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ABSTRACT

Understanding the influence of data on machine learning models is an emerging
research field. Inspired by recent work in data valuation, we perform several ex-
periments to get an intuition for this influence on a multi-layer perceptron. We
generate a synthetic two-dimensional data set to visualize how different valuation
methods value data points on a mesh grid spanning the relevant feature space. In
this setting, individual data values can be derived directly from the impact of the
respective data points on the decision boundary. Our results show that the most
important data points are the miss-classified ones. Furthermore, despite perfor-
mance differences on real world data sets, all investigated methods except one
qualitatively agree on the data values derived from our experiments. Finally, we
place our results into the recent literature and discuss data values and their rela-
tionship to other methods.

1 INTRODUCTION

Machine learning algorithms stand and fall with the training data. Although the process of data
collection and labeling is highly time consuming, the creation of quality training data sets is of
paramount importance. However, it turns out that not all data points contribute equally to the quality
of the trained models. Recently, several works have addressed the problem of measuring the value
of individual data points for the performance of the algorithm such as data Shapley (Ghorbani &
Zou, 2019), catastrophic forgetting (Toneva et al., 2018), influence functions (Koh & Liang, 2017),
and data valuation using reinforcement learning (DVRL, (Yoon et al., 2019)).

In this paper we address the question: what distinguishes a high value data point from a low value
one according to the state of the art works listed above? Accordingly, our goals are to support a
better understanding of the models and a more efficient data collection.

Our contributions can be summarized as follows: We propose a framework to describe data values as
the resulting change of a model’s decision boundary with respect to added data points. Subsequently,
we probe the above data evaluation methods using the introduced framework on a synthetic 2D data
set and visualize the resulting data values. Finally, we discuss the implications of our findings and
place them in the recent literature.

1.1 BACKGROUND

There are several directions of research that can be interpreted as being related to estimating the value
of data. Active Learning (Settles, 2010) and core-set estimation (Mirzasoleiman et al., 2020; Sener
& Savarese, 2018) historically belong to the earlier approaches. Points chosen for labeling in active
learning and core-sets should intuitively have high data values. On top of that, recent methods such
as influence functions (Koh & Liang, 2017), DVRL (Yoon et al., 2019) and data Shapley (Ghorbani
& Zou, 2019) directly aim at estimating the value of data. Finally, several other works are related or
can be applied to the estimation of data values. These works include forgetting events discovered by
Toneva et al. (2018) and memorization effects described by Feldman (2020b) and Jiang et al. (2020).
Another related work by Paul & Dziugaite (2021) deals with estimating important samples early in
training. In this paper, we empirically compare four of these methods on a synthetic data set in order
to develop an intuition of how they work and to understand what makes a point important.
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To measure the importance of data points we consider two definitions. An important point either
causes a large absolute change in the model’s estimated decision boundary, or reduces the relative
distance between the estimated decision boundary and the ground-truth decision boundary. The
reason to consider both is that some points could result in a large change of the decision boundary
while increasing the error on the test set (e.g., a miss-labelled point). However, access to the ground-
truth decision boundary is rarely available in practice. As our results on noise-free data show, there
is no big difference between these two definitions, provided that the train data set is free of label
noise.

1.2 RELATED WORK

In this section, we briefly outline a few research fields related to data valuation and revisit the four
different data valuation methods from our experiments more closely. We use the standard notation
to refer to the data set D = {(xi, yi)}ni=0 and sometimes the shorter form D = {X, y}.

Core-Set Estimation Historically, core-set estimation is one of the first approaches that indirectly
address data values (Feldman, 2020a). The goal in core-set estimation is the selection of a small
core-set DC ∈ D resulting in the same or similar performance of the model as if it was trained on
the entire training set D. Many core-set-selection methods are model dependent. A recent work by
Sener & Savarese (2018) applies core-sets to active learning and convolutional neural networks. As
mentioned before, the connection between core-sets and data values is that one would expect points
in the core-set to be of high data value.

Active Learning Another related field is active learning (Settles, 2010). Given a labeled data set
{X, y}, and a large set of unlabeled points XU , the algorithm can query an oracle for the label of a
number of unlabeled data points xUi ∈ XU up to some budget b. An easy baseline for active learning
is to select data points predicted with low confidence score. We, therefore, evaluate some out-of-
distribution methods (Lakshminarayanan et al., 2017; Gal & Ghahramani, 2016) on the task of data
valuation in Appendix A.2. A link between active learning and data valuation can be established
quite naturally: the points chosen by active learning methods should also have a high data value.

Leave-One-Out Valuation (LOO) A straight forward way of estimating the impact of data points
is cancelling individual data points iteratively and comparing model performances after training. Let
fX refer to the model trained on the entire train set X and fX\xi

on the train set without xi. The
data value of xi is then directly given by the performance difference of fX and fX\xi

on the test set.

Influence Function Influence Functions were proposed by Koh & Liang (2017) as a way of mea-
suring the influence a data point will have on the model without retraining. As Koh & Liang (2017)
propose, influence functions should be an approximation for leave-one-out retraining. The influ-
ence is estimated by the change in the model parameters θ. That is, the influence of data point
zi = (xi, yi) is given by θ̂−zi − θ̂, where θ̂−zi refers to the model parameters if the point zi was not
part of the training data.

Since our synthetic data set is small, we can afford retraining and do not consider influence functions.

Data Shapley Ghorbani & Zou (2019) criticize that leave-one-out valuation does not capture in-
terdependence between points. They propose data Shapley as a way of tackling this. The value of a
data point xi is measured by its average contribution to the model performance when trained on all
subsets of the remaining points X \ xi. Since this means exponential complexity, Ghorbani & Zou
(2019) propose a truncated Monte Carlo scheme to estimate the value.

Sample Forgetting Toneva et al. (2018) found that data points frequently forgotten during training
are also important for training performance. A point is considered as forgotten if it was correctly
classified at some time step t during training but again miss-classified later. They also report that
this scheme of finding important points works between different model architectures.

Memorization is another related line of work. Feldman (2020b) and Jiang et al. (2020) indepen-
dently use it for two different approaches. A training instance xi is referred to as singleton or rare
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if removing xi from the train set reduces the probability for xi to be classified correctly. That is, xi
is only memorized if it is part of the train data. Formally, P (fX(xi) = yi)� P

(
fX\xi

(xi) = yi
)
.

Feldman uses it to support the long-tail theory in Feldman (2020b) and provides empirical evidence
for the theory in Feldman & Zhang (2020). In short, long tail refers to the fact that most data sets
contain a long tail with many atypical instances. According to the theory, these examples are im-
portant for the generalization of the algorithm. Jiang et al. (2020) use memorization as a measure
to characterize the regularities of a data set. They find that removing examples with the highest
irregularity can improve training performance. These examples typically are the miss-labeled ones.

DVRL Yoon et al. (2019) propose reinforcement learning as a way of estimating the value of
data points. They train a data valuator to output values for each instance (xi, yi) in the training
set, and use the resulting data values to sample training batches. Each points’ probability to be
in the batch is proportional to this data value. A predictor model fB is trained on the selected
batch B and the resulting performance of the predictor is evaluated on a separate target set. The
performance of the predictor model serves in turn as reward for the reinforcement learning of the
data valuator. The valuator thereby learns to estimate important samples in the training set for the
target distribution represented by the target set {XV , yV }. The data valuator (DVRL) is a function
of dvrl (xi, yi, (fX(xi)− yi)) → R. In some initial experiments we were interested in whether we
can remove the true labels yi from the DVRL while retaining the benefits to some extend but were
not successful. Nevertheless, we provide results without labels in our experiments.

2 CONTRIBUTIONS

In this paper we use a synthetic 2D data set to visualize the importance of data points on the model
performance. We span a mesh grid over the relevant feature plane and empirically compare the
estimated data values of some of the methods introduced above. A comprehensible metric is then
implemented to measure the difference between two decision boundaries. In the following section
we first introduce the data set, describe how we estimate data values and, finally, explain our exper-
imental setup.

2.1 DATA SET

The synthetic data set D = {(xi, yi)}ni=0 is two dimensional (xi ∈ R2) and binary labeled
(yi ∈ {0, 1}). We randomly divided it into train and test split. It is sampled from a mixture
of Gaussians for each label class and ground-truth labels are assigned by means of one-nearest-
neighbor classification. We will refer to this ground-truth decision boundary as g. The data
is not centered around the origin in order to have a non-linear decision boundary learned from
the model and, thus, to make the graphs more comprehensible. On data centered in the origin
a multi-layer perceptron learns linear decision boundaries as visible in the appendix in Figure
14. A detailed description of the data can be found in Appendix A.1. Furthermore, the data set
DM = {XM , yM} = {(xMi , yMi )}m2

i=0 is a 2D mesh grid used for plotting and estimating data val-
ues. For values {a1, ..., am} and {b1, ..., bm} on the x and y axes, the mesh grid contains all pairs of
values: XM = {(a1, b1), (a1, b2), ..., (am, bm)} with corresponding labels yM ∈ {0, 1}m2

. Labels
are computed with the ground-truth decision boundary g. In all experiments, the mesh grid is evenly
spaced. The model will be referred to as fT , where T = {(xTi , yTi )}nt

i=0 is the data set it was trained
on. Hence, fT = fT (x, θ) = arg minθ

1
nt

∑nt

i=0 L(f(xTi ), yTi ), where L(.) is the loss function.

2.2 MEASURING DATA VALUES

For measuring data values we utilize both the ground-truth decision boundary g and a baseline
model fX trained on the entire train data X . We can measure the influence of a point by the area
between curves of the ground-truth decision boundary and the learned model. The mean absolute
error (MAE) between two models fA and fB on the mesh grid approximates this area. Hence, we
simply replace the test set with our mesh grid. The data value of a point xi is given by
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dv(fA(xi), fB , X
M ) = MAE

(
fA(xi)(X

M ), fB(XM )
)

=
1

m2

m2∑
k=0

∣∣fA(xi)

(
xMk
)
− fB

(
xMk
)∣∣ .

(1)

Here, fA(xi) is a model of interest (e.g. trained without xi) and fB is a baseline. The sum runs over
m2 because it is the size of the mesh grid {(xMi , yMi )}m2

i=0. The leave-one-out data value for a single
point xi would therefore be given by dv(fX\xi

, fX , X
M ).

Advantage of the Decision Boundary Difference The advantage of using the change in the deci-
sion boundary to estimate data values is that model variations can be detected even if the accuracy
stays constant. For instance, the change in the decision boundary could affect a region not repre-
sented by the original test data set. For 2D data using a mesh grid is still computable, but with
increasing dimension it would become infeasible.

2.3 EXPERIMENTAL SETUP

This section first describes the model used in our experiments. Afterwards, the particular setup
of the four algorithms we evaluate are presented. Furthermore, the appendix provides additional
information regarding some baseline experiments and about the parameters used.

Model In all experiments we use a multi-layer perceptron (MLP) with a single hidden layer of size
1,000. From our pre-experiments in Figure 7 of the appendix we selected this model because it had
the highest stability and makes sure that data values are not disturbed by noise in the models’ output.
Furthermore, we use the MLP provided by sklearn (Buitinck et al., 2013) whenever possible. Only
when necessary for the implementation, we use TensorFlow (Abadi et al., 2015).

Leave-One-Out and Data Shapley We evaluate two different regimes using data Shapley and
leave-one-out valuation. First, we evaluate the algorithms on the mesh grid XM only. Sec-
ond, we evaluate the mesh grid w.r.t. X as baseline. For the first, we estimate data values
dv(fXM\xM

i
, fB , X

M ) for each data point xMi and w.r.t. some reference model fB . For the lat-
ter we append points xMi ∈ XM sequentially to X and evaluate dv(fX∪xM

i
, fB , X

M ). To compute
the value with Shapley, there is an additional loop over the power set. For instance, the formula
for the second regime is given by dvshap(x

M
i , fB) =

∑
T∈P(XM ) dv(fT∪xM

i
, fB , X

M ). In the
appendix we further provide data values on the training data X as dv(fX\xi

, fB , X
M ) .

Sample Forgetting We use the same schemes as in leave-one-out and Shapley to estimate data
values. In the first case we train fXM and count how often each instance xMi ∈ XM was forgotten.
In the second case we need to fit a model fX∪xM

i
for each xMi ∈ XM once. The data value of xMi

is then given by the number of forgetting events of xMi while fitting fX∪xM
i

. We scale the value
to [0, 1] for plotting. The procedure is described in Algorithm 1 of the appendix. Additionally, we
provide results with last-learned samples, where we use the epoch a point was correctly classified
in for the first time as data value. Again, results on the training dataX can be found in the appendix.

Memorization For memorization we fit two models k-times and compute the difference between
how often each xMi was memorized correctly in each model. As before, we compare fX∪xM

i
to fX

in the main paper and provide fX to fXM\xM
i

in the appendix.

DVRL We evaluate DVRL in three settings. With both ground-truth labels and predictions
(dvrl(xi, yi, (yi − fX(xi))) → R), when only predictions are available (dvrl(xi, fX(xi)) → R),
and when both are not available (dvrl(xi) → R). We use X to train the predictor model and the
mesh grid XM as target set.
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Figure 1: Data valuation using leave-one-out valuation. The left image shows a setting where the
decision boundary difference between ground-truth and learned boundary is used. The center image
where the difference is computed w.r.t. a baseline model, and the right image where only the mesh
grid is evaluated w.r.t. to the ground-truth decision boundary. The straight line is always the ground-
truth decision boundary g and the curve is the learned decision boundary. In the first two cases,
important points are clearly in the area between ground-truth and learned decision boundary. Hence,
they are the miss-classified points. In the right plot all points seem to be equally important except
for some noise.

3 RESULTS

We present our results as color plots of data values on the mesh grid. To save some run-time, the grid
for the plots is smaller than the one for comparing decision boundaries. In the following XMP will
refer to the smaller mesh grid for plotting and XM to the larger one for comparing the difference
between decision boundaries. The plotting interval for XMP is [−10, 25] with a step size of one.
Specifically, XMP = {−10,−9, ..., 25} × {−10,−9, ..., 25}. In the appendix we further provide
plots for out-of-distributions methods in Section A.2, memorization in Figure 15 and valuation of
the train data in Figure 10.

3.1 LEAVE-ONE-OUT

First, we estimate data values on XMP using leave-one-out valuation and the schemes described
earlier. The results are displayed in Figure 1. Blue areas have a high data value. The left most
plot shows dv(f

X∪xMP
i

, g, XM ) with the ground-truth decision boundary g as reference and when

points on the mesh grid are added to the training data. The center plot shows dv(f
X∪xMP

i

, fX , X
M )

(same as before but w.r.t. a baseline model) and the right most plot dv(f
XMP \xMP

i

, g, XM ). The
straight line is the ground-truth decision boundary g and the curve is the learned decision boundary.
From the left and center plot it emerges that the important points w.r.t. X lie in the area between
ground-truth and learned decision boundary. Hence, they are the wrongly classified points. The
closer a miss-classified point is to the ground-truth decision boundary the more important it is. It is
noteworthy that both these plots show the same regions to be important. Hence, knowledge about the
ground-truth decision boundary does not bring any benefit here. Surprisingly, both plots do not show
the small miss-classification region between the clusters to be important (intersection of the decision
boundaries on the interval [5, 7] on the x-axis and [3, 5] on the y-axis). This could, however, simply
be related to the small size of the region not resulting in a large change of the decision boundary. It
is also worth mentioning that some correctly classified points close to the learned decision boundary
actually push this boundary away. However, this only holds for points very close to it. Finally, in
the right image all regions have a similar data value. This is unsurprising because the presence of
neighboring points in the mesh grid compensates for a missing point.

3.2 DATA SHAPLEY

Next, we use the same setup with data Shapley. Results are plotted in Figure 2. Noteworthy, the mesh
grid in these experiments is smaller (step size 3) due to the large run time of Shapley. Hence, the
resolution is not as fine grained. Despite that, the results are similar to those in Figure 1. Important
points are those in the miss-classified region between ground-truth and learned decision boundary.
Again, the left image shows a setting where f

X∪xMP
i

is evaluated against g and the center plot shows
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Figure 2: Data valuation with data Shapley. On the left, we again useX as baseline and sequentially
add points xMP

i ∈ XMP to estimate their data value w.r.t the ground-truth model g. In the center
image, we use the same setup with fX as reference, and, in the right image estimation is done on the
mesh grid only. In the left two plots, the regions roughly match those from Figure 1 where important
points are miss-classified points. In the right most plot there seems to be a small bias towards points
left of the decision boundary.

f
X∪xMP

i

against fX . In the right most image the data value is measured on the mesh grid only and
using the ground-truth decision boundary as reference. From this experiment it seems that Shapely
has no benefit over leave-one-out valuation at least on this data set.

3.3 SAMPLE FORGETTING AND MEMORIZATION

The results for forgetting, last learned and memorization are plotted in Figure 3. In the left most
plot data values are estimated using standard catastrophic forgetting as proposed by Toneva et al.
(2018) and Algorithm 1 from the appendix. The center plot shows the setting we refer to as last
learned, where we use the epoch a sample was correctly classified in for the first time as data value.
In the right plot, data values are estimated with memorization events. In the left and center plot the
miss-classified region between the two clusters is frequently forgotten (interval [5, 7] on the x-axis
and [3, 5] on the y-axis) and as such important for learning. The region in the top is found to be more
important when using catastrophic forgetting, while the region in the bottom is not recognized by
any of the two. This is somewhat in line with the previous results since the high value points lie in
one of the miss-classified regions. Sample forgetting just does not find all of these regions accurately.
In the right plot, memorization finds all miss-classified regions accurately and assigns the same data
value to each point in these regions. In Appendix A.7 we further provide examples when data values
are evaluated on the mesh grid only and with other types of forgetting events. In general, results are
similar the the ones presented here. The only difference is Figure 15 where values are computed on
the mesh grid solely. In this case, points close to the ground-truth decision boundary are considered
as important but we assume that this is an effect related to batch-wise training. In Figures 16, 17
and 18 we include plots that show the trajectory of the decision boundary over several epochs on
some data sets. There it emerges that the forgotten points are mostly the points close to the learned
decision boundary.

3.4 DATA VALUATION USING REINFORCEMENT LEARNING

Using DVRL we perform three different experiments with different inputs: when labels and residuals
are available, when predictions are available and when only X is available. The results are reported
in Figure 4. DVRL uses TensorFlow (Abadi et al., 2015), different optimization parameters should
therefore explain the small difference in the shape of the decision boundary compared to the previous
two experiments. In all three cases, the estimated data values do not look similar to the previous
results. DVRL learns to separate the blue cluster somewhere, but it does not appear to be related
to the decision boundaries. It seems that DVRL distills the data set (e.g., learns to thin out X by
removing data points because they are over represented). In the appendix in Figure 20 we include
plots after running three iterations of DVRL and find that it produces different results. We believe
that this supports the hypothesis that DVRL thins out the data set by selecting some high value points
at random. However, which points are selected is not deterministic.
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Figure 3: Data valuation using sample forgetting, last learned and memorization. The left plot
shows results for standard catastrophic forgetting. The center plot shows results for latest learned
data values and the right plot shows results with memorization. In the two left plots, especially
points in the miss-classified region between the two clusters, interval [5, 7] on the x-axis and [3, 5]
on the y-axis, are recognized as important. Some points in the upper miss-classified region are also
considered as important but not points in the bottom region. In the right plot memorization almost
exactly finds all miss-classified regions.

Figure 4: Data valuation using reinforcement learning. Left when labels and residuals are available
(dvrl(xi, yi, (yi − fX(xi)))→ R), center with only predictions (dvrl(xi, fX(xi))→ R), and right
when both are not available (dvrl(xi) → R). In all cases, the learned boundary does not match the
previous results. DVRL seems to distill the data only.

To summarize our results so far; leave-one-out, Shapley, sample forgetting and memorization
roughly seem to agree that miss-classified points are the important points. Qualitatively, memo-
rization seems to estimate these regions most reliably. Only DVRL deviates significantly. We use
the remainder of this paper to discuss these results in more detail and to relate them to the recent
literature.

4 DISCUSSION

Our goal was to get an intuition for the importance of data points on the performance of machine
learning models. We used a synthetic 2D data set and visualized the computed data values of four
different valuation methods. Data Shapley and leave-one-out valuation produce similar results. Both
find the regions between ground-truth and learned decision boundary to be important. Hence, miss-
classified points are the important points. Sample forgetting is in line with these results but does not
seem to find all of the miss-classified regions. Memorization qualitatively produces the best results
and finds all of these regions as important. In contrast to that, DVRL does not seem to produce
meaningful results. Note, that this does not mean that DVRL does not work in general. In several
previous experiments we successfully used it to remove unnecessary points from the training data,
but it does not seem to generalize to unseen data on the mesh grid. However, DVRL has not seen the
points xMi on the mesh grid during training. In Figure 21 (see Appendix) we therefore repeat one
experiment where we have added a miss-classified point to the training data of DVRL and find that
a single point might already improve the generalization.

We further provide results of data valuation on the mesh grid only. For leave-one-out and Shapley
(right most plot in the Figures 1 and 2) we find no special regions of interest. In sample forgetting and
memorization in Figure 15 (see Appendix) the points close to the ground-truth decision boundary
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seem important. We assume that this is related toggling during training. Finally, we have observed
that the data values slightly differ with different data set sizes. Hence, there is an additional effect of
the data set size that we do not discuss in more details (for instance, Figure 9). However, the finding
that miss-classified points are the important points is constant across all experiments.

Although this finding does not seem spectacular, we were surprised by it. Our intuition has guided
us to think that points close to the decision boundary would be more important and we were expect-
ing to see out-of-distribution points to have an impact on the decision boundary as well. Similar to
the support vectors in the support vector machine (SVM), we would have expected that these points
would push the decision boundary further away than it is actually the case. In the appendix we re-
peated some of the experiments on more complex sets of data with the same results. In the remainder
of this section we discuss the results and further incorporate them into the recent literature.

Models converge to Data Set We were rather surprised by the finding that points close to the
decision boundary only have a high influence if they are miss-classified. Otherwise, they do not seem
to distract the model much, which we believe is counter intuitive. Toneva et al. (2018) have a similar
intuition and compare forgettable points to support vectors. They draw a connection to Soudry et al.
(2018) and see evidence that stochastic gradient descent converges to solutions maximally separating
the data set. Our own results seem to contradict this theory. Correctly classified points only have
an influence on the decision boundary if they are very close to it (at least on this data set). In the
appendix we perform several experiments where we visualize this behavior. In particular, in Figure
9 we plot the effect of a new data point on the decision boundary for several different data set sizes.
While the data point seems to introduce more variance to the model, it does not move the decision
boundary as far away as we would expect for maximizing the margin.

From our experiments it seems that the majority of the data set favours a certain decision boundary
and that a single point does not seem to have a big impact on this unless it is miss-classified. Both
Toneva et al. (2018) and Paul & Dziugaite (2021) hypothesize that the importance of points is a
property of the data rather than the model. We believe that our experiments support this theory.
First, all models converge to a similar decision boundary in our experiments; a curve open to the
right side of the plots. This does not only hold for the MLP with a single hidden layer of different
size, but also to deeper models. Furthermore, in the experiments with sample forgetting in Section
3.3 and in the Appendix, the miss-classified points are considered as important. Although only a
single point xMi is added to X at a time. Points in the miss-classified region seem to be harder
to learn. Interestingly, they are also among the latest learned samples. That is, they are correctly
classified in a later epoch during training, regardless of the used model. However, smaller models
seem to have more difficulties learning these points.

Decision Boundary Change is Enough Our results further show that there is no benefit of using
the ground-truth decision boundary g over the baseline decision boundary fX to estimate high value
points. Hence, for identifying important data points it is not necessary to know the ground-truth
decision boundary as long as the available data is free of label noise. In other words, the data value
depends on any (large) change in the learned decision boundary no matter if measured w.r.t. an
arbitrary baseline or the ground-truth.

Are no Points important by Nature? As mentioned earlier, we were expecting to find points
close to the decision boundary to be important but our experiments contradicted this hypothesis.
On the first sight, this might sound strange that a point far away from the ground-truth decision
boundary may support learning this boundary. It becomes more plausible when viewed from the
perspective of an SVM. According to Jacot et al. (2018), our MLP’s decision boundary converges
towards a corresponding linear SVM for infinitely wide perceptron layers. While this connection is
not justified analytically for our finite width MLP experiments, it might still help to gain a qualitative
understanding of the observed behavior. Consider a linear ground-truth decision boundary g and a
linear SVM f . Given a data point xi with distance di to g. What is the most valuable point xj w.r.t.
to xi s.t. the resulting model f is close to g? It is the point xj on the other side of the decision
boundary with the same distance dj to g and |xi − xj |2 = di + dj . Hence, there is no single set
of important points producing a perfect decision boundary, but for any point xi there is a counter
point xj instead. Something similar seems to be the case for our MLP. In order to truly grasp this
behavior, we propose to report data values pairwise.

8



Under review as a conference paper at ICLR 2022

Benefits of Data Shapley and Pair-Wise Data Values In our experiments data Shapley seems to
bring no benefit when comparing the high value data areas between the different methods. This is
different from, for instance, Yoon et al. (2019) and Ghorbani & Zou (2019) where Shapley performs
better than leave-one-out in most cases. However, this may be explained with the simplicity of our
synthetic data set and with the sparse mesh grid. Most points on the mesh grid are singleton and
therefore are not represented in any other cluster. But what should be the value of a point if it falls
into a cluster or sub-population that is small? We believe that a point from a small cluster should
have a higher data value. Otherwise, the smaller cluster could, for instance, be more sensitive to
miss-labeled data. Leave-one-out would only find singleton points to be important but not points
from a small cluster. Shapley would find points from a smaller cluster to be more important but
would not reveal the cluster structure in the data (e.g., Figure 11 in the Appendix). It emerges that
a large amount of points can be removed from a cluster or sub population without affecting the
model performance, while it does not matter which points exactly are removed. This is in line with
the idea of core-sets. However, there is not a single core-set, but many. This is different from the
statement in the introduction where we hypothesized that points from a core-set should all have
a high data value. A core-set should include high-value points (rare points) but also a sufficient
number of points representing each cluster or sub population. Hence, for truly capturing the value
of a data point we believe this point has to be considered relative to all other points. We, therefore,
propose to report data values pairwise. This would give rise to some sort of adjacency matrix,
reveal clusters in the data and provide a bridge to core-sets. Let P(X) denote the power set of X , a
pairwise data-value could then be derived with a small extension to Shapley and would be given as
dvp(xi, xj) =

∑
T∈P(X)

∑|T |
k=0 |fT (xk)− fT\{xi,xj}(xk)|.

Data-Centric AI and Long-Tail Theory Recently, the topic of data-centric AI has emerged. It
extends the understanding of machine learning from considering only the model to the data used
to train it. This includes quantifying and understanding the influence of data on the model and
improving the data set. Jiang et al. (2020) use memorization to characterize a data set and thereby
detect possible shortcomings. Feldman (2020b) uses memorization of rare samples to understand
model generalization. Our own results indicate that all these methods have more in common than one
would expect. Our setup may be interpreted as a Gaussian center distribution and the mesh grid as
a long tail. The miss-classified singleton samples on the mesh grid are both the frequently forgotten
ones as well as the ones considered as important by Shapley, leave-one-out and memorization.

For improving the underlying data set we can think of two applications. A common approach in ac-
tive learning is to select samples predicted with low confidence for labeling. Our own results would
suggest that this scheme should be extended to miss-labeled points. That is, the points selected for
labeling should both be out-of-distribution and produce a miss-classification. If data for labeling is
not available, a common approach is to use generative models such as Generative Adversarial Nets
(GAN) (Goodfellow et al., 2014). In this case, the GAN could try to produce instances that would
be miss-labeled by the model.

Summary We performed several experiments on synthetic data and found that most methods agree
on miss-classified points to be important. We focused on simple, linear and noise-free data and used
only a one-hidden-layer MLP for evaluation. Our experiments are no benchmark of the evaluated
methods nor do we derive a qualitative statement about them. Our goal was only to get a better
understanding of data values. The next steps would include repeating our experiments on more
complex data sets and describing these rules formally should they hold true. We further plan to
develop a web-tool similar to the tensorflow-playground1 for educational purpose and to perform
more experiments.

Reproducibility and Ethics Statement All experiments were repeated several times and we will
provide the final code on GitHub. Furthermore, we tried to keep the code simple and small so that it
is easy comprehensible. As our experiments were conducted on small and synthetic data and running
on local machines only, the environmental impact is low. The same holds for ethical concerns, we do
not see any special threats in combination with our experiments. However, we hope that our insights
help to design better and more robust data sets in future.

1https://playground.tensorflow.org/
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A APPENDIX

The following appendix contains additional material to support the proposed experiments.

A.1 SYNTHETIC DATA SET

Figure 5: Snapshot of the synthetic data set for two clusters with means (0, 1) and (10, 7) in the left
plot, with four clusters in the center, and with overlapping (noisy) clusters on the right.

The data set X is two dimensional and binary. Each of the two label classes is sampled from a
mixture of several Gaussian’s. That is, there are kp clusters (µpi ,Σ

p
i )
kp
i=1 that represent the data with

positive label and kn clusters (µni ,Σ
n
i )
kn
i=1 that represent data with negative label. The data generator

can also assign ground truth labels using one-nearest-neighbour classification. An unlabeled data
point xi is assigned the label of the closest cluster mean, i.e., if the mean µpi closest to xi belongs
to the positive class, xi will be labeled positive. We use g(x) to refer to the ground truth decision
boundary defined by this data generator.

A.1.1 PARAMETERS

The mesh grid XM that we use to measure the decision boundary difference covers the range
[−10, 20] on both x and y axes and contains 500 points on each axis. Hence, XM ∈ R5002×2.
For plotting we use a smaller mesh grid XMP in the same range. The step size for plotting is one
for all experiments except Shapley. For Shapley we use a step size of three because of the large
run time. That is, the values on x and y axes are either {−10,−9, ...20} or {−10,−7, ..., 20}.
Exemplary, XMP = {(−10,−10), (−10,−9), (−10,−8)..., (20, 20)}.

12



Under review as a conference paper at ICLR 2022

A.2 OUT-OF-DISTRIBUTION RECOGNITION

We started with a use case where we aimed to estimate data values of unlabeled points. Our first
intuition was therefore to exploit out-of-distribution methods. The results of data valuation using
three common methods are presented in Figure 6. The blue areas represent regions with a high data
value and red regions accordingly with a low value. The two green lines are the ground-truth decision
boundary (straight line) and the decision boundary representing the MLP (curved line). Both Monte
Carlo (MC) dropout and the ensemble only recognize points close to the decision boundary as OOD
while the Gaussian process detects all points outside the train set distribution as OOD. We briefly
revisit ensemble methods and Monte-Carlo dropout below.

Figure 6: Data valuation using three common out-of-distribution (OOD) methods. Blue areas have
a high data value (are OOD) while red areas are less important. The Gaussian process (left plot)
recognizes all points outside of the train distribution as OOD while Monte Carlo dropout (center
plot) and ensemble methods (right plot) recognize only points close to the decision boundary. Monte
Carlo Dropout is better in finding points in the upper part of the decision boundary.

Ensemble Methods Ensemble methods (Lakshminarayanan et al., 2017) work by training several
different models on the same task. The uncertainty is estimated using the variance in the prediction
of all these methods. Intuitively, this variance is high for points unseen during training. In the
section A.3 we performed some experiments on how to select an appropriate model size. In general,
smaller models are better for this purpose.

Monte-Carlo Dropout A common method for out-of-distribution recognition in neural networks
is Monte-Carlo Dropout (Gal & Ghahramani, 2016). The idea is rather simple, dropout is using
during inference. That is, inference is run several times on the same model with dropout. The
variance in the prediction is then used as uncertainty. This method has the advantage that it does not
require training several models.

13
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A.3 MODEL STABILITY EXPERIMENTS

This section shows some of the initial experiments we performed in order to find stable architectures.
Figure 7 shows the model stability of different architectures of a single MLP with different hidden
layer sizes. On the other hand, Figure 8 shows the model stability when a new point appears in the
center of the cluster. Finally, Figure 9 shows the model stability with different data set sizes when a
new point is added.

Figure 7: Model stability for different architectures of a single layer MLP with hidden layer size 3,
50 and 1000 for 15 training runs. Each line is the decision boundary after a full training. Larger
models produce more stable decision boundaries.

Figure 8: Stability of models when a new miss-labeled point (blue square) appears in the center of
the cluster. Larger data sets seem to be distracted more. The hidden layer size of the MLP is 1000
in these experiments. Hence, without the miss-labeled point we would expect the same stability as
above. While the miss-labeled point does not have an impact on the predictions in the train data, it
induces noise to the decision boundary, which might be problematic.
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Figure 9: Model stability for different sizes of the training set when a new correctly labeled point
(blue square) is added to the data set. The left column shows the data set without the new point
(therefore, it is grey) and the right one with new point. The first three rows show data set sizes of
50, 100 and 500. The forth row shows a size of 500 again. As before, for larger data sets a new
point seems to cause more variance in the decision boundary. In the top three rows this variance is
moderate. In the last row it is, however, larger although it is the same setup as in row three except
that the data set was re-sampled. Apparently, some initializations are more prone to noise. We did
not observe such noise in the experiments in the paper.
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A.4 SAMPLE FORGETTING

Apart from the standard definition of catastrophic forgetting given in the Algorithm below, we com-
pare several deviations which we call last learned, simple forgetting and frequent forgetting. For last
learned we count the first epoch an instance was correctly classified in as data value. Frequent for-
getting counts forgetting events whenever a sample was classified correctly beforehand, and simple
forgetting does not require a point to be classified correctly before.

Data: D = {(xi, yi)}ni=0, DM = {(xMi , yMi }m
2

i=0, num epochs, Model f(x, θ)

Result: dv ∈ RM2

dv ← {0}M2

;

for (xMi , y
M
i ) ∈ DM do

Xnew = X ∪ xMi ;
ynew = y ∪ yMi ;

prev acc = 0;
forgetting stats = 0;

for k in num epochs do
fit f on {Xnew, ynew} for one epoch;
ŷMi = f(xMi );
acc = 1 if ŷMi = yMi else 0;

if acc ≤ prev acc then
dv[i]← dv[i] + 1

end

prev acc = acc;
end

dv[i]← dv[i]
num−epochs

end
Algorithm 1: Data Valuation with Catastrophic Forgetting.
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A.5 DATA VALUES ON TRAINING DATA

Although it is not the main goal of the paper, we provide some results of train data valuation in this
section. Figure 10 shows the valuation of the training data using leave-one-out, Shapley, last learned
and DVRL (with labels). A similar experiment with a more complex data set is instead depicted in
Figure 11. In this case, the methods were applied to a data set with four clusters.

Figure 10: Valuation of the training data. The size of a point represents its data value. Leave-one-out
(top left) and catastrophic forgetting (shown in Figure 16) assign the same data value to every point.
Shapley (top right) shows only minor differences on the point sizes. Only last-learned samples and
DVRL produce different results. If data values are used to remove points from the data set, DVRL
and last learned produce the best results.
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Figure 11: Data valuation of training data with leave-one-out, Shapley, latest-learned and DVRL
on data from four clusters. Again, leave-one-out (top left) assigns almost the same data value to
each point. Shapley (top right) shows more variance this time and values one of the two clusters for
each label slightly higher than the other. The results for catastrophic forgetting are visible in Figure
17. As mentioned in Figure 17, it seems to find points close to the decision boundary to be most
important. Last learned and DVRL again show the most variance in the data values and consider
one cluster as much less important than the others. Again they produces the best results if the goal
is to reduce the size of the data set.
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A.6 OTHER DATA SETS

To validate our findings in the main paper, we have repeated the experiments on three other data
sets. The results are reported in this section. Figure 12 shows the results of data valuation on noisy
data. Figure 13 shows the results of evaluating data from four clusters. Finally, Figure 14 shows the
results of leave-one-out, sample forgetting and DVRL on data centered in the origin.

Figure 12: Results for data valuation on noisy data (overlapping clusters). Results are similar to
those in the main paper. Leave-one-out and shapely (top row) largely agree on the miss-classified
region to be important. Sample forgetting (bottom left) finds points between the clusters as well as
part of the points in the upper miss-classified region as important. DVRL again produces different
results.
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Figure 13: Results for data valuation on data from four means. Again, results are similar to the
ones before. Leave-one-out and Shapley agree on the miss-classified regions as important but do not
find the very small miss-classified region between clusters as important. Sample forgetting finds the
region between clusters and, additionally, both other miss-classified regions as important. DVRL
again falls out of the box.

Figure 14: Leave-one-out, sample forgetting and DVRL on zero centered data. In the main paper we
use data not centered in the origin because we find that our MLP thereby learns a non-linear decision
boundary in the interval of interest. Here, we show results on data centered in the origin. This plot
may also serve as reminder that data normalization is important. Apart from this, points in the miss-
classified region and close to the decision boundaries seem more important with leave-one-out and
sample forgetting. DVRL finds the region around the center including small parts of each cluster to
be important. Results with DVRL seem more intuitive in this case.
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A.7 FURTHER EXPERIMENTS

This section contains some other experiments that we believe might be considered as important and
do not fall in any of the categories above. Figure 15 shows data valuation with catastrophic forgetting
and memorization events on a mesh grid. Figures 16, 17 and 18 show the trajectory of the decision
boundary for catastrophic forgetting and importance of points as size using a data set with two and
four means and noisy data, respectively. Figure 19 shows data valuation with last-learned samples,
frequently-forgotten samples and simple forgetting. Finally, Figures 19 and 21 are about DVRL.
The first Figure shows the different results of DVRL after three iterations. The second Figure shows
the performance of DVRL with a new rare point.

Figure 15: Data valuation with catastrophic forgetting and memorization events on mesh grid only.
In this case only points next to the decision boundary are considered as important. We assume that
this is most likely due to random toggling of the decision boundary as a result of batch-wise training.
This is also in line with the following results in Figures 16, 17 and 18 where forgotten points are
close to the learned decision boundary. In this Figure, the mesh grid already provides an almost
perfect decision boundary.

Figure 16: Trajectory of decision boundary for catastrophic forgetting and importance of points as
size. The first plot shows 10 different random decision boundaries on initialization of the MLP. The
next four plots show the decision boundary after the first, third, ninth and fourteenth epoch. The
last image shows the final data values as size of training points. All points have the same data value
here.
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Figure 17: Trajectory of decision boundary for catastrophic forgetting on data from four means. The
first plot exemplary shows 10 different decision boundaries on another data set. The next four plots
show the decision boundary after the first, third, ninth and fourteenth epoch. The last image shows
the final data values as size of training points. Only points close to the decision boundary have a
high data value.

Figure 18: Trajectory of decision boundary for catastrophic forgetting on noisy data. The first plot
exemplary shows 10 different decision boundaries on another data set. The next four plots show the
decision boundary after the first, third, ninth and fourteenth epoch. The last image shows the final
data values as size of training points. Again, points close to the decision boundary have a high data
value.
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Figure 19: Data valuation with last-learned samples (top), frequently-forgotten samples (middle)
and simple forgetting (bottom). For finding last-learned samples we use the epoch a point was
correctly classified in for the first time as data value. Frequently forgotten samples are similar to
sample forgetting in the main paper, but we only require them to be classified correctly at least once
(and not in the previous epoch). Simple forgetting counts how often a point was forgotten but does
not require that is was correctly classified before. Hence, never learned points count here as well.
Again, the miss-classified region in the top seems to be the hardest to learn.

Figure 20: Three iterations of DVRL on the same training set produce different results.
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Figure 21: DVRL with new rare point. The new point is the orange dot at (15, 5) and as such
falls into the miss-classified region. In this case, DVRL with the full input correctly labels the
point as important. DVRL with predictions only does not recognize it as important. DVRL without
predictions or labels, however, recognizes it as important, and, surprisingly, finds a region close to
the miss-classified region to be important.
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