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ABSTRACT

Large language models (LLMs) are often fine-tuned for specific tasks using Low-
Rank Adaptation (LoRA), an efficient method that adds small, task-specific mod-
ules called LoRA adapters to a pre-trained base model. However, a major chal-
lenge arises when merging multiple LoRA adapters trained on different data
sources for a specific task: it often leads to task interference, which degrades
the model’s performance. While recent SVD-based LoRA merging methods have
shown promise by decomposing adapters into orthogonal components and keep-
ing only the most important ones, they have an important limitation: These meth-
ods decompose each adapter independently, overlooking potential interactions be-
tween different tasks. To address this, we propose a novel LoRA merging method
using joint Canonical Polyadic (CP) decomposition (CP merging). We first com-
bine the LoRA adapters into a single third-order tensor. Then, we apply CP de-
composition to this tensor to disentangle factors that are unique to each task from
those that are shared across tasks. This joint factorization method helps reduce
cross-task interference without losing important information. Our extensive ex-
periments on NLP tasks demonstrate that CP merging yields superior performance
compared to the existing SVD-based baselines.

1 INTRODUCTION

Parameter-efficient fine-tuning (PEFT) methods have emerged as practical alternatives to full
fine-tuning for adapting large language models (LLMs) to downstream tasks (Hu et al., 2021;
Houlsby et al., 2019b; Lester et al., 2021). Among these, LoRA adapters (Hu et al., 2021)
have gained particular popularity by learning low-rank additive updates that efficiently capture
task-specific knowledge. Recent studies (Sheng et al., 2023; Ostapenko et al., 2024; Huang et al.,
2023) have shown that LoRA can be fine-tuned for diverse tasks—such as summarization, question
answering, and classification—resulting in a set of pre-trained LoRA adapters (LoRA library).

The emergence of model hubs, such as Hugging Face, has further simplified the sharing and reuse
of pre-trained and fine-tuned models. These platforms enable collaborative and multi-task learning
by allowing users to easily acquire and extend existing models. Within this context, model merg-
ing—which aims to combine multiple specialized models into a single model capable of handling
diverse tasks—has attracted significant attention (Wortsman et al., 2022; Yadav et al., 2023; Yang
et al., 2024; Stoica et al., 2024; Gargiulo et al., 2025). However, merging task-specific models often
introduces task interference, since parameter updates optimized for one task may conflict with those
optimized for another (Yadav et al., 2023). To mitigate this issue, a variety of model merging meth-
ods have been proposed (Davari & Belilovsky, 2024; Ilharco et al., 2022; Matena & Raffel, 2022;
Wortsman et al., 2022; Yadav et al., 2023; Yu et al., 2024; Lu et al., 2024; Yang et al., 2024; Deep
et al., 2024; Miyano & Arase, 2025; Chen et al., 2025).

Despite these advances, prior work has observed that LoRA adapter weights exhibit weaker align-
ment compared to fully fine-tuned model weights. Consequently, applying existing model merging
techniques directly to LoRAs often yields suboptimal results (Stoica et al., 2024; Panariello et al.,
2025). To address this, researchers have explored LoRA-specific merging strategies, such as singular
value decomposition (SVD)–based methods. The key idea is that SVD can decompose each LoRA
adapter into orthogonal components and retain only the most significant singular vectors, which
capture the core task-specific transformations (Lu et al., 2024; Marczak et al., 2025; Gargiulo et al.,
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2025). However, current approaches (e.g., TSV-merging, Knots) apply SVD independently to
each adapter. As a result, merging LoRAs based on independently derived singular vectors may fail
to capture shared and task-specific components in a unified representation.

To address this limitation, a natural idea is to jointly decompose all LoRA adapters so that their
shared and task-specific characteristics can be revealed. Concretely, we treat the collection of
LoRA adapters as a unified structure by concatenating them into a third-order tensor and then per-
forming tensor decomposition. Formally, given N tasks, each associated with a LoRA adapter
∆i ∈ Rdin×dout , we concatenate all adapters to construct a third-order tensor. Unlike prior ap-
proaches that apply independent SVD-based decompositions to mitigate task interference (Stoica
et al., 2024; Gargiulo et al., 2025), we employ Canonical Polyadic (CP) decomposition to jointly
factorize all task-specific matrices. CP decomposition expresses a tensor as a sum of rank-one com-
ponents, thereby disentangling shared and task-specific patterns. This joint factorization not only
helps reduce task interference but also preserves task-relevant information more effectively. Finally,
we merge the LoRA adapters by summing over the task dimension.

To rigorously evaluate our CP-based merging approach, we conduct experiments on 10 held-in tasks
and 3 held-out multi-tasks from the Flan datasets (Based on Phi-3 3B) Arnob et al. (2025), as well
as on 10 out-of-domain downstream tasks (Based on Phi-3 3B and Mistral-7B) Ostapenko et al.
(2024) and skill-composition tasks (Based on LLama 7B) Prabhakar et al. (2024). On the 10 held-in
Flan tasks, CP merging outperforms strong SVD-based baselines by +3.19 Rouge-L. For the held-
out Flan tasks, CP merging achieves an improvement of +5.69 Rouge-L over the SVD baseline.
Interestingly, we observe that uniform merging yields the best performance among all methods on
the held-out evaluation. For the 10 out-of-domain (zero-shot) tasks, CP merging surpasses SVD
baselines by an average of +1.0%, while uniform merging also shows competitive performance
in this setting. Finally, in the skill-composition evaluation, CP merging outperforms SVD-based
methods by +2.0% accuracy on the challenging math-hard task.

In summary, our contributions are:

• We propose a CP merging approach that mitigates task interference in LoRA merging by
jointly modeling shared and task-specific components in a unified manner.

• Experimental results show that CP merging substantially improves 10 held-in performance
(+3.19 Rouge-L), 3 held-out tasks (+5.69 Rouge-L), and skill composition tasks (2% ac-
curacy) over SVD-based methods. This demonstrates that CP decomposition effectively
disentangles task-specific factors from shared factors, thereby reducing interference while
preserving essential task information.

2 RELATED WORKS

PEFT. Parameter-efficient fine-tuning (PEFT) methods facilitate efficient adaptation of LLMs
without updating all the training parameters, thereby reducing the memory and computation cost
(Houlsby et al., 2019a; Zhang et al., 2023b; Zaken et al., 2021; Guo et al., 2020; Li & Liang, 2021;
Lester et al., 2021). Hu et al. (2021) proposes a method named LoRA that parameterizes incremental
weights ∆ as a low-rank matrix by the product of the down projector matrix and up projector ma-
trix. Zhang et al. (2023a) proposes Adaptive Low-Rank Adaptation (AdaLoRA), a new method that
dynamically allocates the parameter budget among weight matrices during LoRA-like fine-tuning
(Zhang et al., 2023a). Liu et al. (2024) introduces a new approach DoRA to investigate the inherent
differences between full fine-tuning and LoRA.

LoRA library. In a multi-task scenario, LoRA adapters can be fine-tuned for diverse tasks-resulting
in a set of pre-trained LoRA libraries. AdapterSoup Chronopoulou et al. (2023) trains each adapter
for each domain and performs weight-space averaging of adapters trained on different domains.
Huang et al. (2023) introduces LoRAhub to aggregate the LoRA modules trained on diverse tasks.
AdapterFusion (Pfeiffer et al., 2020) proposes a two-stage algorithm that leverages knowledge from
multiple tasks. Similar to LoRAhub, a group of task-specific adapters learn to encapsulate the
task-specific information, and in the second stage, a fusion layer combines the trained adapters.
Ostapenko et al. (2024) propose a model-based clustering library building methods and an Arrow
routing function to reuse the LoRA library. Zhao et al. (2024a) propose a retrieval-augmented mix-
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ture of LoRA Experts (RAMoLE) that adaptively retrieves and composes multiple LoRAs according
to the input prompts.

Model Merging. Model merging integrates the weights of multiple task-specific models into a
single multi-task model Davari & Belilovsky (2024); Ilharco et al. (2022); Matena & Raffel (2022);
Wortsman et al. (2022); Yadav et al. (2023); Yu et al. (2024); Lu et al. (2024); Yang et al. (2024);
Deep et al. (2024); Miyano & Arase (2025); Chen et al. (2025). Ilharco et al. (2022) presents the
task vectors, which are the weight differences between pretrained models and the finetuned
models. We can merge the task vectors to obtain a merged multi-task model. Ties Yadav et al.
(2023) reduces the parameter redundancy by selecting the top-k most significant parameters and
then constructing a sign vector based on the majority sign. DARE Yu et al. (2024) randomly drop
delta parameters with a ratio p and rescales the remain parameters by 1/(1 − p) to reduce the
task interference. Fisher Merging Matena & Raffel (2022) and RegMean Jin et al. (2022)
merge models by performing weighted averaging, utilizing the Fisher information matrix and inner
product of input vectors. Zhao et al. (2024b) proposes a LoRA-LEGO framework to conduct rank-
wise parameter clustering by grouping MSUs from different LoRAs into clusters. TSV Gargiulo
et al. (2025) shows that SVD decomposition can reduce the parameter redundancy, and merging the
singular values can compress the parameters and reduce the task interference. Knots Stoica et al.
(2024) uses the SVD to jointly transform the weights of different LoRA models into a shared space.
ISO-C Marczak et al. (2025) propose an isotropic merging framework that flattens the isotropic
merging framework to flatten singular value spectrum of the task matrix, enhancing alignment and
reducing task interference. Instead of decomposing the task matrix separately, we concatenate the
task matrix into a third-order tensor and then decompose it using CP decomposition.

3 PRELIMINARIES

3.1 CP DECOMPOSITION

𝓣𝓣 =

CP Decomposition

𝐴𝐴 = �
𝑖𝑖=1

𝑘𝑘

𝜎𝜎𝑖𝑖𝜇𝜇𝑖𝑖 ⊗ 𝑣𝑣𝑖𝑖 𝒯𝒯 = �
𝑖𝑖=1

𝑅𝑅

𝜆𝜆𝑖𝑖𝜇𝜇𝑖𝑖 ⊗ 𝑣𝑣𝑖𝑖 ⊗ 𝑠𝑠𝑖𝑖

𝑢𝑢𝑖𝑖

×R𝑣𝑣𝑖𝑖
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=A

𝑚𝑚 × 𝑛𝑛

Figure 1: An illustration of SVD de-
composition of a matrix A ∈ Rm×n and
CP decomposition of third-order tensor
T .

Tensor decomposition aims to approximate a tensor
through a set of low-rank factors with diverse applica-
tions. The most widely used decompositions are Tucker
decomposition (De Lathauwer et al., 2000) and CANDE-
COMP/PARAFAC (CP) decomposition (Tucker, 1966),
both of which can be seen as a generalization of the ma-
trix singular value decomposition (SVD) (Stewart, 1993).
We compare the SVD and CP decomposition in Fig. 1.
CP decomposition can be seen as a general SVD decom-
position for higher-order tensors. In this way, a high-
order tensor can be uniquely represented as the sum of
a set of rank-one tensors. Given a third-order tensor
T ∈ Rd×r×N , the CP decomposition is expressed as:

T =

R∑
i=1

λiui ⊗ vi ⊗ si (1)

where R is the rank of CP decomposition. λi is the scaling weight. ui, vi and si are the factor
vectors corresponding to the three modes of T . The operator ⊗ denotes the outer product.

4 METHOD

4.1 BACKGROUND

Multi-task learning is a powerful concept in AI that enables models to adapt and perform new tasks
by leveraging previously acquired knowledge. In in-domain multi-task learning, a model f is trained
on a set of n tasks {T1, T2, ..., Tn}, which are considered in-domain tasks. The training process
involves optimizing the model’s parameters to minimize the combined loss over all these tasks. For
each task Ti, the dataset is denoted as Di = {(x1, y1), ..., (xm, ym)}, where xi are the inputs and yi
are the corresponding outputs.
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LLM

Task 2
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LLM

Task 3
Common Sense

LLM
Task 3

Task 1

Task 2
LLM

Plug-in/out

b

a

c
×R

Task Vectors

Decentralized LoRA Training with Diverse Tasks LoRA Library

CP merging: LoRA Merging using Canonical Polyadic Decomposition

LoRA 
Adapter

A ∈ d × r
B ∈ r × d

Stacking into
Third-order Tensor

CP DecompositionCollection of Adapters

1) 2)

3)

Δ ≈ ෍

𝑟=1

𝑅

෍

𝑖=1

𝑁

𝑎𝑖𝑟 𝑏𝑟 ⊗ 𝑐𝑟

b

a

c
...

Merging

Figure 2: 1) LoRA adapter from various tasks, each LoRA adapter is trained individually. 2) LoRA
library aims to leverage the plug-in/out nature of LoRAs to offer the ability to add or remove knowl-
edge from LLMs. 3) CP merging: we stack the LoRA into a third-order tensor and conduct the CP
merging.

After this training phase, the model f is evaluated on a new, unseen out-of-domain task, Tnew, with
a dataset Dnew. The model must predict outputs ŷ for input x without having to train on Dnew

explicitly.

With the requirement to handle diverse tasks, the availability of LoRA library makes it possible to
reuse the adapters for different tasks without retraining the entire model. Formally, the weights WMT

of a multi-task model for N tasks is obtained by aggregating the task-specific weight differences as
follows:

W
(l)
MT = W

(l)
0 + α

ΣN
i=1∆

(l)
i

N
(2)

where W0 is the set of pretrained model weights. α is a scaling factor and ∆
(l)
i = A

(l)
i (B

(l)
i )T is the

LoRA adapter for task i at layer l. For brevity, we omit the layer index and refer to the matrix ∆l
i at

layer l as ∆i.

4.2 CP MERGING

Task Singular Vectors (Gargiulo et al., 2025) use SVD to decompose the layer task matrices and
term the obtained singular vectors Task Singular Vectors (TSV), revealing low-rank properties and
deeper insight into the inter-task interactions. Given two tasks i and j, the tasks matrix ∆i and ∆j

can written as:

∆i = UiΣiV
⊤
i , ∆j = UjΣjV

⊤
j (3)

where Ui, Uj are the left singular vectors and Vi, Vj are the right singular vectors. Σi,Σj are diagonal
matrices of singular values. As shown in Fig. 1, we can interpret SVD as a sum of rank-one matrices.
For each task i, we get the best approximation of each task matrix ∆i by retaining only the top-k
singular values and their corresponding vectors:

∆̂i =

k∑
j=1

σi
j u

i
j ⊗ vi

j . (4)

where ∆̂i is the low-rank approximation of the task matrix for task i, obtained using the top-k sin-
gular values σi,j , left singular vectors ui,j and right singular vectors vi,j . Knots conduct the SVD
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decomposition individually to obtain the right singular matrix [V1, V2, ..., VN ] and then merge the
right singular matrix to obtain a merged matrix V (merged). The final task matrix can be computed by:
∆W

(merged)
j = UΣ[V (merged)]T . TSV merging decomposes the LoRA adapters individually and

then concatenates the left singular matrix [U1, U2, ..., UN ] and right singular matrix [V1, V2, ..., VN ].
We notice that SVD decomposes the task adapter separately, leading to independent choices of SVD
dimensions. To address this, we propose a more general global decomposition using Canonical
Polyadic (CP) decomposition, which takes all the LoRAs together as a tensor input.

Representing all adapters as a Third-Order Tensor We consider the task adapters ∆i for all
tasks i as slices of a third-order tensor T , where the dimensions could be interpreted as (tasks, input
dimension, output dimension). Let use denote this tensor T ∈ Rdin×dout×N where N is the number
of tasks, din, dout are the dimensions of each task matrix ∆i. Each ∆i (a matrix of size din × dout)
is a frontal slice of T along the task mode. So, we can concatenate the ∆i matrices along the task
dimension to form T .

Algorithm 1 Implementation of CP Merging

1: Input: Pretrained task LoRA
adapters{∆1,∆2, ...,∆N}, scaling factors
α.

2: Output: Merged weight WMT

3: Concatenate the matrices:
4: T ← [∆1|∆2|...|∆N ]
5: CP Decomposition:
6: T ≈

∑R
r=1 ar ⊗ br ⊗ cr (Eq. 5)

7: Compute the Task Matrix:
8: ∆i ≈

∑R
r=1 airbr ⊗ cr (Eq.6)

9: Reconstruct the merged matrix:
10: ∆ ≈

∑R
r=1

(∑N
i=1 air

)
br ⊗ cr (Eq. 8)

11: Construct the merged model weights:
12: WMT = W0+α

∑R
r=1

(∑N
i=1 air

)
br⊗cr

13: return WMT

CP Decomposition Form In CP decomposi-
tion, the tensor T is approximated as a sum of
rank-one tensors:

T ≈
R∑

r=1

ar ⊗ br ⊗ cr (5)

where R is the number of components (analo-
gous to k in SVD), ar ∈ RN is a vector as-
sociated with the task mode, br ∈ Rd

in and
cr ∈ Rd

out are vectors associated with the row
and column modes. For each task i, the i-th
slice ∆i of T would be:

∆i ≈
R∑

r=1

airbr ⊗ cr (6)

where air is the i-th element of ar, selecting the contribution of the r-th component for task i.

CP merging over the task mode To merge the ∆i into a final ∆, we sum over the task dimension
(mode-1). The merged ∆ would be:

∆ =

N∑
i=1

∆i ≈
N∑
i=1

R∑
r=1

airbr ⊗ cr (7)

Since the outer product br ⊗ cr is the same for all i, and assuming air represents the weight of
component r for task i, we can factorize this as:

∆ ≈
R∑

r=1

(
N∑
i=1

air

)
br ⊗ cr (8)

where
∑N

i=1 air is the total contribution of the r-th component across all tasks. The final merged
weights can be written as :

WMT = W0 +

R∑
r=1

(
N∑
i=1

air

)
br ⊗ cr (9)
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5 EXPERIMENTAL RESULTS

To test the effectiveness of our approach, we evaluate CP Merging on a variety of LoRA merging
methods in held-in and held-out multi-tasks based on Flan datasets (Sec. 5.1)Arnob et al. (2025);
Ostapenko et al. (2024) and zero-shot task (Sec. 5.2)Ostapenko et al. (2024) and skill composition
tasks (Appendix A.2)Prabhakar et al. (2024).

Baselines We compare the following methods in the zero-shot benchmark. BASE: The base model
without adaptation. Multi-task: A single expert LoRA finetuned on a joint training set. Uniform:
For each task, we train a LoRA adapter, then we merge the LoRA uniformly (Huang et al., 2023;
Chronopoulou et al., 2023). Task Arithmetic (TA) (Ilharco et al., 2022) subtracts the parameter
values of the pre-trained model from those of the fine-tuned models, creating a set of ”task-vectors.”
Then they linearly summed to create a merged model. Ties-merging (Yadav et al., 2023): Ties
improves TA by resolving the parameter interference between models when merging. It prunes
low-magnitude weights and then only averages the weights that share the dominant sign. DARE
randomly drops fine-tuned weights and rescales the remaining ones to create sparse task vectors
Yu et al. (2024). TSV merging uses SVD decomposition to compress the LoRA and reduce the
task interference based on the singular vectors (Marczak et al., 2025). Knots uses the SVD to
transform the weights of jointly different LoRA models into a shared space Stoica et al. (2024).
ISO-C Marczak et al. (2025) proposes an isotropic merging framework that flattens the singular
value spectrum of the task matrix.

5.1 HELD-IN AND HELD-OUT MULTI-TASKS

We conduct our experiments using the FLAN dataset (Longpre et al., 2023) and sample 10 held-in
and 3 held-out tasks following (Ostapenko et al., 2024; Arnob et al., 2025). Each task is sub-sampled
to 10,000 examples. Within these samples, 1,000 are allocated for validation and early stopping.

Model Wiqa Sciq Adver Duorc Cos Wikiqa Quail Wikihop ParaphQa Yelp AVG 3 Held-Out

Phi-3 (3B) with LoRA library
BASE 14.55 7.99 10.85 7.32 5.00 4.17 11.88 3.51 6.93 8.33 8.05 16.00
Oracle 36.87 79.56 51.58 52.40 42.99 55.94 51.51 46.58 8.325 32.71 45.85 -

Uniform 22.98 61.97 29.61 18.45 28.12 11.56 38.94 7.194 7.18 15.66 24.17 61.13
Ties-merging 23.33 51.52 30.15 18.05 30.12 12.54 35.05 10.03 5.80 16.76 23.34 34.69
Ties w/DARE 25.42 52.76 32.34 19.04 31.20 13.33 36.05 7.05 6.08 16.00 23.93 34.70
ISO-C 14.59 8.19 11.11 7.50 5.38 4.20 12.23 3.53 6.95 8.39 8.20 16.18
TSV Merging 36.75 53.52 44.39 20.20 59.13 23.20 37.25 34.70 4.78 34.95 34.89 45.70
Knots 26.33 90.81 40.15 28.87 50.44 48.35 43.24 13.71 6.63 23.56 37.21 54.46

CP Merging 34.69 89.88 44.32 31.59 66.82 50.34 45.49 10.73 5.90 24.23 40.40 60.15

Table 1: 10 held-in and 3 held-out Flan tasks based on Phi-3 3B model. We report the Rouge-L
scores. The oracle here denotes that we use the trained LoRA to test the corresponding tasks, which
achieve the best results for held-in results. The tasks details are presented in Appendix A.3.1.

As shown in Tab. 1. The CP Merging method achieves the highest average score of 40.40, indi-
cating it generally performs best across the tested datasets. It also has a strong 3-Held-Out score
of 60.15. CP Merging is the standout performer, showing significant gains over other methods, es-
pecially in the average score and the 3-Held-Out evaluation. The BASE model provides a baseline
performance, while the Oracle provides an upper bound, representing the theoretical maximum per-
formance without any merging techniques. Ties-merging and Ties w/DARE show similar average
performance (23-24). ISO-C has a significantly lower average score, similar to the BASE model’s
performance. TSV Merging and Knots show moderate performance, with Knots having a higher
average score and a much higher 3-Held-Out score. In short, the CP Merging method appears to be
the most effective overall, while Uniform merging excels on the specific 3-Held-Out evaluation.

5.2 ZERO-SHOT EXPERIMENTS

To test the out-of-domain generalization, we evaluate CP Merging on a variety of zero-shot task
benchmarks. Specifically, we experiment with four broad classes of zero-shot tasks: (1) Common
Sense Reasoning: WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019), and PIQA

6
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Common Sense Question Answering Coding Reasoning AVG

Piqa Wg Hswag Boolq Obqa ArcE ArcC HE Mbpp BBH AVG

Phi-3 (3B) with LoRA library
BASE 81.1 70.2 75.7 85.0 49.0 80.0 57.9 53.0 61.1 53.4 66.6
Multi-task 79.1 69.6 75.6 87.1 47.6 82.6 55.6 51.8 52.9 52.1 65.4
Uniform 81.0 70.4 76.0 84.7 48.8 82.4 57.9 52.4 63.0 55.6 67.2
Ties-merging 80.8 70.9 75.4 80.8 46.0 85.8 60.8 54.9 61.5 51.9 66.9
Task Arithmetic 81.0 70.5 75.9 84.7 48.8 82.5 58.2 54.3 61.9 54.2 67.2
Ties w/DARE 80.7 70.8 75.2 82.8 46.3 84.8 60.9 54.9 61.6 52.0 67.0
TA w/DARE 81.2 70.1 75.3 84.9 48.9 82.2 58.3 54.5 61.1 54.3 67.1
TSV Merging 81.1 70.8 75.8 86.0 49.0 84.3 60.4 55.0 61.2 54.0 67.7

C-LoRA 81.5 69.5 76.0 86.6 48.8 86.7 61.8 57.3 65.3 55.9 68.9
Knots 80.8 71.7 74.9 85.0 48.0 84.1 58.2 53.2 62.6 50.4 66.9
TSV Merging 81.3 69.3 75.6 86.4 48.8 86.1 62.3 52.4 63.3 55.1 68.1
CP merging 81.7 70.0 76.0 86.6 48.9 86.7 62.5 57.3 65.4 56.0 69.1

Table 2: 10 downstream Zero-shot results based on Phi-3 (microsoft/Phi-3-mini-4k-instruct). C-
LoRA is a LoRA library based on embedding clustering (A.4). We show the results based on Mistral
in Appendix A.5. The experimental setting is presented in Appendix A.3.

(Bisk et al., 2020). 2) Question Answering: BoolQ Clark et al. (2019), OpenbookQA Mihaylov
et al. (2018), ARC-easy Clark et al. (2018), and ARC-challenge Clark et al. (2018). 3) Coding:
HumanEval Chen et al. (2021), MBPP Austin et al. (2021). 4) General-Purpose Reasoning: BBH
(Suzgun et al., 2022).

5.2.1 EXPERIMENTAL RESULTS

Figure 3: Zero-shot results across different cate-
gories. The X-axis represents the task categories.

Tab. 2 presents the average zero-shot accuracy
results across 10 downstream tasks. The multi-
task based on the Phi-3 model (65.4%) un-
derperforms the base model (66.6%), indicat-
ing that the multi-task training may encounter
catastrophic forgetting issue that newly learned
parameters overwrite or interfere with knowl-
edge acquired during prior training (Wang
et al., 2024). LoRA library with uniform merg-
ing, consisting of 256 experts, achieves accura-
cies of 67.2% for Phi-3.

Compared to the C-LoRA library, TSV Merg-
ing and Knots are comparable in overall per-
formance. TSV Merging has an average score
of 68.1, slightly better than Knots’ average of
66.9. While TSV Merging and Knots perform
well in some tasks, they do not consistently achieve the top scores that CP merging does. For ex-
ample, TSV Merging ties for the highest score in Obqa (49.0), but its overall performance is less
dominant. CP merging consistently shows superior performance. It achieves the highest average
score of 69.1, outperforming all other methods. The results clearly demonstrate the effectiveness of
CP merging, which consistently outperforms the other methods, including Knots and TSV Merg-
ing. With the highest average score and leading performance in multiple specific tasks, CP merging
shows a more robust and effective approach to merging LoRA adapters, successfully mitigating task
interference and enhancing overall model performance.

We further analyze performance across different task categories (Fig. 3). CP merging improves
over the LoRA library with TSV merging, with the largest gains observed in question answering and
coding tasks. In contrast, improvements on common-sense reasoning are minimal, suggesting that
the impact of task interference varies by task type.
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6 ABLATION STUDIES

6.1 NUMBER OF TASKS ANALYSIS

Model 3 tasks 5 tasks 10 tasks

Base 11.14 9.15 8.05
TSV merging 44.87 54.4 34.89
Knots 59.04 54.4 37.21

CP merging 59.06 57.7 40.40

Table 3: The influence of the task size for LoRA
merging. We select 3, 5, and 10 tasks from
the Flan datasets and report the average Rouge-
L scores for all the tasks.

Overall, the merging methods significantly out-
performed the Base model across all task sizes.
The Base model consistently showed the lowest
ROUGE-L scores, with scores of 11.14, 9.15,
and 8.05 for 3, 5, and 10 tasks, respectively.
This suggests that LoRA merging is an effec-
tive technique for improving performance. CP
consistently delivered the best performance on
ROUGE-L scores. For 5 tasks, TSV merg-
ing and Knots merging performed equally well,
both achieving a score of 54.4. The CP merging
method surpasses Knots merging with a score
of 57.7 for this task size. For 10 tasks, both the
Knots and TSV merging methods saw a consid-
erable drop in performance. In contrast, the CP merging method demonstrated superior robustness
to an increase in the number of tasks, achieving the highest score of 40.40 in this category. The
results indicate that LoRA merging is a highly effective strategy for improving model performance
on multiple tasks. Specifically, the CP merging method shows the most promise, as it consistently
achieves top-tier performance and exhibits greater stability as the number of tasks increases.

6.2 CP MERGING FOR TASK INTERFERENCE

Figure 4: CP-STI across first 10 layers in the
LLama 7B for Math and Code LoRA.

To study the task interference, Gargiulo et al.
(2025) introduces a score of task interference
(termed as Singular Task Interference) based on
the interplay of TSVs from different tasks:

STI
(
{∆i}Ni=1

)
=
∥∥(U⊤U − I

)
Σ
(
V ⊤V − I

)∥∥
1

(10)

They assume that higher inner product val-
ues for UTU and V TV imply a higher like-
lihood (Gargiulo et al., 2025). The intuition
is that overlapping singular vectors suggest
shared features in the weight space across tasks.
Inspired by this, we can reformulate the STI with CP decomposition. To define a CP-based STI met-
ric, we need to assess the interference caused by the interplay of these factor matrices across tasks.
The intuition remains that overlapping components (shared features in the weight space) lead to
interference when merged. We can adapt the STI by considering the alignment and orthogonal-
ity of the factor matrices ar, br, and cr across tasks. Then we define the CP-based Singular Task
Interference (CP-STI) as:

CP− STI({∆i}Ni=1) = ∥(ATA− I) ◦ (BTB − I) ◦ (CTC − I)∥1 (11)

where A = [a1, a2, . . . , aR] ∈ RN×R is the matrix formed by stacking the task-mode factor vectors
ar, B = [b1, b2, . . . , bR] ∈ Rd×R is the matrix of row-mode factors, C = [c1, c2, . . . , cR] ∈ Rd×R

is the matrix of column-mode factors, ◦ denotes the Hadamard (element-wise) product, I is the
identity matrix of appropriate dimension (e.g., R × R). The CP-STI metric captures interference
by evaluating how the factor matrices A, B, and C deviate from being mutually orthogonal. Over-
lapping factors (high inner products) suggest shared features across tasks, which can introduce in-
terference when the decomposed representations are merged, potentially degrading individual task
performance.

8
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We study the task interference on each layer according to Eq. (11). As shown in the Fig. 4, the
interference is higher in the lower layer and decreases in the deeper layers. This may indicate that
the lower layers capture common features and deeper layers are more specialized for specific tasks.

6.3 RANK R OF THE CP DECOMPOSITION.

Figure 5: The impact of CP rank
on model performance and generation
quality for the GSM-8K-hard bench-
mark.

CP decomposition factorizes a tensor into a sum of
R rank-one components. Wang et al. (2023) ob-
served that increasing R can improve performance on
cross-modal tasks. We investigate how the CP rank
affects our method’s performance on the GSM8K-hard
dataset (Fig.5). The left plot (“CP Rank vs. Accuracy”)
shows accuracy rising from 0.12 at rank 5 to a peak of
0.15 at rank 20, with no further gains beyond rank 25.
This suggests that higher ranks capture richer patterns,
but benefits plateau after rank 20. The right plot (“CP
Rank vs. Invalid Code”) shows invalid code outputs drop-
ping from 340 at rank 5 to 200 at rank 20, with little
improvement at higher ranks. Overall, increasing the CP
rank improves both accuracy and output validity up to an
optimal point (around rank 20), after which returns di-
minish, highlighting the importance of selecting an appropriate rank to balance performance and
efficiency in mitigating task interference in skill composition tasks.

6.4 ALPHA ANALYSIS

Figure 6: Best performance for different alpha
values over 10 held-in Flan datasets.

The alpha parameter effectively scales the in-
fluence of the adapter’s output before it is added
back to the weights of the original model. Ta-
ble 6 reports the ROUGE-L scores for 10 held-
in Flan tasks across seven α values ranging
from 0.3 to 0.1. The results highlight the crit-
ical importance of the α hyperparameter for
LoRA merging methods—including CP merg-
ing, knots, TSV merging, and ISO merging.
Notably, the optimal α is not universal but de-
pends on the specific task, underscoring the
need for careful tuning. On average, moderate
values (e.g., α = 0.15–0.18) yield the best per-
formance. For all experiments, α was selected based on performance over a validation set of 1,000
examples. Finally, we use 0.25 for TSV merging and 0.50 for Knots.

7 CONCLUSION

We propose a novel LoRA merging method using Canonical Polyadic (CP) decomposition. Un-
like existing SVD-based methods that decompose each LoRA adapter independently, our approach
factorizes multiple adapters in a unified manner. This allows us to disentangle task-specific com-
ponents from those that are shared across tasks. Our comprehensive experiments show that CP
merging consistently outperforms strong SVD-based baselines across various benchmarks, includ-
ing in-domain multi-tasks, zero-shot tasks, and skill composition tasks. These results confirm that
our method effectively preserves essential task knowledge while significantly reducing cross-task
interference. This unified factorization approach is a key advantage over conventional merging tech-
niques. Our findings offer a new perspective on how knowledge is represented and merged within
LoRA adapters. The success of CP decomposition suggests that task-specific knowledge and shared
knowledge are not merely independent entities but are intricately interwoven. This insight—that a
joint, multi-task factorization is superior to a series of independent ones—indicates a promising new
direction for future research in parameter-efficient fine-tuning and model merging.
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A APPENDIX

A.1 LIMITATIONS

In this work, we evaluate our approach on natural language tasks using models such as Phi-3B,
Mistral-7B, and LLaMA-7B. Extending the analysis to larger-scale models remains an important
direction for future research. Our experiments show that CP merging achieves superior perfor-
mance compared to SVD-based LoRA merging methods. However, on held-out and zero-shot tasks,
uniform merging achieves competitive—and in some cases even better—results, suggesting that im-
proving the generalization ability of LoRA merging methods remains an open challenge. Moreover,
our current evaluation is limited to at most 10 tasks. Scaling to a larger number of tasks presents
additional challenges for LoRA merging, which we plan to investigate in future work.

Use of large language models statement We use the LLM to polish the writing. All other parts,
including experimental results, analyses were written by the authors and carefully verified for accu-
racy before and after any LLM-assisted editing.

A.2 SKILL COMPOSITION TASKS

GSM8k vs GSM8k-hard

GSM8k: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it
take?
Reference Answer: 18
GSM8k-hard: A robe takes 2287720 bolts of blue fiber and half that much white fiber. How many bolts in
total does it take?
Reference Answer: 3,431,580

Figure 7: The comparison between GSM8k and GSM8k-hard. The GSM8K uses a larger number to
replace the original number.

Prabhakar et al. (2024) have used LoRA merging to achieve the skill composition. Skill here refers to
specific capabilities that the LLM needs for customization to downstream use cases. For example,
achieving a high score in GSM8k benchmark Cobbe et al. (2021) needs good commonsense and
arithmetic skills.

To explicitly examine how reducing task interference, we evaluate CP merging on hard math word
problems. Compared to GSM-8K (Cobbe et al., 2021), GSM8K-hard (Gao et al., 2023) contains
problems of similar types but with more complex arithmetic operations. Gao et al. (2023) propose
a program-aided method in which an LLM first generates a program as an intermediate reasoning
step and then executes it using a Python interpreter to obtain the final answer. This setting requires
the LLM to be proficient in both mathematical reasoning (to analyze the problem) and coding (to
translate the reasoning into executable code). Following the same experimental setting in Prabhakar
et al. (2024), we train separate LoRA adapters for math and code skills.

A.2.1 GSM8K-HARD RESULTS

As depicted in Tab. 4, we evaluate the accuracy scores on the GSM-8k hard benchmark across
various models. The base model achieves a modest accuracy of 0.043, highlighting its limitations
in tackling GSM-hard tasks effectively. By training a LoRA adapter with the MathQA instruction
dataset, we enhance the model’s mathematical capabilities. Similarly, training with the Alpaca-code
dataset boosts the model’s coding proficiency. Combining both MathQA and Alpaca-code datasets
in a single adapter yields an accuracy of 0.1349. Merging the math and coding skills through LoRA
merging results in an accuracy of 0.1296, demonstrating the potential to integrate these abilities.
TSV Merging and Knots perform similarly in terms of accuracy, with scores of 0.1349 and 0.1344,
respectively. However, TSV Merging generates fewer invalid codes (224) compared to Knots (263),
suggesting it is slightly more stable in this regard. Among the competing baselines, our proposed
CP merging achieves the highest accuracy of 0.1569. Additionally, we assess the ”invalid code”

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Model ACC Invalid Code

BASE 0.0430 524
LoRA(math) 0.1175 562
LoRA(code) 0.0796 159
Multi-task 0.1349 413
Uniform 0.1296 217
Ties-merging 0.1060 223
Task Arithmetic 0.1190 232
Ties w/DARE 0.1162 227
TA w/DARE 0.1200 247
ISO Merging 0.0840 394
TSV Merging 0.1349 224
Knots 0.1344 263

CP merging 0.1569 201

Table 4: Evaluation results on MATH-hard tasks. ”Invalid” is the number of invalid codes that can
not be executed by Python.

metrics across methods. Notably, the LoRA code approach reduces invalid code instances from 524
in the base model to 159, indicating improved code quality.

The results demonstrate that our CP merging effectively reduces task interference by integrating
math and coding skills, as evidenced by the lower number of invalid codes (201) compared to the
base model (524) and other methods. In conclusion, CP merging not only achieves the highest
accuracy but also maintains a low rate of invalid code generation, clearly demonstrating its superior
performance in handling complex math-hard tasks.

A.3 EXPERIMENTAL SETTING FOR FLAN TASKS AND ZERO-SHOT DOWNSTREAM TASKS.

To enhance the LLM with various abilities for the above tasks, we construct a collection of LoRA
adapters on diverse tasks. We use the FlanV2, an instruction-tuning dataset designed to scale both
task diversity and model size, which has been shown to improve model performance significantly
(Chung et al., 2024). We train each LoRA adapter independently, enabling it to specialize in a
specific task. Finally, we select 256 tasks (Longpre et al., 2023), with the majority derived from P3
(Bach et al., 2022) and Flan2021 (Wei et al., 2021).

To evaluate the effectiveness of our approach across different backbone models, we conduct
experiments using Phi-3 (Abdin et al., 2024), and Mistral-7B(mistralai/Mistral-7B-v0.1) (Jiang
et al., 2023). In all cases, we apply LoRA adapters exclusively to the attention layers. Un-
less stated otherwise, our multi-task training and single-task adaptation scenarios employ a LoRA
rank of 4, a dropout rate of 0.05, and a learning rate of 1e-4. Each LoRA adapter is trained
for 5 epochs on either an H100 or A100 GPU. For the clustering step, we use the sentence-
transformers/sentence-t5-xxl model for encoding. Given the typically large size of the
dataset, we sample 20% of the data to train the k-means algorithm and then use the resulting clusters
to predict labels for all samples.

A.3.1 10 HELD-IN AND 3 HELD OUT TASK NAMES

There are 256 pre-trained LoRA adapters used in Ostapenko et al. (2024). We randomly select 10
tasks as the held-in tasks and 3 tasks as the held-out tasks, followed by Arnob et al. (2025).

Held-in tasks

• wiqa what is the final step of the following process

• sciq Multiple Choice

• adversarial qa droberta answer the following q
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• duorc SelfRC question answering
• cos e v1 11 description question option id
• wiki qa Is This True
• quail description context question text
• wiki hop original explain relation
• duorc ParaphraseRC build story around qa
• yelp polarity reviews 0 2 0

3 held-out tasks

• glue sst2 2 0 0
• dream read the following conversation and answer the question
• race middle Read the article and answer the question no option

A.4 CLUSTERIZED LORA LIBRARY (C-LORA)

As noted in Ostapenko et al. (2024), LoRA similarity can contribute to positive transfer. Their
approach clusters tasks based on LoRA similarity, requiring the task ID for each example and the
pre-training of a collection of LoRA adapters before clustering. In contrast, we argue that text-level
clustering is more convenient while achieving competitive results. As shown in Fig. 8, we select
100 examples per cluster and visualize their embeddings. The embeddings reveal that similar texts
are grouped into the same clusters, demonstrating the quality of our embedding representations.

To mitigate task conflicts at the text-level, we train each expert on a collection of similar tasks.
This is achieved by clustering instructions and partitioning the training data into multiple clusters
without requiring manual intervention. Clustering input texts into several groups can reduce task
interference by allowing the model to adapt its task adapters or representations to distinct subsets
of data with similar characteristics. Formally, let E(·) denote a pretrained sentence encoder. For
each data sample, the sentence representation of an instruction Ii is computed as ei = E(Ii). We
then apply the k-means algorithm to cluster all instruction embeddings {ei} in the training dataset
into K clusters. We train each LoRA adapter based on the instructions from each cluster. For each
pre-trained weight W0, we obtain corresponding LoRA adapters {AiBi, ..., AKBK}.

A.4.1 CLUSTERING TO REDUCE THE TASK INTERFERENCE AT THE TEXT-LEVEL

(a) The number of clusters and
accuracy (ACC) using Phi-3 3B

(b) The number of clusters and
accuracy (ACC) using Mistral 7B

(c) Clustering based on the sen-
tence embedding. We visualize
100 samples in each cluster.

Figure 8: Cluster analysis. The number of clusters and accuracy (ACC) using Phi-3 3B and Mistral
7B.

The Fig. 8 shows the relationship between the number of clusters and accuracy (ACC) using two
different model backbones: Phi-3 3B (left) and Mistral 7B (right). For the Phi-3 3B backbone,
accuracy increases from approximately 65.4% at 1 cluster to a peak of 68.9% at 10 clusters, sta-
bilizing thereafter up to 15 clusters. In contrast, the Mistral 7B Backbone shows a more gradual
improvement, rising from 63.1% at 1 cluster to 64.9% at 10 clusters. We think it is still a challenge
to determine the ideal number of clusters. Further investigation with more sophisticated clustering
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techniques could provide deeper insights into the relationship between performance and the number
of clusters.

A.5 ZERO-SHOT RESULTS ON MISTRAL 7B

For the Mistral (7B) model, the multi-task version achieves a notable improvement, raising the
accuracy from 59.5% to 63.1%.

Common Sense Question Answering Coding Reasoning AVG

Piqa Wg Hswag Boolq Obqa ArcE ArcC HE Mbpp BBH AVG

Mistral (7B) with LoRA library
BASE 81.1 66.5 78.8 82.2 44.6 68.9 49.6 28.0 47.5 47.9 59.5
Multi-task 81.9 68.6 79.5 84.6 50.4 84.8 60.0 24.4 47.5 49.2 63.1
Uniform 82.1 67.2 79.6 82.7 45.2 78.7 54.8 29.9 49.4 49.0 61.9
Ties-merging 82.4 70.6 79.9 87.6 44.2 81.1 57.3 31.7 47.9 46.2 62.9
Task Arithmetic 82.3 67.1 79.5 82.4 45.3 78.4 54.8 30.0 49.4 49.1 61.8
Ties w/DARE 82.3 70.3 79.8 87.4 44.3 81.3 57.2 31.6 47.6 46.3 62.8
TA w/DARE 82.2 67.3 79.5 82.2 45.4 78.3 54.9 30.1 49.5 49.2 61.9
TSV merging 81.6 70.3 78.9 82.8 42.8 84.0 58.3 28.7 49.7 49.5 62.7

C-LoRA 82.4 71.4 81.2 87.6 49.2 86.0 60.5 29.3 50.0 50.0 64.9 ↑2.2
TC-LoRA 82.6 71.7 81.6 87.8 49.3 86.0 60.6 29.3 50.2 50.7 65.0 ↑2.3

Table 5: 10 downstream Zero-shot results based on Mistral 7B
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