• Our construction of control variates is task-agnostic,
i.e, we do not leverage any specific structure or knowl-
edge of the prompt set X .

• The method is hyperparameter-free as parameters for
control variates like the synthetic win rate µẑ and con-
trol variates coefficient α are estimated directly from
data. (If fine-tuning is used, one still needs to choose
fine-tuning hyper-parameters over a validation dataset)

• The performance of Control Variates Evaluation is pre-
dictable. By sampling a small subset of evaluation data,
collecting human and synthetic annotations, and com-
puting the human annotation saving ratio, the reduc-
tion in human annotations can be accurately estimated
without fully performing the evaluation. In the experi-
ment (cf. Section 5.2), we show that the saving ratio
of human annotations correctly predicts the observed
saving.

5. Experiments
To evaluate the performance of control variates in practice,
we conduct experiments on real-world datasets to mainly
answer the following questions:

1. How does Control Variates Evaluation compare to Hu-
man Evaluation and Synthetic Evaluation (c.f. Sec-
tion 3.2)?

2. How does the finetuning process of the synthetic eval-
uator affect the human annotation saving?

5.1. Setup

Synthetic evaluators. Towards a comprehensive analy-
sis, we experiment with synthetic evaluators across vari-
ous model types and sizes, including GRM-Gemma-2B-
sftreg (GRM-2B) (Yang et al., 2024), ArmoRM-Llama3-
8B (ArmoRM-8B) (Wang et al., 2024), Skywork-Reward-
Llama-3.1-8B-v0.2 (Skywork-8B) (Liu et al., 2024) as well
as GPT-4 (Achiam et al., 2023).

Finetuning procedure. The testing of Control Variates
with finetuning (Line 3 of Algorithm 1) is done in a cross-
validation manner. Suppose there are K LLMs generating
responses in the evaluation dataset. Our finetuning proce-
dure trains K reward models, each by leaving out the data
for a specific LLM. That is, for each LLM k, we finetune
the reward model on the head-to-head comparisons over the
remaining K − 1 LLMs. This finetuned reward model is
then evaluated on the head-to-head comparisons involving
LLM k against the other K − 1 models. When comparing
Control Variates Evaluation with finetuning and Synthetic
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(a) Skywork-8B (b) Skywork-8B (ft)

Figure 3: Averaged mean-square error versus number of human annotations for Skywork-8B (pretrained and finetuned) on
Chatbot Arena. The x-coordinate of curves “Human” and “Control Variates” correspond to the number of human annotations
(Zheng et al., 2023). The curve “Human (shifted)” is derived by horizontally scaling the Human Evaluation curve by (1− s),
in which s is the averaged human annotation saving ratio in Table 1. The averaged mean-square error of Control Variates
Evaluation converges to near 0, indicating that it has negligible bias. The human annotation saving ratio aligns perfectly
with the actual variance relationship between Human Evaluation and Control Variates Evaluation.

(a) Chatbot Arena (b) MT Bench

Figure 4: Averaged human annotation saving ratio before
and after fine-tuning for GRM-2B and Skywork-8B on Chat-
bot Arena and MT-Bench. Under all setups, we observe at
least 5% increase in the saving ratio.

Evaluation, we apply the same cross-validation procedure
to Synthetic Evaluation for a fair comparison.

We tested Control Variates Evaluation with finetuning on
GRM-2B and Skywork-8B models, which will be referred
to as GRM-2B (ft) and Skywork-8B (ft) respectively.

Benchmark. We choose LLM evaluation datasets with
abundant and trustworthy human annotations. The datasets
we considered are:

• ChatBot Arena (Zheng et al., 2023) contains 33k

human-annotated preferences. The responses are gen-
erated by 20 models, i.e., 190 LLM pairs in total. There
are 121 pairs that have more than 100 annotations.

• MT Bench (Zheng et al., 2023) contains about 3.36k
human-annotated preferences. The responses are gen-
erated by 6 models, i.e., 15 LLM pairs in total. There
are 14 pairs that have more than 100 annotations.

5.2. Control Variates Evaluation v.s. Human Evaluation

As suggested in Section 4.1, the human annotation saving
ratio is a practical metric to measure the performance of
Control Variates Evaluation. Therefore, we will first present
the human annotation saving ratio on different evaluators
and benchmarks. After that, we demonstrate that this theo-
retical measure matches perfectly with the actual variance
reduction effect.

Human annotation saving ratio on different benchmarks
and synthetic evaluators. For each synthetic evaluator
and benchmark, we test the human annotation saving ratio
on every LLM pair that have at least 100 human annotations.
In order to clearly present the result, we take the mean of the
ratios across different LLM pairs to get the average human
annotation saving ratio of that evaluator on the benchmark.
The result is presented in Table 1. We defer the human
annotation saving ratio on each LLM pair in Appendix C.3.

For off-the-shelf evaluators, GPT-4 achieves high saving ra-
tio on both benchmarks. However, an 8B reward model like
ArmoRM-8B has comparable performance. Using the fine-
tuning option of Control Variates Evaluation, Skywork-8B

7



Accelerating Unbiased LLM Evaluation via Synthetic Feedback

Table 1: Averaged human annotation saving ratio across
different synthetic evaluators on Chatbot Arena and MT
Bench. The averaged human annotation saving ratio is the
mean of human annotation saving ratios on LLM pairs with
at least 100 human annotations.

Chatbot Arena MT Bench
GRM-2B 10.6% 5.7%

GRM-2B (ft) 17.1% 10.9%
Skywork-8B 8.3% 7.5%

Skywork-8B (ft) 24.8% 12.6%
ArmoRM-8B 12.2% 9.6%

GPT-4 12.2% 11.9%

(ft) surpasses the performance of GPT-4 on both bench-
marks. With finetune, a small model (GRM-2B (ft)) can
also match or outperform GPT-4 in averaged human anno-
tation saving. This means that we can save from 10% to
20% human annotations using an easy-to-deploy reward
model at nearly no cost. In fact, the most expensive syn-
thetic evaluator in our experiment, GPT-4, costs just about 1
cent per annotation. This is negligible comparing to human
annotation cost.

Theory matches practice. We empirically justify that the
theoretical human annotation saving ratio aligns well with
the practical variance reduction ratio. Besides, we verify
the claim in (Owen, 2013, Chapter 8.9) that Equation (2)
leads to negligible bias.

First, we measure the estimated mean square error of Human
Evaluation and Control Variates Evaluation w.r.t number of
human samples for each fixed LLM pair via bootstrapping.
That is, we repeatedly run the evaluation method 1000 times
with a fixed number of human annotations, collect the out-
put win rate estimates, and compute the mean-square error,
where the ground truth win-rate is the averaged human pref-
erence on all data of that LLM pair. For Human and Control
Variates Evaluation, we run bootstrapping using different
numbers of human annotations on different LLM pairs and
plot a curve respectively with labels “Human” and “Control
Variates” (c.f. Figure 8), in which the y-axis is the averaged
mean square error of the evaluation on different LLM pairs,
and the x-axis is the number of human annotations.

Theoretically, the mean-square error can be decomposed
into the square of evaluation bias and the variance. There-
fore, the mean-square error curve still effectively reflects
the variance reduction tendency as the number of human
annotations increases, and when the number approaches
infinity, we can extract the bias of the evaluation through
the limit of mean square error.

Then, we shift the x-axis of the Human Evaluation as fol-
lows. Suppose s is the averaged human annotation sav-
ing ratio we tested in Table 1, and (x, y) is a point on the
curve of Human Evaluation. Then we shift point (x, y) to
(x(1− s), y). After shifting all points of the Human Eval-
uation, we get a new curve, referred to as Human (shifted).
According to Proposition 4.1 (3), the ratio of the number of
human annotations in Human Evaluation and Control Vari-
ates Evaluation should be 1 : (1− s) so that they have the
same variance. So ideally, the shifted curve of Human Eval-
uation should coincide with the curve of Control Variates
Evaluation. We present the bootstrap curves for Skywork-
8B with and without the finetuning procedure on Chatbot
Arena in Figure 3. The other results are listed in Figure 8 of
Appendix.

On all figures, the averaged mean-square error of Control
Variates Evaluation converges to near 0, indicating negli-
gible evaluation bias. Furthermore, the shifted curve of
Control Variates Evaluation overlaps with that of human
evaluation. Therefore, the human annotation saving ratio
predicts the actual variance reduction of our algorithm al-
most perfectly, even if the control variates coefficient α is
estimated. This means that we can simply compute the hu-
man annotation saving ratio from the correlation coefficient,
and then we know whether the synthetic evaluator will bring
us the desired variance reduction effect when it is to be used
in Control Variates Evaluation.

5.3. Control Variates Evaluation v.s. Synthetic
Evaluation

In this section, we compare the error in predicting the win
rate between the Control Variates Evaluation and Synthetic
Evaluation. The error metric is the mean square error with
respect to the ground truth win-rate, which we approximate
with the averaged human annotations on all samples of each
head-to-head comparison. For Control Variates Evaluation,
we use the averaged mean-square error from the previous
section. For Synthetic Evaluation, we average the synthetic
annotations on all samples of a fixed LLM pair as the pre-
dicted win rate and then calculate the mean square error. We
also include the averaged mean-square error of human for
convenience of comparison.

Figure 1 (right) presents the result of finetuned Skywork-8B,
and Figure 5 presents that of GPT-4, both on Chatbot
Arena. Other results are deferred to Figure 7. Although
GPT-4 is claimed to be an accurate evaluator (Zheng et al.,
2023), it still has a significantly high error compared to
Control Variates and Human Evaluation. Similarly, even
if we finetune a reward model like Skywork-8B (ft), it also
suffers from high error if used in Synthetic Evaluation alone.
However, these evaluators can be incorporated into Control
Variates Evaluation to achieve much lower evaluation error.
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Figure 5: Average mean square error versus number of
human annotations for GPT-4 evaluator on Chatbot Arena
(Zheng et al., 2023). Note that even GPT-4 has high bias if
used alone for Synthetic Evaluation.

5.4. How does Finetuning Improve Control Variates
Evaluation?

We visualize the averaged human annotation saving ratio
before and after finetuning for GRM-2B and Skywork-8B
on Chatbot-Arena and MT-Bench in Figure 4. For all ex-
periments, the finetuning procedure provides at least 5%
more saving ratio. Specifically, for Skywork-8B on Chatbot
Arena, the saving ratio nearly triples.

On the other hand, finetuning indeed introduces additional
computation requirement. For instance, the fine-tuning of
Skywork-8B model requires four H100 GPUs with 80GB
of GRAM. Regarding whether to finetune the evaluator or
not, there are two major considerations. The first one is the
human annotation saving ratio on the pretrained evaluator.
If it is not satisfactory, finetuning can improve the human
annotation saving ratio if a finetune dataset is available. The
other consideration is the number of future tasks, as this is a
trade-off between future savings in human annotation cost
and the current additional cost of finetuning computation. If
there are many future models to evaluate, then finetuning is
beneficial because the savings generalize to unseen models.

5.5. Other Applications of Control Variates Evaluation

Control Variates Evaluation can be similarly applied in the
LLM-as-a-judge setting. The difference is that the human
annotator is replaced with a strong LLM evaluator, and
a smaller, cheaper model plays the role of the synthetic
evaluator, to save the cost of querying the expensive model.

We set GPT-4 as the strong evaluator and test the averaged
human annotation saving ratio in the scenario of LLM-as-
a-judge, as shown in Table 2. A 2B reward model like
GRM-2B can achieve over 20% saving of GPT-4 annotation

Table 2: Averaged strong evaluator’s sample saving in LLM-
as-a-judge using control variates evaluation. The strong
evaluator is GPT-4.

Weak Evaluator Chatbot Arena MT Bench
GRM 2B sftreg 22.8% 14.6%

Skywork 8B 13.5% 15.1%
ArmoRM 8B 16.0% 18.8%

on Chatbot Arena and nearly 15% saving on MT Bench.
This can save the cost in LLM-as-a-judge.

In addition, we provide the experiment result of Control
Variates Evaluation for single response evaluation tasks in
Appendix C.4.

6. Conclusion
In this work, we propose Control Variates Evaluation to
reduce human annotation costs while maintaining unbiased-
ness. Our method demonstrates significant savings in human
annotations across benchmarks like Chatbot Arena and MT
Bench, aligning well with theoretical predictions. This pro-
vides a scalable and cost-effective alternative to full human
evaluation without compromising reliability.

We only study the most canonical evaluation of head-to-
head win rate between two LLMs, and it is an interesting
future direction to explore more nuanced human evaluation
metrics and complex evaluation settings, including multi-
model ranking and fine-grained assessments. Other future
work can focus on improving synthetic feedback through
adaptive selection or ensembling multiple evaluators.
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A. Proof of Proposition 4.1
Note that all expectations, variances, covariances and correlation coefficients in this section are taken under the distribution
x ∼ Uniform(X ), y1 ∼ ℓ1(· | x), y2 ∼ ℓ2(· | x).

Proof of unbiasedness We have

Ex,y1,y2 [zcv,α] = Ex,y1,y2 [z − α (ẑ − µẑ)]

= Ex,y1,y2 [z]− α
(
Ex,y1,y2 [ẑ]− µẑ

)
= Ex,y1,y2 [z]

= p
(
ℓ1 ≻ ℓ2

)
.

Proof of variance reduction We have

Varx,y1,y2 [zcv,α] = Varx,y1,y2 [z − α (ẑ − µẑ)]

= Varx,y1,y2 [z]− 2αCovx,y1,y2 [z, (ẑ − µẑ)] + α2Varx,y1,y2 [ẑ − µẑ]

= Varx,y1,y2 [z]− 2αCovx,y1,y2 [z, ẑ] + α2Varx,y1,y2 [ẑ]

= Varx,y1,y2 [ẑ]

(
α−

Covx,y1,y2 [z, ẑ]

Varx,y1,y2 [ẑ]

)2

+Varx,y1,y2 [z]−
(
Covx,y1,y2 [z, ẑ]

)2
Varx,y1,y2 [ẑ]

≥ Varx,y1,y2 [z]−
(
Covx,y1,y2 [z, ẑ]

)2
Varx,y1,y2 [ẑ]

.

The equality holds if and only if α =
Covx,y1,y2 [z,ẑ]

Varx,y1,y2 [ẑ]
. To further simplify the formula, recall that

ρ2 =
(
Corrx,y1,y2 [z, ẑ]

)2
=

(
Covx,y1,y2 [z, ẑ]

)2
Varx,y1,y2 [z] ·Varx,y1,y2 [ẑ]

.

Therefore we have

Varx,y1,y2 [zcv,α] ≥ Varx,y1,y2 [z]−
(
Covx,y1,y2 [z, ẑ]

)2
Varx,y1,y2 [ẑ]

= Varx,y1,y2 [z]− ρ2Varx,y1,y2 [z]

= (1− ρ2)Varx,y1,y2 [z] .

The optimality point is α∗ =
Covx,y1,y2 [z,ẑ]

Varx,y1,y2 [ẑ]
.

Proof of human annotation saving Since all samples are i.i.d., we have

Var

 1

m

m∑
j=1

zcv;αij

 =
1

m
Varx,y1,y2 [zcv,α

∗
]

=
1

m
(1− ρ2)Varx,y1,y2 [z]

=
1

n
Varx,y1,y2 [z]

= Var

[
1

n

n∑
i=1

zi

]
.
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B. Experiment Details
B.1. Hyperparameters

The Control Variates Evaluation Algorithm 1 has no hyperparameters except for the optional finetuning procedure. When
finetuning Skywork-8B and GRM-2B on Chatbot Arena and MT Bench, we use global batch size 32 and train for 1 epoch.
The finetuning of GRM-2B on Chatbot Arena uses learning rate 1e-6, others all use learning rate 3e-6.

To determine the optimal hyperparameters for finetuning, we conduct a systematic search over a range of learning rates and
batch sizes. For instance, when we finetune Skywork-8B on Chatbot Arena, we follow these steps:

(1) We sort the LLM models in Chatbot Arena in alphabetical order and select the first model, RMKV-4-Raven-14B, as the
holdout model to split train and test dataset.

(2) We tested learning rates in {1×10−7, 3×10−7, 1×10−6, 3×10−6, 1×10−5, 3×10−5} and batch sizes in {32, 64, 128}.
For each hyperparameter combination, we finetune for one epoch and record the final test accuracy.

(3) The combination yielding the highest final test accuracy is selected as the optimal hyperparameter setting. We use the
chosen hyperparameter setting to finetune Skywork-8B on all other holdout models.

The similar procedure applies when we finetune other synthetic evaluators on other benchmarks.

B.2. Hardware

The experiments are run on H100 GPUs. Finetuning Skywork-8B requires 4 GPUs. Finetuning GRM-2B as well as the
collection of synthetic annotations can all be done on 1 GPU.

B.3. Prompt Template

We use the GPT-4 annotations for MT-Bench from the Hugging Face repository https://huggingface.co/
datasets/lmsys/mt_bench_human_judgments/viewer/default/gpt4_pair.

We follow the prompt template in (Zheng et al., 2023, Figure 5, Appendix A) to get GPT-4 annotations in Chatbot Arena.
We provide the template in Figure 6 for completeness.

C. Additional Experiment Results
C.1. Bias of Synthetic Evaluation

As described in Section 5.3, we measure the averaged mean square error of Human Evaluation, Synthetic Evaluation and
Control Variates Evaluation on different evaluators and datasets, as shown in Figure 7. The Synthetic Evaluation has a
significantly high bias, while the error of both Human Evaluation and Control Variates Evaluation converge to zero.

C.2. Human Annotation Saving Ratio Matches Variance Reduction in Practice

As described in Section 5.2, we measure the averaged mean square error versus number of samples for different evaluators
on different datasets. The x-coordinate of curves “Human” and “Control Variates” correspond to the number of human
annotations (Zheng et al., 2023). The curve “Control Variates (shifted)” is derived by horizontally scaling the Control Variates
curve by 1/(1− s), in which s is the averaged human annotation saving ratio in Table 1. The human annotation saving ratio
aligns perfectly with the actual variance relationship between Human Evaluation and Control Variates Evaluation.

C.3. Human Annotation Saving Ratio on Each LLM pair

We visualize the human annotation ratio (in percentage) on each LLM pair that we use to compute the averaged human
annotation saving ratio in Table 1. The results are shown in Figures 9 and 10. For a pretrained evaluator, each entry of
the matrix is the human annotation saving ratio (in percentage) on that LLM pair. For a finetuned evaluator, each entry of
the matrix is the human annotation saving ratio (in percentage) on the corresponding LLM pair, in which the LLM on the
row is the left-out LLM, while the LLM on the column is used in finetuning. Please refer to Section 5.1 for the details
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Prompt for GPT-4 Annotations in Chatbot Arena

[System]
Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user question displayed below. You should choose the
assistant that follows the user’s instructions and answers the user’s question
better. Your evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of their responses. Begin your
valuation by comparing the two responses and provide a short explanation. Avoid any
position biases and ensure that the order in which the responses were presented does
not influence your decision. Do not allow the length of the responses to influence
your evaluation. Do not favor certain names of the assistants. Be as objective as
possible. After providing your explanation, output your final verdict by strictly
following this format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is
better, and "[[C]]" for a tie.

[User Question]
{question}

[The Start of Assistant A’s Answer]
{answer_a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer_b}
[The End of Assistant B’s Answer]

Figure 6: Prompt template from (Zheng et al., 2023, Figure 5, Appendix A), which is used to get GPT-4 annotations in
Chatbot Arena.

of finetuning procedure. Therefore, the matrices for pretrained evaluators are symmetric, while they are asymmetric for
finetuned evaluators. The diagonal entries are white and do not have values becuase measuring human annotation saving
ratio on identical LLMs is meaningless.

Note that there are some additional white entries with no values when testing GPT-4 as the synthetic evaluator. This is
because GPT-4 cannot always follow the prompt template, so that sometimes we cannot extract a valid preference out of the
output. In case that there are too few samples in an LLM pair, it is likely that we cannot compute a valid human annotation
saving ratio.

C.4. Single Response Evaluation

Besides head-to-head comparison, Control Variates Evaluation also applies smoothly to other evaluation scenarios, e.g.,
single response evaluation, where a human gives scores to a single LLM generation, instead of giving preference to two
LLM generations.

We utilize the validation split of the HelpSteer2 dataset as our benchmark. This split consists of 1.04K samples, each
containing a prompt, a response, and five human-annotated attributes: helpfulness, correctness, coherence, complexity,
and verbosity. Each attribute is scored from 0 to 4, with higher scores indicating better performance. Our focus is on the
helpfulness attribute, as it is the primary metric that reward models are typically trained to evaluate. We employ the Control
Variates Evaluation method to predict the average helpfulness score. The human annotation saving ratio is shown in the
Table 3.
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Accelerating Unbiased LLM Evaluation via Synthetic Feedback

(a) Chatbot Arena, ArmoRM-8B (b) Chatbot Arena, GRM-2B (c) Chatbot Arena, Skywork-8B (d) Chatbot Arena, GPT-4

(e) MT Bench, ArmoRM-8B (f) MT Bench, GRM-2B (g) MT Bench, Skywork-8B (h) MT Bench, GPT-4

(i) Chatbot Arena, GRM-2B (ft) (j) MT Bench, GRM-2B (ft) (k) Chatbot Arena, Skywork-8B
(ft)

(l) MT Bench, Skywork-8B (ft)

Figure 7: Averaged mean square error of Human Evaluation, Synthetic Evaluation and Control Variates Evaluation on
different evaluators and datasets. The Synthetic Evaluation has a significantly high bias, while the error of both Human
Evaluation and Control Variates Evaluation converge to zero.

Table 3: Averaged human annotation saving ratio across different synthetic evaluators on Helpsteer2.

Human Annotation Saving Ratio
GRM-2B 10.3%

Skywork-8B 21.0%
ArmoRM-8B 14.1%

GPT-4o 27.4%
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Accelerating Unbiased LLM Evaluation via Synthetic Feedback

(a) Chatbot Arena, GRM-2B (b) Chatbot Arena, ArmoRM-8B (c) Chatbot Arena, Skywork-8B (d) Chatbot Arena, GPT-4

(e) MT Bench, ArmoRM-8B (f) MT Bench, GRM-2B (g) MT Bench, Skywork-8B (h) MT Bench, GPT-4

(i) Chatbot Arena, GRM-2B (ft) (j) MT Bench, GRM-2B (ft) (k) Chatbot Arena, Skywork-8B
(ft)

(l) MT Bench, Skywork-8B (ft)

Figure 8: Averaged mean square error versus number of samples for different evaluators on different datasets. The x-
coordinate of curves “Human” and “Control Variates” correspond to the number of human annotations (Zheng et al., 2023).
The curve “Control Variates (shifted)” is derived by horizontally scaling the Control Variates curve by 1/(1− s), in which s
is the averaged human annotation saving ratio in Table 1. The human annotation saving ratio aligns perfectly with the actual
variance relationship between Human Evaluation and Control Variates Evaluation.
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Accelerating Unbiased LLM Evaluation via Synthetic Feedback

(a) Chatbot Arena, GRM-2B (b) Chatbot Arena, GRM-2B (ft)

(c) Chatbot Arena, Skywork-8B (d) Chatbot Arena, Skywork-8B (ft)

(e) Chatbot Arena, ArmoRM-8B (f) Chatbot Arena, GPT-4

Figure 9: Human annotation saving ratio (in percentage) on each LLM pair for different evaluators on Chatbot Arena.
Diagonal entries are white and do not have values because it is meaningless to compute the human annotation saving ratio
on two identical LLMs. Non-diagonal white entries in (f) imply an invalid result, because sometimes valid preference cannot
be extracted from GPT-4’s response.
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Accelerating Unbiased LLM Evaluation via Synthetic Feedback

(a) MT Bench, GRM-2B (b) MT Bench, GRM-2B (ft)

(c) MT Bench, Skywork-8B (d) MT Bench, Skywork-8B (ft)

(e) MT Bench, ArmoRM-8B (f) MT Bench, GPT-4

Figure 10: Human annotation saving ratio (in percentage) on each LLM pair for different evaluators on MT Bench. Diagonal
entries are white and do not have values because it is meaningless to compute the human annotation saving ratio on two
identical LLMs.
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