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Abstract: Data scaling has revolutionized fields like natural language process-
ing and computer vision, providing models with remarkable generalization capa-
bilities. In this paper, we investigate whether similar data scaling laws exist in
robotics, particularly in robotic manipulation, and whether appropriate data scal-
ing can yield single-task robot policies that can be deployed zero-shot for any
object within the same category in any environment. To this end, we conduct a
comprehensive empirical study on data scaling in imitation learning. By collecting
data across numerous environments and objects, we study how a policy’s gener-
alization performance changes with the number of training environments, objects,
and demonstrations. Throughout our research, we collect over 40,000 demon-
strations and execute more than 15,000 real-world robot rollouts under a rigorous
evaluation protocol. Our findings reveal several intriguing results: the general-
ization performance of the policy follows a roughly power-law relationship with
the number of environments and objects. The diversity of environments and ob-
jects is far more important than the absolute number of demonstrations; once the
number of demonstrations per environment or object reaches a certain threshold,
additional demonstrations have minimal effect. Based on these insights, we pro-
pose an efficient data collection strategy. With four data collectors working for
one afternoon, we collect sufficient data to enable the policies for two tasks to
achieve approximately 90% success rates in novel environments with unseen ob-
jects. Project website: data-scaling-laws.github.io

1 Introduction

Scaling has been a key driver behind the rapid advancements in deep learning [1, 2, 3]. In natural
language processing (NLP) and computer vision (CV), numerous studies have identified scaling
laws demonstrating that model performance improves with increases in dataset size, model size, and
total training compute [4, 5, 6]. However, comprehensive scaling laws have not yet been established
in robotics, preventing the field from following a similar trajectory. In this paper, we explore the first
dimension of scaling—data—as scaling data is a prerequisite for scaling models and compute. We
aim to investigate whether data scaling laws exist in robotics, specifically in the context of robotic
manipulation, and if so, what insights they might offer for building large-scale robotic datasets.

While data scaling has endowed models in NLP and CV with exceptional generalization capabili-
ties [7, 8], most of today’s robotic policies still lack comparable zero-shot generalization [9]. From
the outset, we treat generalizable manipulation skills as first-class citizens, emphasizing real-world
generalization over evaluations in controlled lab settings. In this context, we aim to investigate the
following fundamental question: Can appropriate data scaling produce robot policies capable of
operating on nearly any object, in any environment?

To answer this, we present a comprehensive empirical study on data scaling in imitation learning,
which is a predominant method for learning real-world manipulation skills [10]. We categorize
generalization into two dimensions: environment generalization and object generalization, which
essentially encompass all factors a policy may encounter during real-world deployment. We do
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not consider task-level generalization at this stage, as we believe it would require collecting vast
amounts of data from thousands of tasks [11, 12], which is beyond the scope of our work. Instead,
we systematically explore how a single-task policy’s performance changes in new environments
or with new objects as the number of training environments or objects increases. Additionally,
we examine how the number of demonstrations impacts policy generalization when the number of
environments and objects is fixed.

We use hand-held grippers (i.e., UMI [13]) to collect human demonstrations in various environ-
ments and with different objects, modeling this data using a Diffusion Policy [14] (Sec. 2). We
begin by focusing on two tasks as case studies—Pour Water and Mouse Arrangement—to thor-
oughly analyze how policy generalization changes with the number of environments, objects, and
demonstrations (Sec. 3.1), summarizing data scaling laws (Sec. 3.2). Then, based on these data
scaling laws, we propose an efficient data collection strategy to achieve the desired level of general-
ization (Sec. 3.3). We apply this strategy to two new tasks (Fold Towels and Unplug Charger),
and within a single afternoon using four data collectors, we collect sufficient data to train policies
that achieve around 90% success rates across 8 new environments and objects for each task (Sec. 4).
Lastly, we go beyond data scaling by conducting preliminary explorations of model size scaling
(Appendix H). Throughout our research, we collect over 40,000 demonstrations and conduct all
experiments under a rigorous evaluation protocol that included more than 15,000 real-world robot
rollouts. Our extensive investigation reveals surprising results and contributions:

• Simple power laws. The policy’s generalization ability to new objects, new environments, or both
scales approximately as a power law with the number of training objects, training environments,
or training environment-object pairs, respectively.

• Diversity is all you need. Increasing the diversity of environments and objects is far more effec-
tive than increasing the absolute number of demonstrations per environment or object.

• Generalization is easier than expected. Collecting data in as many environments as possible
(e.g., 32 environments), each with one unique manipulation object and 50 demonstrations, allows
training a policy that generalizes well (90% success rate) to any new environment and new object.

2 Approach

We first outline the generalization dimensions we consider and the formal formulation of the data
scaling laws. Then, we demonstrate our data source and design choices for policy learning methods.
Finally, we introduce our rigorous evaluation protocol. See Appendix B for a review of related work.

Generalization dimensions. We use behavior cloning (BC) to train single-task policies, a dominant
approach for learning real-world manipulation skills. However, many BC-trained policies exhibit
poor generalization performance. This generalization issue manifests across two dimensions: (1)
Environment—generalization to previously unseen environments, which may involve variations in
lighting conditions, distractor objects, background changes, and more; (2) Object—generalization
to new objects within the same category as those in human demonstrations, differing in attributes
such as color, size, geometry, and so on.

Prior research in this area has attempted to isolate the variations within each dimension by con-
trolling specific factors independently [9, 15]. For instance, special lighting setups might be used
to change only the color of illumination, or 3D-printed objects might be designed to vary only in
size without altering their shape or geometry. While this approach allows precise control over in-
dividual factors, it cannot account for all possible variation factors. More importantly, real-world
performance depends not on generalizing to individual factors but on handling the complex inter-
play of multiple factors that vary simultaneously. To address this, we focus on generalization across
two dimensions—environment and object—which collectively encompass all factors a policy may
encounter in natural, real-world scenarios. For environment variations, we scale the number of real
scenes by collecting human demonstrations across diverse in-the-wild environments. For object
variations, we scale the number of accessible objects by acquiring a large variety of everyday items
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within the same category. See Appendix A for visualizations of the environments and objects used
in our study. We believe that this emphasis on real-world diversity enhances the applicability of our
findings to more varied and practical contexts.

Data scaling laws formulation. For simplicity, we consider a scenario where a demonstration
dataset for a manipulation task is collected across M environments (E1, E2, . . . , EM ) and N ma-
nipulation objects of the same category (O1, O2, . . . , ON ). Each environment may contain any
number of distractor objects, provided they are not in the same category as the manipulation objects.
For each object Oi in an environment Ej , K demonstrations (Dij1, Dij2, . . . , DijK) are collected.
We evaluate the policy’s performance using test scores S (described in detail later) on environments
and objects not seen during training. The data scaling laws in this paper aim to: (1) characterize the
relationship between S and the variables M , N , and K, specifically, how the generalization ability
depends on the number of environments, objects, and demonstrations; and (2) determine efficient
data collection strategies to achieve the desired level of generalization based on this relationship.

Data source. Existing robotic manipulation datasets do not provide enough environments and ob-
jects for a single task to meet our requirements. Therefore, we opt to use the Universal Manipulation
Interface (UMI) [13], a hand-held gripper, to independently collect a substantial number of demon-
strations. UMI’s portability, intuitive design, and low cost make it an ideal tool for our data col-
lection needs. It enables highly efficient data collection and allows for seamless switching between
different in-the-wild environments with minimal setup time. However, as UMI relies on SLAM for
capturing end-effector actions, it may encounter challenges in texture-deficient environments. We
observe that approximately 90% of our collected demonstrations are valid. For more details on our
data collection and experience with UMI, see Appendix C.

Policy learning. We employ Diffusion Policy to model the extensive data we collect, due to
its demonstrated excellence in real-world manipulation tasks and its recent widespread applica-
tion [10, 16]. We utilize a CNN-based U-Net [17] as the noise prediction network and employ
DDIM [18] to reduce inference latency, achieving real-time control. To further enhance perfor-
mance, we introduce two improvements. First, we fine-tune the DINOv2 ViT [19], which outper-
forms both ImageNet pre-trained ResNet [20, 21] and CLIP ViT [2]; we use a ViT-Large/14 [22], a
sufficiently large model to ensure adequate capacity. Second, we adopt a temporal ensemble strategy
inspired by ACT [23] to mitigate jerky motions caused by discontinuities between action sequences.
By averaging overlapping predicted actions using an exponential weighting scheme, we achieve
smoother transitions and reduce motion discontinuities. See Appendix D for more training details.

Evaluation. We conduct rigorous evaluations to ensure the reliability of our results. First, to eval-
uate the generalization performance of the policy, we exclusively test it in unseen environments or
with unseen objects. Second, we use tester-assigned scores as the primary evaluation metric. Each
manipulation task is divided into several stages or steps (typically 2–3), each with well-defined scor-
ing criteria (see Appendix E). Each step can receive a maximum of 3 points, and we report a nor-
malized score, defined as Normalized score = Total test score

3×Number of steps , with a maximum value of 1. Unlike
the commonly used success rate—which is an overly sparse signal lacking the granularity to dis-
tinguish between policies—our scoring mechanism captures more nuanced behaviors. While action
mean squared error (MSE) on the validation set is another potential metric, we find it often does not
correlate with real-world performance (see Appendix F.1 for more details). Finally, to minimize the
tester’s subjective bias, we simultaneously evaluate multiple policies trained on datasets of different
sizes; each rollout is randomly selected from these multiple policies, while ensuring identical initial
conditions for both the objects and the robot arm, enabling a fair comparison across policies. See
Appendix F.2 for an example of the evaluation workflow and Appendix G for the hardware setup.

3 Unveiling of Data Scaling Laws

In this section, we first explore how increasing the number of training objects affects object gener-
alization. Next, we analyze how the number of training environments impacts environment gener-
alization. Finally, we study generalization across both dimensions simultaneously. Throughout all
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Figure 1: Object generalization. Each curve corresponds to a different fraction of demonstrations
used, with normalized scores shown as a function of the number of training objects.

experiments, we also analyze the effect of demonstration quantity (Sec. 3.1). From these results, we
derive the power-law data scaling laws (Sec. 3.2). Based on these laws, we further demonstrate an
efficient data collection strategy to achieve a generalizable policy (Sec. 3.3).

3.1 Results and Qualitative Analysis

Tasks. We first focus on two manipulation tasks: Pour Water and Mouse Arrangement. In
Pour Water, the robot performs three steps: first, it grabs a drinking bottle placed randomly on the
table; second, it pours water into a mug; and finally, it places the bottle on a red coaster. This task
demands precision, especially in aligning the bottle’s mouth with the mug. In Mouse Arrangement,
the robot completes two steps: it picks up a mouse and positions it on a mouse pad with its front
facing forward. The mouse may be tilted, requiring the robot to employ non-prehensile actions (i.e.,
pushing) to first align it. Further task details can be found in Appendix E.

Object generalization. We use 32 distinct objects within the same environment to collect 120
demonstrations per object, yielding a total of 3,840 demonstrations for each task. After SLAM
filtering, the number of valid demonstrations for Pour Water and Mouse Arrangement is reduced
to 3,765 and 3,820, respectively. To investigate how the number of training objects influences the
policy’s ability to generalize to unseen objects, we randomly select 2m objects (m = 0, 1, 2, 3, 4, 5)
from the pool of 32 for training. Furthermore, to examine how policy performance varies with
the number of demonstrations, we randomly sample 2n fractions of valid demonstrations (n =
0,−1,−2,−3,−4,−5) for each selected object. For each combination of (m,n), we train a policy
if the total number of demonstrations exceeds 100. In total, 21 policies are trained, and each is
evaluated using 8 unseen objects in the same environment as the training data, with 5 trials per
object. The average normalized score across 40 trials is reported for each policy.

Fig. 1 presents the results for the two tasks, leading to several key observations: (1) As the number of
training objects increases, the policy’s performance on unseen objects consistently improves across
all fractions of demonstrations. (2) With more training objects, fewer demonstrations are required
per object. For example, in Pour Water, when training with 8 objects, the performance using 12.5%
of the demonstrations significantly lags behind that using 100% of the demonstrations; however, this
gap nearly disappears when training with 32 objects. (3) Object generalization is relatively easy to
achieve. The initial slope of the performance curve is very steep: with only 8 training objects, the
normalized score for both tasks exceeds 0.8. When the number of training objects reaches 32, the
score surpasses 0.9. These scores correspond to policies that have already generalized well to any
new objects within the same category.

Environment generalization. To explore the effect of the number of training environments on
generalization, we use the same manipulation object across 32 distinct environments, collecting
120 demonstrations per environment. For Pour Water and Mouse Arrangement, this result in
3,424 and 3,351 valid demonstrations, respectively. We randomly select 2m environments (m =
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Figure 2: Environment generalization. Each curve corresponds to a different fraction of demon-
strations used, with normalized scores shown as a function of the number of training environments.

0, 1, 2, 3, 4, 5) from the 32 available for training, and for each selected environment, we randomly
select 2n fractions of vaild demonstrations (n = 0,−1,−2,−3,−4,−5). Each policy is evaluated
in 8 unseen environments using the same object as in training, with 5 trials per environment.

Fig. 2 presents the results, revealing several notable patterns: (1) Increasing the number of training
environments enhances the policy’s generalization performance on unseen environments. This trend
persists even when the total number of demonstrations is kept constant (see Appendix J.2, Fig. 21).
However, while increasing the fraction of demonstrations in each environment initially boosts per-
formance, this improvement quickly diminishes, as indicated by the overlap of the lines representing
50% and 100% demonstration usage. (2) Environment generalization appears to be more challeng-
ing than object generalization for these two tasks. Comparing Fig. 1 and Fig. 2, we observe that
when the number of environments or objects is small, increasing the number of environments re-
sults in smaller performance gains compared to increasing the number of objects. This is reflected
in the lower slope of the performance curve for environment generalization.

Generalization across both environments and objects. Next, we explore a setting where both
the training environments and objects vary simultaneously. Data is collected from 32 environments,
each paired with a unique object. For Pour Water and Mouse Arrangement, the number of valid
demonstrations is 3,648 and 3,564, respectively. We randomly select 2m environment-object pairs
(m = 0, 1, 2, 3, 4, 5) from the pool of 32 for training and, for each selected pair, we randomly
sample 2n fractions of valid demonstrations (n = 0,−1,−2,−3,−4,−5). Each policy is evaluated
in 8 unseen environments, using two unseen objects per environment, with 5 trials per environment.

Fig. 3 illustrates that (1) increasing the number of training environment-object pairs substantially
enhances the policy’s generalization performance, consistent with previous observations. (2) Inter-
estingly, although generalizing across both novel environments and objects is more challenging, the
benefit of additional demonstrations saturates faster in such cases (as evidenced by the overlapping
lines for 25% and 100% demonstration usage). This indicates that, compared to changing either the
environment or the object alone, simultaneously changing both increases data diversity, leading to
more efficient policy learning and reducing dependence on the number of demonstrations. This find-
ing further emphasizes that expanding the diversity of environments and objects is more effective
than merely increasing the number of demonstrations for each individual environment or object.

3.2 Power-Law Fitting and Quantitative Analysis

We next explore whether our experimental results follow power-law scaling laws, as seen in other
domains. Specifically, if two variables Y and X satisfy the relation Y = β · Xα, they exhibit a
power-law relationship. Applying a logarithmic transformation to both Y and X reveals a linear
relationship: log(Y ) = α log(X) + log(β). In our context, Y represents the optimality gap, defined
as the deviation from the maximum score (i.e., 1 − Normalized Score), while X can denote the
number of environments, objects, or demonstrations. Using data from our previous experiments
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Figure 3: Generlization across environments and objects. Each curve corresponds to a different
fraction of demonstrations used, with normalized scores shown as a function of the number of train-
ing environment-object pairs.
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Figure 4: Power-law relationship. Dashed lines represent power-law fits, with the equations pro-
vided in the legend. All axes are shown on a logarithmic scale. The correlation coefficient r indicates
a power-law relationship between the policy generalization ability and the number of objects, envi-
ronments, and environment-object pairs. See Appendix J.1 for data scaling laws on MSE.

with a 100% fraction of demonstrations, we fit a linear model to the log-transformed data, as shown
in Fig. 4. Based on all the results, we summarize the following data scaling laws:

• The policy’s generalization ability to new objects, new environments, or both scales approxi-
mately as a power law with the number of training objects, training environments, or training
environment-object pairs, respectively. This is evidenced by the correlation coefficient r in Fig. 4.

• When the number of environments and objects is fixed, there is no clear power-law relationship
between the number of demonstrations and the policy’s generalization performance. While perfor-
mance initially increases rapidly with more demonstrations, it eventually plateaus, as most clearly
shown in the leftmost plot of Fig. 6 (see caption for details).

These power laws regarding environments and objects can serve as predictive tools for larger-scale
data. For example, according to the equation in Fig. 4, we predict that for Mouse Arrangement,
achieving a normalized score of 0.99 on novel environments and objects would require 1,191 training
environment-object pairs. We leave the verification of this prediction for future work.
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3.3 Efficient Data Collection Strategy

In this section, we present an efficient data collection strategy guided by the data scaling law. Recall
that our data is collected across M environments and N manipulation objects, with K demonstra-
tions for each object in every environment. The main question we seek to answer is: for a given
manipulation task, how can we optimally select M , N , and K to ensure strong generalization of
the policy without incurring an excessively laborious data collection process? To explore this, we
continue to use the tasks Pour Water and Mouse Arrangement as examples.

How to select the number of environments and objects? Previously, we consider only the setting
where each environment contains a single unique manipulation object. In practical data collection,
however, collecting multiple objects per environment might improve performance and thus be a
more efficient method. To explore this possibility, we assume that N is a multiple of M , with each
environment containing N/M unique objects. Specifically, we use 16 environments, each containing
4 unique objects, and collect 120 demonstrations for each object (M = 16, N = 64, N/M =
4,K = 120). For Pour Water and Mouse Arrangement, this results in 6,896 and 6,505 valid
demonstrations, respectively. We then randomly select 2m environments (m = 0, 1, 2, 3, 4) from the
16 available environments. For each selected environment, we use all demonstrations of n objects
(n = 1, 2, 3, 4) as the training data. In total, we train 20 policies, each evaluated in 8 unseen
environments using two novel objects per environment, with 5 trials for each environment.

The heatmap in Fig. 5 shows that when the number of environments is small, collecting multiple
objects in each environment boosts performance. However, as the number of environments increases
(e.g., to 16), the performance gap between collecting multiple objects per environment and just a
single object becomes negligible. For large-scale data collection, where the number of environments
typically exceeds 16, adding multiple objects within the same environment does not further enhance
policy performance, suggesting that this approach may be unnecessary. Based on our experimental
results, we recommend the following: collect data in as many diverse environments as possible, with
only one unique object in each environment. When the total number of environment-object pairs
reaches 32, it is generally sufficient to train a policy capable of operating in novel environments and
interacting with previously unseen objects.

How to select the number of demonstrations? The experimental results in Sec. 3.1 indicate that
increasing the number of demonstrations beyond a certain point yields minimal benefits. This sec-
tion aims to identify that threshold. We first examine the setting where M = 16 and N = 64 (as in
the previous experiment), representing the scenario with the maximum number of collected demon-
strations—over 6400 in total. We vary the total number of demonstrations used for training, ranging
from 64 to 6400, and train 8 policies. The results, presented in the leftmost plot of Fig. 6, show
that performance for both tasks plateaus when the number of demonstrations reaches 800. Next,
we consider our recommended setting of collecting environment-object pairs (i.e., M = N ). The
results, depicted in the two rightmost plots of Fig. 6, indicate that when the number of environment-
object pairs is smaller, fewer total demonstrations are needed to reach saturation. Specifically, for 8,
16, and 32 pairs, performance plateaus at 400, 800, and 1600 demonstrations, respectively. Based
on these findings, we recommend collecting 50 demonstrations per environment-object pair (i.e.,
K = 50 ) for tasks of similar difficulty to ours. More challenging dexterous manipulation tasks may
require more demonstrations; we leave the exploration of this aspect to future work.
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Figure 6: Number of demonstrations. Left: In the setting where we collect the maximum number
of demonstrations, we examine whether the policy’s performance follows a power-law relationship
with the total number of demonstrations. The correlation coefficients for Pour Water and Mouse
Arrangement are −0.62 and −0.79, respectively, suggesting only a weak power-law relationship.
Right: For varying environment-object pairs, the policy performance increases with the total num-
ber of demonstrations at first, and then reaches saturation.

Pour Water Mouse Arrangement Fold Towels Unplug Charger

Score 0.922 ± 0.075 0.933 ± 0.088 0.95 ± 0.062 0.887 ± 0.14
Success Rate 85.0 ± 19.4% 92.5 ± 9.7% 87.5 ± 17.1% 90.0 ± 14.1%

Table 1: Success rate across all tasks. We report the average success rate and standard deviation
across 8 unseen environments. The performance in each environment is detailed in Table 12.

4 Verification of Data Collection Strategy

To verify the general applicability of our data collection strategy, we apply it to new tasks and assess
whether a sufficiently generalizable policy can be trained. We experiment with two new tasks: Fold
Towels and Unplug Charger. In Fold Towels, the robot first grasps the left edge of the towel
and folds it to the right. In Unplug Charger, the robot grabs the charger plugged into a power strip
and swiftly pulls it out. For each task, we collect data from 32 environment–object pairs, with 50
demonstrations per environment. Consistent with previous experiments, we evaluate the policy in 8
unseen environments, each with 2 unseen objects, and perform 5 trials per environment. The results,
shown in Table 1, report both the policy’s normalized score and the corresponding success rate (for
the definition of success criteria, see Appendix E). As the table indicates, our policies achieve around
90% success rates across all four tasks—the two from previous experiments and the two new ones.
Notably, achieving this strong generalization performance on the two new tasks requires only one
afternoon of data collection by four data collectors. This highlights the high efficiency of our data
collection strategy and suggests that the time and cost required to train a single-task policy capable
of zero-shot deployment to new environments and objects are moderate. In Appendix H, we go
beyond data scaling by conducting preliminary explorations of model size scaling.

5 Discussion

Data scaling is an exciting and ongoing event in robotics. Rather than blindly increasing data quan-
tity, emphasis should be placed on data quality. What types of data should be scaled? How can this
data be efficiently obtained? These are the fundamental questions we aim to answer. Specifically, in
the context of imitation learning, we uncover the significant value of diversity in environments and
objects within human demonstrations, identifying a power-law relationship in the process. Further-
more, we believe that in-the-wild generalization is the ultimate goal of data scaling, and our study
aims to demonstrate that this goal is closer than it may appear. We show that, with a relatively mod-
est investment of time and resources, it is possible to learn a single-task policy that can be deployed
zero-shot to any environment and object. For limitations and future work, refer to Appendix I.
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A Environment and Object Visualizations

A.1 Environment Visualizations

Figures 7,8,9, and 10 present the sampled training environments for each of the four tasks.

Figure 11 presents the 8 unseen testing environments.

Figure 7: Training environments for Pour Water. We sample 12 environments from our collected
training data. See Appendix E.1 for task details.

Figure 8: Training environments for Mouse Arrangement. We sample 12 environments from our
collected training data. See Appendix E.2 for task details.

Figure 9: Training environments for Fold Towels. We sample 12 environments from our col-
lected training data. See Appendix E.3 for task details.
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Figure 10: Training environments for Unplug Charger. We sample 12 environments from our
collected training data. See Appendix E.4 for task details.

Figure 11: Testing environments. These 8 environments are not included in the training data and
are used across all tasks.
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A.2 Object Visualizations

In Figures 12, 13, 14, and 15, we present the training and testing objects for the tasks Pour Water,
Mouse Arrangement, Fold Towels, and Unplug Charger, respectively.

Note that when we refer to “one manipulation object” in a task, we are actually referring to all the
objects involved in completing that task. For instance, in Pour Water, this includes both the drink
bottle and the mug. In Mouse Arrangement, it refers to the mouse and the mouse pad. In Fold

Towels, it applies solely to the towel. In Unplug Charger, it encompasses both the charger and
the power strip.

Figure 12: Objects for Pour Water. All of our experiments include a total of 64 training bottles
and mugs, as well as 16 unseen testing bottles and mugs.
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Figure 13: Objects for Mouse Arrangement. All of our experiments include a total of 64 training
mice and mouse pads, as well as 16 unseen testing mice and mouse pads.
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Figure 14: Objects for Fold Towels. All of our experiments include a total of 32 training towels,
as well as 16 unseen testing towels.
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Figure 15: Objects for Unplug Charger. All of our experiments include a total of 32 training
chargers and power strips, as well as 16 unseen testing chargers and power strips.
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B Related Work

Scaling laws. Scaling laws are first discovered in neural language models [4], revealing a power-law
relationship between dataset size (or model size, computation) and cross-entropy loss. Subsequently,
scaling laws have been observed in discriminative image modeling [24], generative image model-
ing [6], video modeling [5], and other domains [25, 26]. These laws not only validate the scalability
of neural networks—a key factor in the success of recent foundation models [27, 1, 28]—but also
enable performance prediction for larger models based on their smaller counterparts, thereby guid-
ing more effective resource allocation [7]. In this paper, we examine data scaling laws to explore the
relationship between the generalization of robot policies and the number of environments, objects,
and demonstrations, and to develop efficient data collection strategies based on these insights.

Data scaling in robotic manipulation. Similar to the fields of NLP and CV, robotic manipulation
is also experiencing a trend toward scaling up data [29, 30, 31, 32, 33, 34, 35, 36, 37, 11, 12,
38]. The largest existing dataset, Open X-Embodiment (OXE) [11], comprises over 1 million robot
trajectories. The primary objective of scaling OXE is to develop a foundational robot model that
facilitates positive transfer learning across different robots. However, deploying such models in new
environments still requires data collection for fine-tuning. In contrast, our scaling objective focuses
on training a policy that can be directly deployed in novel environments and with unseen objects,
eliminating the need for fine-tuning. Additionally, we observe that Gao et al. [39] also explore
strategies for efficient data scaling to enhance generalization. However, their work is limited to
in-domain compositional generalization, whereas our focus is on out-of-domain generalization.

Data collection approaches in robotic manipulation. There are three main approaches to col-
lecting human demonstrations for robotic manipulation: (1) Teleoperation: Common teleopera-
tion systems utilize devices such as 3D spacemouse [40, 41], VR controllers [42, 43, 44], smart-
phones [45, 46], puppeting devices [23, 47, 48], or exoskeletons [49] to allow a human operator to
control a robot. This approach requires a real robot during data collection, which is expensive and
limits the ability to collect large-scale data. (2) Learning from human video: This method has the
potential to leverage massive Internet-scale video data [50, 51, 52, 53, 54, 55, 56]. However, these
videos lack explicit action information, and there is a significant embodiment gap between humans
and robots, posing substantial challenges to algorithm design. (3) Hand-held grippers: The data col-
lected by hand-held grippers does not suffer from the embodiment gap [57, 58, 59, 37, 13]. These
devices are highly portable and intuitive to use, enabling the proactive collecting of large amounts
of data and allowing for more nuanced control over the composition of the data. In this paper, we
use UMI [13] as the data collection device.

Generalization in robotic manipulation. Creating a generalizable robot has been a longstanding
aspiration within the robotics community. Some research aims to improve generalization to new
object instances [60, 61, 62, 63], while other efforts focus on enabling robots to adapt to unseen
environments [64, 65, 66, 9]. Recently, significant attention has been paid to developing policies
that can generalize to new task instructions [32, 35, 67, 68]. In this paper, we concentrate on the first
two dimensions of generalization: creating a single-task policy capable of operating on nearly any
object within the same category, in any environment. UMI [13] demonstrates that training on diverse
demonstrations significantly enhances the generalization performance of policies in novel environ-
ments and with novel objects. Concurrently with our work, RUMs [69] develop policies capable
of zero-shot deployment in novel environments. However, neither UMI nor RUMs delves into a
comprehensive analysis of the relationship between generalization and different data dimensions—a
gap our work aims to address.
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C Data Source

We share key insights gained from using UMI [13] to collect a large number of demonstrations:

(1) Random initial pose is crucial: For each demonstration, it’s essential to randomize the initial
pose of the hand-held gripper, including its height and orientation. This practice helps cover a wider
range of starting conditions. Without such variation, the trained policy becomes overly sensitive to
specific initial poses, limiting its effectiveness to only certain positions. Similarly, the initial position
range of objects should be as extensive as possible, while remaining within the robot’s kinematic
and dynamic limits.

(2) Select an environment with rich visual features: Since UMI relies on SLAM for camera pose
tracking, environments lacking sufficient visual features—such as dark areas or blank walls—can
lead to tracking failures. To address this, we use the visualization tool Pangolin [70] to verify that
the environment has enough features. Introducing more distractor objects or adding textures to sur-
faces, such as tabletops, can both increase visual features and serve as a form of data augmentation,
helping the policy learn to disregard irrelevant changes in the environment. Additionally, perform-
ing multiple mapping rounds and using batch SLAM processing can enhance the number of valid
demonstrations.

(3) Use appropriately sized manipulation objects: Large objects that obstruct the camera’s view
(e.g., doors or drawers) can cause the SLAM algorithm to misinterpret the camera as stationary, lead-
ing to tracking failure. This limitation influenced our decision to avoid tasks like opening drawers,
highlighting a key drawback of the current UMI. Integrating off-the-shelf pose tracking hardware
(e.g., iPhone Pro or VIVE Ultimate Tracker) could potentially improve UMI’s accuracy and robust-
ness.

(4) Additional tips:

• Standardize behavior patterns and task completion times among different data collectors to
minimize multimodal behavior in the dataset.

• When collecting data, avoid moving non-manipulation objects (distractors) and ensure that
other moving entities do not enter the camera’s field of view.

• Apply slight force when closing the gripper to introduce minor deformation.
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D Policy Training

When constructing the training data, we ensure that larger datasets always contain the smaller ones.
For instance, in the environment generalization experiment, if the data used to train two policies
are selected from m and n environments (where m < n), the n environments include all of the m
environments. This approach ensures a consistent data distribution across different dataset sizes,
facilitating a fair comparison of policies.

To guarantee that policies trained on datasets of varying sizes can fully converge, we adjust the
number of training epochs based on the total number of demonstrations. This allows policies trained
on larger datasets to undergo more training steps. Specifically, the policy trained on the smallest
dataset undergoes 800 epochs, totaling 5.3 × 104 training steps. The policy trained on the largest
dataset undergoes 75 epochs, totaling 5× 105 training steps, which takes 75 hours to complete on 8
A800 GPUs. We use the final checkpoint of each policy for evaluation. Given the large number of
parameters in the model—the visual encoder and the noise prediction network together exceed 108
million—we use BFloat16 precision to accelerate training while maintaining numerical stability.

Our policy implementation largely follows those in Diffusion Policy [14] and UMI [13], with a minor
modification: we increase the observation horizon for certain tasks. For example, in Pour Water,
when the bottle is near the mouth of the mug, the policy initially struggles to distinguish whether
it is about to start pouring or if pouring has already completed. To address this, we incorporate a
more distant history step (0.25 seconds before) into the original 2-step observation horizon (which
corresponds to a real-time duration of 0.05 seconds). For the Unplug Charger task, we incorporate
a 0.5-second history step. This adjustment significantly improves the performance of Pour Water

and Unplug Charger without adding much training or inference cost. For further details on the
hyperparameters, refer to Table 2.

Config Value
Image observation horizon 3 (Pour Water, Unplug Charger), 2 (other tasks)
Proprioception observation horizon 3 (Pour Water, Unplug Charger), 2 (other tasks)
Action horizon 16
Observation resolution 224×224
Environment frequency 5
Optimizer AdamW
Optimizer momentum β1, β2 = 0.95, 0.999
Learning rate for action diffusion model 3e-4
Learning rate for visual encoder 3e-5
Learning rate schedule cosine decay
Batch size 256
Inference denoising iterations 16
Temporal ensemble steps 8
Temporal ensemble adaptation rate -0.01

Table 2: A default set of hyper-parameters.
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E Task Details

In this section, we provide a detailed introduction to four manipulation tasks and the scoring criteria
during evaluation.

E.1 Pour Water

Task description. The robot performs three sequential actions: initially, it grasps a drink bottle;
subsequently, it pours water into a mug; and finally, it places the bottle on a designated red coaster.
The bottle is randomly placed on the table, provided it is within the robot’s kinematic reach. The
relative initial position of the bottle and mug is also randomized, ensuring they are spaced vari-
ably while keeping the mug visible to the camera after the bottle is grasped. The red coaster, a 9
cm diameter circle, is consistently positioned approximately 10 cm to the right of the mug and is
used across all environments. This task challenges the robot’s generalization capabilities due to the
variability in the bottle’s color, size, and height, and requires precise alignment of the bottle mouth
with the mug for successful completion. The task further requires significant rotational movements,
extending beyond basic pick-and-place operations. The successful execution of the pouring and
placing actions critically hinges on accurately grasping the bottle initially. For testing, the bottle cap
is secured tightly, and no actual water is poured out.

Scoring criteria.

• Step 1: Grasping the drink bottle

– 0 points: The gripper does not approach the drink bottle.
– 1 point: The gripper touches the drink bottle but does not grasp it due to minor errors,

or it initially grasps the bottle, which then slips out during the lifting process.
– 2 points: The gripper pushes the drink bottle a significant distance before grasping it.
– 3 points: The gripper successfully grasps the drink bottle without any slippage.

• Step 2: Pouring water into the mug

– 0 points: The gripper does not approach the mug.
– 1 point: After rotating the drink bottle, its mouth remains outside the mug, making

pouring impossible.
– 2 points: After rotating the drink bottle, its mouth is positioned just above the rim of

the mug, allowing only partial pouring.
– 3 points: After rotating the drink bottle, its mouth is completely inside the mug,

facilitating complete pouring.

• Step 3: Placing the bottle on the red coaster

– 0 points: The gripper does not approach the red coaster.
– 1 point: The drink bottle is placed outside the red coaster, or the placement process

disrupts the mug, causing it to topple.
– 2 points: Only part of the drink bottle rests on the red coaster.
– 3 points: The drink bottle is fully and stably positioned on the red coaster.

Success criteria. A successful task requires scoring at least 2 points in Step 1, 3 points in Step 2,
and at least 2 points in Step 3.

E.2 Mouse Arrangement

Task description. The robot is required to complete two steps: picking up a mouse and placing it
on a mouse pad. In the first step, the mouse can be positioned anywhere on the table, as long as it
remains within the robot’s kinematic reach. The mouse may be oriented straight ahead, in which
case the robot needs to grasp it directly from behind. Alternatively, it might be slightly tilted to the
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left or right, necessitating the robot to employ non-prehensile actions, such as pushing the mouse
into the correct orientation before closing the gripper for picking it up. The mouse’s low thickness
significantly restricts the number of feasible grasping poses, leaving little margin for error, as even
a slight positional deviation can cause a failed grasp. Additionally, the mouse’s varying geometry
and color require the robot’s policy to have strong generalization abilities, allowing it to adapt its
grasping strategy based on the specific shape and size of the mouse.

Scoring criteria.

• Step 1: Picking up the mouse

– 0 points: The gripper does not move toward the mouse or moves around it without
making contact.

– 1 point: The gripper approaches the correct grasping pose and touches the mouse but
drops it after lifting it slightly.

– 2 points: The gripper pushes the mouse a significant distance before grasping it, or
the mouse is grasped but falls when lifted to a higher height.

– 3 points: The gripper successfully grasps the mouse without any slippage.

• Step 2: Placing the mouse on the mouse pad

– 0 points: The gripper either remains stationary in the air, failing to move toward the
mouse pad, or releases the mouse from a high position, causing it to fall onto the table.

– 1 point: The mouse is placed outside the mouse pad, or even if the entire mouse lands
on the pad, it flips due to being released from a high height.

– 2 points: Only part of the mouse is placed on the mouse pad, or even if the entire
mouse is on the pad, it bounces and shifts slightly due to being released from a rela-
tively high height.

– 3 points: The gripper lowers to an appropriate height before releasing the mouse,
ensuring the entire mouse is securely placed on the pad.

Success criteria. A successful task requires scoring 3 points in Step 1 and at least 2 points in Step
2.

E.3 Fold Towels

Task description. The robot is required to complete two steps: first, grasping the left edge of
the towel, and second, folding the towel to the right. The initial position of the towel may vary
on the table, provided it remains within the robot’s kinematic reach and its tilt angle relative to the
table’s edge does not exceed 15 degrees. We assume the towel has already been folded several times.
Manipulating deformable objects like towels presents significant challenges due to their high degrees
of freedom and complex dynamics. The robot must account for the towel’s softness and flexibility
when selecting appropriate grasping points. Minor errors in manipulation can lead to unexpected
outcomes, such as slipping or ineffective grasps. Additionally, the variety of towel styles—including
differences in color, material, and texture—poses challenges for policy generalization.

Scoring criteria.

• Step 1: Grasp the left edge of the towel

– 0 points: The gripper does not move toward the towel or moves around it without
making contact.

– 1 point: The gripper moves toward the towel and attempts a grasping motion but fails
to grasp any towel layer.

– 2 points: The gripper grasps only some of the towel layers, leaving others ungrasped
(since the towel has been folded multiple times, it consists of several layers).

– 3 points: The gripper successfully grasps all layers of the towel.
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• Step 2: Fold the towel to the right
– 0 points: No folding motion toward the right is demonstrated.
– 1 point: After folding, the overlapping area is less than one-third of the maximum

possible overlap.
– 2 points: After folding, the overlapping area is between one-third and two-thirds of

the maximum possible overlap.
– 3 points: After folding, the overlapping area exceeds two-thirds of the maximum

possible overlap.

Success criteria. A successful task requires scoring 3 points in Step 1 and at least 2 points in Step
2.

E.4 Unplug Charger

Task description. The robot is required to complete two steps: First, it grabs the charger that is
plugged into the power strip; second, it pulls out the charger and places it on the right side of the
power strip. The charger and power strip can be placed anywhere on the table as long as they remain
within the robot’s kinematic reach. The challenge lies in the robot’s ability to accurately grasp the
charger, apply sufficient force, and swiftly pull it out. Charger plugs come in different shapes and
sizes, so the robot must adapt its grip to securely hold the plug.

Scoring criteria.

• Step 1: Grabbing the charger
– 0 points: The gripper does not grab the charger.
– 1 point: The gripper grabs the charger but not tightly enough, resulting in failure to

pull out the charger.
– 2 points: The gripper securely holds the charger, but during the process, there is a

collision with the power strip, though the charger is eventually pulled out.
– 3 points: The gripper securely holds the charger without colliding with other objects,

and the charger is successfully pulled out afterward.

• Step 2: Pulling out the charger
– 0 points: The charger is not pulled out.
– 2 points: After pulling out the charger, it slips from the gripper.
– 3 points: The charger is successfully pulled out, and the gripper places it to the right

side of the power strip.

Success criteria. A successful task requires scoring at least 2 points in Step 1 and 3 points in Step
2.
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F Evaluation

F.1 Comparison of Evaluation Metrics
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Figure 16: Comparison between normalized score and MSE. Left: In the object generalization
experiment, the inverse correlation between MSE and normalized score is weak. Right: In the
generalization experiment across both environments and objects, the inverse correlation between
MSE and normalized score is very strong. Correlation coefficients (Pearson’s r and Spearman’s ρ)
are shown in the bottom right.

We use tester-assigned scores as our primary evaluation metric, acknowledging that this approach
inherently introduces some subjectivity from the testers. An alternative metric, the mean squared
error (MSE) on the validation set, offers a potential objective measure that does not require human
intervention. In this section, we provide a detailed comparison of these two metrics. To calculate
MSE, we collect 30 human demonstrations for each evaluation environment or object, forming the
validation set. We then compute the MSE by averaging the squared differences between the policy-
predicted actions and the human actions at each timestep.

We observe a strong inverse correlation between MSE and normalized scores in certain cases. For
example, in the right plot of Figure 16, the experimental setup evaluates the policy’s generalization
across both environments and objects on Pour Water. As the number of training environment-
object pairs increases, the normalized score gradually rises while the MSE steadily decreases, with
Pearson’s r = −0.98 and Spearman’s ρ = −1.00. This suggests that MSE could potentially replace
the human scoring method. However, in certain scenarios, MSE does not correlate well with real-
world performance. For example, in the left plot of Figure 16, the experiment evaluates the policy’s
generalization across objects on Pour Water. When the number of training objects increases to
16, the MSE actually increases, resulting in a Pearson’s r of only −0.73. Similarly, in experiments
exploring model training strategies (Appendix H), the MSE for LoRA is significantly lower than for
full fine-tuning (0.0049 vs. 0.006). Nevertheless, in real-world tests, LoRA’s policy performs worse
than full fine-tuning, with normalized scores of 0.72 and 0.9, respectively.

Overall, the MSE on the validation set often does not correlate with real-world performance, and
many anomalies appear unpredictably and without discernible patterns. This leads us to believe that
MSE is not a completely reliable evaluation metric. In practice, we use MSE more as a debugging
tool to quickly identify policies with obvious problems.

F.2 Evaluation Workflow

We use the environment generalization experiment as a case study to demonstrate our evaluation
workflow. Recall that in this experiment, we collect data with the same object across 32 environ-
ments, training a total of 21 policies. Each policy is evaluated in 8 unseen environments using the
same object, with 5 trials per environment. The average normalized score from these 40 trials is
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reported for each policy. Operationally, we complete the training of all 21 policies before deploying
the entire robotic system (refer to Appendix G) into a new environment for evaluation. To ensure
unbiased results, we conduct blind tests: initially, we set an initial position for the object and ran-
domly shuffle the order of the 21 policies. Testing then proceeds at this initial position, with the 21
shuffled policies scored according to the criteria outlined in Appendix E. Subsequently, we select a
new initial position for the object and repeat the scoring process for the 21 shuffled policies. This
procedure is replicated five times to conclude the testing in one environment. The robot system is
then transitioned to another new environment, and the entire process is repeated, completing eight
cycles in total for all tests.

Such an evaluation workflow ensures that policies evaluated within the same batch can be directly
compared—since they are exposed to the same conditions—but comparisons across different batches
are not valid. This restriction arises because the environments and the initial object positions can
vary between batches. For instance, despite the data in Fig. 3 and Fig. 5 being evaluated under the
same conditions—across eight unseen environments and using two unseen objects per environment,
each with five trials—they cannot be directly compared since they originate from separate batches.
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G Hardware Setup

Figure 17: UMI hand-held grippers. We do
not install side mirrors on the grippers.

Figure 18: Deployment hardware setup.

The comprehensive hardware building guide for the hand-held gripper can be found at: https:

//umi-gripper.github.io/. Figure 17 displays the four hand-held grippers used in our study.
Next, we introduce our deployment hardware setup, shown in Figure 18. We use a Franka Emika
Panda robot (a 7-DoF arm) equipped with a Weiss WSG-50 gripper (a 1-DoF parallel jaw gripper).
To address the robot’s limited end-effector pitch, we utilize a mounting adapter designed by Chi
et al. [13] to rotate the WSG-50 gripper by 90 degrees relative to the robot’s end-effector flange.
The gripper is equipped with soft, compliant fingers printed using purple 95A TPU material. For
perception, we use a wrist-mounted GoPro Hero 10 camera with a fisheye lens. Real-time video
streaming from the GoPro is achieved through a combination of the GoPro Media Mod and the
Elgato HD60 X external capture card. Policy inference is performed on a workstation equipped with
an NVIDIA 4090 GPU (24 GB VRAM). All components are powered by a mobile power supply
(EcoFlow DELTA 2 Max) with a 2048 Wh capacity, which also serves as a 23 kg counterweight to
prevent tipping. The system is mounted on a custom movable lifting table. While the table cannot
move autonomously, its mobility allows for testing our policies in non-laboratory settings.
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H Model Size and Training Strategy: Beyond Data Scaling

Case Score
DINOv2 ViT-L/14 0.90
LfS ViT-L/14 0.03
frozen DINOv2 0.00
LoRA DINOv2 0.72

(a) Training strategy. Both pre-
training and full fine-tuning are in-
dispensable.

Case Score
DINOv2 ViT-S/14 0.66
DINOv2 ViT-B/14 0.81
DINOv2 ViT-L/14 0.90

(b) Visual encoder scaling. Scal-
ing visual encoder yields a consis-
tent performance boost.

Case Score
small U-Net 0.88
base U-Net 0.90
large U-Net 0.83

(c) Diffusion model scaling. Scal-
ing action diffusion model does
not bring a performance boost.

Table 3: Model related experiments on Pour Water. The entries marked in gray are the same,
which specify the default settings: the visual encoder is a fully fine-tuned ViT-L/14 model pre-
trained with DINOv2, while the action diffusion model employs a base-size 1D CNN U-Net.

Finally, we extend our exploration beyond data scaling to investigate the model side. The Diffusion
Policy consists of two components: a visual encoder and an action diffusion model. Our investi-
gation focuses on the importance of the training strategy for the visual encoder and the effects of
scaling the parameters of both the visual encoder and the action diffusion model. We conduct exper-
iments on Pour Water, using data collected from 32 environment-object pairs and selecting 50%
of all valid demonstrations as the training set. The results, shown in Table 3, lead to several key ob-
servations: (1) Both pre-training and full fine-tuning are essential for the visual encoder. As shown
in Table 3a, a Learning-from-Scratch (LfS) ViT-L/14 and the use of frozen DINOv2 pre-trained fea-
tures achieve scores close to zero. Additionally, parameter-efficient fine-tuning methods like LoRA
(rank=8) [71] do not match the performance of full fine-tuning. (2) Increasing the size of the visual
encoder significantly enhances performance. Table 3b demonstrates that scaling the visual encoder
from ViT-Small to ViT-Large leads to a steady improvement in the policy’s generalization perfor-
mance. (3) Contrary to expectations, scaling the action diffusion U-Net does not yield performance
improvements. As shown in Table 3c, despite the increase in maximum feature dimensions—from
512 to 2048—as the network scales from small to large, there is no corresponding improvement in
score. In fact, performance slightly declines with the largest U-Net. We hypothesize that the small
U-Net’s capacity may already be sufficient for modeling the current action distribution, or that we
have yet to identify a scalable architecture or algorithm for action diffusion. This remains an open
question for future research.

I Limitations & Future Works

Our work has several limitations that future research can address. First, we focus on data scaling
for single-task policies and do not explore task-level generalization, as this would require collecting
data from thousands of tasks. Future studies could incorporate language-conditioned policies to
explore how to scale data to obtain a policy that can follow any new task instructions [72]. Second,
we study data scaling only in imitation learning, while reinforcement learning (RL) likely enhances
policy capabilities further; future research can investigate the data scaling laws for RL. Third, our
use of UMI for data collection introduces inherent small errors in the demonstrations, and we model
the data using only Diffusion Policy algorithm. Future research can investigate how data quality
and policy learning algorithms affect data scaling laws. Lastly, due to resource constraints, we
explore and validate data scaling laws on only four tasks; we hope that future work will verify our
conclusions on a larger and more complex set of tasks.
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J Additional Experimental Results

J.1 Data Scaling Laws on MSE
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Figure 19: Data scaling laws on MSE. Dashed lines represent power-law fits, with the equations
provided in the legend. All axes are shown on a logarithmic scale.

In the main text, we present power-law data scaling laws based on tester-assigned scores (Sec-
tion 3.2). In this section, inspired by the scaling laws on cross-entropy loss observed in large
language models [4], we explore whether our power-law relationships also hold for action mean
squared error (MSE). To calculate the MSE, we collect 30 human demonstrations for each evalua-
tion environment or object, forming a validation set. We then compute the MSE by averaging the
squared differences between the predicted actions and the human actions at each timestep.

Similar to Fig. 4, we fit a linear model to the log-transformed data and present the results in Fig. 19.
As shown in Fig. 19, in most cases the absolute value of the correlation coefficient r is relatively
large, indicating that power-law data scaling laws generally hold for MSE as well. However, com-
pared to Fig. 4, we observe that all absolute values of r in Fig. 19 are smaller, suggesting a weaker
scaling trend for MSE. Notably, in certain cases—such as the second column of Fig. 19 (in Pour

Water)—the absolute value of r is unusually low (only 0.558), primarily due to outliers in the MSE.
Such abnormal MSE values are not uncommon, as we discuss in detail in Appendix F.1.

While MSE can serve as a reasonable proxy metric when time-consuming human evaluations are
not feasible, it cannot fully capture the true performance of a closed-loop visuomotor policy in the
real world. We believe that tester-assigned scores better reflect the policy’s actual performance.
Therefore, we choose them as the primary evaluation metric and present the data scaling laws based
on this metric in the main text.

J.2 Keeping the Total Number of Demonstrations Constant

In the main text, we observe that as the number of training objects, environments, or environment-
object pairs increases, the policy’s generalization ability improves. However, this increase is accom-
panied by a rise in the total number of demonstrations. In Figures 20, 21, and 22, we redraw the
plots to maintain a relatively constant total number of demonstrations while varying the number of
objects, environments, or environment-object pairs. This adjustment does not require rerunning the
experiments; instead, we connect points from the original plots that correspond to a similar number
of demonstrations. Although the points along the same line do not represent exactly the same num-
ber of demonstrations, they are approximately equivalent. For instance, “2×” denotes around 200
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demonstrations. We exclude the “1×” line (approximately 100 demonstrations) because the results
become unstable and unreliable at that level when dealing with larger numbers of environments or
objects. From these plots, we see that even when controlling for the total number of demonstra-
tions, increasing the number of environments or objects still enhances the policy’s generalization
performance, as seen most clearly in Figure 22. Additionally, the total number of demonstrations re-
quired for the policy’s performance to saturate appears moderate. Once the total reaches around 16×
(approximately 1600 demonstrations), further increases offer minimal performance improvements.
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Figure 20: Object generalization. Each curve corresponds to a different total numbers of demon-
strations used, with normalized scores shown as a function of the number of training objects.
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Figure 21: Environment generalization. Each curve corresponds to a different total numbers of
demonstrations used, with normalized scores shown as a function of the number of training environ-
ments.

1 2 4 8 16 32
Number of Training Env-Object Pairs

0.1

0.3

0.5

0.7

0.9

No
rm

al
ize

d 
Sc

or
e

Pour Water

1 2 4 8 16 32
Number of Training Env-Object Pairs

0.1

0.3

0.5

0.7

0.9

No
rm

al
ize

d 
Sc

or
e

Mouse Arrangement

Data Usage: 2× 4× 8× 16× 32×

Figure 22: Generalization across environments and objects. Each curve corresponds to a different
total numbers of demonstrations used, with normalized scores shown as a function of the number of
training environment-object pairs.
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J.3 Raw Test Scores

In this section, we present the raw test scores before normalization. The scores for Pour Water are
shown in Table 4, Table 5, Table 6, and Table 7. The scores for Mouse Arrangement are shown in
Table 8, Table 9, Table 10, and Table 11.

#Objs
Usage 3.125% 6.25% 12.5% 25% 50% 100%

1 1.2
2 3.175 4.725
4 4.55 4.8 6.425
8 4.575 6.075 6.325 7.275
16 3.6 6.65 7.425 7.9 7.625
32 2.45 6.575 8.25 7.925 8.075 8.45

Table 4: Object generalization on Pour Water. Normalizing these scores by dividing them by 9
yields the results shown in Fig. 1.

#Envs
Usage 3.125% 6.25% 12.5% 25% 50% 100%

1 1.3
2 2.85 3.325
4 2.55 4.3 4.475
8 3.925 6.1 6.575 6.2
16 4.15 6.2 6.525 7.85 8
32 3.475 6.55 7.2 8.65 8.75 8.6

Table 5: Environment generalization on Pour Water. Normalizing these scores by dividing them
by 9 yields the results shown in Fig. 2.

#Pairs

Usage
3.125% 6.25% 12.5% 25% 50% 100%

1 0.45

2 1.65 1.425

4 2.725 5.3 5.325

8 4.95 6.175 5.775 5.625

16 4.8 5.8 6.9 6.95 6.875

32 3.95 5.225 6.95 7.575 8.3 7.875

Table 6: Generlization across environments and objects on Pour Water. Normalizing these
scores by dividing them by 9 yields the results shown in Fig. 3.

#Demos 64 100 200 400 800 1600 3200 6400

Score 4.35 6.15 6.875 7.025 6.975 7.2 7.125 6.525

Table 7: Number of demonstrations on Pour Water. Normalizing these scores by dividing them
by 9 yields the results shown in Fig. 6.
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#Objs
Usage 3.125% 6.25% 12.5% 25% 50% 100%

1 1.3
2 2.475 3.25
4 2.425 2.975 3.625
8 1.75 3.525 4.1 4.8
16 2.525 3.675 3.925 4.425 5.325
32 3.7 3.675 4.2 5.025 5.175 5.575

Table 8: Object generalization on Mouse Arrangement. Normalizing these scores by dividing
them by 6 yields the results shown in Fig. 1.

#Envs
Usage 3.125% 6.25% 12.5% 25% 50% 100%

1 1.3
2 1.975 2.475
4 1.8 3.3 3.625
8 2.075 2.5 3.2 3.6
16 1.525 3.65 3.8 4.375 4.45
32 2.725 3.325 3.9 4.7 5.125 5.2

Table 9: Environment generalization on Mouse Arrangement. Normalizing these scores by di-
viding them by 6 yields the results shown in Fig. 2.

#Pairs

Usage
3.125% 6.25% 12.5% 25% 50% 100%

1 0.75

2 0.975 0.875

4 1.8 2.3 2.325

8 2.425 3.725 3.425 3.35

16 3.375 4.925 4.5 5.05 4.75

32 4.225 4.225 5.075 5.2 5.6 5.525

Table 10: Generlization across environments and objects on Mouse Arrangement. Normalizing
these scores by dividing them by 6 yields the results shown in Fig. 3.

#Demos 64 100 200 400 800 1600 3200 6400

Score 1.725 3.025 3.3 3.775 3.975 3.8 3.875 3.8

Table 11: Number of demonstrations on Mouse Arrangement. Normalizing these scores by
dividing them by 6 yields the results shown in Fig. 6.
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J.4 Success Rate

Table 12 presents the success rates of the policy trained across 32 environment-object pairs for each
task. The detailed criteria for task success are provided in Appendix E.

Environment ID

Task 1 2 3 4 5 6 7 8 Mean

Pour Water 80% 40% 100% 80% 100% 100% 80% 100% 85%

Mouse Arrangement 100% 80% 100% 100% 80% 80% 100% 100% 92.5%

Fold Towels 100% 100% 60% 100% 100% 60% 100% 80% 87.5%

Unplug Charger 80% 60% 100% 100% 100% 80% 100% 100% 90%

Table 12: Success rate across all tasks. For each task, we report the success rate in each evaluation
environment.
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