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Figure 1: Images generated by our 400M parameters text-to-image model trained solely on ImageNet.
Text prompts are taken from PartiPrompts [53].

Abstract

Recent text-to-image (T2I) generation models have achieved remarkable results3

by training on billion-scale datasets, following a ‘bigger is better’ paradigm that4

prioritizes data quantity over availability (closed vs open source) and reproducibility5

(data decay vs established collections). We challenge this established paradigm6

by demonstrating that one can match or outperform models trained on massive7

web-scraped collections, using only ImageNet enhanced with well-designed text8

and image augmentations. With this much simpler setup, we achieve a +1%9

overall score over SD-XL on GenEval and +0.5% on DPGBench while using10

just 1/10th the parameters and 1/1000th the training images. This opens the way11

for more reproducible research as ImageNet is a widely available dataset and our12

standardized training setup does not require massive compute resources.13
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1 Introduction14

The prevailing wisdom in text-to-image (T2I) generation holds that larger training datasets inevitably15

lead to better performance. This “bigger is better” paradigm has driven the field to billion-scale16

image-text paired datasets like LAION-5B [43], DataComp-12.8B [10] or ALIGN-6.6B [36]. While17

this massive scale is often justified as necessary to capture the full text-image distribution, in this18

work, we challenge this assumption and argue that data quantity overlooks fundamental questions of19

data efficiency and quality in model training.20

Our critique of the data-scaling paradigm comes from a critical observation: current training sets are21

either closed-source or rapidly decaying which makes results impossible to fully reproduce, let alone22

compare fairly. As such, the community of T2I generation is in dire need of a standardized training23

setup to foster open and reproducible research. Luckily, Computer Vision already has such dataset in24

ImageNet [41] that has been the gold standard in many tasks for many years. It is widely available25

and its strength and limitations are well known. Furthermore, it is heavily used in class-conditional26

image generation [35, 20], which makes its evaluation metrics more familiar. This begs the question27

of how far can we go with ImageNet for text-to-image generation?28

Our findings are that we can indeed get a surprisingly competitive model by training solely on29

ImageNet. As shown on Figure 1, we can achieve excellent visual quality. Additionally we also30

achieve very competitive scores on common benchmarks such as GenEval [11] and DPGBench [18],31

matching or even surpassing popular models that are trained on much more data and at a far greater32

cost, such as SDXL [37] and Pixart-α [3] (see Figure 2). However, this does not come without33

any hurdles. In this paper we analyze the challenges of training using ImageNet only and propose34

successful strategies to overcome them. Our strategies allow us to train models of smaller size (about35

300M parameters) on a reasonable compute budget (about 500 H100 hours) making it accessible to36

more research teams, while not compromising on the capabilities.37

Our contributions are thus the following:38

• We analyze the shortcomings of training T2I diffusion models on ImageNet and propose39

mitigation strategies.40

• Then, we propose a standardized training setup using only images from ImageNet, providing41

accessible and reproducible research for T2I generation.42

• We provide several models in the 300M-400M parameters range generating high quality43

images and outperforming competing models that are 10 times the size and trained on 100044

times more data.45

To commit to open and reproducible science, all our training data are hosted at https://46

huggingface.co/datasets/anonymous_for_review and all our code and models are hosted at47

https://github.com/anonymous_for_review.48

In the next section, we outline the challenges in using ImageNet for T2I generation, and then evaluate49

mitigation strategies for each of them. We then combine them in a complete training recipe that we50

use to train several models of varying resolution. We compare them against the state of the art, with51

excellent results. Finally, we discuss the related work before we conclude.52
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Figure 2: Quantitative results on GenEval (left) and DPGBench (right). The size of the bubble
represents the number of parameters. In both cases, we outperform models of 10× the parameters
and trained on 1000× the number of images.
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Model TA
FID Inc.
IN Val↓

FID Inc.
COCO↓

Jina CLIP
IN Val↑

Jina CLIP
COCO↑

Prcesion↑ Recall↑ Density↑ Coverage↑
GenEval
Overall↑

× 20.14 71.00 31.21 22.42 0.67 0.29 0.71 0.39 0.11
DiT-I

✓ 6.29 45.71 38.45 38.39 0.77 0.76 0.82 0.72 0.55

× 84.77 46.35 20.55 14.06 0.75 0.05 1.40 0.10 0.17
CAD-I

✓ 6.16 49.89 38.01 37.85 0.80 0.72 0.89 0.76 0.55

Table 1: Image quality and compostionality of AIO models and TA models. FID reported is FID
Inception v3. Precision, Recall, Density and Coverage are computed using DINOv2 features on
ImageNet Val. Values on COCO test set are reported in Table 8.

2 Adopting ImageNet for Text-to-Image generation54

We focus on training text-to-image models using ImageNet, a small, open-source and widely accepted55

data collection. We first discuss the evaluation criterions and then gradually pinpoint the major56

limitations in setting up a T2I diffusion model using ImageNet. To overcome these limitations, we57

show that well-crafted augmentations can bring forth a compositionally accurate T2I model with data58

constraints. For our analysis, we leverage two architectures: (1) DiT-I (our adaptation of DiT [35] to59

handle text) and (2) CAD-I [6]. The suffix "I" is added to indicate the model is being trained only on60

ImageNet.61

Evaluation: Image-quality. We specifically assess the generation quality of both in-distribution62

(w.r.t Imagenet-50k validation set) and zero-shot (MSCOCO-30k captions validation set [30]). Specif-63

ically, we adopt: (1) FID [16] using both standard Inception-v3 and Dino-v2 backbones, (2)64

Precision [27], (3) Recall [27], (4) Density [34], and (5) Coverage [34]. These are all calculated65

with Dino-v2 features.66

Evaluation: Compositionality. To understand the text-image alignment capabilities and image67

composition prowess, we adopt (1) CLIPScore [15] and (2) Jina-CLIP Score [26] on both MSCOCO-68

30k and ImageNet validation set, (3) GenEval [11] and (4) DPGBench [18].69

Evaluation: Aesthetic-quality to assess the human aesthetics of generated images. In line with70

prior works [9], to assess the aesthetical understanding of the generated images we also adopt: (1)71

PickScore [25], (2) Aesthetics Score [43], and (3) VILA Score [22] using PartiPrompts [53].72

73

Based on these evaluation strategies that assess both image quality and compositional accuracy, we can74

systematically identify the key limitations of training T2I diffusion models on ImageNet. Our analysis75

reveals several ImageNet-specific challenges that must be addressed to achieve high-performance76

generation with limited data.77

2.1 Text challenges78

Challenge: Absence of captions. Class-conditional models trained with ImageNet have shown79

exceptional generation capabilities [35, 33] However, extending this use to T2I generation is difficult80

since ImageNet, being a classification dataset, lacks any sort of caption corresponding to its images.81

To adopt ImageNet for T2I generation, similar to prior works [38], one could build captions by a82

very simple strategy of ‘An image of <class name>’ (denoted AIO). However, this results in83

very poor generation capabilities as shown in Table 1. This can be mainly attributed to the two major84

shortcomings of AIO captions for ImageNet: First, AIO captions lack vocabulary. They contain only85

roughly a thousand words corresponding to the concepts of the classes and thus lack attributes, spatial86

relations, etc. This constraint on the diversity in the text-condition space leads to a clear bottleneck in87

text understanding. Second, there is often more content in the image than just the class. For example,88

a caption “an image of golden retriever” mentions the class name but leaves out details and concepts89

that could be in the background. This lack of details leads to spurious correlation where the model90

can learn to associate unrelated visual pattern (e.g., grass texture) to the class name (e.g., golden91

retriever) because the text for this concept is never mentioned in the text space. Finally, despite the92

presence of humans in the images, ImageNet does not contain a ‘person’ class, resulting in humans93

not being represented in the AIO text space. This issue extends to many categories (road, water, etc),94

as ImageNet is an object-centric dataset.95
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Model IA Overall↑ One obj.↑ Two obj.↑ Count.↑ Col.↑ Pos.↑ Col. attr.↑

× 0.55 0.95 0.61 0.36 0.80 0.28 0.33
Crop 0.54 0.96 0.56 0.38 0.79 0.22 0.33DiT-I

CutMix 0.57 0.96 0.68 0.36 0.74 0.28 0.39

× 0.55 0.97 0.60 0.42 0.74 0.26 0.35
CAD-I

CutMix 0.57 0.94 0.68 0.40 0.70 0.35 0.36

Table 2: GenEval scores of TA and TA + IA models. All models are trained with long captions. A
Prompt Extender was used before generating images. Models are evaluated at 2562 resolution.

Solution: Long informative captions. To overcome this challenge, we employ a synthetic96

captioner [32] (TA for Text Augmentation) to generate comprehensive captions that capture: (i) Scene97

composition and spatial relationships; (ii) Background elements and environmental context; (iii)98

Secondary objects and participants; (iv) Visual attributes (color, size, texture); and (v) Actions and99

interactions between elements.100

101

We compare the gains attributed to long captions both quantitatively (Table 1) as well as qualitatively102

(Figure 4: row 1-2). For ImageNet-Val set, we observe that models trained with long captions103

significantly improves performance, resulting in lower FIDs of 6.29 for DiT-I and 6.16 for CAD-I in104

contrast to 20.14 for DiT-I and 85 for CAD-I on AIO captions. As a point of reference, we remind105

the reader that models of this size (below 0.5B parameters) typically have an FID of 9 using the106

class-conditional setup [35]. The aesthetic metrics (PickScore, Aesthetic Score, and VILA Score),107

offer additional insights, highlighting the superiority of TA models, which consistently outperform108

their AIO counterparts. For COCO test set - which is a zero-shot task for our training, this trend is all109

the more dramatic. The TA models are the only ones able to correctly follow the prompt as attested110

by the much improved Jina CLIP score (DiT-I from 22.42 to 38.45; CAD-I from 14.06 to 37.85),111

while keeping similar image quality.112

113

Regarding text-image alignment and compositionality, models trained with longer captions benefit114

from the added information, evidenced by the improvement in GenEval overall score from (DiT-I115

from 0.11 to 0.55; CAD-I from 0.17 to 0.55) (see Table 1).116

2.2 Image challenges117

Using long, informative captions (TA) significantly enhances both generation quality and compo-118

sitional alignment. But training text-to-image diffusion models on ImageNet only still faces two119

critical limitations: early overfitting and poor compositional generalization.120

Limitation: Early overfitting. Models trained on ImageNet with long captions (TA) demonstrate121

promising initial performance. However, due to the relatively small scale of ImageNet (only 1.2122

million images) they begin overfitting at approximately 200k training steps (see Figure 3).123

Limitation: Restricted Complex Compositionality Abilities. ImageNet’s object-centric nature124

presents a challenge for learning complex compositions. Even with enhanced textual descriptions via125

TA captioning, models still struggle with spatial relationships, attribute binding, and multi-object126

compositions. This limitation manifests in lower GenEval scores for compositional prompts involving127

multiple objects, color attribution, and positional relationships, as shown in Figure 4128

Solution: Image Augmentation (IA). To reduce overfitting and improve compositional reasoning,129

we investigate the use of image augmentations during training. We experiment with two augmentation130

strategies. Details about implementation and training pipeline are given in Appendices E and F.131

• CutMix [55]: For each image in the dataset, we randomly select an image from a different132

class and overlay a smaller version of it onto the original image. A caption is generated133

using the CutMix image as input. This technique introduces additional variability in the134

training data.135

• Crop: During training, we randomly mask a portion of the image tokens such that the model136

is exposed only to a local square crop of the original image. We add some crop coordinates137

tokens to the captions of the image. This augmentation encourages the model to decouple138
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Model IA
FID Inc.
IN Val↓

FID Inc.
COCO↓

Jina CLIP
IN Val↑

Jina CLIP
COCO↑

Prcesion↑ Recall↑ Density↑ Coverage↑

× 6.29 45.71 38.45 38.39 0.77 0.76 0.82 0.72
Crop 6.20 44.04 38.45 38.39 0.77 0.75 0.83 0.74DiT-I

CutMix 7.30 49.12 38.77 36.80 0.79 0.74 0.88 0.75

× 6.16 49.89 38.01 37.85 0.80 0.72 0.89 0.76
CAD-I

CutMix 6.62 49.31 38.17 37.71 0.80 0.70 0.90 0.76

Table 3: Image quality of TA models and TA + IA models. All models are trained with long captions.
FID reported is FID Inception v3. Precision, Recall, Density and Coverage are computed using
DINOv2 features on ImageNet Val. Values on COCO test set are reported in Table 8.

Model IA PickScore↑ Aes.Score↑ VILA↑

× 20.74 5.29 0.31
Crop 20.63 5.17 0.30DiT-I

CutMix 20.81 5.34 0.31

× 20.03 5.17 0.28
CAD-I

CutMix 20.03 5.16 0.28

Table 4: Aesthetic metrics of TA models and TA + IA models. All models are trained with long
captions. Text prompts are taken from PartiPrompts [53]

object features from their background context, and to learn correspondences between partial139

visual elements and specific text tokens.140

In Figure 3, we plot the evolution of FID and GenEval scores over training steps for the CAD-I141

architecture. Training with TA alone leads to early overfitting: we observe a sharp rise in FID after142

200k steps. In contrast, models trained with TA+CutMix or TA+Crop maintain significantly lower143

FID curves for longer, with a delayed onset of overfitting.144

145

Table 2 assesses the impact of image augmentation on GenEval metrics. Image augmentation (both146

CutMix and Crop) leads to a notable improvement in the GenEval overall score, with an increase of 2147

points. Notably, the Two Objects sub-task sees a +7 point increase for both architectures, CAD-I sees148

a +9 point gain in Position, and DiT-I gains +6 points in Color Attribution.149

150

These improvements in compositional metrics are achieved while maintaining or improving image151

quality, as measured by FID scores and Aesthetic metrics in Table 3. The qualitative examples in152

Figure 4 (rows 2-3) further demonstrate the enhanced compositional capabilities, with models trained153

using augmentation techniques producing more accurate representations of complex prompts. This154

improvement is particularly evident in the pirate ship scene: while the TA model generates a ship155

awkwardly positioned with a bowl of soup, the TA + IA model creates a more natural composition156

with the pirate ship appropriately sailing in the bowl. Similarly, the hedgehog and hourglass example157

shows more refined details and aesthetically pleasing composition with TA + IA, whereas the TA158

model struggles to render a recognizable hedgehog.159

2.3 Scaling to higher resolution160

All experiments discussed thus far were conducted at a resolution of 2562. We then explore161

whether high-resolution generation is feasible under the same data constraints. We investigate162

if this setup—utilizing only ImageNet with text and image augmentations—can scale to a 5122163

resolution without compromising performance or requiring additional supervision.164

We take a DiT-I checkpoint at 2562 resolution, trained with TA + IA for 250,000 steps, and continue165

training it at 5122 resolution for an additional 100,000 steps on the same data. Both the pretraining and166

the fine-tuning use the Crop image augmentation strategy for simplicity. This fine-tuning procedure167

requires no changes to the text encoder or transformer backbone, aside from adjusting the image168

tokenization to handle the larger input size.169
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Figure 3: Training dynamics showing FID and GenEval scores vs training steps. TA + IA (navy
blue) maintains better scores throughout training compared to TA only (light blue), demonstrating
improved resistance to overfitting. Lower FID scores indicate better image quality. Better GenEval
scores indicate better compositionality abilities.

A ship sailing

on a soup

A hedgehog and

an hourglass

A teddy bear

driving a motorbike

A teapot and

some cookies

A Goat on a

mountain top

AIO

TA

TA+IA

Figure 4: Qualitative comparison across models. From top to bottom: ‘An image of {class-name}’
(AIO), Text-Augmentation (TA), and Text-Augmentation with Image-Augmentation (TA + IA)
models. The examples show generated images of (from left to right): a pirate ship sailing on a
steaming soup, a hedgehog and an hourglass, a teddy bear riding a motorbike, a teapot sitting on
a decorative tablecloth and a goat on a mountains. While text augmentation improves the model’s
understanding, image augmentation leads to better text comprehension and higher image quality
overall.

Figure 1 presents qualitative samples from the 5122 model across a wide range of prompts taken from170

PartiPrompts [53]. Compared to its 2562 counterparts, the model produces images with noticeably171

sharper details, more saturated colors. The higher-resolution model’s GenEval scores are reported in172

Table 5. It exhibits slight but consistent gains on the GenEval benchmark over its 2562 initialization173

(Table 2 line 2). In particular, we observe improvements on the Counting (+5 points compared to the174

2562 Crop model; see Table 2) and Two Objects (+8 points) sub-tasks.175

3 Comparison with SOTA176

In this section, we report the results of our best models and compare them against the state of the art.177
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A corgi wearing a red bowtie

and a purple party hat.

A mountain

An old man with a long

grey beard and green eyes

A bird and its reflection in a fountain.

A whale breaching in front

of the Sydney Opera House

A family of red pandas

passing by the geyser

Figure 5: Qualitative comparison. Pairs of images generated with our DiT-I model (left) and SDXL
(right). Each pair shows the same prompt rendered by both models. We match the visual quality of
the popular SDXL without the need to train on a massive web-scraped dataset.

Qualitative results. On Figure 5, we show a comparison of images generated by our 512 DiT-I178

model and SDXL. We are able to achieve similar visual quality as SDXL, with a tendency to generate179

more photorealistic images. In contrast, SDXL is more likely to generate synthetic images (drawings,180

painting, digital art). Given that ImageNet is overwhelmingly composed of photograph, this difference181

of bias is likely to come from the dataset. In addition, we are slightly better at handling prompt182

following (e.g., on the first image, only a single corgi, with the correct hat color ; lack of reflection on183

the bird in the fountain ; lack of geyser on the last image).184

Quantitative results: Comparison to the state of the art on GenEval and DPG benchmarks.185

We test the composition ability of both our best DiT-I and CAD-I models, trained with TA + IA,186

on the GenEval and DPGBench benchmarks and compare our performances to the ones of popular187

state-of-the-art models.188

GenEval. Table 5 reports the results on GenEval benchmark. We observe that our high-resolution189

512 model (0.56) performs better on average than SD1.5 (0.43), Pixsart-α (0.48), SD2.1 (0.50) and190
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Resolution Model
Nb of

params
Training
set size

Overall↑ One obj.↑ Two obj.↑ Count.↑ Col.↑ Pos.↑ Col. attr.↑

SD v1.5 0.9B 5B+ 0.43 0.97 0.38 0.35 0.76 0.04 0.06
PixArt-α 0.6B 0.025B 0.48 0.98 0.50 0.44 0.80 0.08 0.07
SD v2.1 0.9B 5B+ 0.50 0.98 0.51 0.44 0.85 0.07 0.17

Native
resolution

SDXL 3.5B 5B+ 0.55 0.98 0.74 0.39 0.85 0.15 0.23

5122 DiT-I (Ours) 0.4B 0.001B 0.56 0.94 0.64 0.43 0.77 0.25 0.35

SD v1.5 0.9B 5B+ 0.13 0.48 0.04 0.01 0.23 0.00 0.00
PixArt-α 0.6B 0.025B 0.48 0.96 0.51 0.48 0.78 0.07 0.082562

CAD 0.4B 0.020B 0.50 0.95 0.56 0.40 0.76 0.11 0.22

DiT-I (Ours) 0.4B 0.001B 0.58 0.95 0.67 0.43 0.80 0.30 0.35
2562

CAD-I (Ours) 0.3B 0.001B 0.57 0.94 0.68 0.40 0.70 0.35 0.36

Table 5: Results on GenEval. The top section represents results reported with a native resolution of
5122 or above. In the bottom section, models are evaluated at 2562 resolution. Bold indicates best,
underline second best.

Model Params
Training
set size

Global↑ Entity↑ Attribute↑ Relation↑ Other↑ Overall↑

SDv1.5 0.9B 5B+ 74.63 74.23 75.39 73.49 67.81 63.18
Pixart-α 0.6B 25M 74.97 79.32 78.60 82.57 76.96 71.11
CAD 0.4B 20M 84.50 85.25 84.66 91.53 74.8 77.55
SDXL 3.5B 5B+ 83.27 82.43 80.91 86.76 80.41 74.65
SD3-Medium 2B 1B+ 87.90 91.01 88.83 80.70 88.68 84.08
Janus 1.3B 1B+ 82.33 87.38 87.70 85.46 86.41 79.68

DiT-I 2562 CutMix (Ours) 0.4B 1.2M 82.07 85.61 84.59 91.41 74.8 77.5

DiT-I 2562 Crop (Ours) 0.4B 1.2M 81.46 84.71 86.00 92.71 74.8 76.34

CAD-I 2562 CutMix (Ours) 0.3B 1.2M 80.85 87.48 85.32 93.54 78.00 79.94

DiT-I 5122 (Ours) 0.4B 1.2M 79.94 83.21 83.42 90.14 72.0 75.14

Table 6: Results on DPG-Bench. We compare our models to the results reported in [52]. Bold
indicates best, underline second best.

SDXL (0.55) in their native resolution. The striking improvements of our model are in the position191

attribute and color attribution where our model achieves more than +10 w.r.t SDXL. In lower 2562192

resolution the scores are even more distinctive as our models (CAD-I: 0.57; DiT-I: 0.58) outperform193

all the other popular models (SD1.5 (0.13), PixArt-α (0.48), and CAD (0.50)). In both 2562 and 5122194

resolution our models reaches the performance of SDXL in its native resolution while having 10x195

fewer parameters and being trained on only 0.1% of the data.196

DPGBench. Table 6 reports the results on DPGBench, a recent benchmark similar to Geneval197

but with a more complex prompt set. We observe similar trends as for GenEval: compared to the198

current leaderboard, we achieve an overall accuracy of 75.1% with DiT-I, which improves over199

SDXL by 0.5%. We reach an overall score of 79.94% for CAD-I, outperforming SDXL by +5% and200

PixArt-α by +8%. Impressively, our models reach accuracies comparable to that of Janus [52], a201

1.3B parameters VLM with generation capabilities. Notably, both our models are particularly good at202

relations, achieving state-of-the-art of 93.5% for CAD-I and 92.2% for DiT-I. Even at higher 5122203

resolution our model achieves better overall score (75.14%) than SDXL (74.65%), even with only204

100k steps of high-resolution fine-tuning.205

4 Related Work206

Diffusion Models. [46, 17, 45] have demonstrated remarkable success across various do-207

mains [19, 4, 7]. While image generation remains their most prominent application [5, 46, 21],208

text-to-image (T2I) synthesis [40, 42, 39] has emerged as a particularly impactful use case. These209

models operate by learning to reverse a gradual Gaussian noise corruption process. At extreme noise210

levels, the model effectively samples from a standard normal distribution to produce realistic images.211

The core optimization objective is:212

213

min
θ

E(x0,c)∼pdata,ϵ∼N (0,1)

[

∥ϵ− ϵθ(xt, c, t)∥
2
]

(1)
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214

where xt=
√

γ(t)x0+
√

1− γ(t)ϵ denotes the noised image at timestep t, x0 the original image, c215

the corresponding condition (such as text), ϵ is standard normal noise, ϵθ the learned noise predictor,216

and γ(t) the variance schedule.217

Computational Efficiency. Traditional diffusion models require substantial computational re-218

sources, with leading implementations consuming hundreds of thousands of GPU hours [40]. Recent219

advances have significantly improved training efficiency. [51, 54] identified limitations in the diffusion220

loss’s representation learning capabilities, demonstrating that supplementary representation losses221

accelerate convergence. [3] achieved dramatic compute reduction by repurposing class-conditional222

models for text-to-image generation. [6] introduced architectural improvements and coherence-aware223

mechanisms, matching Stable Diffusion’s performance [40] with 100x fewer GPU hours.224

Data Efficiency. Early T2I models relied on billion-scale web-scraped datasets [40], creating225

accessibility barriers due to storage requirements and reproducibility challenges from copyright226

restrictions. [3] pioneered dataset reduction using 20M high-quality images from recaptioned227

SAM data [24], though portions remain proprietary. Subsequent work explored CC12M [2, 13, 6]228

and YFCC100M’s public subset [47, 12], revealing overfitting below 10M samples. Our approach229

diverges by leveraging ImageNet [41] – a reproducible, well-established benchmark with standardized230

metrics [16]. We transform this classification dataset into T2I training data through synthetic captions231

and image augmentations.232

Synthetic captions. Synthetic image captioning has benefited several tasks. For instance, visual233

question answering [44] and visual representation learning [48] achieve state-of-the-art performances234

by enhancing the captioning output of Vision-Language Models (VLMs) [28, 44]. Similarly, training235

with synthetic captions for text-to-image generation is becoming the defacto protocol for large236

diffusion models, such as DALL-E [1], Pixart-α [3] and Stable Diffusion-3 [8]. More recently,237

some approaches [31, 29] extend this approach by training text-to-image (T2I) models on multi-level238

captions. Inspired by these, our method deploys the popular LLaVA captioner [32] to augment239

existing textual captions and use them to train text-to-image generation models.240

5 Conclusion241

In this work, we challenged the prevailing wisdom that billion-scale datasets are necessary for242

high-quality text-to-image generation. These large-scale datasets are usually either closed sourced or243

rapidly decaying, which threatens openness and reproducibility in text-to-image generation research.244

Instead, we show that it is possible to train smaller models to high quality using ImageNet only. We245

analyze the shortcomings of ImageNet for text-to-image generation and propose data-augmentation246

strategies to overcome these limitations.247

248

We thus propose a standardize text-to-image training setup that leads to models capable of generating249

high quality images while being excellent at prompt following. This is attested by results on common250

benchmarks (56% or +1% on GenEval and 75.1% or +0.5% on DPGBench) on which we are able251

to outperform popular models such as SDXL.252

253

The implications of our work extend beyond just computational efficiency, open science and254

reproducibility. By showing that smaller datasets can achieve state-of-the-art results, we open new255

possibilities for specialized domain adaptation where large-scale data collection is impractical. Our256

work also suggests a path toward more controllable and ethical development of text-to-image models,257

as smaller datasets enable more thorough content verification and bias mitigation.258

259

Looking forward, we believe our results will encourage the community to reconsider the “bigger260

is better” paradigm. Future work could explore additional augmentation strategies, investigate the261

theoretical foundations of data efficiency, and develop even more compact architectures optimized for262

smaller datasets. Ultimately, we hope this work starts a shift toward more sustainable and responsible263

development of text-to-image generation models.264
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A Additional Qualitative Results at 2562 resolution411

A.1 Based on ImageNet validation set captions412

DiT-I CAD-I
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A.2 Based on DPG bench captions413

DiT-I CAD-I
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B Additional quantitative results414

Model TA IA
ImageNet Val 50k

FID Inc.↓ FID DINOv2↓ P↑ R↑ D↑ C↑ CS↑ Jina-CS↑

× × 20.14 356.13 0.67 0.29 0.71 0.39 23.98 31.21
✓ × 6.29 90.31 0.77 0.76 0.82 0.72 9.08 38.63
✓ Crop 6.20 89.03 0.77 0.75 0.83 0.74 9.25 38.45

DiT-I

✓ CutMix 7.30 83.71 0.79 0.74 0.88 0.75 9.36 38.77

× × 84.77 904.50 0.75 0.05 1.40 0.10 8.94 20.55
✓ × 6.16 91.53 0.80 0.72 0.89 0.76 8.69 38.01CAD-I
✓ CutMix 6.62 91.72 0.80 0.70 0.90 0.76 8.53 38.17

Table 7: Ablation study on ImageNet dataset. We use prompts in accordance with the training setup
(i.e., "An image of <class>" for short captions and a caption generated from the validation images for
long captions). Precision, Recall, Density and Coverage are computed using DINOv2 features. Bold
indicates best, underline second best

Model TA IA
COCO 30k

FID Inc.↓ FID DINOv2↓ P↑ R↑ D↑ C↑ CS↑ Jina-CS↑

× × 71.00 1107.22 0.46 0.07 0.37 0.08 18.03 22.42
✓ × 45.71 631.91 0.64 0.44 0.52 0.29 25.52 36.63
✓ Crop 44.02 627.78 0.63 0.41 0.51 0.29 25.46 38.39

DiT-I

✓ CutMix 49.12 631.01 0.65 0.45 0.54 0.30 25.68 36.80

× × 46.35 858.43 0.52 0.18 0.45 0.15 12.89 14.06
✓ × 46.93 655.37 0.66 0.42 0.61 0.28 26.37 35.72CAD-I
✓ CutMix 49.41 646.51 0.66 0.41 0.57 0.29 26.60 36.51

Table 8: Ablation study on COCO dataset. Precision, Recall, Density and Coverage are computed
using DINOv2 features. Bold indicates best, underline second best
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C Implementation details415

LayerNorm

Multi-head
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Figure 6: Fundamental architecture blocks used in our experiments. Left: DiT-I block and Right:
CAD-I block.

In this work, we use both DiT [35] and RIN [20] architectures. To adapt DiT for text-conditional416

setting, we replace AdaLN-Zero conditioning with cross-attention to input the text condition into the417

model, as in [3]. Before feeding the text condition to the model, we refine it using two self-attention418

layers. Similar to [8], we add QK-Normalization [14] in each of the self-attention and cross-attention419

blocks to mitigate sudden growths of attention entropy and reduce training loss instability. We also420

add LayerScale [49] to each of the residual blocks of DiT for further stability. Figure 6 details our421

DiT-I architecture.422

To adapt the RIN [20] for the text-conditional setting, we used the off-the-shelf architecture from [6],423

an adaptation of the RIN architecture detailed in the Appendix of [6]. Figure 6 details our CAD-I424

architecture.425

We use the framework of latent diffusion [40]. For encoding the images into the latent space, we use426

the pre-trained variational autoencoder [23, 50] provided by the authors of Stable Diffusion [40].427

The checkpoint used is available on HuggingFace: https://huggingface.co/stabilityai/428

sd-vae-ft-ema. For text conditions, we encode the captions using the T5 text encoder. The429

checkpoint is available on HuggingFace: https://huggingface.co/google/flan-t5-xl.430
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D Captioning details431

Captioning efficiently with LLaVA To caption images, we use the checkpoint432

llama3-llava-next-8b-hf (available on HuggingFace: https://huggingface.co/433

llava-hf/llama3-llava-next-8b-hf) with the prompt "Describe this image". LLaVA434

encodes images using a dynamic resolution scheme. It processes both the entire image and four435

distinct patches as unique images and concatenates them. For 256x256 images, LLaVA uses around436

2500 image tokens. To make the captioning process more efficient, we prune the image tokens,437

retaining only the tokens of the entire image and discarding patch-specific tokens. This optimization438

increased inference speed by a factor of 2.7, without compromising performances. Examples of long439

captions generated by LLaVA are given in Figure 7.440

Captioning CutMix images We caption CutMix images from CM1/2 with similar settings used441

for captioning the original ImageNet images. However, to ensure that LLaVA does not describe both442

the base and the CutMix images independently, we use a different prompt: “Describe this image.443

Consider all the objects in the picture. Describe them, describe their position and their relation. Do444

not consider the image as a composite of images. The image is a single scene image”.445

For settings CM1/4, CM1/9 and CM1/16, LLaVA tends to either ignore the smaller CutMix image or446

describe the image as a composite of two images. To avoid this behaviour, we encode the image by447

using the entire image patch and add tokens from the patch to which the CutMix image belongs. We448

use the following prompt: “Describe this image. Consider all the objects in the picture. Describe449

them, describe their position and their relation. Do not consider the image as a composite of images.450

The image is a single scene image”. Examples of long captions generated by LLaVA for CutMix451

images are given in Figure 7.452

18

https://huggingface.co/llava-hf/llama3-llava-next-8b-hf
https://huggingface.co/llava-hf/llama3-llava-next-8b-hf
https://huggingface.co/llava-hf/llama3-llava-next-8b-hf


E CutMix details453

The CutMix framework systematically combines concepts while preserving object centrality. Our454

framework defines four precise augmentation patterns, each designed to maintain visual coherence455

while introducing novel concept combinations. These are briefly described below:456

1. CM1/2 (Half-Mix):457

Scale: Both images maintain their original resolution.458

Position: Deterministic split along height or width.459

Coverage: Each concept occupies 50% of final image.460

Preservation: Both concepts maintain full resolution.461

2. CM1/4 (Quarter-Mix):462

Scale: CutMix image resized to 50% side length.463

Position: Fixed placement at one of four corners.464

Coverage: 2nd concept occupies 25% of final image.465

Preservation: Base image center region remains intact.466

3. CM1/9 (Ninth-Mix):467

Scale: CutMix image resized to 33.3% side length.468

Position: Fixed placement along image borders.469

Coverage: 2nd concept occupies 11.1% of final image.470

Preservation: Base image center, corners remain intact.471

4. CM1/16 (Sixteenth-Mix):472

Scale: CutMix image resized to 25% side length.473

Position: Random placement not central 10% region.474

Coverage: 2nd concept occupies 6.25% of final image.475

Preservation: Base image center region remains intact.476

Each augmentation strategy generates 1,281,167 samples, matching ImageNet’s training set size.477

Figure 7 shows examples of the different structured augmentations.478

We also define CMall, which uniformly samples from all four patterns. The CMall variant com-479

bines equal proportions (25%) from each pattern to maintain the same total sample count. Post-480

augmentation, we apply LLaVA captioning to all generated images, ensuring semantic alignment481

between visual and textual representations. This produces detailed descriptions that accurately reflect482

the augmented content while maintaining natural language fluency.483

E.1 Training with CutMix images484

Because the CutMix image augmentations have strong artefacts corresponding to the boundaries of485

the mixing, we have to prevent the model from learning those salient features and reproducing them.486

To that end, we propose to train on image augmentation only at timesteps t where the noisy image xt487

is sufficiently noisy that the artifacts no longer matter. In practice, this corresponds to sampling either488

from the original image training set A or from the augmented image training set AIA conditionally489

to t, compared to an additional hyperparameter τ deciding whether t is sufficiently large for image490

augmentation. This extra condition leads to replacing the original diffusion loss in Equation 1 with491

min
θ

E t∼U(0,T ),
ρ∼B(τ,p)(t),

(x,c)∼A(ρ),
ϵ∼N (0,1)

[

∥ϵ− ϵθ(xt, c, t)∥
2
]

. (2)

In this novel loss, the timestep t ∼ U(0, T ) is still sampled uniformly. We introduce a new random492

variable ρ that is sampled conditionally to t, where Bτ,p(t) denotes a specific distribution that493

corresponds to:494

Bτ,p(t) =

{

0, if t ≤ τ,

Bp, else.
(3)

Here, Bp a Bernoulli distribution of parameter p. The text-image pair (x0, c) is then sampled495

conditionally to ρ, where A(ρ) is a distribution that uniformly samples from the original or the496

augmented datasets depending on ρ:497

A(ρ) =

{

A, if ρ = 0,

AIA, else.
(4)
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Setting Long Caption

LLaVA w/o CM

In the heart of the verdant background, a delicate white butterfly with a hint

of yellow around its edges is captured in mid-flight. Its wings, a blend of

two shades of cream and white, add a soft contrast to the vibrant colors of the

flower it’s hovering over. The flower, a stunning shade of purple, is adorned

with a yellow center that speaks of the sun’s rays it might have been basking in.

Surrounding it is a lush green foliage, adding depth to this tranquil scene. The

butterfly, positioned slightly to the left of the flower’s center, seems to be in

the process of alighting or perhaps taking off, adding a dynamic element to this

otherwise serene tableau.

CM1/2 On the left side, there is a person playing the trumpet on a street. The

individual is standing on the ground, wearing a long-sleeved shirt and jeans.

On the ground next to the player, there is a trash can. The street is made

of asphalt, with buildings in the background and a clear sky overhead. On the

right side of the image, there are two penguins standing on a gravel surface,

possibly a road or a rocky beach. The penguins are frozen in place, displaying

a contrast to the dynamic scene on the left side. The penguins’ yellow beaks,

black bodies, and white feathers are clearly visible. The image captures an

everyday moment of music played on the street, juxtaposed with the surreal and

unexpected presence of the penguins. The image does not provide information

about the time of day, specific location, or any actions being performed by the

penguins or the person. The image is static, presenting two moments captured in

time rather than a sequence of events.

CM1/4
The image shows a large, muscular dog in the foreground and a silver sports car

in the background. The dog, appearing to be a Golden Retriever, is on the left

side of the frame, occupying a significant portion of the space. It has a yellow

hue with darker markings, and its ears are floppy. The dog is heavily coated

with snowflakes, suggesting that the photo was taken in a snowy environment. The

sports car, positioned on the right, is a two-door coupe with sleek curves and a

notable design, featuring the Mercedes-Benz logo on its front grille. The car

has a silver finish, and the photo captures it from a perspective that shows

the front and side profile. The car is parked on an asphalt surface, possibly

a parking lot or a driveway. The dog is facing the camera with direct gaze,

while the car is positioned slightly towards the side, away from the viewer’s

perspective.

CM1/9

The image depicts a picturesque outdoor scene featuring an ornate building,

which appears to be a palace or manor house, with classical architectural

elements including symmetrical windows, a central cupola, and multiple chimneys.

In front of the building is a well-maintained garden with pathways and neatly

trimmed hedges or borders. Above the garden, there is a clear blue sky with

a few scattered clouds. In the sky, there is a single hot air balloon with a

bright orange and yellow pattern. The balloon is floating at a considerable

height above the garden and the building, suggesting it might be part of a

leisure activity or a special event. The image is a photograph with natural

lighting, indicative of a sunny day.

CM1/16

The image is a photograph featuring a husky dog resting in the snow. The dog

has a light coat with darker markings around its face and ears, and it is lying

on its side with its head up, looking directly at the camera. Its eyes are open

and its mouth is slightly open, showing teeth and a pink tongue, which suggests

the dog might be panting or in a relaxed state. Next to the dog’s side, there

is a wine glass with red wine and a few purple flowers, which could be lilacs,

positioned on the left side of the glass stem. The wine glass and flowers are

set against a blurred background that gives the impression of greenery.

Figure 7: Long captions generated by our synthetic LLaVA captioner. The captions generated are
highly diverse and add in much more intricate details of compositionality, colors as well as concepts
which are not present in the original ImageNet dataset. The captions generated for our augmented
images are also highly coherent and explain the scene in a much more realistic way.

The noise ϵ is sampled from the Normal distribution, as in the usual diffusion equation. Similarly, the498

noisy image xt is obtained by xt=
√

γ(t)x0 +
√

1− γ(t)ϵ.499

This novel loss function is more involved than the regular diffusion training; yet, in practice, it is500

very easy to implement and can be done entirely during the mini-batch construction as described in501

Algorithm 1.502

Figure 8 illustrates our complete CutMix pipeline.503
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Algorithm 1 Batch with CutMix image augmentation

1: Input: dataset A,AIA, augmentation time τ , augmentation probability p, batch size m
2: B ← {}
3: for i = 1 to m do
4: t ∼ U(0, T )
5: (x0, c) ∼ A
6: if t > τ then
7: ρ ∼ Bp
8: if ρ then
9: (x0, c) ∼ AIA

10: end if
11: end if
12: ϵ ∼ N (0, 1)

13: xt =
√

γ(t)x0 +
√

1− γ(t)ϵ
14: B ← B ∪ {(xt, c, t)}
15: end for
16: Return: B
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Figure 8: Pipeline of our Cutmix Data Curation and Training process. Starting from ImageNet,
we a) use LLaVa VLM to caption the images into long detailed caption (top branch left) and b) use
several CutMix strategies to create new images combining several ImageNet concepts and caption
them using LLaVa into long and detailed captions (bottom branch left). During training, we sample
batches of normal and CutMix images and we select from each batch depending on the timestep t at
which the CutMix strategy is valid and a probability p of sampling CutMix images.

E.2 CutMix Augmentation Ablations504

E.2.1 Ablation on CutMix settings505

First, we analyse the performances of the pixel augmentations for {CM1/2 , CM1/4 , CM1/9 ,506

CM1/16 , CMall } settings. We fix the probability of using a pixel-augmented image in the batch507

when t > τ to p = 0.5 and we measure both image quality and composition ability. Results are508

reported in Table 9.509

For image quality, all settings seem to perform similarly, with CM1/2 being the best at 6.13 FID510

and CMall being the worst at 6.81 FID. This indicates that all settings are able to avoid producing511

uncanny images that would disturb the training too much.512

For composition ability, CM1/16 can improve over the baseline on extended prompts, whereas CMall
513

can improve over the baseline on original prompts. Overall, only CMall manages to keep closer514

performances between the original prompts and the extended ones. Since CMall is a mixture of515
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all other settings, it also has the most diverse training set and is thus harder to overfit. As such, we516

consider CMall for the best models.517

GenEval↑
Model

CutMix
Settings

FID↓
⋄ ⋆

CM1/2 6.13 0.46 0.55

CM1/4 6.41 0.49 0.53

CM1/9 6.63 0.51 0.51

CM1/16 6.42 0.47 0.56C
A

D
-I

CMall 6.81 0.53 0.55

Table 9: Ablation study on CutMix settings. The probability of sampling CutMix images used here
is ρ = 0.5. Models are trained for 250k steps. FID is computed on the ImageNet val set with long
prompts, using the Inception-v3 backbone. ⋄ means original GenEval prompts. ⋆ means extended
GenEval prompts.

GenEval↑
Model ρ FID↓

⋄ ⋆

0 6.16 0.51 0.55
0.25 5.99 0.55 0.58
0.5 6.41 0.49 0.53

0.75 6.71 0.45 0.53C
A

D
-I

1 6.07 0.48 0.49

Table 10: Ablation study on probability ρ of sampling a CutMix image during training. The CutMix

setting is CM1/4. Models are trained for 250k steps. FID is computed on ImageNet val set with long
prompts, using the Inception-v3 backbone. ⋄ means original GenEval prompts. ⋆ means extended
GenEval prompts.

GenEval↑
Model τ FID↓

⋄ ⋆

300 6.99 0.51 0.53
400 6.62 0.55 0.57
500 6.16 0.48 0.55C

A
D

-I

600 5.90 0.50 0.55

Table 11: Ablation study on timestep threshold τ . The CutMix setting is CMall . Models are trained
for 250k steps. FID is computed on ImageNet val set with long prompts, using the Inception-v3
backbone. ⋄ means original GenEval prompts. ⋆ means extended GenEval prompts.

E.2.2 Ablation on CutMix probability518

Next, we analyse the influence of the probability p of using a pixel augmented image in the batch,519

when the condition on t is met. Results for p ∈ {0.25, 0.5, 0.75, 1.0} are shown in Table 10, using520

CM1/4 pixel augmentations.521

As we can see in terms of image quality, the FID is slightly degraded by having too frequent pixel522

augmentation (p > 0.5). This can be explained by the fact that pixel-augmented images are only seen523

when t > τ . As such, a high value for p creates a distribution gap between the images seen for t > τ524

and the images seen for t ≤ τ .525

Composition ability shows a similar behaviour with the GenEval overall score decreasing when p526

increases for both the original and the extended prompts. As such, we consider p ≤ 0.5 for the best527

models.528
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E.2.3 Ablation on threshold τ529

Finally, we analyse the influence of the threshold τ , which enables CutMix images to be sampled530

in training batches. Table 11 shows the FID Inception on ImageNet Val and the GenEval scores of531

models trained with different τ values.532

We find that τ = 400 results in the highest GenEval score of 0.55 on original prompts and 0.57 on533

extended prompts, while τ = 600 yields the lowest FID on ImageNet Val. As such, we use τ = 400534

for the best models.535
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F Cropping details536

Our cropping training methodology (see Figure 9) removes spurious concept correlations due to its537

masking scheme. We maintain the original captions and force the model to independently identify538

relevant textual elements. This creates a more challenging learning task for the model that enhances539

text-image alignment. During training, we only consider tokens corresponding to small portion of the540

image and mask out the rest from both the loss function and cross-attention layers. Given we do this541

online, this is highly efficient and also allows an infinite training set based on ImageNet to train on.542

For making the model understand the full dynamics of the training data, in our training scheme with543

crops, we only feed cropped images to the model with a probability, p = 0.5. In rest of the cases, we544

use entire image. To keep the training scheme as simple as possible, for cropped versions, we only545

use crop resolution of >50% of the normal resolution.546

Model TrainingData Curation

Im
a
g
eN

et

LLaVA

LLaVA

Long captions

N
o
rm

a
l

b
a
tc

h

Long captions

C
ro

p
b

a
tc

h

p

p > ρ

Long captions

Combined Batch

Denoising

Model

P
red

icted
N

o
ise

Figure 9: Pipeline of our Cropping Data Curation and Training process. Starting from ImageNet,
we a) use LLaVa VLM to caption the images into long detailed caption and b) use cropping strategies
to create new images from ImageNet by cropping. We keep the same captions as if we were using
the original image. During training, we do cropping online with a probability p of sampling cropped
images. The crop images can have any resolution >50% of the original resolution.
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G Qualitative results prompts547

Here we show the prompts used to make the Figure 4. Note that for AIO we use the short version of548

the prompt as it is closer to its train distribution:549

1. A pirate ship sailing on a streaming soup550

The image showcases a colossal, exquisitely crafted pirate ship, its presence551

commanding and larger-than-life, as it sails triumphantly across a boundless sea552

of steaming soup. The ship’s hull, made of dark, polished wood, is adorned with553

intricate carvings of dragons and waves, while its three towering masts support554

vast, billowing sails that glow faintly in the warm, golden light radiating from555

the broth. The soup is a vibrant, aromatic masterpiece, with swirls of rich broth,556

floating islands of noodles, and vibrant vegetables like carrots, bok choy, and557

mushrooms creating a textured, immersive landscape. The ship’s deck is alive with558

detail—ropes coiled neatly, barrels stacked high, and a crow’s nest peeking above559

the sails, all slightly damp from the soup’s rising steam. The bowl, an enormous,560

ornate vessel, is crafted from gleaming porcelain, its surface painted with delicate,561

hand-drawn scenes of mountains and rivers, adding a layer of cultural richness562

to the surreal composition. The scene is both absurd and breathtaking, blending563

the grandeur of a seafaring adventure with the comforting, whimsical charm of a564

bowl of soup, creating an image that is unforgettable and endlessly imaginative.565

2. A hedgehog and an hourglass566

The image features a small, brown hedgehog with its characteristic spiky coat,567

standing near an hourglass in the middle of a dense forest. The hourglass is made568

of clear glass, and fine grains of sand are visible as they fall from the top chamber569

to the bottom. The forest surrounding the hedgehog and the hourglass is lush570

and green, with tall trees and thick undergrowth. Sunlight filters through the571

leaves, creating dappled patterns on the forest floor. The scene evokes a sense of572

tranquillity and the passage of time. The hedgehog appears to be observing the573

falling sand, perhaps contemplating the fleeting nature of time.574

3. A teddy bear riding a motorbike575

A plush teddy bear, adorned with a shiny black motorcycle helmet and a576

flowing red cape, is perched confidently on a miniature red motorcycle. The toy577

bike and its adventurous rider are positioned against the bustling backdrop of Rio578

de Janeiro, with the iconic Dois Irmãos mountain peaks rising majestically in the579

distance. The scene captures the playful contrast between the soft texture of the580

teddy bear and the sleek metal of the motorcycle, all under the bright Brazilian581

sun.582

4. A teapot and some cookies583

A detailed illustration of a teapot sitting on a decorative tablecloth, with584

delicate floral patterns and intricate stitching. The teapot itself has a sturdy handle585

and a gleaming silver spout, emitting a gentle steam as if freshly poured. The586

surrounding table features a few scattered tea leaves, and a plate with a few587

cookies, adding a touch of warmth and coziness to the scene. The illustration style588

is whimsical, with bold lines and vibrant colors, creating a sense of playfulness589

and inviting the viewer to take a sip from the teapot.590

5. A goat on a mountain top591

A detailed photograph of a majestic goat standing atop a rocky outcropping, its592

white coat speckled with patches of brown and its curved horns reaching towards593

the sky. The goat’s eyes are alert, and its ears are perked up, as if listening to some594

distant sound. In the background, a serene landscape unfolds, with rolling hills595

and a distant mountain range, all bathed in soft, warm sunlight that casts gentle596

shadows across the goat’s fur.597
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NeurIPS Paper Checklist598

1. Claims599

Question: Do the main claims made in the abstract and introduction accurately reflect the600

paper’s contributions and scope?601

Answer: [Yes]602

Justification: The abstract and introduction clearly state the main claim of achieving com-603

petitive text-to-image generation results using only ImageNet with augmentations, reaching604

performances of larger models. This is supported by the experimental results presented in605

Sections 2 and 3606

2. Limitations607

Question: Does the paper discuss the limitations of the work performed by the authors?608

Answer: [Yes]609

Justification: The paper discusses limitations (See Section 2 such as early overfitting due to610

the smaller scale of ImageNet and challenges in complex compositional generalisation with611

ImageNet’s object-centric nature.612

3. Theory assumptions and proofs613

Question: For each theoretical result, does the paper provide the full set of assumptions and614

a complete (and correct) proof?615

Answer: [NA]616

Justification: The paper’s contributions are empirical, focusing on a novel training setup and617

experimental validation rather than new theoretical results.618

4. Experimental result reproducibility619

Question: Does the paper fully disclose all the information needed to reproduce the main ex-620

perimental results of the paper to the extent that it affects the main claims and/or conclusions621

of the paper (regardless of whether the code and data are provided or not)?622

Answer: [Yes]623

Justification: The paper details the architectures used (DiT-I and CAD-I), the dataset624

(ImageNet), text and image augmentation strategies (TA, IA - CutMix, Crop), captioning625

details, and training procedures. Specifics about CutMix settings and the modified loss626

function are provided in the appendix.627

5. Open access to data and code628

Question: Does the paper provide open access to the data and code, with sufficient instruc-629

tions to faithfully reproduce the main experimental results, as described in supplemental630

material?631

Answer:[Yes]632

Justification: The paper explicitly states that all the training data are hosted at https:633

//huggingface.co/datasets/anonymous_for_review and all the code and models634

are hosted at https://github.com/anonymous_for_review." Appendices C, E, D, and635

E also provide implementation, captioning, and CutMix details.636

6. Experimental setting/details637

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-638

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the639

results?640

Answer: [Yes]641

Justification: The paper discusses the dataset (ImageNet), evaluation on ImageNet-50k vali-642

dation and MSCOCO-30k. It also details model architectures, text and image augmentations,643

and scaling to higher resolution (Section 2. Appendix C provides further implementation644

details including the use of a pre-trained VAE and T5 text encoder with HuggingFace links.645

Appendix E provides details on CutMix settings, including the probability ’p’ and threshold646

’τ ’ Appendix F provides details on Crop settings. While specific optimizer details (AdamW,647

learning rate schedule, etc.) are not explicitly in the main text, one could find them in the648

config files of the training code.649
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7. Experiment statistical significance650

Question: Does the paper report error bars suitably and correctly defined or other appropriate651

information about the statistical significance of the experiments?652

Answer: [No]653

Justification: The paper reports various metrics (FID, CLIPScore, GenEval, DPGBench,654

PickScore, Aesthetic Score, VILA Score) in tables. However, measures of statistical655

significance are not reported for these experimental results.656

8. Experiments compute resources657

Question: For each experiment, does the paper provide sufficient information on the com-658

puter resources (type of compute workers, memory, time of execution) needed to reproduce659

the experiments?660

Answer: [Yes]661

Justification: The paper states that the compute budget is about 500 H100 hours for one662

training. It also mentions that the high-resolution fine-tuning takes an "additional 100,000663

steps". While specific memory or detailed per-experiment breakdowns are not extensively664

provided in the main text, the overall compute budget is mentioned.665

9. Code of ethics666

Question: Does the research conducted in the paper conform, in every respect, with the667

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?668

Answer: [Yes]669

Justification: The research focuses on text-to-image generation using a publicly available670

dataset (ImageNet) and aims to improve reproducibility and accessibility. The paper dis-671

cusses potential societal impacts in the conclusion.672

10. Broader impacts673

Question: Does the paper discuss both potential positive societal impacts and negative674

societal impacts of the work performed?675

Answer: [Yes]676

Justification: The conclusion mentions positive impacts such as computational efficiency,677

opening possibilities for specialized domain adaptation. While direct negative impacts678

are not extensively detailed, the call for "more sustainable and responsible development"679

acknowledges the broader context.680

11. Safeguards681

Question: Does the paper describe safeguards that have been put in place for responsible682

release of data or models that have a high risk for misuse (e.g., pretrained language models,683

image generators, or scraped datasets)?684

Answer: [NA]685

Justification: The paper focuses on training models on ImageNet, a well-established and686

curated dataset, rather than scraped web data. While image generation models can have687

misuse potential, the paper’s contribution is more on the methodology of training with688

open-source data and does not introduce new large models trained on high-risk scraped data.689

The provided models are relatively small (300-400M parameters).690

12. Licenses for existing assets691

Question: Are the creators or original owners of assets (e.g., code, data, models), used in692

the paper, properly credited and are the license and terms of use explicitly mentioned and693

properly respected?694

Answer: [Yes]695

Justification: The paper cites ImageNet [41] as the primary dataset. It also mentions using696

pre-trained VAE from Stable Diffusion [40] and T5 text encoder, providing HuggingFace697

links containing license information. The LLaVA captioner [32] used for generating698

captions is also cited with a HuggingFace link. References are provided for architectures699

like DiT [35] and RIN [20].700
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13. New assets701

Question: Are new assets introduced in the paper well documented and is the documentation702

provided alongside the assets?703

Answer: [Yes]704

Justification: The models developed and the augmented training data (ImageNet with705

synthetic captions and CutMix augmentations) are hosted on HuggingFace and GitHub with706

complete documentation.707

14. Crowdsourcing and research with human subjects708

Question: For crowdsourcing experiments and research with human subjects, does the paper709

include the full text of instructions given to participants and screenshots, if applicable, as710

well as details about compensation (if any)?711

Answer: [NA]712

Justification: The research described in the paper does not involve crowdsourcing experi-713

ments or research with human subjects for data collection or evaluation.714

15. Institutional review board (IRB) approvals or equivalent for research with human715

subjects716

Question: Does the paper describe potential risks incurred by study participants, whether717

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)718

approvals (or an equivalent approval/review based on the requirements of your country or719

institution) were obtained?720

Answer: [NA]721

Justification: The paper does not involve research with human subjects.722

16. Declaration of LLM usage723

Question: Does the paper describe the usage of LLMs if it is an important, original, or724

non-standard component of the core methods in this research? Note that if the LLM is used725

only for writing, editing, or formatting purposes and does not impact the core methodology,726

scientific rigorousness, or originality of the research, declaration is not required.727

Answer: [Yes]728

Justification: The paper explicitly states the use of LLaVA [32], a Vision-Language Model729

(VLM) for generating synthetic captions for the ImageNet dataset. The details of the LLaVA730

model used and the prompting strategy are provided in Appendix D.731
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