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Abstract

Electronic health records (EHR) contain exten-
sive structured and unstructured data, includ-
ing tabular information and free-text clinical
notes. Querying relevant patient information
often requires complex database operations, in-
creasing the workload for clinicians. However,
complex table relationships and professional
terminology in EHRs limit the query accuracy.
In this work, we construct a publicly available
dataset, TQGen, that integrates both Tables
and clinical Text for natural language-to-query
Generation. To address the challenges posed by
complex medical terminology and diverse types
of questions in EHRs, we designed a medical
knowledge module and a questions template
matching module. For processing medical text,
we introduced the concept of a toolset, which
encapsulates the text processing module as a
callable tool, thereby improving processing effi-
ciency and flexibility. We conducted extensive
experiments to assess the effectiveness of our
dataset and workflow, demonstrating their po-
tential to enhance information querying in EHR
systems. We will release the project code after
our paper is accepted.

1 Introduction

Electronic Health Records (EHR) (Johnson et al.,
2016; Pollard et al., 2018; Johnson et al., 2023b)
contain a vast amount of tabular and textual in-
formation about patients. Retrieving this informa-
tion often requires complex database queries, pos-
ing a challenge for clinicians without specialized
database expertise. Converting natural language
queries into structured database queries can sig-
nificantly enhance the efficiency of medical pro-
fessionals. Previous research has explored table-
based text-to-SQL models, including sequence-to-
sequence approaches (Dong and Lapata, 2016) and
large language model-based methods. With the
emergence of large-scale EHR datasets, several
works (Raghavan et al., 2021; Lee et al., 2022) have

introduced table-based text-to-SQL datasets tai-
lored for EHRs. While these methods have demon-
strated promising performance, they still have cer-
tain limitations.
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Was the red cell count normal for patient 11272213 in
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to the CXR report in last admission?
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Why the white blood cell change according to the the
discharge summary?

Figure 1: Previous work (such as EHRSQL) focuses
only on tabular information, we introduce textual data
within tables and leverage multi-modal interactions to
create queries.
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EHR contains both structured tabular data and
unstructured textual information, such as radiology
reports and discharge summaries. These texts may
be stored directly within table columns as long-
form narratives or referenced via external links.
Previous studies (Lee et al., 2022) have primar-
ily focused on querying structured tables without
integrating text comprehension, see Fig 1 while
others (Kweon et al., 2024) have explored long-
text processing but lacked the capability to handle
multimodal table-text queries in EHRs. Addition-
ally, some works (Bae et al., 2023) have proposed
VQA tasks based on tables and chest X-ray (CXR)
images. However, in clinical practice, radiology re-
ports are already generated by radiologists, making
direct image-based queries less practical. To bridge
these gaps, we construct a comprehensive table-text



query generation dataset by integrating structured
data from MIMIC-IV (Johnson et al., 2023b), radi-
ology reports from MIMIC-CXR (Johnson et al.,
2019), and discharge summaries from MIMIC-
Note (Johnson et al., 2023a), facilitating more ef-
fective and clinically relevant EHR retrieval.

Besides, EHR contain numerous specialized
medical terms, often represented inconsistently
(e.g., ‘red blood cell’ vs. ‘RBC’). This variation
complicates converting natural language queries
into accurate database queries. To address this, we
incorporate medical knowledge to identify and map
specialized terms in clinician queries to correspond-
ing database terms. Furthermore, the combination
of tabular data and text within tables poses chal-
lenges for query code generation. To address this,
we introduce the concept of a toolset, encapsulat-
ing medical text processing functions into callable
tools. When the model detects the need to interpret
textual data such as CXR reports, it invokes these
tools, thereby extending the modality coverage of
text-to-SQL systems.

Moreover, the current query statement genera-
tion based on electronic health data lacks a stan-
dardized processing flow. We propose a query state-
ment processing framework with a large model as
the base model, including table content description,
medical term matching, question template match-
ing, query statement generation prompts, and code
execution inspection operations. These introduc-
tions are described in Section 4.

Our contributions are as follows.

1. We have constructed a natural language query
dataset that integrates tabular electronic health
record (EHR) data with medical text records.
This data set expands the textual modality,
making natural language queries for EHRs
more aligned with real-world scenarios.

2. We propose an EHR query processing frame-
work based on a large language model, incor-
porating a medical knowledge module, ques-
tion template matching, and other components
to enhance query accuracy. Notably, we in-
troduce the toolset concept and design text
processing tools to extend query modality.

3. We evaluated our workflow on the proposed
dataset, demonstrating the effectiveness of our
approach.

The remainder of the paper is organized into sev-
eral sections. Section 2 discusses existing related
work, Section 3 describes the TQGen dataset gen-

eration, Section 4 presents the framework for EHR
multi-modal query generation, Section 5 presents
the experiments and results, Section 6 discusses
the limitation of our work, Section 6 concludes the
work and discusses possible future work.

2 Related Work

Classic benchmark datasets such as Wik-
iSQL (Zhong et al., 2017) and Spider 1.0 (Yu et al.,
2018) have significantly contributed to text-to-SQL
task development. However, with the rise of large
language models (LLMs), these datasets have
shown limitations, such as lacking domain-specific
knowledge and large-scale table structures. Recent
benchmarks like DB-GPT-Hub (Zhou et al., 2024)
and BIRD (Li et al., 2024) address real-world
challenges, including domain-specific knowledge,
large-scale tables, and data noise, offering new
directions for text-to-SQL research.

In the EHR domain, text-to-SQL tasks focus
on extracting information from medical record ta-
bles by translating natural language into SQL or
other query languages. Wang et al.(Wang et al.,
2020) introduced TREQS, which performs text-to-
SQL tasks on MIMIC-III. Pampari et al.(Raghavan
et al., 2021) developed emrKBQA, a large-scale
text-to-logical-form dataset for patient-specific QA
on MIMIC-III. Lee et al.(Lee et al., 2022) pre-
sented EHRSQL, a text-to-SQL dataset based on
MIMIC-III and eICU(Pollard et al., 2018), incor-
porating time-sensitive and unanswerable queries.
EHRNoteQA (Kweon et al., 2024) provides QA
tasks from discharge summaries, serving as a long-
text benchmark based on MIMIC-1V data.

3 Dataset Construction

Common EHR datasets include eICU-CRD (Pol-
lard et al., 2018), HiRID (Hyland et al., 2020),
MIMIC-III (Johnson et al., 2016), and MIMIC-
IV (Johnson et al., 2023b), with the MIMIC se-
ries being notable for its broad coverage and
widespread use. This study utilizes MIMIC-
IV, integrating radiology reports from MIMIC-
CXR (Johnson et al., 2019) and discharge sum-
maries from MIMIC-Note (Johnson et al., 2023a).
These reports are embedded as text or hyperlinks
within structured tables, facilitating data associa-
tion and analysis. A detailed dataset description is
provided in Appendix A.1.
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Figure 2: The pipeline of dataset construction. After preprocessing to the EHR data, we create template for question
and query code, then execute the code to obatin the question-answer (QA) pairs.

3.1 Preprocessing

In this study, we integrated multi-source datasets
by standardizing and linking the raw data using the
unique patient identifier (subject_id) and hospital
admission ID (hadm_id). Additionally, intensive
care unit stay ID (stay_id) and chest X-ray study ID
(study_id) were utilized to identify eligible patient
cohorts, ensuring a high-quality data foundation
for subsequent analyses.

During preprocessing, all table fields underwent
type validation and standardization. Text data was
converted to lowercase for consistency. To improve
query efficiency, related tables were merged (e.g.,
integrating diagnoses with d_icd_diagnoses). De-
tailed preprocessing methods are provided in Ap-
pendix A.2.

3.2 Question Template

Since the data involves multi-modal information
from different modalities (tables, text), we define
the scope of question templates using two dimen-
sions: table-based and text-based question.

Table-based questions are associated with struc-
tured information from EHR tables. These ques-
tions address patient demographics, diagnoses, pro-
cedures, medications, and other clinical details typ-
ically recorded in a structured EHR format. The
dataset offers a rich collection of questions de-
rived from EHR tables, making it a highly valu-
able resource in this context. We utilized ques-
tion templates from the MIMIC-III version of
EHRSQL, adapting them to align with the MIMIC-
IV schema with necessary modifications. Approx-
imately 100 question templates were constructed
for table-based queries, with examples provided in
Appendix A.2.

The text-based question involves questions de-
rived from discharge summaries and CXR radiol-
ogy reports. These questions cover patient condi-
tions, changes in the CXR radiology reports, the pa-
tient’s admission history, discharge diagnoses, and
more. We enhanced the templates to handle queries
specific to individual patients and for comparisons

between two consecutive CXR studies. Approx-
imately 80 question templates were constructed
for text-based queries, with examples provided in
Appendix A.2.

3.3 Query Answer Generation

In Fig 2, for each question template, we design
a corresponding query statement, which is exe-
cuted after inserting relevant keywords to query
results. For questions requiring answer extraction
from long-text data, we input both the text and
the corresponding question into a large pre-trained
model, followed by manual verification of the gen-
erated responses. In cases where the query yields
no valid information (e.g., inquiries about examina-
tions not performed on a given patient), predefined
prompts are used as response outputs.

3.4 Dataset Distribution

We conduct a comparative analysis of previous
datasets, as presented in Table 1, and provide statis-
tics on the distribution of question counts across
different modalities, as shown in Table 8. Further-
more, we perform a classification analysis based
on question complexity, categorizing questions into
two levels: Level I for questions with no more than
three constraint conditions (eg. subject_id, diag-
noses_name), and Level II for those with more than
three.

4 Methodology

4.1 Preliminary

In this work, we focus on addressing health-related
queries using information from structured EHRs.
The reference EHR, denoted as D = {Dy, D1, ...},
D; represents the i, table in database, and C* =
{C§, Ct, ...} corresponds to the column description
with in D;. Given an EHR-based clinical question
q € @, the objective is to extract the final answer
by utilizing the information with both D and C.
We further develop the planning process of LLM
as an autonomous agent in EHR question answer-
ing. For initialization, the LLLM agent is equipped



Dataset Table Text # of Tables # of Questions
TREQS (Wang et al., 2020) v X 5 10k
EHRSQL (Lee et al., 2022) v X 13.5 24k
EHRXQA (Bae et al., 2023) v X 18 46k
EHRAgent (Shi et al., 2024) v X 10 2k
EHRNote (Kweon et al., 2024) X v 1 1k
TQGen(Ours) v v 18 12k

Table 1: Dataset comparison with other EHR-based text-to-query dataset.

with a set of pre-built tools 7 = {Tp, T, ...} to
interate with the EHR database D. For example,
the "SUM", "COUNT" functions can be regarded
as tools in SQL querylanguage. The query code
generation can be regarded as a combination of
tools. Thus we generate the sequence by the fol-
lowing policy: p; ~ p(f1,...ft|g,D,C, T), where
q € Q, fr € T. The final output is obtained by
executing the function sequence:

y ~ EXECUTOR(q, f1,...f1,D,C,T) (1)

where the EXECUTOR is the query code execu-
tor interacting with EHR database.

We then trace the outcome of each interaction
back to the LLM agent, which can be either a suc-
cessful execution result or an error message, to iter-
atively refine the generated code-based plan. This
interactive process is a multi-turn conversation be-
tween the planner and executor, which leverages
the high-level reasoning capabilities of the LLM to
optimize plan refinement and execution.

4.2 Modules

Table Description. In the process of converting
natural language into query code, table description
is a key module responsible for establishing con-
nections between natural language queries and the
structured schema of relational databases. It helps
the model accurately map query terms to database
columns, tables, or values, thereby improving the
generation of query code. We present an example
of table description in Appendix A.4.

Matching Module. When parsing a question, the
model matches text with values in the table. For
example, in “What is the highest red blood count
value of patient 01 in admission 02?7, table descrip-
tion helps the model locate the subject_id, hadm_id,
and label columns in the labtest table to query the
patient’s value and select the highest one. However,
medical terms like red blood count may appear as
RBC or red blood cell in different inputs, compli-
cating the mapping process. To address this, we

established a standard terminology library to en-
sure consistent mapping of input terms. Leveraging
UMLS (Bodenreider, 2004) standardized medical
terms, rbc and red blood cell are uniformly mapped
to red blood cell.

To generate queries code, we retrieve histori-
cal query templates based on semantic similarity.
Pre-stored queries and their corresponding ques-
tions are collected and stored. We calculate the
similarity between the input question and exist-
ing ones using a pre-trained BERT (Reimers and
Gurevych, 2019) model. The most similar ques-
tions are then retrieved, and their corresponding
query templates are extracted. For large template
databases, Faiss (Douze et al., 2024) is used for ef-
ficient similarity search. If no exact SQL template
is found, multiple similar templates are combined
to automatically generate the SQL query structure.

Tool Set Module. Since some tables embed links
to long texts or directly embed long texts, and the
query statement cannot directly extract and under-
stand the corresponding content from the long text,
we designed a text understanding tool. When the
model parses the input question and finds that the
query content involves long texts such as radiology
reports or discharge reports, we use the text under-
standing tool. This tool is packaged into a function.
Its input is the long text and the question, and the
output is the corresponding value.

In this work, we propose an automatic method
for generating dynamic prompts for a text under-
standing function, Text_Func, based on the original
query. For a given question, we extract key enti-
ties such as patient ID, admission ID, and medical
conditions using a table description module. For
example, from the query “Count the number of
times that patient 01 had a CXR check indicating
effusion in admission 02”, we extract patient_id =
01, admission_id = 02, and condition = effusion.
Using this extracted information, we dynamically
generate a prompt to guide Text_Func in retrieving



Question
Has patient 01 been diagnosed with diabetes and also
had effusion in a CXR study in admission 02?

Question Match Module

Question-Query Code Example

Table Description

patient.csv.gz is a table records the patient
information, the location is [table loc]. The
column description are listed below:
subject_id: patient id, one patient has one
unique subject_id.

hadm_id: admission id, one admission has

Prompt

Generate python code to answer the question.
Use pandas package to load .csv or .csv.gz file.
Only generate code for the question.

No explanation and other description.

Use "print" to output the result.

The result variable should be named as "result".

one unique hadm_id

‘ @ Integrated Information

Common Name

Medical Ki led
[ Matched Query Code Example [ M

Tool Set

#read csv table

pd.read_csv()

# filter by condition bigger than certain value
df[dff"col"] > value]

# read text with question
text_func(report_path, question)

=

Sandard Name

(

Error Information

Generated Query Code

A,
Agent |
Ly

Database |

if not filtered_df.empty:

study?"
text_func(report_path, question_text)

filtered_df = dff(df['subject_id'] == 01) & (dff'hadm_id"] == 02)]

report_path = filtered_df['report_path'].values[0]
question_text = "Did patient 01 have effusion in CXR

Result

Executor

Execution

False
Success

Figure 3: The framework of generating query code from question text. We use python code as example.

poe
AT Detect the need to load CXR report text.

How many times patient 01 mst X-ray

examination that indicated effusion during admission 02?

v

filtered_df = dff(df_cxr["subject_id"] == "01") &
(df_cxr["hadm_id"] == "02")]

effusion_report= text_func(filtered_dff"report_text"],
prompt = "Does the chest x-ray report indicate effusion?")
len(effusion_report["results"]==True)

v

text_func(filtered_dff"report_path"], Does the chest x-ray
report indicate effusion?)

Function Call

study_id |report_path results
s01 path1 E_> "f,if —>»( True
s02 path2 E-) AN —> False
s03 path3 B-> / ][1 —»{ False
Input Data Agent Output

N

Figure 4: The method to call function to process text.

relevant data from medical records. For instance,
the prompt would be: “Does the chest x-ray re-
port of patient 01 in admission 02 indicate effu-
sion?”. Figure 4 illustrates the pipeline for using
Text_Func to process the text.

Code Inspection Module. The code execu-
tor automatically extracts the code from the LLM
agent output and executes it within the local envi-
ronment:

O(q) = EXECUTOR(5(q))) 2

After execution, it sends the results of execution
back to the LLM agent for potential plan refinement
and further processing.

We observe that the generated query statements
do not always execute successfully. To address

this issue, we incorporate a repair module to refine
queries that fail during execution. When the gen-
erated query statement S(q) encounters an error in
the executor, we identify potential issues such as
incorrect file path references, column mismatches,
or erroneous value assignments. To improve query
accuracy, we collect the error messages returned
by the executor along with the original question,
the generated query, guiding prompts, and relevant
toolbox resources. This information is then fed
back into the LLM agent iteratively until a valid
query is produced or the predefined query attempt
limit is reached. The equation is as follows:
S(q) = LLM(S(q),Z, T,q,error_info)  (3)
The logic of the code inspection module can be
found in Algorithm 1.

4.3 Evaluation

Exact-Match Accuracy (EM) (Yu et al., 2018).
This metric measures whether all SQL components
C = {C%} of the predicted SQL query match the
ground-truth SQL query. It can be computed as
follows:

ST (/\ckec Yok = Yzck>
N

EM = “
Execution Accuracy (EX) (Yu et al., 2018). This
metric evaluates the performance by comparing
whether the execution result sets of the ground-
truth and predicted SQL queries are identical. It
can be computed as:



Yis, <V§ = V%)
N )
where I[(-) is an indicator function that equals 1
if the condition inside is satisfied, and O otherwise.
LLM-based Score For long-text answers, such as
listing medications or responding to hospitaliza-
tion reports, the previous metrics are not suitable.
Inspired by works LLaVa-Med (Li et al., 2023;
Kweon et al., 2024), we use GPT-4 (Achiam et al.,
2023) to evaluate the accuracy of model-generated
answers. The reference answer is manually cre-
ated and serves as the upper bound. GPT-4 then
evaluates the model’s output by comparing it to the
reference answer. It then assigns a score on a scale
from 1 to 10, where 1 indicates poor accuracy and
10 reflects a highly accurate response.

EX =

Algorithm 1 Algorithm Framework

Input: EHR databse D, Input question ¢ € Q,
Column description of EHR D: C, Tool set T,
Question samples 9, Medical knowledge M,
Generation prompt P.

We have guided prompt Z = [C, M, P].

Initialize: try_time : k € {1,..., K}, flag = 0.
% Match similar question examples
(sim = arg Tomeax(Sim(Qa Qi|Qi € QS)
% Generate Query Code
S(q) = LLM(Z, T, q, qsim)
% Loop until max iterations or successful execu-
tion
while £ < K and flag = 0 do
% Code Execution
O(q) = EXECUTOR(S(q))
% Code Check
if O(q) includes error information then
S(q) = LLM(S(q),Z, T, q, error_info)

k=k+1
else
flag =1
end if
end while

Output: Final answer or output information
from O(q)

S Experiment

5.1 Experiment Setup

Task and Datasets. We use test data from our
constructed dataset, which includes 1000 Level 1

and 1000 Level II questions (see Appendix 8). The
task is to evaluate the accuracy of the generated
query statements and the correctness of the query
results. Questions are categorized into two levels
based on difficulty: Level I for those with no more
than three constraint conditions, and Level II for
those with more than three.

Model Select. We used different large mod-
els as query generation models, including the
Qwen2.5 (Yang et al, 2024) series and the
LLaMA (Touvron et al., 2023) series. We also used
models with different parameter amounts to mea-
sure their impact on query generation capabilities.
These models are listed below:

1. Qwen2.5-7B/14B/32B (Yang et al., 2024) is
for general-purpose language understanding
and generation tasks.

2. Qwen2.5 Code-7B/14B/32B (Hui et al., 2024)
is an optimized version of Qwen 2.5 tailored
specifically for programming-related tasks.

3. LLaMA 2-7B/13B/34B (Touvron et al., 2023)
is for general text understanding task.

4. LLaMA 2 Code 7B/13B/34B (Roziere et al.,
2023) is a variant of Llama 2 fine-tuned for
coding tasks.

Implementation Details. The experiments were
conducted on an NVIDIA GeForce RTX A6000
GPU. To ensure consistency, we set the temper-
ature parameter to O during API calls to GPT-4,
eliminating randomness in the generated responses.
The generated queries are in SQL format, and their
execution is facilitated using Python.

5.2 Quantitative Analysis

We evaluated the performance of various models
on the dataset using three metrics: exact match ac-
curacy (EM), execution accuracy (EX), and a large
language model-based score (LLM-based score).
Exact match accuracy and execution accuracy were
employed to assess the correctness of results in-
volving simple data types, such as numerical values
and strings. In contrast, the LLM-based score was
specifically designed to evaluate tasks that involve
complex text comprehension and generation.
Table 2 summarizes the experimental results. As
shown in the table, with an increase in the model’s
parameter count, the model’s performance on EX,
EX, and LLM-based scores improves. Addition-
ally, when the questions are relatively simple, the
accuracy of the generated query code and its exe-
cution results is higher. However, as the difficulty
of the questions increases, the decline in EX for



EM EX LLM-based score

Model Size Levell Levelll Levell Levelll Levell Levelll
7b 0.53 0.48 0.80 0.63 7.85 6.04
Qwen 2.5 (Yang et al., 2024) 14b 0.58 0.53 0.82 0.75 8.53 6.57
32b 0.61 0.59 0.89 0.80 9.05 7.12
7b 0.56 0.52 0.82 0.62 7.79 6.13
Qwen 2.5 Code (Hui et al., 2024) 14b 0.60 0.55 0.85 0.76 8.69 6.58
32b 0.64 0.57 0.91 0.83 9.13 7.23
7b 0.52 0.48 0.81 0.62 8.02 6.10
Llama 2 (Touvron et al., 2023) 13b 0.55 0.51 0.83 0.73 8.46 6.53
34b 0.58 0.54 0.90 0.79 8.90 7.20
7b 0.55 0.52 0.81 0.64 7.96 6.16
Llama 2 Code (Roziere et al., 2023) 13b 0.59 0.54 0.86 0.76 8.45 6.67
34b 0.63 0.56 0.91 0.81 8.95 7.30

Table 2: Performance comparison of different models on our proposed dataset.

EM EX LLM-based score

Model MK QTM C.C Levell Levelll Levell Levelll Levell Levelll
X X X 0.50 0.40 0.72 0.61 7.63 6.10
v X X 0.54 0.50 0.77 0.66 7.87 6.21
Qwen2.5 14b (Yangetal, 2024) . 53 053 08 070 832 637
v v v 0.60 0.55 0.85 0.76 8.69 6.58

Table 3: Ablation study of different modules.

the generated query code becomes more significant,
while the decrease in EX is less pronounced. This
is because complex problems require more function
combinations, and although the model uses differ-
ent function combinations, it ultimately achieves
the same result. For text-based query tasks, the
LLM-based score also experiences a decline, likely
due to the complexity of the questions causing the
model to select incorrect texts, thereby affecting
accuracy.

We also investigated the differential impact of
various functional modules on the overall perfor-
mance of the dataset. In previous sections, we in-
troduced several key components, including table
description, medical knowledge, question template
matching, and code checking. For the experimental
design, we configured the agent with table descrip-
tions and prompts, and subsequently evaluated the
specific influence of the three modules—medical
knowledge (M.K), question template matching
(Q.T.M), and code checking (C.C)—on the gen-
erated query code.

We employed the Qwen2.5-14B (Yang et al.,
2024) model as the foundation and randomly sam-
pled 500 instances from a self-constructed test set,

encompassing samples with two distinct levels of
difficulty. Comparative analysis revealed a signif-
icant decrease in the model’s accuracy when the
M.K, Q.T.M, and C.C modules were disabled.

Disabling the medical knowledge module led to
the most significant accuracy decline, likely due
to mismatches between query phrases and table
entries, causing retrieval failures. The question
template matching module also had a notable im-
pact on code generation accuracy, with matched
questions and exemplar code boosting performance.
However, the model occasionally produced cor-
rect code without Q.T.M support. In contrast, the
code checking module had a smaller effect, as most
SQL queries executed correctly without modifica-
tion, with adjustments needed only in specific edge
cases.

5.3 Case Study

The effectiveness of the aforementioned modules
is demonstrated through the experimental results.
As illustrated in Fig 5, the impact of different mod-
ules on code generation and query result genera-
tion is depicted across three subplots: (a) shows
the performance differences with and without the



Count the number of red blood tests taken by patient
10004457 during admission 23251352.

What is the latest value of hematocrit of patient
10004457 in admission 232513527

Count the number of chest X-ray study of patient
{subject_id} during admission {hadm_id}.

Without Medical Knowledge Module

Without Question Template Matching

Without Code Check

SELECT COUNT(*) AS result
FROM icu_labevents_train
WHERE subject_id = 10004457
AND hadm_id = 23251352
AND label = 'red blood tests';

HAVING charttime = (
SELECT MAX(charttime)
FROM labevents

WHERE subject_id = 10004457 AND hadm_id =
23251352 AND label = ‘cbc');

SELECT COUNT(*)

* FROM cxr_report

WHERE subject_id = {subject_id}
AND hadm_id = {hadm_id}

AND label = ‘chest x-ray' x

With Medical Knowledge Module

With Question Template Matching

With Code Check

SELECT COUNT(*) AS result

FROM icu_labevents_train

WHERE subject_id = 10004457
AND hadm_id = 23251352 «
AND label = 'red blood cell’;

FROM labevents

GROUP BY valuenum

LIMIT 1;

SELECT MAX(charttime) AS max_charttime, valuenum

WHERE subject_id = 10004457 AND hadm_id =
23251352 AND label = "hematocrit'

ORDER BY max_charttime DESC

SELECT COUNT(*)

FROM cxr_report

WHERE subject_id = {subject_id}
AND hadm_id = {hadm_id}

AND path = "path’
TEXT_FUNC(path)

N [
Comment: The name of red blood
test in the table is red blood cell.

J

Comment: The question template is

"SELECT MAX(charttime) ...... " code check, it changes to right column name.

Comment: The query column name is wrong, after

(a) (b)

(©)

Figure 5: Some examples demonstrate the efficiency of the modules. The top row shows the questions, followed by
the generated query codes in the second and third rows — one without the module and the other with the module.

The last row explains why the query code is correct.

medical knowledge (M.K) module, indicating a
significant improvement in the accuracy of med-
ical term matching when the module is enabled;
(b) compares the outcomes with and without the
question template matching (Q.T.M) module, high-
lighting the crucial role of template matching in
the task; and (c) validates the contribution of the
code checking (C.C) module. The experimental
results confirm that all three modules contribute
to enhanced accuracy and reliability of the query
results.

6 Conclusion

In this work, we present a novel approach for query-
ing EHRSs by integrating structured tables and un-
structured clinical text. We created a publicly avail-
able dataset to facilitate natural language-to-query
translation, addressing the complexities of EHR
data, including complex table relationships, long-
form narratives, and specialized medical terminol-
ogy. Additionally, we propose a workflow lever-
aging LL.Ms, incorporating modules for medical
knowledge, question templates, and toolsets to en-
hance query accuracy. Our findings demonstrate
that LLM-powered querying systems can signifi-
cantly improve EHR data accessibility and usabil-
ity, paving the way for more efficient clinical in-
formation retrieval. Future work will focus on en-
hancing query accuracy, incorporating multi-modal
data sources, and further validating the approach in
real-world clinical settings.

Limitation

Despite careful design, our dataset has some limi-
tations. Since it is based on the MIMIC database,
its generalizability may be restricted, which could
affect the stability, comprehensiveness, and appli-
cability of our model. Future work should address
these challenges. While our research represents a
significant step in multimodal EHR QA systems,
there is still room for improvement. Key future
directions include expanding the dataset by enhanc-
ing multimodal dialogue systems and integrating
mechanisms to handle unanswerable or ambiguous
questions, which are crucial for real-world applica-
tions. These efforts will leverage our dataset as a
valuable resource and lay the foundation for more
comprehensive healthcare solutions.

Ethical and Privacy Considerations

In accordance with the PhysioNet Certified Health
Data Use Agreement, we strictly prohibit transfer-
ring confidential patient data (MIMIC-IV) to third
parties, including via online services like APIs. To
ensure compliance, we use locally deployed models
for testing, preventing third-party access to sensi-
tive patient information. We continuously monitor
our adherence to these guidelines and relevant pri-
vacy laws to ensure ethical data use. Sensitive
information, such as patient names and visit times,
has been appropriately processed to protect patient
privacy.
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A Appendix

A.1 EHR Dataset Introduction

The MIMIC-IV (v2.2) dataset (Johnson et al.,
2023b) is a large, publicly accessible relational
database containing de-identified health-related
data, including diagnoses, procedures, and treat-
ments, for 50,920 patients who were admitted to
the critical care units of Beth Israel Deaconess Med-
ical Center (BIDMC) between 2008 and 2019.

The MIMIC-CXR dataset (Johnson et al., 2019)
is a large-scale, publicly available collection of
377,110 chest radiographs from 227,827 imaging
studies conducted at BIDMC between 2011 and
2016. MIMIC-CXR can be linked to MIMIC-1V
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through lookup tables that map patient identifiers
across the two datasets.

The MIMIC-IV-Note dataset (Johnson et al.,
2023b) is a de-identified collection of free-text clin-
ical notes linked to the MIMIC-IV database. It com-
prises 331,794 discharge summaries from 145,915
patients (both hospital and emergency department
admissions) and 2,321,355 radiology reports from
237,427 patients. All notes have been de-identified
in accordance with HIPAA Safe Harbor standards.

We also list the tables and columns used in our
dataset in Table 4. There are 18 tables, and all
tables are linked by the subject_id and hadm_id.
In the MIMIC-CXR dataset, the path of radiology
report are stored in the path column, and the dis-
charge summary are stored in the text column in
the MIMIMC-Note.

A.2 Dataset Construction

During the dataset construction process, we em-
ployed a dual-faceted question design strategy.
First, we formulate question templates based on
consultations with clinical experts and insights
from the relevant literature. Second, we specifi-
cally designed complex questions that require the
integration of structured data (e.g., tabular infor-
mation) with unstructured textual data (e.g., radi-
ology reports and discharge summaries). For each
standardized question template, we systematically
generated multiple paraphrased variants that main-
tain semantic equivalence, thereby enhancing the
diversity and comprehensiveness of the question
set. Finally, a sampling approach was used to ran-
domly select one variant from the pool of candidate
questions, which was then populated with relevant
field values to generate the final question presented
to the research subjects. Table 5 lists some question
examples related to EHR tables. Table 6 lists some
questions related to the text of the CXR reports.
Table 7 lists some question examples related to the
text of the discharge summaries.

The question answer example is listed in
A.4. "question_template” is the template question,
"question" is the real question filled with values.
"query_code" is the generated query code. "an-
swer" is the answer after running the query code.



Index Dataset Table Columns

1 patients subject_id, hadm_id, gender, anchor_age, an-
chor_year, dod.

2 admissions subject_id, hadm_id, admittime, dischtime, admis-
sion_type, admission_location, discharge_location,
insurance, marital_status, race.

3 diagnoses subject_id, hadm_id, icd_code, icd_version.

4 d_icd_diagnoses | icd_code, icd_version, long_title.

5 MIMIC-IV labevents subject_id, hadm_id, item_id, charttime, valuenum,
valueuom, ref_range_lower, ref_range_upper.

6 d_labitems itemid, label, fluid, category.

7 microbiolog subject_id, hadm_id, charttime, spec_type_desc,
test_name.

8 prescriptions subject_id, hadm_id, starttime, stoptime, drug,
dose_val_rx, dose_unit_rx, route.

9 procedures subject_id, hadm_id, icd_code, icd_version.

10 d_icd_procedures | icd_code, icd_version, long_title

11 icustays subject_id, hadm_id, stay_id, first_careunit,
last_careunit, intime, outtime, los.

12 inputevents subject_id, hadm_id, stay_id, starttime, itemid,
amount, amountuom,patientweight, etc.

13 d_items itemid, label, abbreviation, category, unitname.

14 outputevents subject_id, hadm_id, stay_id, charttime, itemid,
value, valueuom.

15 chartevents subject_id, hadm_id, stay_id, charttime, itemid,
value, valueuom.

16 MIMIC-CXR cxr—metadatfi subJ:ect_%d, tudy_i{l, diéom_iq, studydate, studytime.

17 cxr-record-list subject_id, study_id, dicom_id, path.

18 MIMIC-IV-Note | discharge subject_id, hadm_id, charttime, storetime, text.

Table 4: Dataset, tables, and colu

Please generate python code to answer the
question.

Use pandas package to load .csv or .csv.gz
file.

Only generate code for the question.

No explanation and other description.

Use ‘print® to output the result.

The final result variable should be named as
‘result’.

Questions related to discharge summary
should be answered based on the summary-
text.

A.3 Dataset Statistics

Here we list some statistics information for our con-

structed dataset in 8. We classify the difficulty level

mns used in our dataset construction.

of the questions based on the number of values that
need to be filled in when querying. Questions that
require no more than three fill-in values are classi-
fied as Level 1 questions, and questions that require
more than three fill-in values are classified as Level
2 questions. The more fill-in values required, the
more complex the question.

A.4 Prompt Detail

For each table, we provide a detailed explanation
of the information conveyed by the table and spec-
ify the exact file path from which the table can be
accessed. Additionally, for each column within the
table, we offer a comprehensive definition that clar-
ifies the specific meaning and significance of the
data it represents. Textbox A.4 gives an example
of the description to admissions table.

When the model encounters a question it cannot
answer, we introduce a mechanism in the prompt
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Related Table | Question Template
diagnoses Has patient {subject_id} been diagnosed with {diagnoses_name} during admission
{hadm_id}?
admission List the hospital admission time of patient {subject_id}.
icu_stay Count the number of ICU visits of patient {subject_id} during admission {hadm_id}.
labevents Count the number of {labtest_name} patient {subject_id} received during admission
{hadm_id}.
labevents For patient {subject_id} in admission {hadm_id}, what was the highest value of
{labtest_name}?
microbiolog | What are the top [n_rank] frequent microbiology tests that patient {subject_id} had in
admission {hadm_id}?
prescriptions | What are the top [n_rank] frequently prescribed drugs of {gender_type} patients aged
{age_group} in {year}?
labevents For patient {subject_id} in admission {hadm_id}, was the last {labtest_name} normal?
prescriptions | Has patient {subject_id} have {durg_name} in his/her {ordinal_num} admission?
microbiology | What was the time that patient {subject_id} have {microbiology_name} in his/her
{ordinal_num} admission?
Table 5: Question templates examples related to EHR tables.
Related Table | Question Template
cXr_report List the {findings_name} of the last chest X-ray study for patient {subject_id} during
the hospital stay within admission {hadm_id}.
CXr_report List the {study_date} of patient {subject_id} who had a chest X-ray study during
hospital visit indicating {findings_name} within the admission {hadm_id}.
cXr_report List the {findings_name} of the chest X-ray study {study_id} for patient {subject_id}
during the admission {hadm_id}.
CXr_report Count the number of chest X-ray study of patient {subject_id} during admission
{hadm_id}.
CXr_report Count the number of {gender} patients aged {age_group} who had a chest X-ray
study during hospital visit indicating {findings_name} in the {year}.
CXr_report Has patient {subject_id} been diagnosed with {diagnoses_name} and also had a chest
X-ray study indicating {findings_name} within the admission {hadm_id}?
CXr_report Has patient {subject_id} received a {procedure_name} procedure and also had a
chest X-ray study indicating {findings_name} in the ${natomical_area} within the
admission {hadm_id}?
CXr_report Has patient {subject_id} been prescribed with {drug_name} and also had a chest X-ray

study indicating {findings_name} in the ${anatomical_area} within the admission
{hadm_id}?

Table 6: Question templates examples related to CXR report text.

12




Related Table

Question Template

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, does the
patient {subject_id} have any known drug allergies?

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, what
was the patient {subject_id} primary reason for admission?

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, what
was the patient {subject_id} discharge diagnosis?

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, what
medications were prescribed to the patient {subject_id} upon discharge?

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, what is
the family history of the patient {subject_id}?

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, describe
the hospital course briefly.

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, what
medication on admission is given to the patient?

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, what
was the discharge disposition of the patient?

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, was the
patient’s condition improving?

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, list all
the blood test items the patient have taken.

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, what
happened to the labtest {blood_test_item}?

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, why the
{blood_test_item} change?

discharge

According to the {ordinal_num} discharge summary of patient {subject_id}, did the
patient receive labtest {blood_test_item}?

Table 7: Question templates examples related to discharge summary text.

Train Valid Test

LevelI | Level Il | Level I | Level I | Level I | Level I

Table 2000 2000 500 500 500 500

CXR report | 1000 1000 250 250 250 250

Discharge 1000 1000 250 250 250 250

Total 4000 4000 1000 1000 1000 1000

Table 8: Statistics of our dataset
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design to ensure a predefined response. Specifi-
cally, the model is instructed to return a default
value, such as “Unable to answer this question,”
when it cannot generate a valid query. This fall-
back approach improves robustness by providing
consistent feedback, even when the question does
not match the database schema. By integrating
this method, the system remains reliable and pre-
dictable, particularly for edge cases or unanswer-
able queries.

Table Description

This is the description to the admis-
sions.csv.gz file. This file is located in
mimic-iv/admissions.csv.gz.

subject_id: A unique identifier for each pa-
tient in the dataset. Each patient only has
one subject_id.

hadm_id: Hospital admission ID, a unique
identifier for each hospital admission. This
ID enables differentiation between multiple
admissions for the same patient.
admittime: Timestamp for the exact date
and time when the patient was admitted to
the hospital. This helps establish the start
of a hospital stay.

dischtime: Timestamp for the date and time
when the patient was discharged from the
hospital, marking the end of a specific ad-
mission period.

admission_type: Categorical field indicat-
ing the type of admission, such as "emer-
gency,” "urgent," or "elective." This pro-
vides context on the reason or urgency of
admission.

admission_location: Describes the loca-
tion from which the patient was admitted,
such as "clinic referral," "emergency depart-
ment," or "transfer from another facility."

14

Question Answer Example

"subject_id": 10054277,

"hadm_id": 27607912,
"question_answer_pairs": [
{"question_template": "Count the admis-
sion num of patient {subject_id}.",
"question": "How many times does the
record show regarding patient 10054277’s
admissions?",
"query_code":
tients.csv.gz’)
result = df[df[’subject_id’] == 10054277]
[’hadm_id’].nunique()

print(result)

"answer": "1" }

df = pd.read_csv (’pa-

"subject_id": 10054277,

"hadm_id": 27607912,
"question_answer_pairs": [
{"question_template": "What diseases does
the patient subject_id have in the admission
admission_id according to the radiology
report?"”,

"question": "According to the radiology
report, what diseases are associated with pa-
tient 10054277 in admission 276079127",
"query_code": df = pd.read_csv (’pa-
tients.csv.gz’)

patient_data df[(df[’subject_id’]
10054277) & (df[’hadm_id’]
27607912)]

report_path = patient_data["path][0]
question_text = "What disease in the CXR
report?"

result text_func(report_path, ques-
tion_text) "answer": "atelectasis, pleural
effusion.” }
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