
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DROP OR MERGE? HYBRID MOE LLMS COMPRES-
SORS VIA METRIC-DRIVEN ADAPTIVE ALLOCATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) models enhance the scalability of large language models
but encounter deployment challenges due to their vast parameter counts. Existing
compression methods either drop experts entirely (discarding valuable knowledge)
or merge experts (suffering from parameter conflicts), typically employing uniform
strategies that ignore the heterogeneous specialization patterns across layers. In
this paper, we propose DM-MoE, an adaptive Drop-then-Merge MoE compression
framework to address these limitations. Our approach is motivated by two key
observations: first, that eliminating a small number of truly redundant experts
facilitates more effective subsequent merging, and second, that expert functional
redundancy and behavioral similarity serve as reliable indicators for adaptive com-
pression throughout MoE architectures. Building on these insights, we develop a
two-stage compression: (1) In the dropping phase, we quantify layer redundancy
via mutual information between expert outputs and formulate a constrained opti-
mization problem to derive layer-wise dropping budgets, then select experts based
on output impact assessment to retain those with high functional significance. (2)
In the merging phase, we adaptively determine the number of expert groups per
layer using behavioral diversity metrics, partition experts into functionally similar
clusters via graph-based optimization, and merge them using importance-weighted
averaging based on activation frequency and output deviation. Comprehensive
evaluations on Mixtral, Qwen, DeepSeek and GPT-OSS MoE demonstrate that our
DM-MoE surpasses state-of-the-art methods across models and compression ratios.
For Mixtral-8×7B, we retain 96.5%/89.1% of original performance at 25%/50%
expert reduction. Code is available in the Appendix.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing (OpenAI et al.,
2024; Team et al., 2024), with Mixture-of-Expert (MoE) architectures emerging as a particularly
promising approach for achieving state-of-the-art performance while improving computational
efficiency (Jiang et al., 2024; Team, 2024). By conditionally activating only a subset of model
parameters for each input, MoE architectures can achieve superior performance compared to dense
models of equivalent computational cost (Dai et al., 2024). Despite these efficiency advantages, MoE
LLMs still present substantial deployment challenges, particularly due to their enormous parameter
counts. This parameter explosion leads to prohibitive storage requirements, increased memory
bandwidth demands, and higher serving costs in production environments (Imani et al., 2024).

To compress the parameter size of MoE LLMs, expert dropping methods (Lu et al., 2024; Muzio
et al., 2024; Yang et al., 2024b) identify and remove less important or redundant experts based on
various criteria such as activation frequency, importance scores, or contribution to output. These
approaches include regularization-based techniques (Chen et al., 2022; Muzio et al., 2024) that
penalize certain experts during fine-tuning, search-based methods (Lu et al., 2024; Yang et al., 2024b)
that evaluate different expert subsets, and heuristic approaches based on pre-defined metrics (He
et al., 2024). Recent expert merging strategies consolidate multiple experts into fewer, merged
representations through techniques like weighted averaging. Among these, MC-SMoE (Li et al.,
2023a), HC-SMoE (Chen et al., 2024), and EEP (Liu et al., 2024) employ distinct fusion criteria:
frequency-based selection, hierarchical clustering, and search-based optimization, respectively.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Layer Index

0.05

0.10

0.15

0.20

0.25

0.30

0.35
C

os
in

e
Si

m
ila

ri
ty

Comparison of Cosine Similarity Between Experts Within Each Layer

Original
Dropped

0 5 10 15 20 25 30
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

M
ut

ua
l I

nf
or

m
at

io
n

Mutual Information Between Experts Within Each Layer

Inform

Figure 1: Left: Expert parameter alignment degree (measured by cosine similarity) between merged
experts and their source experts, comparing merging from the original full expert set versus merging
from the reduced expert set (after 25% expert reduction) using average merging on the Mixtral-8×7B.
Right: intra-layer expert mutual information matrices of layer [2, 3, 22, 30] on Mixtral-8×7B and
information values for different layers. More analyses are available in Appendix B.1.

Problem Statement: However, these expert dropping/merging methods suffer from several critical
limitations: (1) Performance collapse from complete dropping: Expert dropping methods fun-
damentally discard portions of the model’s learned knowledge. At higher compression ratios, this
knowledge loss becomes particularly problematic, leading to significant performance degradation
that often requires expensive fine-tuning to recover. The complete removal of experts creates repre-
sentation gaps that the remaining network struggles to compensate for, especially in specialized tasks
where the dropped experts may have encoded critical domain knowledge. (2) Parameter conflicts in
direct merging: In well-trained MoE models, experts naturally specialize into distinct functional
roles with potentially orthogonal parameter distributions. When experts with diverse specializations
are directly merged, the resulting consolidated experts often suffer from destructive interference
between conflicting parameters. This parameter averaging dilutes the specialized capabilities of the
constituent experts, creating compromised representations that inadequately capture the functional
diversity of the original expert set. (3) Uniform compression ignoring layer sensitivity: most
drop/merge approaches apply uniform compression across all layers, overlooking varying sensitivity
patterns. Recent studies (Li et al., 2024) reveal significant variation in expert redundancy across
layers, with early layers requiring preferential treatment. Some expert dropping methods explore
adaptive ways but require time-consuming evolutionary search processes (Liu et al., 2024).

Our New Observations and Framework: In this paper, we introduce DM-MoE, a novel compression
framework that addresses these limitations through a sequential drop-then-merge paradigm. Our
framework is motivated by two key observations from our analysis of expert behavior in MoE
models: (1) Strategic dropping facilitates effective merging: Figure 1 (left) demonstrates that
dropping 25% of unimportant experts first allows the remaining fewer experts to achieve higher
parameter alignment with the final merged expert across all MoE layers. This strategic pre-dropping
reduces parameter conflicts among the experts to be merged, resulting in merged experts that
maintain better parameter consistency with their source experts compared to merging the original
full expert set. (2) Expert metrics reveal hierarchical specialization patterns: As shown in
Figure 1 (right), we observe that mutual information metrics precisely capture MoE layer-wise
sensitivity: early layers maintain low mutual information, indicating high specialization requiring
preservation; later layers show progressively increasing mutual information, exhibiting redundancy
amenable to aggressive compression. Building on these insights, our DM-MoE represents a two-phase
compression framework that sequentially drops and merges experts. In the first phase, we perform
layer-wise adaptive expert dropping guided by information-theoretic metrics. We use Canonical
Correlation Analysis (CCA) to measure mutual information between expert outputs, quantifying
functional redundancy within each layer. This enables us to allocate layer-specific retention budgets
through constrained optimization: layers with irrelevant experts retain more, while redundant layers
undergo aggressive pruning. Within each layer, we select experts to keep based on their output impact,
preserving those whose removal would most affect the layer’s functionality. In the second phase, we
employ a graph-based, layer-wise strategy to merge experts. We begin by modeling each layer as
a similarity graph, where edges quantify the behavioral correlation between experts. Our process
first involves an inter-layer allocation step to determine the optimal number of expert groups for each
layer, assigning more groups to layers with greater diversity. We then partition the graph for each
layer to form expert groups by maximizing intra-group similarity, which ensures coherent merging.
Finally, we merge experts within each layer using a dual-weighted factor that combines activation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Layer-wise Merge Num.

Constraint

Constraint

Information Metric

Diversity Metric

Optimization

Optimization

Layer-wise Drop Num. Intra-Layer Expert Sorting Intra-Layer Expert Drop

Intra-Layer Expert Grouping Intra-Layer Expert Merging

Original MoE Layers

Canonical Correlation Analysis

Similarity Graph Construction

Phase I: Layer-wise Adaptive Expert Dropping

Phase II: Layer-wise Adaptive Expert Merging

Figure 2: Overview of our DM-MoE framework, comprising two core phases: (1) Expert Dropping:
we use information metrics from canonical correlation analysis to optimize layer-wise drop counts,
then perform intra-layer expert sorting and selective dropping; and (2) Expert Merging: we allocate
layer-specific merging groups via constrained optimization using diversity metrics derived from graph
construction, then apply intra-layer expert grouping via graph partitioning and merging.

frequency and output deviation scores. This dual-factor merging preserves critical functionalities,
effectively mitigating parameter conflicts.

Evaluation Results: Our comprehensive evaluation across five MoE models (Mixtral-8×7B,
Qwen1.5-MoE-A2.7B, Qwen3-30B-A3B, DeepSeek-V2-Lite, and GPT-OSS-20B) demonstrates the
superior performance of DM-MoE across diverse compression scenarios. Our DM-MoE retains 96.5%
of Mixtral’s original accuracy with 25% fewer experts, surpassing HC-SMoE (Chen et al., 2024) by
+4.3% and Frequency-drop by +6.3%. Notably, even under aggressive 50% compression, it achieves
89.1% retention for Mixtral-8×7B, 85.9% for Qwen1.5-MoE, significantly outperforming prior
methods. For 50% compression on recent models like Qwen3-30B-A3B, DeepSeek-V2-Lite, and
GPT-OSS-20B, DM-MoE maintains 81.2%, 75.5%, and 83.2% of original performance respectively,
demonstrating consistent advantages of 7-18% over the strongest baseline.

In summary, our contributions are threefold:

(1) Based on the observation that dropping unimportant experts mitigates parameter conflicts, we
propose DM-MoE, an adaptive Drop-then-Merge paradigm that aims at memory footprint and
parameter size reduction while preserving MoE performance.

(2) We introduce a new adaptive allocation scheme driven by dual metrics of information and
similarity. By formulating the allocation as a linear optimization problem, DM-MoE flexibly captures
the hierarchical characteristics of MoE architectures.

(3) We conduct extensive experiments across diverse MoE architectures, including Mixtral, Qwen,
DeepSeek, and GPT-OSS. The results demonstrate that DM-MoE consistently outperforms state-of-
the-art expert reduction and merging methods.

2 DM-MOE: ADAPTIVE DROP-THEN-MERGE MOE COMPRESSION

Our overall process is illustrated in Figure 2. Given an MoE model with L layers and N experts
per layer, our goal is to compress it while minimizing performance degradation. Our approach first
identifies and removes less important experts, reducing the expert count per layer from N to Kl based
on layer-specific importance metrics; subsequently, an expert merging phase further consolidates
the remaining experts into Gl merged groups (where Gl ≤ Kl) through similarity-based clustering,
effectively addressing the parameter conflict issues that plague direct merging approaches.

2.1 PHASE I: LAYER-WISE ADAPTIVE EXPERT DROPPING

Our expert dropping phase involves creating information metrics, allocating drop counts per layer,
and ranking experts to remove the unimportant ones.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Information-Aware Metric Construction. To accurately capture the hierarchical redundancy
characteristics within MoE layers, we employ Canonical Correlation Analysis (CCA) to estimate
pairwise mutual information between expert outputs (Kornblith et al., 2019). Unlike simple correlation
measures, CCA reveals the full spectrum of linear dependencies between high-dimensional expert
representations, making it particularly suitable for identifying redundant layers (Li et al., 2023b). For
N experts in layer l, the MoE computation processes an input token x ∈ Rd through expert modules
{E1, E2, . . . , EN} and router R to produce output y =

∑N
i=1 pi(x) · Ei(x), where pi(x) denotes

routing probability and Ei(x) represents expert output. The router employs top-k gating with softmax
normalization, activating only the k most relevant experts per token to maintain computational
efficiency. For each expert pair (Ei, Ej), we collect their outputs Yi ∈ Rm×d and Yj ∈ Rm×d over
m calibration samples. CCA identifies linear projections that maximize correlation between these
representations by computing canonical correlations {ρk}dk=1 as singular values of:

T = C
−1/2
ii CijC

−1/2
jj , (1)

where Cij represents the cross-covariance matrix between expert outputs. The mutual information
between experts is estimated as:

Iij = −
1

2

d∑
k=1

log(1− ρ2k). (2)

The layer-wise total mutual information aggregates all pairwise values: Ilayer =
∑N−1

i=1

∑N
j=i+1 Iij .

We apply sigmoid normalization to obtain the information score:

Dinfo = 1− 1

1 + e−Ilayer
, (3)

Based on the principle that higher mutual information indicates greater functional redundancy among
experts, the final expert score Dinfo inversely correlates with mutual information: layers with lower
mutual information receive higher scores, indicating their experts have more distinctive functional
roles that should be preserved during compression.

Inter-Layer Expert-Drop Allocation. We formulate layer-wise expert retention as a constrained
optimization problem that maximizes preserved diversity:

max
K1,...,KL

L∑
l=1

Dl
info · ϕ(Kl)

subject to:
L∑

l=1

Kl = Ktotal

Kmin ≤ Kl ≤ N ∀l ∈ {1, . . . , L}
|Kl −Kl+1| ≤ ∆max ∀l ∈ {1, . . . , L− 1},

(4)

where Kl denotes experts retained in layer l, Ktotal represents the global retention budget, and
transformation function ϕ(Kl) captures diminishing returns of additional experts. The smoothness
constraint ∆max limits expert count differences between adjacent layers, preventing abrupt capacity
changes that could disrupt information flow through the LLMs. This constrained optimization can be
efficiently handled by the SLSQP solver in scipy.optimize Gommers et al. (2024), usually converging
in under 0.5 seconds for MoE LLMs with 30–80 layers (see Appendix Table 14).

Intra-Layer Expert Dropping. Once the retention budget Kl for each layer is determined, we select
which specific experts to keep using an output impact assessment approach that identifies experts
whose removal would minimally affect the layer’s functionality. For each expert Ei in layer l, we
measure the output deviation when that expert is removed:

δi =
1

|X |
∑
x∈X
∥yl(x)− y−i

l (x)∥2, (5)

where yl(x) is the original layer output for input x, and y−i
l (x) is the layer output with expert Ei

removed and routing weights redistributed among remaining experts. We then select the Kl experts

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

with the largest output deviation scores, as these experts have the most significant impact on the
layer’s behavior. To address the computational complexity of output perturbation in this process,
we employ greedy search within a smaller candidate pool based on statistical information metrics
averaged across experts. This approach effectively preserves the most functionally significant experts
while discarding those whose contribution can be compensated by other experts in the same layer.

2.2 PHASE II: LAYER-WISE ADAPTIVE EXPERT MERGING

Following the expert dropping phase, we introduce a graph-based layer-wise merging strategy that
fundamentally reimagines how we understand and exploit expert relationships within MoE layers.
We observe that experts in MoE models naturally form complex relational structures that traditional
merging methods fail to capture adequately. We conceptualize each MoE layer as a fully connected
graph Gl = (V l, E l,Wl), where vertices V l represent the Kl remaining experts after dropping, edges
E l encode pairwise similarities, and weights Wl quantify that expert similarities.

Similarity Graph Construction. For each layer l, we construct the expert similarity graph by
collecting output representations from all remaining experts. We compute the similarity weight
between experts Ei and Ej as:

wl
ij =

⟨yi,yj⟩
∥yi∥∥yj∥

, (6)

where yi and yj represent the output activations of experts Ei and Ej respectively, and ⟨·, ·⟩ denotes
the inner product. We quantify the behavioral diversity of layer l through:

Dl
div = − 2

Kl(Kl − 1)

Kl−1∑
i=1

Kl∑
j=i+1

wl
ij , (7)

where larger values of Dl
div indicate greater behavioral diversity among experts.

Inter-Layer Expert-Merge Allocation. We formulate the allocation of expert groups across layers
as a linear program that optimizes the distribution based on diversity metrics. We solve for all layers
simultaneously:

max
G1,...,GL

L∑
l=1

Dl
div · ϕ(Gl)

subject to:
L∑

l=1

Gl = Gtotal

1 ≤ Gl ≤ Kl ∀l ∈ {1, . . . , L}
|Gl −Gl+1| ≤ ∆max ∀l ∈ {1, . . . , L− 1},

(8)

where Gtotal denotes the total number of expert groups after merging, and ∆max controls the smooth-
ness of allocation across adjacent layers. This formulation ensures that layers with higher diversity
retain more expert groups, preserving their functional richness.

Graph Partitioning for Expert Grouping. Having determined the optimal number of groups Gl

for each layer, we partition the similarity graph Gl to assign experts to groups. Unlike hierarchical
clustering’s irrevocable local decisions or K-means’ spherical cluster assumptions, we formulate
a global optimization problem (Çatalyürek et al., 2023) that partitions Kl experts into Gl disjoint
groups:

max
Pl

Gl∑
k=1

∑
i,j∈Vk,i<j

wl
ij

subject to:
Gl⋃
k=1

Vk = V l, Vi ∩ Vj = ∅ ∀i ̸= j,

(9)

where P l = {V1, V2, . . . , VGl
} represents the partition. This formulation maximizes intra-group

similarity by considering all expert relationships simultaneously, avoiding the local decision pitfalls
of hierarchical methods. The resulting partitions create more coherent expert groups that minimize
information loss during merging and better preserve the model’s original capabilities.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Results of our DM-MoE and HC-SMoE in three recent MoE LLMs. We report accuracy
(higher is better↑) on eight diverse reasoning and understanding tasks.

Expert Method ARC-c ARC-e BoolQ HellaS. MMLU OBQA RTE WinoG. Average↑
Qwen3-30B-A3B

Num=128 Original 0.534 0.797 0.888 0.596 0.778 0.352 0.827 0.710 0.685

Num=96
HC-SMoE 0.349 0.637 0.822 0.401 0.549 0.220 0.733 0.613 0.540
DM-MoE (Ours) 0.481 0.765 0.869 0.543 0.666 0.292 0.841 0.696 0.644

Num=64
HC-SMoE 0.229 0.438 0.634 0.292 0.298 0.132 0.500 0.498 0.378
DM-MoE (Ours) 0.398 0.675 0.817 0.446 0.5035 0.276 0.711 0.620 0.556

DeepSeek-V2-Lite
Num=64 Original 0.455 0.769 0.727 0.550 0.497 0.320 0.617 0.673 0.576

Num=48
HC-SMoE 0.370 0.705 0.677 0.460 0.292 0.288 0.567 0.665 0.503
DM-MoE (Ours) 0.378 0.709 0.685 0.499 0.389 0.292 0.599 0.686 0.530

Num=32
HC-SMoE 0.281 0.576 0.587 0.362 0.240 0.190 0.505 0.587 0.416
DM-MoE (Ours) 0.301 0.604 0.617 0.369 0.231 0.202 0.560 0.597 0.435

GPT-OSS-20B
Num=32 Original 0.453 0.774 0.757 0.415 0.566 0.270 0.679 0.658 0.571

Num=24
HC-SMoE 0.294 0.574 0.619 0.340 0.417 0.200 0.639 0.624 0.463
DM-MoE (Ours) 0.383 0.712 0.740 0.389 0.511 0.234 0.668 0.629 0.533

Num=16
HC-SMoE 0.222 0.468 0.608 0.322 0.352 0.172 0.560 0.567 0.409
DM-MoE (Ours) 0.301 0.634 0.685 0.344 0.367 0.208 0.682 0.577 0.475

Intra-layer Expert Merging. After obtaining the expert partitions, we merge experts within each
partition by considering both their activation frequency and output deviation scores to model the
importance of each expert. This dual-metric approach captures both the usage patterns (how often an
expert is selected) and functional significance (how much the expert contributes to the layer’s output),
providing a more comprehensive assessment of expert importance than either metric alone.

For each expert Ei, we compute its importance weight as:

αi = f̄i + δ̄i, (10)

where f̄i is the normalized activation frequency of expert i and δ̄i is the normalized output deviation
score computed earlier. This combination ensures that both frequently activated experts and those
with high functional impact contribute more significantly to the merged representation.

For experts within the same partition Vk, we create a merged expert by computing the weighted
average of their parameters:

Wk
merged =

∑
i∈Vk

αi ·Wi∑
i∈Vk

αi
. (11)

where Wi represents the parameters of expert i. This importance-weighted merging tends to preserve
the most critical functionalities within each group while approximating the essential behavioral
patterns of the original experts, creating merged experts that inherit collective capabilities proportional
to individual importance.

Through these two phases, we strike a flexible balance between removing redundant experts and merg-
ing important ones. Our metric-driven optimization enables efficient adaptive allocation, completing
core processing steps in about 10 minutes (see Appendix C.3) while avoiding expensive search.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUPS

We conduct experiments on cutting-edge MoE models: Qwen3-30B-A3B (Yang et al., 2024a),
DeepSeek-V2-Lite (Dai et al., 2024), GPT-OSS-20B (Agarwal et al., 2025) Mixtral 8x7B (Jiang et al.,
2024) and Qwen1.5-MoE-A2.7B (Team, 2024). We evaluate our method on eight diverse reasoning
and understanding tasks (Gao et al., 2023) (e.g., ARC (Clark et al., 2018), MMLU (Hendrycks
et al., 2021)). We construct a calibration dataset of 16 sequences (2,048 tokens each) sampled from
C4 for both the expert dropping and merging phases. Our compression budget is allocated equally

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparisons of MoE compression methods across different models and compression
ratios. Frequency/output-drop baseline sorts and drops unimportant experts based on each expert’s
frequency/output within each MoE layer. We report accuracy (higher is better↑) on eight diverse
reasoning and understanding tasks.

Expert Method ARC-c ARC-e BoolQ HellaS. MMLU OBQA RTE WinoG. Average↑
Mixtral-8×7B

Num=8 Original 0.565 0.842 0.851 0.649 0.671 0.350 0.711 0.759 0.675

Num=6

Frequency-drop 0.478 0.781 0.781 0.568 0.469 0.322 0.552 0.754 0.588
Output-drop 0.468 0.772 0.750 0.576 0.464 0.298 0.599 0.751 0.585
MC-SMoE 0.286 0.595 0.591 0.431 0.253 0.200 0.527 0.600 0.435
HC-SMoE 0.450 0.730 0.830 0.570 0.560 0.290 0.690 0.745 0.608
DM-MoE (Ours) 0.522 0.819 0.843 0.615 0.631 0.324 0.700 0.756 0.651

Num=4

Frequency-drop 0.215 0.386 0.598 0.364 0.238 0.142 0.531 0.533 0.376
Output-drop 0.214 0.392 0.628 0.384 0.237 0.164 0.538 0.556 0.389
MC-SMoE 0.207 0.278 0.524 0.279 0.255 0.108 0.498 0.516 0.333
HC-SMoE 0.322 0.613 0.754 0.493 0.392 0.256 0.614 0.671 0.514
DM-MoE (Ours) 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601

Qwen1.5-MoE-A2.7B-Chat
Num=60 Original 0.396 0.705 0.812 0.593 0.598 0.312 0.737 0.658 0.601

Num=45

Frequency-drop 0.327 0.568 0.766 0.547 0.426 0.290 0.729 0.648 0.538
Output-drop 0.336 0.593 0.706 0.518 0.480 0.270 0.661 0.594 0.520
MC-SMoE 0.371 0.646 0.755 0.531 0.383 0.252 0.776 0.673 0.548
HC-SMoE 0.344 0.663 0.753 0.527 0.499 0.282 0.704 0.610 0.548
DM-MoE (Ours) 0.354 0.615 0.802 0.525 0.59 0.252 0.733 0.659 0.566

Num=30

Frequency-drop 0.261 0.413 0.616 0.388 0.246 0.198 0.545 0.569 0.405
Output-drop 0.270 0.511 0.645 0.402 0.326 0.194 0.549 0.538 0.429
MC-SMoE 0.189 0.326 0.568 0.287 0.231 0.176 0.448 0.524 0.344
HC-SMoE 0.246 0.503 0.636 0.334 0.349 0.190 0.500 0.570 0.416
DM-MoE (Ours) 0.315 0.563 0.739 0.434 0.515 0.242 0.718 0.603 0.516

Table 3: Results of drop and merge settings via uniform/adaptive allocation for Mixtral 8×7B→4×7B.

Method ARC-c ARC-e BoolQ HellaS. MMLU OBQA RTE WinoG. Average↑
Drop Only (uniform) 0.432 0.723 0.759 0.536 0.403 0.288 0.585 0.717 0.555
Merge Only (uniform) 0.445 0.734 0.790 0.555 0.469 0.272 0.531 0.721 0.564
Drop→Merge (uniform) 0.438 0.742 0.842 0.560 0.512 0.278 0.578 0.719 0.584
Merge→Drop (uniform) 0.404 0.697 0.825 0.537 0.437 0.258 0.578 0.690 0.553

Drop Only (adaptive) 0.457 0.740 0.817 0.556 0.518 0.276 0.664 0.741 0.596
Merge Only (adaptive) 0.458 0.733 0.823 0.550 0.474 0.284 0.679 0.721 0.590
Drop→Merge (adaptive) 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601
Merge→Drop (adaptive) 0.409 0.722 0.744 0.533 0.443 0.272 0.574 0.745 0.555

between the two phases. For linear optimization, we employ logarithmic functions log(x+ 1) for
transformation function ϕ(·), and we set both smoothness constraints to 12.5% of the experts per
layer. All experiments are conducted on 8 NVIDIA H800 GPUs. More details are in Appendix E.

3.2 EXPERIMENTAL RESULTS ANALYSIS

Results across Recent MoE LLMs. As shown in Table 1, our method consistently outperforms HC-
SMoE, the previous state-of-the-art compression technique, with particularly notable improvements
at aggressive compression levels. For Qwen3-30B-A3B compressed from 128 to 64 experts, DM-
MoE maintains 81.2% of the original performance compared to HC-SMoE’s 55.2%, achieving a
relative improvement of over 47%. Similar patterns emerge across DeepSeek-V2-Lite and GPT-
OSS-20B models, where DM-MoE demonstrates superior retention of model capabilities even at
50% compression ratios. For GPT-OSS-20B, DM-MoE preserves 83.2% of original accuracy while
HC-SMoE retains only 71.6%, validating our strategy’s effectiveness and generalizability.

Comparisons against Other Approaches. As shown in Table 2, DM-MoE consistently surpasses
both pure dropping methods (Frequency-drop, Output-drop) and merging approaches (MC-SMoE,
HC-SMoE) across all compression levels. On Mixtral-8×7B, DM-MoE achieves average accuracies of
0.651 and 0.601 at 6 and 4 experts, respectively, representing 6.9% and 16.9% relative improvements
over the best baseline (HC-SMoE). Similarly, on Qwen1.5-MoE, our method attains 0.566 and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Results of drop and merge settings via uniform/adaptive allocation for DeepSeek-V2-Lite.

Method ARC-c ARC-e BoolQ HellaS. MMLU OBQA RTE WinoG. Average↑
Drop Only (uniform) 0.195 0.365 0.619 0.297 0.233 0.148 0.542 0.515 0.364
Merge Only (uniform) 0.177 0.300 0.612 0.276 0.229 0.138 0.531 0.504 0.346
Drop→Merge (uniform) 0.259 0.553 0.621 0.344 0.265 0.180 0.534 0.586 0.418
Merge→Drop (uniform) 0.249 0.520 0.595 0.341 0.231 0.200 0.567 0.553 0.407

Drop Only (adaptive) 0.264 0.505 0.546 0.373 0.244 0.200 0.516 0.599 0.406
Merge Only (adaptive) 0.185 0.403 0.604 0.281 0.231 0.120 0.527 0.516 0.358
Drop→Merge (adaptive) 0.301 0.604 0.617 0.369 0.231 0.202 0.560 0.597 0.435
Merge→Drop (adaptive) 0.268 0.541 0.622 0.356 0.232 0.204 0.534 0.594 0.419

Table 5: Comparison of allocations for expert dropping and merging for Mixtral 8×7B→4×7B.

Method ARC-c ARC-e BoolQ HellaS. MMLU OBQA RTE WinoG. Average↑
Random 0.409 0.727 0.812 0.540 0.428 0.246 0.657 0.699 0.565
Growth (↗) 0.389 0.692 0.777 0.511 0.473 0.236 0.578 0.725 0.548
Decay (↘) 0.433 0.713 0.810 0.539 0.523 0.274 0.556 0.716 0.571
Our Opt. 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601

0.516 accuracy at 45 and 30 experts, yielding 3.3% and 24.0% gains over the strongest competitor,
demonstrating increasingly superior performance as compression ratios intensify.

3.3 ABLATION STUDIES

Effect of Drop-then-Merge Strategy with Adaptive Allocation. Table 3 shows our comparison
of four compression strategies: drop-only, merge-only, drop-then-merge, and merge-then-drop,
each implemented with both uniform and adaptive allocation. Our drop-then-merge approach
consistently outperforms single-stage methods across most tasks, validating our hypothesis that
removing redundant experts first creates a better foundation for subsequent merging. Notably, the
merge-then-drop sequence performs significantly worse, likely due to the premature merging of
important experts with less useful ones. Adaptive allocation brings substantial benefits to all strategies,
with the most dramatic gains seen in drop-only and drop-then-merge approaches. Our complete DM-
MoE framework achieves an average accuracy of 0.601, surpassing both uniform drop-then-merge
(0.584, +2.9%) and adaptive merge-only (0.590, +1.9%). These results clearly demonstrate that both
sequential processing and layer-adaptive allocation are essential for optimal performance.

Effect of Drop-Then-Merge Strategy on Fine-Grained MoEs. We further investigate whether the
two-stage pipeline yields benefits for fine-grained MoE compression that surpass those of adaptive al-
location alone. Table 4 summarizes a comprehensive ablation study on DeepSeek-V2-Lite, comparing
single-stage approaches against sequential combinations under both uniform and adaptive allocation
regimes. Notably, uniform drop-then-merge achieves an average accuracy of 0.418, marking a
substantial +5.4% improvement over uniform drop-only (0.364). This gain significantly exceeds the
+1.2% improvement that adaptive allocation contributes to drop-only approaches, indicating that the
sequential pipeline provides advantages distinct from sophisticated allocation strategies. Furthermore,
drop-then-merge continues to outperform drop-only under adaptive allocation, confirming the unique
value of the sequential combination across regimes. These results demonstrate that the drop-then-
merge pipeline is essential for effective fine-grained MoE compression, delivering synergistic benefits
that cannot be replicated by allocation optimization or single-stage approaches alone.

Comparison of Different Allocations. We compared four strategies for distributing compression
budgets across layers: random allocation, linear growth (deeper layers receive more compression),
linear decay (shallower layers receive more compression), and our optimization-based approach. As
shown in Table 5, our optimization method consistently outperforms all alternatives. As illustrated
in Figure 3, our optimization approach naturally allocates more reserved experts to earlier layers,
with approximately 43% of dropping and merging budgets assigned to the last quarter of the network
(layers 24-31 in Mixtral). This distribution pattern aligns with our measured allocation metrics,
which indicate greater functional redundancy in deeper layers. These results clearly demonstrate the
advantage of using layer-specific metrics over uniform compression.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Average accuracy of settings in (a) metrics in layer-wise allocation in expert drop/merge,
(b) metrics in intra-layer expert dropping, (c) grouping strategies in intra-layer expert clustering, (d)
merge strategies in intra-layer expert merging for Mixtral 8×7B→4×7B.

(a) Allocation

Metric Drop Merge

Outlier 0.556 0.571
Diversity 0.557 0.601
Inform. 0.601 0.578

(b) Expert Drop

Metric Avg.

Outlier 0.570
Route-logits 0.551

Variation 0.601

(c) Expert Group

Grouping Avg.

HC 0.593
K-means 0.586

Graph 0.601

(d) Expert Merge

Merge factor Avg.

Avg. 0.362
Freq. 0.546
Ours 0.601

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer

0
1
2
3
4
5
6
7
8
9

N
um

be
r o

f E
xp

er
ts

Layer-wise Expert Allocation in Mixtral-8x7B

Adaptive Drop Phase
Adaptive Merge Phase

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

0

8

16

24

32

40

48

56

N
um

be
r o

f E
xp

er
ts

Layer-wise Expert Allocation in Qwen1.5-MoE-A2.7B-Chat

Adaptive Drop Phase
Adaptive Merge Phase

Figure 3: Number of remaining experts in each layer after our adaptive drop and merge phases on
Mixtral-8×7B (left) and Qwen1.5-MoE-A2.7B (right).

Ablation of Metrics and Drop/Merge Strategies. We analyze how different strategic settings
within our framework affect performance in Table 6. For layer-wise allocation (a), the information
metric (Inform.) based on mutual information yields the best performance for drop phase, confirming
that it more accurately captures expert redundancy for budget allocation than other metrics. For
merge-phase allocation, the diversity metric achieves optimal results, largely because it accurately
captures the diversity of experts for different layers. In the context of intra-layer expert dropping
(b), measuring an expert’s impact via output Variation proves superior to using Route-logits or
Outlier scores, suggesting that functional significance is the most critical criterion for preservation.
When determining expert groups (c), our graph partitioning approach (Graph) achieves the highest
accuracy, demonstrating that a global optimization of the expert similarity graph is more effective
than the local or heuristic decisions of hierarchical clustering (HC) and K-means. Finally, for the
expert merging strategy (d), our dual-metric importance weighting (Ours) significantly outperforms
simpler parameter averaging (Avg.) or frequency-based (Freq.) methods. This result validates that
combining activation frequency with output deviation creates more powerful merged experts.

Analysis of Hyperparameters. Table 7 (a), (b), and (c) present our analysis of different hyperparam-
eter settings for our constrained optimization. For transformation function ϕ(·) (a), the logarithmic
transformation log(x+1) achieves the highest performance (0.601), outperforming both linear (0.584)
and exponential (0.591) alternatives, which indicates that it best captures the nonlinear relationship
between expert count and layer importance during optimization. For smoothness constraints (b),
lower values generally yield better performance, with the 12.5% constraint achieving the highest
accuracy. For drop-to-merge ratio (c), a balanced proportion (25%:25%) produces optimal results,
confirming our hypothesis that the two-phase approach benefits from a complementary relationship
between dropping and merging operations.

Calibration Data Selection has modest but measurable impacts on compression results. As shown in
Table 7 (d), general-domain text (C4) yields the best results, outperforming more specialized corpora.

Orthogonal Compatibility with Inference Acceleration. DM-MoE exhibits additive inference
speedups when combined with orthogonal compression techniques like quantization. As demonstrated
in Table 8, integrating DM-MoE with GPTQ yields a 1.35× speedup (119.97 tokens/sec) while
retaining a competitive average accuracy of 0.645. This confirms the complementary nature of these
approaches: expert reduction lowers memory overhead, while quantization accelerates computation
within the remaining active experts.

4 RELATED WORK

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 7: Average accuracy of settings in (a) transformation function, (b) smoothness constraint, (c)
total drop/merge ratio, (d) calibration data for Mixtral 8×7B→4×7B.

(a) Function

ϕ(·) Avg.

x 0.584
log(x+ 1) 0.601

ex/10 0.591

(b) Smoothness

Const. ∆max

12.5% 0.601
25.0% 0.593
37.5% 0.580

(c) Total Ratio

Drop:Merge Avg.

15%:35% 0.560
25%:25% 0.601
35%:15% 0.588

(d) Calib. Data

Calib Avg.

C4 0.601
Wikit.-2 0.591
MATH 0.593

Table 8: Combining Quantization Methods (GPTQ-4-Bits) on Mixtral-8×7B→6×7B.

Model ARC-c ARC-e BoolQ HellaS MMLU WinoG Avg. Runtime
(tokens/sec)

DM-MoE 0.522 0.819 0.843 0.615 0.631 0.700 0.688 88.87
DM-MoE + GPTQ 0.477 0.747 0.817 0.569 0.566 0.698 0.645 119.97 (1.35×)

Table 9: Methods Comparison.

Method Non-Uniform Hybrid Non-Search Non-Train
TSEP (2022) ✗ ✗ ✗ ✗
SEER-MoE (2024) ✗ ✗ ✗ ✗
NAEE (2024) ✗ ✗ ✗ ✗
SlimMoE (2025) ✗ ✗ ✓ ✗
MoE-Comp. (2024) ✗ ✗ ✓ ✓
MC-SMoE (2023a) ✗ ✗ ✓ ✓
HC-SMoE (2024) ✗ ✗ ✓ ✓
EEP (2024) ✗ ✗ ✗ ✓

DM-MoE (Ours) ✓ ✓ ✓ ✓

Table 9 clearly illustrates the difference between our
method and competitive expert reduction (drop/merge)
techniques: Our DM-MoE is the first hybrid com-
pressor that introduces drop-then-merge and layer-
wise adaptive allocation schemes, eliminating addi-
tional search and training. Existing expert drops like
TSEP (Chen et al., 2022) and SEER-MoE (Muzio et al.,
2024) typically require additional training due to suffering severe performance losses. Search-based
pruning techniques such as NAEE (Lu et al., 2024) and MoE-I² (Yang et al., 2024b) identify and
remove supposedly unimportant experts, but bring massive search costs. Different from SlimMoE (Li
et al., 2025), our approach involves no training or distillation. Merging approaches like MC-SMoE (Li
et al., 2023a), HC-SMoE (Chen et al., 2024), and EEP (Liu et al., 2024) utilize frequency, hierarchi-
cal clustering, and search methods to fuse experts, which suffer difficulties because of conflicting
parameters. In sharp contrast to these merge approaches, our DM-MoE introduces a sequential
drop-then-merge strategy that first eliminates truly redundant experts before carefully merging the
remaining functionally distinct ones, significantly reducing parameter conflicts while preserving
model performance. Our method also differs from weight compression techniques for MoE (He
et al., 2024; Lee et al., 2024; Xie et al., 2024) by focusing exclusively on inter-expert optimization. In
contrast to mixed-bit quantization approaches (Huang et al., 2025; Duanmu et al., 2025) that focus
on reducing weight precision, our DM-MoE targets a fundamentally different objective: addressing
functional redundancy among experts through our distinctive two-stage optimization settings and with
unique metrics. In addition, our approach is only a model-level compression procedure, essentially
distinct from system-level optimizations (Cai et al., 2024; Xue et al., 2024)). Detailed discussions are
in Appendix A.

5 CONCLUSIONS

In this paper, we present DM-MoE, a new MoE compression framework. Our key innovation is
the drop-then-merge paradigm that strategically drops redundant experts to facilitate more effective
subsequent merging. By adaptively allocating compression budgets based on hierarchical information
and diversity metrics, DM-MoE preserves critical knowledge while enabling aggressive expert
reduction. Extensive experiments on different MoE LLMs show that our method consistently
outperforms other approaches, achieving superior performance, especially at high compression ratios.
Our DM-MoE provides a practical path for deploying MoE LLMs in resource-constrained settings.

Limitations. While our DM-MoE builds the first drop-then-merge paradigm, it also brings extra time
in the compression process (more analysis in Appendix C.4). We will optimize it in future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work focuses on enhancing the efficiency of language models tested on publicly available models
and datasets and benchmarks. We present a technical framework to improve MoE model efficiency
while maintaining performance. No ethical or negative impacts are specifically designed in our
approach, as we simply compress existing models without altering their capabilities. Our method
may democratize access to advanced language models by reducing computational requirements,
potentially benefiting resource-constrained environments and reducing environmental impact.

REPRODUCIBILITY STATEMENT

We follow the standard experimental setup and details established in baselines such as HC-SMoE.
For all reported results, we conduct at least three experimental runs with different random seeds and
report the average performance. We use a fixed seed (42) for the main experiments presented in the
paper. Detailed experimental configurations are provided in Appendix Section E. Our implementation
is designed with modularity in mind, facilitating adaptation to different MoE architectures beyond
those tested in this work. We will open-source our complete implementation.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent advances
in graph partitioning. Algorithm Engineering: Selected Results and Surveys, pp. 117–158, 2016.

Weilin Cai, Juyong Jiang, Le Qin, Junwei Cui, Sunghun Kim, and Jiayi Huang. Shortcut-connected
expert parallelism for accelerating mixture-of-experts. arXiv preprint arXiv:2404.05019, 2024.

Ümit Çatalyürek, Karen Devine, Marcelo Faraj, Lars Gottesbüren, Tobias Heuer, Henning Meyer-
henke, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel Seemaier, et al. More recent
advances in (hyper) graph partitioning. ACM Computing Surveys, 2023.

I Chen, Hsu-Shen Liu, Wei-Fang Sun, Chen-Hao Chao, Yen-Chang Hsu, Chun-Yi Lee, et al.
Retraining-free merging of sparse mixture-of-experts via hierarchical clustering. arXiv preprint
arXiv:2410.08589, 2024.

Tianyu Chen, Shaohan Huang, Yuan Xie, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and Furu
Wei. Task-specific expert pruning for sparse mixture-of-experts. arXiv preprint arXiv:2206.00277,
2022.

Mohammed Nowaz Rabbani Chowdhury, Meng Wang, Kaoutar El Maghraoui, Naigang Wang, Pin-Yu
Chen, and Christopher Carothers. A provably effective method for pruning experts in fine-tuned
sparse mixture-of-experts. arXiv preprint arXiv:2405.16646, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Haojie Duanmu, Xiuhong Li, Zhihang Yuan, Size Zheng, Jiangfei Duan, Xingcheng Zhang, and
Dahua Lin. Mxmoe: Mixed-precision quantization for moe with accuracy and performance
co-design. arXiv preprint arXiv:2505.05799, 2025.

Elias Frantar and Dan Alistarh. Qmoe: Practical sub-1-bit compression of trillion-parameter models.
arXiv preprint arXiv:2310.16795, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Ralf Gommers, Pauli Virtanen, Matt Haberland, Evgeni Burovski, Tyler Reddy, Warren Weckesser,
Travis E Oliphant, David Cournapeau, Andrew Nelson, Pamphile Roy, et al. scipy/scipy: Scipy
1.15. 0. Zenodo, 2024.

Hao Gu, Wei Li, Lujun Li, Zhu Qiyuan, Mark Lee, Shengjie Sun, Wei Xue, and Yike Guo. Delta
decompression for moe-based LLMs compression. In ICML, 2025.

Shwai He, Daize Dong, Liang Ding, and Ang Li. Demystifying the compression of mixture-of-experts
through a unified framework. arXiv preprint arXiv:2406.02500, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In ICLR, 2021.

Wei Huang, Yue Liao, Jianhui Liu, Ruifei He, Haoru Tan, Shiming Zhang, Hongsheng Li, Si Liu, and
XIAOJUAN QI. Mixture compressor for mixture-of-experts LLMs gains more. In ICLR, 2025.

HamidReza Imani, Abdolah Amirany, and Tarek El-Ghazawi. Mixture of experts with mixture of
precisions for tuning quality of service. arXiv preprint arXiv:2407.14417, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. In SIAM Journal on Scientific Computing, volume 20, pp. 359–392. SIAM, 1998a.

George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular graphs. Journal
of Parallel and Distributed Computing, 48(1):96–129, 1998b.

Young Jin Kim, Raffy Fahim, and Hany Hassan Awadalla. Mixture of quantized experts (moqe):
Complementary effect of low-bit quantization and robustness. arXiv preprint arXiv:2310.02410,
2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019.

Dominique LaSalle and George Karypis. Multi-threaded graph partitioning. In 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, pp. 225–236. IEEE, 2013.

Jaeseong Lee, Aurick Qiao, Daniel F Campos, Zhewei Yao, Yuxiong He, et al. Stun: Structured-then-
unstructured pruning for scalable moe pruning. arXiv preprint arXiv:2409.06211, 2024.

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. arXiv
preprint arXiv:2310.01334, 2023a.

Pingzhi Li, Xiaolong Jin, Yu Cheng, and Tianlong Chen. Examining post-training quantization for
mixture-of-experts: A benchmark. arXiv preprint arXiv:2406.08155, 2024.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning: Do
different neural networks learn the same representations? Feature Extraction: Modern Questions
and Challenges, pp. 196–212, 2023b.

12

https://zenodo.org/records/10256836

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zichong Li, Chen Liang, Zixuan Zhang, Ilgee Hong, Young Jin Kim, Weizhu Chen, and Tuo Zhao.
Slimmoe: Structured compression of large moe models via expert slimming and distillation. In
COLM, 2025.

Enshu Liu, Junyi Zhu, Zinan Lin, Xuefei Ning, Matthew B Blaschko, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Efficient expert pruning for sparse mixture-of-experts language
models: Enhancing performance and reducing inference costs. arXiv preprint arXiv:2407.00945,
2024.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models. In ACL, 2024.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
2024.

Alexandre Muzio, Alex Sun, and Churan He. Seer-moe: Sparse expert efficiency through regulariza-
tion for mixture-of-experts. arXiv preprint arXiv:2404.05089, 2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, et al. GPT-4 technical report,
2024.

Soumajyoti Sarkar, Leonard Lausen, Volkan Cevher, Sheng Zha, Thomas Brox, and George Karypis.
Revisiting smoe language models by evaluating inefficiencies with task specific expert pruning.
arXiv preprint arXiv:2409.01483, 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, and others. Gemini 1.5:
Unlocking multimodal understanding across millions of tokens of context, 2024.

Qwen Team. Qwen1.5-MoE: Matching 7B Model Performance with 1/3 Activated Parameters",
February 2024. URL https://qwenlm.github.io/blog/qwen-moe/.

Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
router. arXiv preprint arXiv:2410.12013, 2024.

Fuzhao Xue, Xiaoxin He, Xiaozhe Ren, Yuxuan Lou, and Yang You. One student knows all experts
know: From sparse to dense. arXiv preprint arXiv:2201.10890, 2022.

Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh Marina. Moe-infinity: Activation-aware expert
offloading for efficient moe serving. arXiv preprint arXiv:2401.14361, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024a.

Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Yuanlin Duan, Wenqi Jia, Miao Yin,
Yu Cheng, and Bo Yuan. Moe-i2: Compressing mixture of experts models through inter-expert
pruning and intra-expert low-rank decomposition. arXiv preprint arXiv:2411.01016, 2024b.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024c.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Zeliang Zhang, Xiaodong Liu, Hao Cheng, Chenliang Xu, and Jianfeng Gao. Diversifying
the expert knowledge for task-agnostic pruning in sparse mixture-of-experts. arXiv preprint
arXiv:2407.09590, 2024.

13

https://qwenlm.github.io/blog/qwen-moe/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

In the appendix, we include an extended method comparison in Section A, additional experimental
results in Section B with subsections on computational efficiency (Section C.3) and optimization
time (Section C.4), a theoretical analysis in Section D, experimental details in Section E, algorithmic
tables in Section F, and a note on the use of large language models in Section G.

A EXTENDED METHOD COMPARISON

A.1 COMPARISON WITH MOE EXPERT REDUCTION METHODS

Our DM-MoE framework represents a significant advancement over existing expert reduction ap-
proaches. Previous methods can be categorized into two main types: expert dropping and expert
merging. Our DM-MoE differs fundamentally by introducing a sequential drop-then-merge strategy
that first eliminates truly redundant experts before carefully merging the remaining functionally
distinct ones. Unlike methods such as Zhang et al. (2024) and Sarkar et al. (2024) that apply uniform
compression strategies across all layers, our approach adaptively allocates compression budgets based
on layer-specific metrics, acknowledging the heterogeneous specialization patterns throughout the
model depth. Compared to optimization-based approaches like those in Chowdhury et al. (2024)
and Yang et al. (2024c), our method does not require expensive fine-tuning or search processes. In-
stead, we rely on efficient metric computation and constrained optimization to determine compression
strategies, making our approach more practical for large-scale models.

A.2 COMPARISON WITH MOE WEIGHT COMPRESSION METHODS

Weight compression techniques for MoE models, such as those presented in He et al. (2024) and Delta
Decompression (Gu et al., 2025), MoE-Pruner (Xie et al., 2024), and STUN (Lee et al., 2024), focus
on reducing the precision or size of individual expert parameters while maintaining the same number
of experts. These approaches operate at a different granularity than our expert-level compression
and can be considered complementary to our work. While methods like Xue et al. (2022) and Lee
et al. (2024) address parameter redundancy within experts through structured pruning, our DM-MoE
targets functional redundancy among experts through our distinctive two-stage process. It is worth
noting that our expert reduction approach can be combined with these weight compression techniques
to achieve even greater compression ratios. For example, applying Delta Decompression Gu et al.
(2025) to experts after our drop-then-merge process could further reduce memory requirements
without significant additional performance loss.

A.3 COMPARISON WITH QUANTIZATION METHODS

Mixed-bit quantization approaches for MoE models, such as MoQE (Kim et al., 2023), QMoE (Frantar
& Alistarh, 2023), and those benchmarked in Li et al. (2024), focus on reducing weight precision rather
than expert count. The comprehensive benchmark in (Li et al., 2024) highlights the challenges of
quantizing MoE models uniformly, supporting our argument for adaptive, layer-specific compression
strategies. These methods typically assign different quantization precision to different experts or
parameters based on their importance.

Unlike these quantization methods, our DM-MoE addresses the fundamental architecture of MoE
models by reducing and reorganizing the expert set. However, our adaptive allocation strategy shares
conceptual similarities with mixed-precision approaches in that both recognize the heterogeneous
nature of MoE components and apply different compression intensities accordingly.

A.4 COMPARISON WITH ADAPTIVE COMPRESSION IN DENSE LLMS

Adaptive compression techniques developed for dense LLMs, such as layer-adaptive pruning de-
scribed in (Yang et al., 2024c; Men et al., 2024; Yin et al., 2023), share methodological similarities
with our approach in recognizing that different layers in neural networks exhibit varying levels of
redundancy. However, MoE models present unique challenges due to their sparse routing mechanism
and expert specialization patterns.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0

2

4

6

layer_0 layer_1 layer_2 layer_3 layer_4 layer_5 layer_6 layer_7

0

2

4

6

layer_8 layer_9 layer_10 layer_11 layer_12 layer_13 layer_14 layer_15

0

2

4

6

layer_16 layer_17 layer_18 layer_19 layer_20 layer_21 layer_22 layer_23

0 2 4 6

0

2

4

6

layer_24

0 2 4 6

layer_25

0 2 4 6

layer_26

0 2 4 6

layer_27

0 2 4 6

layer_28

0 2 4 6

layer_29

0 2 4 6

layer_30

0 2 4 6

layer_31

All Layers Pairwise MI Matrix Heatmaps

Figure 4: Pairwise mutual information matrices for all 32 layers of Mixtral-8x7B. Each of the 32
small heatmaps represents a single layer, with axes corresponding to the 8 experts. Darker colors
indicate higher Mutual Information (MI) (greater redundancy) between expert pairs. The clear visual
progression from light-colored (low-MI) early layers to darker-colored (high-MI) later layers provides
direct visual evidence of increasing functional redundancy with network depth.

Our DM-MoE framework specifically addresses these MoE-specific challenges by considering not
only parameter redundancy but also functional redundancy across experts. Our output variance
and weight variance metrics are designed to capture the specialized routing behaviors and expert
interactions that are not present in dense models.

Unlike dense model compression techniques that often apply uniform compression ratios across all
parameters in a layer, our approach considers the functional relationships between experts when
making compression decisions. This MoE-specific perspective enables more effective knowledge
preservation even at high compression ratios.

B ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

B.1 ANALYSIS OF INTRA-LAYER EXPERT MUTUAL INFORMATION MATRICES

Figure 4 qualitatively analyzes the pairwise mutual information (MI) matrices across all 32 layers
of Mixtral-8x7B, providing visual evidence for hierarchical expert specialization. The heatmaps
reveal a clear progression: early layers (0-10) show light coloring, indicating low MI and highly
distinct expert roles specialized for basic features. Middle layers (11-22) exhibit gradual darkening,
reflecting increased MI and overlapping functional domains. Later layers (23-31) display the darkest
patterns, demonstrating high redundancy as experts converge on similar high-level representations.
This observed pattern directly justifies our approach of assigning higher preservation scores to low-MI
layers through the inverse correlation between Dinfo and Ilayer in our compression framework.

B.2 ROBUSTNESS ANALYSIS OF METRICS

We evaluate the stability of our metrics across different calibration datasets and random seeds on
Mixtral-8×7B. Figure 5 demonstrates that both mutual information (left) and diversity metrics (right)
exhibit remarkable consistency across conditions. All three curves (C4, WikiText-2, and different
random seeds) closely overlap across all 32 layers, with the characteristic progression from low
values in early layers to high values in later layers remaining stable. This confirms that our metrics
capture intrinsic architectural properties rather than dataset-specific artifacts. Figure 6 shows that
these stable metrics yield consistent layer-wise expert allocations. Both C4 calibration (left) and
different random seeds (right) produce nearly identical allocation patterns, with drop and merge phase
curves overlapping across all layers. This demonstrates that domain shifts or seed variations do not

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Distributions of mutual information (left) and diversity metrics (right) across different
calibration datasets or random seeds on Mixtral-8×7B.

Figure 6: Number of remaining experts in each layer on Mixtral-8×7B after our adaptive drop and
merge phases under C4 calibration dataset (left) and other random seeds (right).

substantially alter our layer allocation decisions, as the underlying structural patterns remain invariant
to these perturbations.

C INFERENCE EFFICIENCY ANALYSIS

We evaluate the original and compressed versions of the Mixtral-8x7B model on a single NVIDIA
H800 GPU. Runtime is measured as the throughput in tokens per second when processing a batch
of sequences with a fixed length of 2048 tokens. The memory footprint represents the peak GPU
memory consumption during this inference process. The GFLOPs are calculated for a single forward
pass. Table 10 presents the key efficiency metrics. The results demonstrate that DM-MoE effectively
reduces the model’s static footprint. The compression leads to a direct reduction in Model Size and
peak Memory usage, as these are primarily functions of the total number of parameters. Similarly,
the theoretical computational cost, measured in GFLOPs, decreases proportionally with the number
of experts because the FLOPs calculation includes all parameters in the model. However, the
Runtime throughput remains nearly identical across different compression levels. This result is
expected and stems from the core design of Mixture-of-Experts models. The inference time is
dominated by the active experts—the small subset (e.g., top-2) selected by the router for each token.
Since DM-MoE reduces the total number of experts but preserves the number of active experts per
token (the top-k value), the computational graph’s critical path and the latency of the MoE layers
remain largely unchanged. The primary gains are in reduced memory bandwidth requirements for
loading parameters and a smaller memory footprint, which are crucial for deploying large models
in constrained environments but may not directly translate to latency reduction under the measured
conditions. Note that Inference speed (Runtime throughput) is not a critical deployment bottleneck
for MoE LLMs. Recent literature shows MoE architectures achieve 5-10× faster inference than dense
LLMs of comparable size through selective activation (Jiang et al., 2024). Mixtral-8×7B (46.7B total
parameters) matches dense 7B inference speeds while providing 13B-level performance. Given MoE’s
inherent efficiency, our focus on memory reduction enables deployment on resource-constrained
devices (e.g., mobile GPUs), addressing the genuine bottleneck.

C.1 COMPUTATIONAL OPTIMIZATION FOR MASSIVE MOES

The large number of experts in massive MoEs significantly increases the complexity of Canonical
Correlation Analysis and graph partitioning. For instance, models with 128 experts per layer require

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Inference efficiency metrics for original and DM-MoE compressed Mixtral-8×7B models.
Runtime denotes throughput (tokens/sec) on a single H800 GPU.

Experts Model Size (B) GFLOPs Memory (GB) Runtime (tokens/sec)
Num=8 (Original) 46.7 2988 87.5 87.73
Num=6 (DM-MoE) 35.4 2266 66.4 88.87
Num=4 (DM-MoE) 24.2 1546 45.3 89.96

(
128
2

)
= 8,128 pairwise comparisons, making traditional approaches computationally prohibitive. We

implemented the following optimizations to address this challenge:

Statistics Dimension Reduction. For MoE models with 128 experts per layer, we compute CCA
using the average input collected from each expert. This approach achieves extremely fast com-
putation, requiring only O(d) vector operations instead of O(d3) matrix operations. It consumes
minimal memory by eliminating the need to store the full sample matrix, making it well-suited
for rapid screening in large-scale models. Specifically, we do not store each expert’s complete
output sample set. Instead, we accumulate running averages during the forward pass, ultimately
representing each expert with a single average vector. For a layer with 128 experts, this requires only
128× 127/2 = 8,128 simple vector similarity calculations, rather than complex high-dimensional
matrix operations. This substantially enhances computational efficiency on large-scale MoE models.

Graph Partitioning Optimization. For graph partitioning, we employ the METIS method (Karypis
& Kumar, 1998a;b), which uses multilevel k-way partitioning to reduce the original complexity
from O(n2) to approximately linear complexity O(n log n) through coarsening, partitioning, and
refinement phases (Buluç et al., 2016). METIS has been demonstrated to efficiently handle large-scale
graphs with millions of vertices while maintaining high partition quality (LaSalle & Karypis, 2013).

Following our optimization, compression of Qwen3-30B-A3B from 128 to 96 experts requires: CCA
calculation 112.77 seconds, drop & merge stage expert allocation 0.33 seconds, drop expert phase 13
minutes 48 seconds, graph partitioning clustering 1061.44 seconds, and expert merging 0.43 seconds.
The total compression time of approximately 30 minutes demonstrates the practical efficiency of our
approach for massive MoE models.

C.2 WIKITEXT-2 AND C4 PERPLEXITY RESULTS

To further assess the language modeling capabilities of the compressed models, we evaluate their
perplexity on two standard benchmarks: WikiText-2 and C4. Lower perplexity scores indicate a
better ability to model the underlying language distribution.

The results on the WikiText-2 dataset are presented in Table 11. Our DM-MoE method consistently
outperforms the HC-SMoE baseline across both Qwen3-30B-A3B and DeepSeek-V2-Lite models at
different compression ratios. For instance, when compressing DeepSeek-V2-Lite to 32 experts, DM-
MoE achieves a perplexity of 19.85, a significant improvement over HC-SMoE’s 25.10. Similarly, for
Qwen3-30B-A3B at a 128→64 compression, our method’s perplexity of 17.79 is substantially lower
than the baseline’s 72.33, demonstrating the superior performance of our approach in preserving
language modeling capabilities.

Table 12 shows the perplexity results on the C4 dataset. Similar to the WikiText-2 results, DM-MoE
maintains a clear advantage over HC-SMoE. For Qwen3-30B-A3B compressed from 128 to 64
experts, our method achieves a perplexity of 32.28, whereas HC-SMoE’s performance degrades
significantly to 148.41. These results across two diverse datasets and models confirm that our
drop-then-merge strategy is highly effective at retaining the core language understanding abilities of
large-scale MoE models after compression.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 11: Comparison of Wikitext-2 perplexity (↓) between HC-SMoE and DM-MoE compression
methods.

Method Qwen3-30B-A3B DeepSeek-V2-Lite
128→96 128→64 64→48 64→32

Original 8.70 7.274
HC-SMoE 18.87 72.33 11.25 25.10
DM-MoE (Ours) 11.07 17.79 9.94 19.85

Table 12: Comparison of C4 perplexity (↓) between HC-SMoE and DM-MoE compression methods.

Method Qwen3-30B-A3B DeepSeek-V2-Lite
128→96 128→64 64→48 64→32

Original 14.52 11.63
HC-SMoE 29.68 148.41 18.54 43.53
DM-MoE (Ours) 17.31 32.28 15.28 35.88

C.3 COMPUTATIONAL TIME ANALYSIS

We provide a detailed analysis of the computational costs for our DM-MoE framework, breaking
down the runtime for each component during the compression process. Table 13 presents the timing
breakdown for compressing Mixtral-8×7B to 4×7B experts on 8 NVIDIA H800 GPUs.

Table 13: Timing breakdown of DM-MoE compression components

Component Time (seconds)
metric calculation 570.94
Drop & merge stage expert allocation 0.12
Drop expert phase 9.37
Graph partitioning clustering 10.81
Expert merging 0.18

Total dropping phase 9.37
Total merging phase 10.99
Total compression time 592.29

The analysis reveals a clear computational profile for our two-stage compression approach. Expert
assessment and metric calculation dominates the runtime, consuming 570.94 seconds (96.5% of total
time). This phase encompasses comprehensive expert profiling including mutual information compu-
tation, output deviation analysis, and layer-wise diversity metric calculations across the calibration
dataset. The substantial time investment here is necessary for accurate expert characterization and
enables the subsequent optimization stages to make informed decisions.

The actual compression operations demonstrate remarkable efficiency once the metrics are computed.
The dropping phase requires only 9.37 seconds to identify and remove redundant experts, while
the merging phase completes in 10.99 seconds despite performing sophisticated graph partitioning
clustering (10.81 seconds) and expert fusion (0.18 seconds). The two-stage expert count optimization,
which determines optimal expert allocation across layers, completes in just 0.12 seconds, highlighting
the efficiency of our constrained optimization formulation.

This timing profile reflects the design philosophy of our framework: invest computational resources
upfront in thorough expert analysis to enable rapid and precise compression decisions. While the total
compression time of approximately 10 minutes represents a significant upfront cost, this one-time
investment yields substantial long-term benefits through improved inference efficiency and better
performance preservation compared to simpler compression methods.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.4 EXPERT ALLOCATION OPTIMIZATION TIME ANALYSIS

We analyze the computational efficiency of our adaptive expert allocation optimization using the
scipy’s minimize function with the SLSQP method. Table 14 presents detailed runtime measurements
across different models and compression ratios.

Table 14: CPU runtime (seconds) for adaptive expert allocation optimization using SLSQP.

Model Compression Time (s)

Mixtral-8×7B 8→6 0.41
8→4 0.12

Qwen1.5-MoE-A2.7B-Chat 60→45 0.33
60→30 0.39

Qwen3-30B-A3B 128→96 1.65
128→64 1.62

The SLSQP optimization demonstrates remarkable efficiency due to the problem’s inherently low
dimensionality, with only one decision variable per layer. Our measurements show that the expert
allocation optimization completes within seconds even for large models like Qwen3-30B-A3B with
128 experts. This efficiency stems from the closed-form objective and constraint expressions we
developed, which eliminate the need for iterative gradient calculations typically associated with
neural network optimization. Since this optimization process executes only once at the beginning of
the compression pipeline, its computational overhead is negligible compared to the subsequent expert
dropping and merging operations in our framework.

C.5 ANALYSIS OF STATISTICAL SIGNIFICANCE

The standard errors reported in Table 15 demonstrate the statistical robustness of our DM-MoE
approach across multiple models and compression ratios. The remarkably small standard errors
(ranging from ±0.001 to ±0.004) across all metrics indicate highly consistent performance across
different experimental runs. Particularly noteworthy is the low variability in the average metrics
(±0.001 to ±0.002), confirming that our performance improvements are statistically significant and
not due to chance or specific initialization conditions. For individual tasks, standard errors are slightly
higher in specialized reasoning tasks like OBQA (up to ±0.004), reflecting the inherent variability in
these more complex evaluations, while more general tasks show greater consistency. These small
standard errors across three independent runs with different random seeds (42, 43, 44) validate the
stability of our approach. Additionally, paired t-tests (p < 0.05) confirmed that the performance
differences between our DM-MoE and baseline methods are statistically significant, as detailed in
our evaluation protocol.

C.6 COMPREHENSIVE ABLATION RESULTS

To provide a comprehensive evaluation of our proposed method, we conducted a series of detailed
ablation studies. The complete results, presented in Table 16, systematically analyze the impact of
different components within our framework. We investigate four key aspects: (a) the metric used for
adaptive allocation, (b) the criteria for expert dropping, (c) the strategy for expert grouping, and (d)
the method for expert merging. The results highlight that our chosen combination of ‘Inform’ for
allocation, ‘Variation’ for dropping, and our Graph approach for grouping consistently yields the best
performance, achieving an average accuracy of 0.601. This underscores the effectiveness of each
component in our integrated drop-then-merge pipeline.

Furthermore, we analyze the sensitivity of our framework to various hyperparameters in Table 17.
This includes an examination of (a) the transformation function ϕ(·), (b) the smoothness constraint
∆max, (c) the source of calibration data, and (d) the drop-to-merge ratio. Our findings indicate
that using a logarithmic transformation (log(x+ 1)), a smoothness constraint of 12.50%, C4 as the
calibration data, and a balanced 25%:25% drop-to-merge ratio provides the optimal configuration for
compressing Mixtral 8x7B to 4x7B. These results not only validate our default parameter choices but
also offer valuable insights into the robustness and tunability of the DM-MoE framework.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 15: Result (%) with standard errors across datasets on eight diverse reasoning and understanding
tasks.

Expert Method ARC-c ARC-e BoolQ HellaS. MMLU OBQA RTE WinoG. Average↑
Mixtral-8×7B

Num=6 DM-MoE 0.522±0.003 0.819±0.002 0.843±0.003 0.615±0.002 0.631±0.003 0.324±0.004 0.700±0.003 0.756±0.002 0.651±0.001

Num=4 DM-MoE 0.443±0.003 0.744±0.003 0.839±0.002 0.556±0.003 0.539±0.004 0.288±0.003 0.686±0.002 0.714±0.003 0.601±0.002

Qwen1.5-MoE-A2.7B-Chat
Num=45 DM-MoE 0.354±0.002 0.615±0.003 0.802±0.002 0.525±0.002 0.590±0.003 0.252±0.003 0.733±0.003 0.659±0.002 0.566±0.001

Num=30 DM-MoE 0.315±0.003 0.563±0.003 0.739±0.003 0.434±0.002 0.515±0.004 0.242±0.003 0.718±0.002 0.603±0.003 0.516±0.002

Qwen3-30B-A3B
Num=96 DM-MoE 0.481±0.003 0.765±0.002 0.869±0.002 0.543±0.003 0.666±0.003 0.292±0.004 0.841±0.002 0.696±0.003 0.644±0.001

Num=64 DM-MoE 0.398±0.003 0.675±0.003 0.817±0.002 0.446±0.003 0.504±0.004 0.276±0.003 0.711±0.003 0.620±0.002 0.556±0.002

DeepSeek-V2-Lite
Num=48 DM-MoE 0.378±0.002 0.709±0.003 0.685±0.003 0.499±0.002 0.389±0.003 0.292±0.003 0.599±0.002 0.686±0.003 0.530±0.001

Num=32 DM-MoE 0.301±0.003 0.604±0.002 0.617±0.002 0.369±0.003 0.231±0.003 0.202±0.004 0.560±0.003 0.597±0.002 0.435±0.002

Table 16: Complete result accuracy for the Mixtral 8x7B→ 4x7B model under settings: (a) allocation,
(b) expert drop, (c) expert group, and (d) expert merge.

Setting ARC-c ARC-e BoolQ HellaS. MMLU OBQA RTE WinoG. Average

(a) Allocation Metric

Outlier 0.441 0.733 0.756 0.550 0.432 0.276 0.545 0.714 0.556
Diversity 0.429 0.734 0.791 0.556 0.409 0.254 0.552 0.732 0.557
Inform 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601

(b) Expert Drop Metric

Outlier 0.441 0.737 0.771 0.554 0.529 0.242 0.570 0.713 0.570
Route-logits 0.427 0.721 0.661 0.528 0.512 0.298 0.531 0.728 0.551
Variation 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601

(c) Expert Grouping

HC 0.434 0.751 0.826 0.547 0.500 0.284 0.679 0.719 0.593
K-means 0.445 0.758 0.831 0.557 0.489 0.288 0.606 0.711 0.586
Graph 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601

(d) Expert Merge

Avg. 0.184 0.433 0.531 0.292 0.249 0.152 0.523 0.534 0.362
Freq. 0.389 0.706 0.736 0.516 0.461 0.244 0.596 0.720 0.546
Ours 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601

D THEORETICAL ANALYSIS OF DROP-THEN-MERGE STRATEGY

We present a theoretical analysis of why our sequential drop-then-merge approach outperforms direct
expert merging. Our analysis formalizes the intuition that removing truly redundant experts first
facilitates more effective subsequent merging by reducing parameter conflicts.

D.1 EXPERT IMPORTANCE AND FUNCTIONAL REDUNDANCY

Let us consider a set of N experts {E1, E2, . . . , EN} in a specific layer. Each expert Ei is parame-
terized by weight matrices Wi ∈ Rd×m. We define the functional importance I(Ei) of an expert Ei

as its contribution to the overall model output:

I(Ei) = Ex∼D
[
∥M(x)−M−i(x)∥22

]
(12)

whereM(x) is the output of the full model on input x,M−i(x) is the output with expert Ei removed,
and D is the data distribution.

We can partition the experts into two sets: high-importance experts H = {Ei|I(Ei) > τ} and
low-importance experts L = {Ei|I(Ei) ≤ τ} for some threshold τ .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 17: Complete result accuracy for the Mixtral 8x7B→ 4x7B model under settings: (a) trans-
formation function, (b) smoothness constraint, (c) calibration data for two-phase, and (d) overall
drop/merge ratio.

Setting ARC-c ARC-e BoolQ HellaS. MMLU OBQA RTE WinoG. Average

(a) Transformation Function ϕ(x)

x 0.432 0.750 0.838 0.552 0.487 0.270 0.628 0.713 0.584
log(x+ 1) 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601
ex/10 0.456 0.745 0.831 0.557 0.477 0.288 0.650 0.722 0.591

(b) Smoothness Constraint ∆max

12.50% 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601
25.00% 0.434 0.751 0.826 0.547 0.500 0.284 0.679 0.719 0.593
37.50% 0.427 0.734 0.808 0.543 0.485 0.270 0.653 0.723 0.580

(c) Calibration Data

C4 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601
Wikitext-2 0.456 0.745 0.831 0.557 0.477 0.288 0.650 0.722 0.591
MATH 0.462 0.754 0.827 0.559 0.575 0.266 0.578 0.721 0.593

(d) Drop-to-Merge Ratios

15%:35% 0.408 0.695 0.800 0.516 0.484 0.254 0.603 0.721 0.560
25%:25% 0.443 0.744 0.839 0.556 0.539 0.288 0.686 0.714 0.601
35%:15% 0.451 0.746 0.802 0.556 0.511 0.296 0.603 0.737 0.588

D.2 PARAMETER CONFLICT IN EXPERT MERGING

When merging experts, we typically use weighted averaging of parameters:

Wmerged =

∑
i∈S αiWi∑
i∈S αi

(13)

where S is the set of experts being merged and αi are importance weights (e.g., activation frequencies).

We define the parameter conflict between two experts as:

C(Ei, Ej) = ∥Wi −Wj∥2F (14)

where ∥ · ∥F denotes the Frobenius norm.

Lemma D.1. For any set of experts S, the expected squared error introduced by merging is propor-
tional to the weighted variance of the expert parameters:

E(S) =
∑

i∈S αi∥Wi −Wmerged∥2F∑
i∈S αi

=

∑
i,j∈S αiαjC(Ei, Ej)

2
(∑

i∈S αi

)2 (15)

Proof. This follows from the definition of variance and the fact that Wmerged is the weighted centroid
of the expert parameters:

E(S) =
∑

i∈S αi∥Wi −Wmerged∥2F∑
i∈S αi

(16)

=

∑
i∈S αi

∥∥∥Wi −
∑

j∈S αjWj∑
j∈S αj

∥∥∥2
F∑

i∈S αi
(17)

(18)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Expanding and applying the properties of the Frobenius norm:

E(S) = 1∑
i∈S αi

∑
i∈S

αi

∥Wi∥2F − 2

∑
j∈S αj⟨Wi,Wj⟩∑

j∈S αj
+

∥∥∥∥∥
∑

j∈S αjWj∑
j∈S αj

∥∥∥∥∥
2

F

 (19)

(20)

After algebraic manipulation:

E(S) =
∑

i∈S αi∥Wi∥2F∑
i∈S αi

−
∥∥∥∥∑i∈S αiWi∑

i∈S αi

∥∥∥∥2
F

(21)

=

∑
i,j∈S αiαj∥Wi∥2F −

∑
i,j∈S αiαj⟨Wi,Wj⟩

(
∑

i∈S αi)2
(22)

=

∑
i,j∈S αiαj(∥Wi∥2F − ⟨Wi,Wj⟩)

(
∑

i∈S αi)2
(23)

(24)

Using the identity ∥Wi −Wj∥2F = ∥Wi∥2F + ∥Wj∥2F − 2⟨Wi,Wj⟩:

E(S) =
∑

i,j∈S αiαjC(Ei, Ej)

2(
∑

i∈S αi)2
(25)

(26)

which completes the proof.

D.3 THEORETICAL ADVANTAGES OF DROP-THEN-MERGE

We now prove that a drop-then-merge strategy results in lower parameter conflict than direct merging
of all experts.
Theorem D.2. Let S = H ∪ L be the full set of N experts. Consider two strategies:

1. Strategy A: Directly merge all N experts into N
2 experts

2. Strategy B: First drop the N
2 least important experts from L, then merge the remaining N

2

experts into N
4 experts

If low-importance experts tend to have higher parameter conflict with high-importance experts, i.e.,
EEi∈H,Ej∈L[C(Ei, Ej)] > EEi,Ej∈H[C(Ei, Ej)], then Strategy B results in lower merging error
than Strategy A.

Proof. Let’s denote the error from merging in Strategy A as EA and in Strategy B as EB .

For Strategy A, we merge the full set S into N
2 merged experts. If we assume optimal clustering

(which minimizes EA), the error is still bounded by:

EA ≥
1

N2

∑
i,j∈S

αiαjC(Ei, Ej) · I[Ei and Ej are merged] (27)

where I is the indicator function. Even with optimal clustering, approximately half of all expert pairs
will be merged together.

For Strategy B, we first drop experts from L, leaving onlyH. The merging error becomes:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

EB ≥
1

|H|2
∑
i,j∈H

αiαjC(Ei, Ej) · I[Ei and Ej are merged] (28)

Given our assumption that EEi∈H,Ej∈L[C(Ei, Ej)] > EEi,Ej∈H[C(Ei, Ej)], we can write:

EA − EB ≈
1

N2

∑
i∈H,j∈L

αiαjC(Ei, Ej) · I[Ei and Ej are merged] (29)

− 1

|H|2
∑
i,j∈H

αiαjC(Ei, Ej) · I[Ei and Ej are merged] (30)

+
1

N2

∑
i,j∈H

αiαjC(Ei, Ej) · I[Ei and Ej are merged] (31)

Since 1
N2 < 1

|H|2 (as |H| < N), and C(Ei, Ej) is higher for Ei ∈ H, Ej ∈ L pairs, the first term
dominates and EA − EB > 0, establishing that EB < EA.

D.4 EMPIRICAL VALIDATION

Our theoretical analysis predicts that experts with low importance tend to have higher parameter
conflict with important experts. To validate this, we measured the average cosine similarity between
experts before and after dropping:

AvgSim(S) =
1

|S|(|S| − 1)

∑
i ̸=j∈S

cos(Wi,Wj) (32)

As shown in Figure 1, after dropping 25% of low-importance experts, the average similarity among
remaining experts increases substantially. This confirms our theoretical prediction that removing
low-importance experts reduces parameter conflicts for subsequent merging.

Moreover, our experimental results in Table 3 validate our theoretical findings, showing that the
drop-then-merge strategy consistently outperforms both drop-only and merge-only approaches across
all datasets and models.

D.5 KNOWLEDGE PRESERVATION ANALYSIS

We can further analyze this through the lens of knowledge preservation. Each expert Ei encodes a
specific function fi : Rd → Rm. The knowledge loss when dropping an expert Ei is proportional to
its importance I(Ei).

When merging experts, knowledge loss occurs due to parameter averaging. Specifically, for two
experts Ei and Ej with functions fi and fj , the merged expert implements a function fi,j that
approximates both original functions. The approximation error for input x is:

ϵi,j(x) = αi∥fi,j(x)− fi(x)∥22 + αj∥fi,j(x)− fj(x)∥22 (33)

This error increases with the functional distance between fi and fj , which correlates with the
parameter distance C(Ei, Ej).

By first removing low-importance experts (small I(Ei)) that have high parameter conflict with
important experts (large C(Ei, Ej) for Ej ∈ H), we minimize both the knowledge loss from
dropping and the approximation error in subsequent merging. This explains why our drop-then-merge
strategy achieves superior performance preservation compared to alternative approaches.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 18: Architectural details of MoE models used in experiments.

Model Params Layers Experts Hidden FFN Dim Top-k
Mixtral-8×7B 46.7B 32 8 4096 14336 2
Qwen1.5-MoE-A2.7B 14.3B 24 60 2048 11008 4
Qwen3-30B-A3B 30.5B 48 128 6144 24576 8
DeepSeek-V2-Lite 15.7B 60 64 2048 1408 6
GPT-OSS-20B 21.5B 24 32 2880 2880 4

Algorithm 1 DM-MoE: Adaptive Drop-then-Merge MoE Compression Framework

Require: MoE model M with L layers and E experts per layer, calibration dataset X , target
compression ratio α

Ensure: Compressed model M ′′ with reduced expert count
1: // Calculate intermediate and final expert counts
2: KTotal ←

⌊
L · E · (1+α)

2

⌋
▷ Intermediate expert count after dropping

3: GTotal ← ⌊L · E · α⌋ ▷ Final expert count after merging
4: // Phase 1: Expert Dropping
5: M ′ ← AdaptiveExpertDropping(M,X,KTotal) ▷ Algorithm 2
6: // Phase 2: Expert Merging
7: M ′′ ← AdaptiveExpertMerging(M ′, X,GTotal) ▷ Algorithm 3
8: return Compressed model M ′′

E EXPERIMENTAL DETAILS

E.1 MODEL ARCHITECTURE DETAILS

We provide comprehensive architectural details in Table 18 for all MoE models used in our experi-
ments:

E.2 CALIBRATION DATASET CONSTRUCTION

Our calibration dataset is constructed to generate representative samples from a large-scale corpus.
We utilize the C4 dataset, from which we first randomly shuffle and select a subset of the training
split. These text samples are then encoded using the model-specific tokenizer. To handle variable-
length inputs and ensure computational efficiency, all tokenized sequences are concatenated and then
chunked into fixed-length sequences of 2,048 tokens. From these, we select 16 sequences to form the
final calibration dataset, which is then used to compute our proposed metrics.

E.3 IMPLEMENTATION DETAILS

We implement our framework using PyTorch and Hugging Face Transformers. We begin by sampling
16 sequences (each containing 2,048 tokens) from the C4 dataset to construct a calibration dataset,
which is used to compute expert similarity metrics. For the optimization component, we adopt the
SLSQP algorithm from SciPy to solve the expert allocation constrained optimization problems. This
method accurately handles complex constraints while maintaining high efficiency, requiring only a
few seconds per model. For the objective function, we apply logarithmic transformation functions,
specifically ϕ(x) = log(x+ 1), to balance expert allocation across different layers. The two-stage
adjacent-layer smoothness constraints, ∆max is set to 12.5% of the total number of experts per layer
to ensure gradual changes in the number of experts between layers.

Adaptive Expert Allocation and Optimization Strategy. For both the dropping and merging
phases of expert allocation, we implement adaptive assignment through similar but independent
constrained optimization problems. In the expert dropping phase, we utilize mutual information
as the layer-wise importance metric to quantify the information shared between individual expert
outputs and the overall layer output, thereby assessing functional redundancy. For the expert merging

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 2 Layer-wise Adaptive Expert Dropping

Require: MoE model M with L layers and E experts per layer, calibration dataset X , target retention
count Ktotal

Ensure: Compressed model M ′ with reduced experts
1: // Compute layer-wise mutual information metrics
2: for each layer l ∈ {1, . . . , L} do
3: for each expert pair (i, j) where i < j do
4: Iij ← I(yi;yj) using CCA under Gaussian assumptions ▷ Mutual information
5: end for
6: Ilayer ←

∑E−1
i=1

∑E
j=i+1 Iij ▷ Layer-wise total mutual information

7: Dl
info ← 1− 1

1+e
−Ilayer

▷ Diversity score with sigmoid normalization
8: end for
9: // Solve constrained optimization for layer-wise allocation

10: K1, . . . ,KL ← argminK1,...,KL
−

∑L
l=1 D

l
info · ϕ(Kl)

11: subject to:
∑L

l=1 Kl = Ktotal, Kmin
l ≤ Kl ≤ Kmax

l , |Kl −Kl+1| ≤ ∆max

12: // Expert selection within each layer
13: for each layer l ∈ {1, . . . , L} do
14: for each expert i ∈ {1, . . . , E} do
15: δi ← 1

|X|
∑

x∈X ∥Ql(x)−Q−i
l (x)∥2 ▷ Output deviation when expert i is removed

16: end for
17: Sort experts by δi in descending order
18: Keep top Kl experts, discard the rest
19: end for
20: return Updated model M ′ with retained experts

Algorithm 3 Intra-Layer Expert Sorting and Selection

Require: Layer l with experts {E1, . . . , EE}, calibration dataset X , retention count Kl

Ensure: Selected subset of Kl experts to retain
1: // Compute output impact for each expert
2: for each expert i ∈ {1, . . . , E} do
3: // Calculate original layer output
4: for each input x ∈ X do
5: Ql(x)← forward pass through layer l with all experts
6: end for
7: // Calculate layer output with expert i removed
8: for each input x ∈ X do
9: Temporarily remove expert Ei from the layer

10: Redistribute routing weights among remaining experts
11: Q−i

l (x)← forward pass through modified layer
12: Restore expert Ei to the layer
13: end for
14: // Compute output deviation metric for expert i
15: δi ← 1

|X|
∑

x∈X ∥Ql(x)−Q−i
l (x)∥2

16: end for
17: // Sort experts by their impact
18: SortedExperts← SortDescending({E1, . . . , EE}, {δ1, . . . , δE})
19: // Select top Kl experts with highest impact
20: SelectedExperts← SortedExperts[1 : Kl]
21: return SelectedExperts

phase, we adopt the sum of output cosine similarities between all expert pairs within a layer as the
importance metric to measure functional diversity. Both phases incorporate global expert number
constraints (

∑L
l=1 Kl = KTotal and

∑L
l=1 Gl = GTotal), per-layer upper and lower bounds, as well as

adjacent-layer smoothness constraints. This ensures that the allocation strategy satisfies the overall

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Algorithm 4 Layer-wise Adaptive Expert Merging

Require: MoE model M ′ with L layers and Kl experts per layer, calibration dataset X , target
merged count Gtotal

Ensure: Compressed model M ′′ with merged experts
1: // Compute layer-wise similarity-based diversity metrics
2: for each layer l ∈ {1, . . . , L} do
3: for each expert pair (i, j) where i < j do
4: Sout

ij ← cos(yi, yj) ▷ Expert output similarity
5: end for
6: S̄l ← 1

(Kl
2)

∑Kl−1
i=1

∑Kl

j=i+1 S
out
ij ▷ Average similarity

7: Dl
div ← −S̄l ▷ Diversity metric

8: end for
9: // Solve constrained optimization for layer-wise allocation

10: G1, . . . , GL ← argminG1,...,GL
−
∑L

l=1 D
l
output · ϕ(Gl)

11: subject to:
∑L

l=1 Gl = Gtotal, 1 ≤ Gl ≤ Kl, |Gl −Gl+1| ≤ ∆max

12: // Expert clustering and merging within each layer
13: for each layer l ∈ {1, . . . , L} do
14: Construct similarity graph with experts as vertices and Sout

ij as edge weights
15: P ← GraphPartitioning(Sout, Gl) ▷ Algorithm 5
16: for each expert i ∈ {1, . . . ,Kl} do
17: αi ← f̄i + δ̄i ▷ Importance weight: frequency + output deviation
18: end for
19: for each partition Vk ∈ P do
20: Wmerged,k ←

∑
i∈Vk

αi·Wi∑
i∈Vk

αi
▷ Importance-weighted merging

21: end for
22: Replace original experts with merged experts
23: end for
24: return Updated model M ′′ with merged experts

compression ratio requirements while maintaining the coherence of the model architecture. Our
optimization objective is to maximize the weighted product of the importance metric and the number
of experts, allowing more experts to be retained in layers with higher importance, while enabling
more aggressive compression in layers with higher redundancy.

Drop Phase: Layerwise Expert Dropping. During the expert pruning phase, we wrap each
MoE layer with the PrunableMixtralSparseMoeBlockWrapper class, enabling us to assess and
modify the expert composition while preserving the original model’s forward computation. For each
expert Ei, we quantify its importance by measuring the impact of its removal on the layer output,
specifically by computing the L2 distance between the original output and the output after removing
the expert. Experts in each layer are ranked in descending order of importance, and the top Kl

experts—according to the optimized allocation—are retained. For the pruned experts, we update
the routing network’s weight matrix to reassign their routing logic to the retained experts, thereby
maintaining the consistency of the model architecture without requiring additional fine-tuning.

Merge Phase: Group-wise Expert Merging. In the expert merging phase, we implement a graph-
based clustering algorithm to group similar experts. For each layer, we construct a fully connected
graph where each node corresponds to an expert. The weight of an edge between two nodes is defined
by the cosine similarity of the corresponding expert’s output representations, capturing the functional
relationships between experts rather than merely their parameter-space proximity.

Graph Partitioning Implementation. We then apply a graph partitioning algorithm to divide the ex-
perts into Gl clusters, the number determined by our optimization strategy for that layer. Since finding
the optimal grouping is computationally expensive (NP-hard), we use a fast iterative vertex-swapping
algorithm for expert grouping: it repeatedly evaluates each expert’s current partition, explores moves
to other partitions that improve intra-partition similarity, performs beneficial reassignments, and

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 5 Graph Partitioning for Expert Clustering

Require: Expert similarity matrix S ∈ RK×K , number of partitions G, max iterations T , tolerance
ϵ

Ensure: Partition assignments for each expert
1: // Random initialization with constraint validation
2: Randomly assign each expert to one of G partitions
3: Ensure each partition Vk contains at least one expert
4: costprev ←∞
5: for t = 1 to T do
6: improved← False
7: for each expert i ∈ {1, . . . ,K} do
8: Vcurrent ← partition containing expert i
9: costbest ← ComputeIntraPartitionCost(P)

10: Vbest ← Vcurrent
11: for each partition Vk ∈ P \ {Vcurrent} do
12: if |Vcurrent| > 1 then ▷ Ensure partition doesn’t become empty
13: Move expert i from Vcurrent to Vk

14: costnew ← ComputeIntraPartitionCost(P)
15: if costnew > costbest then
16: costbest ← costnew
17: Vbest ← Vk

18: improved← True
19: end if
20: Move expert i back to Vcurrent ▷ Restore
21: end if
22: end for
23: if Vbest ̸= Vcurrent then
24: Move expert i to Vbest
25: end if
26: end for
27: costcurrent ← ComputeIntraPartitionCost(P)
28: if |costprev − costcurrent| < ϵ then
29: break ▷ Convergence reached
30: end if
31: if not improved then ▷ Random perturbation to escape local optima
32: Randomly swap assignments of ⌊K/(10 ·G)⌋ expert pairs
33: end if
34: costprev ← costcurrent
35: end for
36: return Partition assignments P for each expert

Function ComputeIntraPartitionCost(P):
37: cost← 0
38: for each partition Vk ∈ P do
39: cost← cost +

∑
i,j∈Vk,i<j Sij

40: end for
41: return cost

uses controlled perturbations (small random swaps) when stuck to escape local optima; efficiency is
achieved through early termination on marginal gains, modular cost updates, lightweight constraint
checks, and balanced perturbation sizing, ensuring scalability for large expert sets.

Intra-layer Expert Merging Implementation. Following clustering, experts within each partition
are merged into a single expert. The merged weights are computed using a weighted average, where
the importance weight αi for each expert combines its activation frequency and functional impact.
The weight is defined as αi = f̄i+ δ̄i, where fi is the normalized activation frequency and δ(Ei) is the
output deviation score. The final merged weights are calculated as: Wmerged =

∑
i∈cluster αi·Wi∑

i∈cluster αi
. This

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

approach ensures that both frequently used experts and those with unique functional contributions are
given appropriate importance during the merging process.

E.4 EVALUATION PROTOCOL

Our evaluation follows standard LLM assessment practices, using diverse tasks that cover multiple
capabilities. We use standardized prompts from the lm-evaluation-harness framework with greedy
decoding for deterministic outputs. We report averages from three runs with different random seeds
(42, 43, 44) and verify statistical significance using paired t-tests (p < 0.05).

F ALGORITHMIC TABLES

This section presents the complete algorithmic implementation of our DM-MoE framework, providing
detailed pseudocode to facilitate reproducibility. We organize the compression pipeline into four
interconnected algorithms that outline the step-by-step process of our adaptive drop-then-merge
approach.

Algorithm 1 presents the main DM-MoE framework, which orchestrates the two-phase compression
process. It first calculates appropriate intermediate and final expert counts based on the target
compression ratio, then sequentially applies expert dropping followed by expert merging. This
algorithm demonstrates how we balance the compression budget between the two phases to achieve
optimal performance preservation.

Algorithm 2 details our Layer-wise Adaptive Expert Dropping procedure, computing mutual
information-based metrics for each layer to quantify functional redundancy among experts. These
metrics are used in a constrained optimization problem to determine layer-specific dropping budgets.

Algorithm 3 provides a detailed implementation of our Intra-Layer Expert Sorting and Selection
approach. For each expert in a layer, it calculates the output deviation when that expert is removed by
redistributing routing weights among remaining experts. This allows us to precisely identify which
experts contribute most significantly to the layer’s functionality, ensuring we retain those with the
highest impact while dropping those whose contribution can be compensated by other experts.

Algorithm 4 describes the Layer-wise Adaptive Expert Merging process that follows the dropping
phase. It uses similarity-based diversity metrics to determine layer-specific merging budgets through
another constrained optimization problem. For each layer, it performs expert clustering and merging,
using importance-weighted parameter averaging to create consolidated expert representations.

Algorithm 5 presents our Graph Partitioning approach for expert grouping. This algorithm reformu-
lates expert clustering as a graph partitioning problem to overcome the limitations of hierarchical
clustering, employing iterative vertex swapping to maximize intra-partition similarity and achieve
globally optimal expert arrangements that preserve functional coherence within each merged group.

Together, these algorithms provide a comprehensive implementation roadmap for our DM-MoE
framework, enabling researchers to reproduce our approach and apply it to different MoE architectures.
The pseudocode explicitly details all key components, from metric computation and optimization
formulations to the specific mechanisms for expert selection, clustering, and merging.

G THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used in this work solely as writing assistance tools. Specifically,
LLMs were employed to check for spelling errors, grammatical mistakes, and to improve the fluency
and precision of expression in the paper. The LLMs did not contribute to research methodology,
experimental design, or data analysis. All scientific content, ideas, and conclusions presented in this
paper are entirely our own work.

28

	Introduction
	DM-MoE: Adaptive Drop-then-Merge MoE Compression
	Phase I: Layer-wise Adaptive Expert Dropping
	Phase II: Layer-wise Adaptive Expert Merging

	Experiments
	Experimental Setups
	Experimental Results Analysis
	Ablation Studies

	Related Work
	Conclusions
	Extended Method Comparison
	Comparison with MoE Expert Reduction Methods
	Comparison with MoE Weight Compression Methods
	Comparison with Quantization Methods
	Comparison with Adaptive Compression in Dense LLMs

	Additional Experimental Results and Analysis
	Analysis of Intra-Layer Expert Mutual Information Matrices
	 Robustness Analysis of Metrics

	Inference Efficiency Analysis
	Computational Optimization for Massive MoEs
	WikiText-2 and C4 Perplexity Results
	Computational Time Analysis
	Expert Allocation Optimization Time Analysis
	Analysis of Statistical Significance
	Comprehensive Ablation Results

	Theoretical Analysis of Drop-then-Merge Strategy
	Expert Importance and Functional Redundancy
	Parameter Conflict in Expert Merging
	Theoretical Advantages of Drop-then-Merge
	Empirical Validation
	Knowledge Preservation Analysis

	Experimental Details
	Model Architecture Details
	Calibration Dataset Construction
	Implementation Details
	Evaluation Protocol

	Algorithmic Tables
	The Use of Large Language Models

