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How far can we go with ImageNet for Text-to-Image
generation?
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Figure 1: Images generated by our 400M parameters text-to-image model trained solely on ImageNet.
Text prompts are taken from PartiPrompts [53].

Abstract

Recent text-to-image (T2I) generation models have achieved remarkable results
by training on billion-scale datasets, following a ‘bigger is better’ paradigm that
prioritizes data quantity over availability (closed vs open source) and reproducibility
(data decay vs established collections). We challenge this established paradigm
by demonstrating that one can match or outperform models trained on massive
web-scraped collections, using only ImageNet enhanced with well-designed text
and image augmentations. With this much simpler setup, we achieve a +1%
overall score over SD-XL on GenEval and +0.5% on DPGBench while using
just 1/10th the parameters and 1/1000th the training images. This opens the way
for more reproducible research as ImageNet is a widely available dataset and our
standardized training setup does not require massive compute resources.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.
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1 Introduction

The prevailing wisdom in text-to-image (T2I) generation holds that larger training datasets inevitably
lead to better performance. This “bigger is better” paradigm has driven the field to billion-scale
image-text paired datasets like LAION-5B [43], DataComp-12.8B [10] or ALIGN-6.6B [36]. While
this massive scale is often justified as necessary to capture the full text-image distribution, in this
work, we challenge this assumption and argue that data quantity overlooks fundamental questions of
data efficiency and quality in model training.

Our critique of the data-scaling paradigm comes from a critical observation: current training sets are
either closed-source or rapidly decaying which makes results impossible to fully reproduce, let alone
compare fairly. As such, the community of T2I generation is in dire need of a standardized training
setup to foster open and reproducible research. Luckily, Computer Vision already has such dataset in
ImageNet [41] that has been the gold standard in many tasks for many years. It is widely available
and its strength and limitations are well known. Furthermore, it is heavily used in class-conditional
image generation [35} 20], which makes its evaluation metrics more familiar. This begs the question
of how far can we go with ImageNet for text-to-image generation?

Our findings are that we can indeed get a surprisingly competitive model by training solely on
ImageNet. As shown on Figure [I} we can achieve excellent visual quality. Additionally we also
achieve very competitive scores on common benchmarks such as GenEval [11] and DPGBench [18]],
matching or even surpassing popular models that are trained on much more data and at a far greater
cost, such as SDXL [37] and Pixart-« [3]] (see Figure E]) However, this does not come without
any hurdles. In this paper we analyze the challenges of training using ImageNet only and propose
successful strategies to overcome them. Our strategies allow us to train models of smaller size (about
300M parameters) on a reasonable compute budget (about 500 H100 hours) making it accessible to
more research teams, while not compromising on the capabilities.

Our contributions are thus the following:

* We analyze the shortcomings of training T2I diffusion models on ImageNet and propose
mitigation strategies.

* Then, we propose a standardized training setup using only images from ImageNet, providing
accessible and reproducible research for T2I generation.

* We provide several models in the 300M-400M parameters range generating high quality
images and outperforming competing models that are 10 times the size and trained on 1000
times more data.

To commit to open and reproducible science, all our training data are hosted at https://
huggingface.co/datasets/anonymous_for_review and all our code and models are hosted at
https://github.com/anonymous_for_review.

In the next section, we outline the challenges in using ImageNet for T2I generation, and then evaluate
mitigation strategies for each of them. We then combine them in a complete training recipe that we
use to train several models of varying resolution. We compare them against the state of the art, with
excellent results. Finally, we discuss the related work before we conclude.
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Figure 2: Quantitative results on GenEval (left) and DPGBench (right). The size of the bubble
represents the number of parameters. In both cases, we outperform models of 10X the parameters
and trained on 1000 the number of images.
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FID Inc. FID Inc. Jina CLIP Jina CLIP . . GenEval

Model TA INVal, COCOJ IN Valt COCO? PrcesionT Recallt Density? Coverage? Overall
DiT-I X 20.14 71.00 31.21 22.42 0.67 0.29 0.71 0.39 0.11
v 6.29 45.71 38.45 38.39 0.77 0.76 0.82 0.72 0.55
cADI  * 84.77 46.35 20.55 14.06 0.75 0.05 1.40 0.10 0.17
v 6.16 49.89 38.01 37.85 0.80 0.72 0.89 0.76 0.55

Table 1: Image quality and compostionality of AIO models and TA models. FID reported is FID
Inception v3. Precision, Recall, Density and Coverage are computed using DINOv2 features on
ImageNet Val. Values on COCO test set are reported in Table@

2 Adopting ImageNet for Text-to-Image generation

We focus on training text-to-image models using ImageNet, a small, open-source and widely accepted
data collection. We first discuss the evaluation criterions and then gradually pinpoint the major
limitations in setting up a T2I diffusion model using ImageNet. To overcome these limitations, we
show that well-crafted augmentations can bring forth a compositionally accurate T2I model with data
constraints. For our analysis, we leverage two architectures: (1) DiT-I (our adaptation of DiT [33]] to
handle text) and (2) CAD-I [6]. The suffix "I" is added to indicate the model is being trained only on
ImageNet.

Evaluation: Image-quality. We specifically assess the generation quality of both in-distribution
(w.r.t Imagenet-50k validation set) and zero-shot (MSCOCO-30k captions validation set [30]). Specif-
ically, we adopt: (1) FID [16] using both standard Inception-v3 and Dino-v2 backbones, (2)
Precision [27]], (3) Recall [27], (4) Density [34]], and (5) Coverage [34]]. These are all calculated
with Dino-v2 features.

Evaluation: Compositionality. To understand the text-image alignment capabilities and image
composition prowess, we adopt (1) CLIPScore [15] and (2) Jina-CLIP Score [26] on both MSCOCO-
30k and ImageNet validation set, (3) GenEval [[11]] and (4) DPGBench [18]].

Evaluation: Aesthetic-quality to assess the human aesthetics of generated images. In line with
prior works [9]], to assess the aesthetical understanding of the generated images we also adopt: (1)
PickScore [25]], (2) Aesthetics Score [43]], and (3) VILA Score [22] using PartiPrompts [53l].

Based on these evaluation strategies that assess both image quality and compositional accuracy, we can
systematically identify the key limitations of training T2I diffusion models on ImageNet. Our analysis
reveals several ImageNet-specific challenges that must be addressed to achieve high-performance
generation with limited data.

2.1 Text challenges

Challenge: Absence of captions. Class-conditional models trained with ImageNet have shown
exceptional generation capabilities [35, [33]] However, extending this use to T2I generation is difficult
since ImageNet, being a classification dataset, lacks any sort of caption corresponding to its images.
To adopt ImageNet for T2I generation, similar to prior works [38]], one could build captions by a
very simple strategy of ‘An image of <class name>’ (denoted AIO). However, this results in
very poor generation capabilities as shown in Table|l} This can be mainly attributed to the two major
shortcomings of AIO captions for ImageNet: First, AIO captions lack vocabulary. They contain only
roughly a thousand words corresponding to the concepts of the classes and thus lack attributes, spatial
relations, etc. This constraint on the diversity in the text-condition space leads to a clear bottleneck in
text understanding. Second, there is often more content in the image than just the class. For example,
a caption “an image of golden retriever” mentions the class name but leaves out details and concepts
that could be in the background. This lack of details leads to spurious correlation where the model
can learn to associate unrelated visual pattern (e.g., grass texture) to the class name (e.g., golden
retriever) because the text for this concept is never mentioned in the text space. Finally, despite the
presence of humans in the images, ImageNet does not contain a ‘person’ class, resulting in humans
not being represented in the AIO text space. This issue extends to many categories (road, water, etc),
as ImageNet is an object-centric dataset.
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Model 1A Overallt One obj. Two obj. Count.f Col.t Pos.t Col. attr.T

X 0.55 0.95 0.61 0.36 0.80 0.28 0.33

DiT-1 Crop 0.54 0.96 0.56 0.38 079 0.22 0.33
CutMix 0.57 0.96 0.68 0.36 074 0.28 0.39

CAD-I X 0.55 0.97 0.60 0.42 0.74 0.26 0.35
CutMix 0.57 0.94 0.68 0.40 070 035 0.36

Table 2: GenEval scores of TA and TA + IA models. All models are trained with long captions. A
Prompt Extender was used before generating images. Models are evaluated at 2562 resolution.

Solution: Long informative captions. To overcome this challenge, we employ a synthetic
captioner [32] (TA for Text Augmentation) to generate comprehensive captions that capture: (i) Scene
composition and spatial relationships; (ii) Background elements and environmental context; (iii)
Secondary objects and participants; (iv) Visual attributes (color, size, texture); and (v) Actions and
interactions between elements.

We compare the gains attributed to long captions both quantitatively (Table[I)) as well as qualitatively
(Figure 4} row 1-2). For ImageNet-Val set, we observe that models trained with long captions
significantly improves performance, resulting in lower FIDs of 6.29 for DiT-I1 and 6.16 for CAD-I in
contrast to 20.14 for DiT-I and 85 for CAD-I on AIO captions. As a point of reference, we remind
the reader that models of this size (below 0.5B parameters) typically have an FID of 9 using the
class-conditional setup [35]]. The aesthetic metrics (PickScore, Aesthetic Score, and VILA Score),
offer additional insights, highlighting the superiority of TA models, which consistently outperform
their AIO counterparts. For COCO test set - which is a zero-shot task for our training, this trend is all
the more dramatic. The TA models are the only ones able to correctly follow the prompt as attested
by the much improved Jina CLIP score (DiT-I from 22.42 to 38.45; CAD-I from 14.06 to 37.85),
while keeping similar image quality.

Regarding text-image alignment and compositionality, models trained with longer captions benefit
from the added information, evidenced by the improvement in GenEval overall score from (DiT-I
from 0.11 to 0.55; CAD-I from 0.17 to 0.55) (see Table|[T).

2.2 TImage challenges

Using long, informative captions (TA) significantly enhances both generation quality and compo-
sitional alignment. But training text-to-image diffusion models on ImageNet only still faces two
critical limitations: early overfitting and poor compositional generalization.

Limitation: Early overfitting. Models trained on ImageNet with long captions (TA) demonstrate
promising initial performance. However, due to the relatively small scale of ImageNet (only 1.2
million images) they begin overfitting at approximately 200k training steps (see Figure[3).

Limitation: Restricted Complex Compositionality Abilities. ImageNet’s object-centric nature
presents a challenge for learning complex compositions. Even with enhanced textual descriptions via
TA captioning, models still struggle with spatial relationships, attribute binding, and multi-object
compositions. This limitation manifests in lower GenEval scores for compositional prompts involving
multiple objects, color attribution, and positional relationships, as shown in Figure [4]

Solution: Image Augmentation (IA). To reduce overfitting and improve compositional reasoning,
we investigate the use of image augmentations during training. We experiment with two augmentation
strategies. Details about implementation and training pipeline are given in Appendices [E|and [F|

e CutMix [55]: For each image in the dataset, we randomly select an image from a different
class and overlay a smaller version of it onto the original image. A caption is generated
using the CutMix image as input. This technique introduces additional variability in the
training data.

* Crop: During training, we randomly mask a portion of the image tokens such that the model
is exposed only to a local square crop of the original image. We add some crop coordinates
tokens to the captions of the image. This augmentation encourages the model to decouple
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FID Inc. FID Inc. Jina CLIP Jina CLIP

Model IA INVal, COCOJ IN Valt COCO?t PrcesionT Recallf Density Coverage!
X 6.29 45.71 38.45 38.39 0.77 0.76 0.82 0.72
DiT-I Crop 6.20 44.04 38.45 38.39 0.77 0.75 0.83 0.74
CutMix 7.30 49.12 38.77 36.80 0.79 0.74 0.88 0.75
CAD-I X 6.16 49.89 38.01 37.85 0.80 0.72 0.89 0.76
CutMix 6.62 49.31 38.17 37.71 0.80 0.70 0.90 0.76

Table 3: Image quality of TA models and TA + IA models. All models are trained with long captions.
FID reported is FID Inception v3. Precision, Recall, Density and Coverage are computed using
DINOv2 features on ImageNet Val. Values on COCO test set are reported in Table@

Model IA PickScoref Aes.Score VILAT

» 20.74 5.29 031
DitI  Crop 20.63 5.17 0.30
CutMix  20.81 5.34 031

= 20.03 5.17 0.8

CAD-T comix 20,03 5.16 0.28

Table 4: Aesthetic metrics of TA models and TA + IA models. All models are trained with long
captions. Text prompts are taken from PartiPrompts [53]

object features from their background context, and to learn correspondences between partial
visual elements and specific text tokens.

In Figure |3} we plot the evolution of FID and GenEval scores over training steps for the CAD-I
architecture. Training with TA alone leads to early overfitting: we observe a sharp rise in FID after
200k steps. In contrast, models trained with TA+CutMix or TA+Crop maintain significantly lower
FID curves for longer, with a delayed onset of overfitting.

Table 2] assesses the impact of image augmentation on GenEval metrics. Image augmentation (both
CutMix and Crop) leads to a notable improvement in the GenEval overall score, with an increase of 2
points. Notably, the Two Objects sub-task sees a +7 point increase for both architectures, CAD-I sees
a +9 point gain in Position, and DiT-I gains +6 points in Color Attribution.

These improvements in compositional metrics are achieved while maintaining or improving image
quality, as measured by FID scores and Aesthetic metrics in Table [3] The qualitative examples in
Figure ] (rows 2-3) further demonstrate the enhanced compositional capabilities, with models trained
using augmentation techniques producing more accurate representations of complex prompts. This
improvement is particularly evident in the pirate ship scene: while the TA model generates a ship
awkwardly positioned with a bowl of soup, the TA + IA model creates a more natural composition
with the pirate ship appropriately sailing in the bowl. Similarly, the hedgehog and hourglass example
shows more refined details and aesthetically pleasing composition with TA + IA, whereas the TA
model struggles to render a recognizable hedgehog.

2.3 Scaling to higher resolution

All experiments discussed thus far were conducted at a resolution of 2562. We then explore
whether high-resolution generation is feasible under the same data constraints. We investigate
if this setup—utilizing only ImageNet with text and image augmentations—can scale to a 5122
resolution without compromising performance or requiring additional supervision.

We take a DiT-I checkpoint at 2562 resolution, trained with TA + IA for 250,000 steps, and continue
training it at 5122 resolution for an additional 100,000 steps on the same data. Both the pretraining and
the fine-tuning use the Crop image augmentation strategy for simplicity. This fine-tuning procedure
requires no changes to the text encoder or transformer backbone, aside from adjusting the image
tokenization to handle the larger input size.
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Figure 3: Training dynamics showing FID and GenEval scores vs training steps. TA + IA (navy
blue) maintains better scores throughout training compared to TA only (light blue), demonstrating
improved resistance to overfitting. Lower FID scores indicate better image quality. Better GenEval
scores indicate better compositionality abilities.

A ship sailing A hedgehog and A teddy bear A teapot and A Goat on a

on a soup an hourglass mountain top

driving a motorbike some cookies

Figure 4: Qualitative comparison across models. From top to bottom: ‘An image of {class-name}’
(AIO), Text-Augmentation (TA), and Text-Augmentation with Image-Augmentation (TA + IA)
models. The examples show generated images of (from left to right): a pirate ship sailing on a
steaming soup, a hedgehog and an hourglass, a teddy bear riding a motorbike, a teapot sitting on
a decorative tablecloth and a goat on a mountains. While text augmentation improves the model’s
understanding, image augmentation leads to better text comprehension and higher image quality
overall.

Figurepresents qualitative samples from the 5122 model across a wide range of prompts taken from
PartiPrompts [53]]. Compared to its 2562 counterparts, the model produces images with noticeably
sharper details, more saturated colors. The higher-resolution model’s GenEval scores are reported in
Table[5] It exhibits slight but consistent gains on the GenEval benchmark over its 2562 initialization
(Table [2|line 2). In particular, we observe improvements on the Counting (+5 points compared to the
2562 Crop model; see Table and Two Objects (+8 points) sub-tasks.

3 Comparison with SOTA

In this section, we report the results of our best models and compare them against the state of the art.
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A corgi wearing a red bowtie A mountain
and a purple party hat.

An old man with a long
grey beard and green eyes

A whale breaching in front A family of red pandas
of the Sydney Opera House passing by the geyser

Figure 5: Qualitative comparison. Pairs of images generated with our DiT-I model (left) and SDXL
(right). Each pair shows the same prompt rendered by both models. We match the visual quality of
the popular SDXL without the need to train on a massive web-scraped dataset.

Qualitative results. On Figure[5] we show a comparison of images generated by our 512 DiT-I
model and SDXL. We are able to achieve similar visual quality as SDXL, with a tendency to generate
more photorealistic images. In contrast, SDXL is more likely to generate synthetic images (drawings,
painting, digital art). Given that ImageNet is overwhelmingly composed of photograph, this difference
of bias is likely to come from the dataset. In addition, we are slightly better at handling prompt
following (e.g., on the first image, only a single corgi, with the correct hat color ; lack of reflection on
the bird in the fountain ; lack of geyser on the last image).

Quantitative results: Comparison to the state of the art on GenEval and DPG benchmarks.
We test the composition ability of both our best DiT-I and CAD-I models, trained with TA + IA,
on the GenEval and DPGBench benchmarks and compare our performances to the ones of popular
state-of-the-art models.

GenEval. Table[5|reports the results on GenEval benchmark. We observe that our high-resolution
512 model (0.56) performs better on average than SD1.5 (0.43), Pixsart-« (0.48), SD2.1 (0.50) and
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Resolution Model params st size Overallt Oneobj.t Twoobj.t Count.t Col.t Pos.T Col. attr.?
SDvl.5 0.9B 5B+ 0.43 0.97 0.38 0.35 0.76 0.04 0.06
Native PixArt-«v 0.6B 0.025B 0.48 0.98 0.50 0.44 0.80  0.08 0.07
resolution SD v2.1 0.9B 5B+ 0.50 0.98 0.51 0.44 0.85 0.07 0.17
SDXL 3.5B 5B+ 0.55 0.98 0.74 0.39 0.85 0.15 0.23
5122 DiT-I (Ours) 0.4B 0.001B 0.56 0.94 0.64 0.43 0.77 0.25 0.35
SDvl.5 0.9B 5B+ 0.13 0.48 0.04 0.01 0.23 0.00 0.00
2562 PixArt-a 0.6B 0.025B 0.48 0.96 0.51 0.48 0.78  0.07 0.08
CAD 0.4B 0.020B 0.50 0.95 0.56 0.40 0.76  0.11 0.22
9562 DiT-I1(Ours)  0.4B 0.001B 0.58 0.95 0.67 0.43 0.80 0.30 0.35
=00 CAD-1(Ours)  0.3B 0.001B 0.57 0.94 0.68 0.40 070 035 0.36

Table 5: Results on GenEval. The top section represents results reported with a native resolution of
5122 or above. In the bottom section, models are evaluated at 2562 resolution. Bold indicates best,
underline second best.

Model Params Tsfz':i'z‘;g Globalt Entity? Attribute} Relationt Other? Overallt
SDvl.5 0.9B SB+ 7463 7423 75.39 73.49 6781  63.18
Pixart-or 0.6B 25M 7497 79.32 78.60 82.57 7696  71.11
CAD 0.4B 20M 8450  85.25 84.66 91.53 74.8 71.55
SDXL 3.5B 5B+ 8327 8243 80.91 86.76 80.41  74.65
SD3-Medium 2B 1B+ 87.90  91.01 88.83 80.70  88.68  84.08
Janus 1.3B 1B+ 8233 8738 87.70 85.46 8641  79.68
DiTI 2562 CutMix (Ours)  0.4B 12M 8207  85.61 84.59 91.41 74.8 715
DiT-I 2562 Crop (Ours) 0.4B 12M 8146 8471 86.00 92.71 74.8 76.34
CAD-I 2562 CutMix (Ours) 03B 1.2M 80.85  87.48 85.32 9354 7800  79.94
DiT-1 5122 (Ours) 0.4B 12M 7994 8321 83.42 90.14 72.0 75.14

Table 6: Results on DPG-Bench. We compare our models to the results reported in [52]]. Bold
indicates best, underline second best.

SDXL (0.55) in their native resolution. The striking improvements of our model are in the position
attribute and color attribution where our model achieves more than +10 w.r.t SDXL. In lower 256>
resolution the scores are even more distinctive as our models (CAD-I: 0.57; DiT-I: 0.58) outperform
all the other popular models (SD1.5 (0.13), PixArt-« (0.48), and CAD (0.50)). In both 2562 and 5122
resolution our models reaches the performance of SDXL in its native resolution while having 10x
fewer parameters and being trained on only 0.1% of the data.

DPGBench. Table E] reports the results on DPGBench, a recent benchmark similar to Geneval
but with a more complex prompt set. We observe similar trends as for GenEval: compared to the
current leaderboard, we achieve an overall accuracy of 75.1% with DiT-I, which improves over
SDXL by 0.5%. We reach an overall score of 79.94% for CAD-I, outperforming SDXL by +5% and
PixArt-a by +8%. Impressively, our models reach accuracies comparable to that of Janus [52]], a
1.3B parameters VLM with generation capabilities. Notably, both our models are particularly good at
relations, achieving state-of-the-art of 93.5% for CAD-I and 92.2% for DiT-1. Even at higher 5122
resolution our model achieves better overall score (75.14%) than SDXL (74.65 %), even with only
100k steps of high-resolution fine-tuning.

4 Related Work

Diffusion Models. [46, [17, |45] have demonstrated remarkable success across various do-
mains [19, 4, [7]. While image generation remains their most prominent application [} 146l 211,
text-to-image (T2I) synthesis [40, 42, [39] has emerged as a particularly impactful use case. These
models operate by learning to reverse a gradual Gaussian noise corruption process. At extreme noise
levels, the model effectively samples from a standard normal distribution to produce realistic images.
The core optimization objective is:

Hlein E(20,¢)~paaare~N(0,1) le — eo (e, c, t)||2 )
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where x;=+/7(t)xo++/1 — 7(t)e denotes the noised image at timestep ¢,  the original image, ¢
the corresponding condition (such as text), € is standard normal noise, €y the learned noise predictor,
and ~y(t) the variance schedule.

Computational Efficiency. Traditional diffusion models require substantial computational re-
sources, with leading implementations consuming hundreds of thousands of GPU hours [40]. Recent
advances have significantly improved training efficiency. [51}I54]] identified limitations in the diffusion
loss’s representation learning capabilities, demonstrating that supplementary representation losses
accelerate convergence. [3] achieved dramatic compute reduction by repurposing class-conditional
models for text-to-image generation. [6] introduced architectural improvements and coherence-aware
mechanisms, matching Stable Diffusion’s performance [40] with 100x fewer GPU hours.

Data Efficiency. Early T2I models relied on billion-scale web-scraped datasets [40], creating
accessibility barriers due to storage requirements and reproducibility challenges from copyright
restrictions. [3] pioneered dataset reduction using 20M high-quality images from recaptioned
SAM data [24]], though portions remain proprietary. Subsequent work explored CC12M [2, 13 |6]
and YFCC100M’s public subset [47, [12], revealing overfitting below 10M samples. Our approach
diverges by leveraging ImageNet [41] — a reproducible, well-established benchmark with standardized
metrics [[16]]. We transform this classification dataset into T2I training data through synthetic captions
and image augmentations.

Synthetic captions. Synthetic image captioning has benefited several tasks. For instance, visual
question answering [44]] and visual representation learning [48]] achieve state-of-the-art performances
by enhancing the captioning output of Vision-Language Models (VLMs) [28, |44]. Similarly, training
with synthetic captions for text-to-image generation is becoming the defacto protocol for large
diffusion models, such as DALL-E [1], Pixart-a [3]] and Stable Diffusion-3 [8]]. More recently,
some approaches [31,[29] extend this approach by training text-to-image (T2I) models on multi-level
captions. Inspired by these, our method deploys the popular LLaVA captioner [32] to augment
existing textual captions and use them to train text-to-image generation models.

5 Conclusion

In this work, we challenged the prevailing wisdom that billion-scale datasets are necessary for
high-quality text-to-image generation. These large-scale datasets are usually either closed sourced or
rapidly decaying, which threatens openness and reproducibility in text-to-image generation research.
Instead, we show that it is possible to train smaller models to high quality using ImageNet only. We
analyze the shortcomings of ImageNet for text-to-image generation and propose data-augmentation
strategies to overcome these limitations.

We thus propose a standardize text-to-image training setup that leads to models capable of generating
high quality images while being excellent at prompt following. This is attested by results on common
benchmarks (56% or +1% on GenEval and 75.1% or +0.5% on DPGBench) on which we are able
to outperform popular models such as SDXL.

The implications of our work extend beyond just computational efficiency, open science and
reproducibility. By showing that smaller datasets can achieve state-of-the-art results, we open new
possibilities for specialized domain adaptation where large-scale data collection is impractical. Our
work also suggests a path toward more controllable and ethical development of text-to-image models,
as smaller datasets enable more thorough content verification and bias mitigation.

Looking forward, we believe our results will encourage the community to reconsider the “bigger
is better” paradigm. Future work could explore additional augmentation strategies, investigate the
theoretical foundations of data efficiency, and develop even more compact architectures optimized for
smaller datasets. Ultimately, we hope this work starts a shift toward more sustainable and responsible
development of text-to-image generation models.
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ss B Additional quantitative results

Model TA IA ImageNet Val 50k
FID Inc., FIDDINOv2| Pt Rt Dt Ct CSt Jina-CSt
X X 20.14 356.13 0.67 029 071 039 2398 31.21
DIiT.I v X 6.29 90.31 077 076 082 0.72 9.08 38.63
v Crop 6.20 89.03 077 075 083 074 9.25 38.45
v CutMix 7.30 83.71 079 074 088 0.75 9.36 38.77
X X 84.77 904.50 075 005 1.40 0.10 894 20.55
CAD-1 Vv X 6.16 91.53 080 072 089 0.76 8.69 38.01
v CutMix 6.62 91.72 080 070 090 0.76 8.53 38.17

Table 7: Ablation study on ImageNet dataset. We use prompts in accordance with the training setup
(i.e., "An image of <class>" for short captions and a caption generated from the validation images for
long captions). Precision, Recall, Density and Coverage are computed using DINOv2 features. Bold
indicates best, underline second best

Model TA IA COCO 30k
FIDInc., FIDDINOv2, Pt Rt D CI CST Jina-CSt
x x 71.00 110722 046 007 037 008 1803 2242
ot x 4571 631.91 0.64 044 052 029 2552  36.63
/ Crop 4402 62778 063 041 051 029 2546 3839
/  CutMix  49.12 631.01 065 045 054 030 2568 3680
x x 46.35 858.43 052 018 045 0.15 1289 1406
CADI v x 46.93 655.37 0.66 042 0.61 028 2637 3572
/ CutMix 4941 646.51 0.66 041 057 029 2660 3651

Table 8: Ablation study on COCO dataset. Precision, Recall, Density and Coverage are computed
using DINOv?2 features. Bold indicates best, underline second best

16



415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

C Implementation details

Condition Block

s é
-
Poinivise Feedorward

Pointwise LayerNorm
Feedforward >
]

>
LayerNorm
Multi-head Self-Attention

Self Attention FLAN T5 XL
x2 | Embeddings

LayerNorm

. % |
Multi-head Time
Cross-Attention
!

LayerNorm Cross Attenti ss A i
y ross Attention Cross Attention Self Attention
x

— From Condition- — From Pixels — N Latents
ing to Latents to Latents
. !
Multi-head Condition Block-2 Latents
Self-Attention 1 R . R
) Condition Block-1 Cross Atten-
LayerNorm ‘ —_— tion From La- —
y tents to Pixels
{ Time Text

Z-Norm

- \
& Time Text

Figure 6: Fundamental architecture blocks used in our experiments. Left: DiT-I block and Right:
CAD-I block.

In this work, we use both DiT [35] and RIN [20] architectures. To adapt DiT for text-conditional
setting, we replace AdaLN-Zero conditioning with cross-attention to input the text condition into the
model, as in [3]. Before feeding the text condition to the model, we refine it using two self-attention
layers. Similar to [8]], we add QK-Normalization [14]] in each of the self-attention and cross-attention
blocks to mitigate sudden growths of attention entropy and reduce training loss instability. We also
add LayerScale [49] to each of the residual blocks of DiT for further stability. Figure [6]details our
DiT-I architecture.

To adapt the RIN [20] for the text-conditional setting, we used the off-the-shelf architecture from [6],
an adaptation of the RIN architecture detailed in the Appendix of [6]. Figure [f] details our CAD-I
architecture.

We use the framework of latent diffusion [40]. For encoding the images into the latent space, we use
the pre-trained variational autoencoder [23)50] provided by the authors of Stable Diffusion [40].
The checkpoint used is available on HuggingFace: https://huggingface.co/stabilityai/
sd-vae-ft-ema. For text conditions, we encode the captions using the TS5 text encoder. The
checkpoint is available on HuggingFace: https://huggingface.co/google/flan-t5-x1!
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D Captioning details

Captioning efficiently with LLaVA To caption images, we use the checkpoint
llama3-1lava-next-8b-hf (available on HuggingFace: https://huggingface.co/
llava-hf/1lama3-1lava-next-8b-hf) with the prompt "Describe this image". LLaVA
encodes images using a dynamic resolution scheme. It processes both the entire image and four
distinct patches as unique images and concatenates them. For 256x256 images, LLaVA uses around
2500 image tokens. To make the captioning process more efficient, we prune the image tokens,
retaining only the tokens of the entire image and discarding patch-specific tokens. This optimization
increased inference speed by a factor of 2.7, without compromising performances. Examples of long
captions generated by LLaVA are given in Figure

Captioning CutMix images We caption CutMix images from CM'/2 with similar settings used
for captioning the original ImageNet images. However, to ensure that LLaVA does not describe both
the base and the CutMix images independently, we use a different prompt: “Describe this image.
Consider all the objects in the picture. Describe them, describe their position and their relation. Do
not consider the image as a composite of images. The image is a single scene image”.

For settings CM'/4, CM'/? and CM'/'6, LLaVA tends to either ignore the smaller CutMix image or
describe the image as a composite of two images. To avoid this behaviour, we encode the image by
using the entire image patch and add tokens from the patch to which the CutMix image belongs. We
use the following prompt: “Describe this image. Consider all the objects in the picture. Describe
them, describe their position and their relation. Do not consider the image as a composite of images.
The image is a single scene image”. Examples of long captions generated by LLaVA for CutMix
images are given in Figure
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E CutMix details

The CutMix framework systematically combines concepts while preserving object centrality. Our
framework defines four precise augmentation patterns, each designed to maintain visual coherence
while introducing novel concept combinations. These are briefly described below:

1. CM'/2 (Half-Mix):
Scale: Both images maintain their original resolution.
Position: Deterministic split along height or width.
Coverage: Each concept occupies 50% of final image.
Preservation: Both concepts maintain full resolution.

2. CM'/* (Quarter-Mix):
Scale: CutMix image resized to 50% side length.
Position: Fixed placement at one of four corners.
Coverage: 2nd concept occupies 25% of final image.
Preservation: Base image center region remains intact.

3. CM'/? (Ninth-Mix):
Scale: CutMix image resized to 33.3% side length.
Position: Fixed placement along image borders.
Coverage: 2nd concept occupies 11.1% of final image.
Preservation: Base image center, corners remain intact.

4. CM'/16 (Sixteenth-Mix):
Scale: CutMix image resized to 25% side length.
Position: Random placement not central 10% region.
Coverage: 2nd concept occupies 6.25% of final image.
Preservation: Base image center region remains intact.

Each augmentation strategy generates 1,281,167 samples, matching ImageNet’s training set size.
Figure[/|shows examples of the different structured augmentations.

We also define CM**, which uniformly samples from all four patterns. The CM*! variant com-
bines equal proportions (25%) from each pattern to maintain the same total sample count. Post-
augmentation, we apply LLaVA captioning to all generated images, ensuring semantic alignment
between visual and textual representations. This produces detailed descriptions that accurately reflect
the augmented content while maintaining natural language fluency.

E.1 Training with CutMix images

Because the CutMix image augmentations have strong artefacts corresponding to the boundaries of
the mixing, we have to prevent the model from learning those salient features and reproducing them.
To that end, we propose to train on image augmentation only at timesteps ¢ where the noisy image x
is sufficiently noisy that the artifacts no longer matter. In practice, this corresponds to sampling either
from the original image training set .A or from the augmented image training set .Aj4 conditionally
to t, compared to an additional hyperparameter 7 deciding whether ¢ is sufficiently large for image
augmentation. This extra condition leads to replacing the original diffusion loss in Equation T| with

meinE o), [Il€—€o(ze, e, )] . 2)
p~B(T,p)(t),
(,e)~A(p),
e~N(0,1)
In this novel loss, the timestep ¢ ~ U(0, T') is still sampled uniformly. We introduce a new random
variable p that is sampled conditionally to ¢, where B, ,(t) denotes a specific distribution that
corresponds to:

BT-,p(t) =

0, ift <7,
{ 3)

B, else.

Here, B, a Bernoulli distribution of parameter p. The text-image pair (zg,c) is then sampled
conditionally to p, where A(p) is a distribution that uniformly samples from the original or the

augmented datasets depending on p:
A, if p=0,
A = {7, @

Aia, else.
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Setting Long Caption

LLaVA w/o CM

In the heart of the verdant background, a delicate white butterfly with a hint
of yellow around its edges is captured in mid-flight. Its wings, a blend of
two shades of cream and white, add a soft contrast to the vibrant colors of the
flower it’s hovering over. The flower, a stunning shade of purple, is adorned
with a yellow center that speaks of the sun’s rays it might have been basking in.
Surrounding it is a lush green foliage, adding depth to this tranquil scene. The
butterfly, positioned slightly to the left of the flower’s center, seems to be in
the process of alighting or perhaps taking off, adding a dynamic element to this
otherwise serene tableau.

On the left side, there is a person playing the trumpet on a street. The
individual is standing on the ground, wearing a long-sleeved shirt and jeans.
On the ground next to the player, there is a trash can. The street is made
of asphalt, with buildings in the background and a clear sky overhead. On the
right side of the image, there are two penguins standing on a gravel surface,
possibly a road or a rocky beach. The penguins are frozen in place, displaying
a contrast to the dynamic scene on the left side. The penguins’ yellow beaks,
black bodies, and white feathers are clearly visible. The image captures an
everyday moment of music played on the street, juxtaposed with the surreal and
unexpected presence of the penguins. The image does not provide information
about the time of day, specific location, or any actions being performed by the
penguins or the person. The image is static, presenting two moments captured in
time rather than a sequence of events.

The image shows a large, muscular dog in the foreground and a silver sports car
in the background. The dog, appearing to be a Golden Retriever, is on the left
side of the frame, occupying a significant portion of the space. It has a yellow
hue with darker markings, and its ears are floppy. The dog is heavily coated
with snowflakes, suggesting that the photo was taken in a snowy environment. The
sports car, positioned on the right, is a two-door coupe with sleek curves and a
notable design, featuring the Mercedes-Benz logo on its front grille. The car
has a silver finish, and the photo captures it from a perspective that shows
the front and side profile. The car is parked on an asphalt surface, possibly
a parking lot or a driveway. The dog is facing the camera with direct gaze,
while the car is positioned slightly towards the side, away from the viewer’s
perspective.

The image depicts a picturesque outdoor scene featuring an ornate building,
which appears to be a palace or manor house, with classical architectural
elements including symmetrical windows, a central cupola, and multiple chimneys.
In front of the building is a well-maintained garden with pathways and neatly
trimmed hedges or borders. Above the garden, there is a clear blue sky with
a few scattered clouds. 1In the sky, there is a single hot air balloon with a
bright orange and yellow pattern. The balloon is floating at a considerable
height above the garden and the building, suggesting it might be part of a
leisure activity or a special event. The image is a photograph with natural
lighting, indicative of a sunny day.

The image is a photograph featuring a husky dog resting in the snow. The dog
has a light coat with darker markings around its face and ears, and it is lying
on its side with its head up, looking directly at the camera. Its eyes are open
and its mouth is slightly open, showing teeth and a pink tongue, which suggests
the dog might be panting or in a relaxed state. Next to the dog’s side, there
is a wine glass with red wine and a few purple flowers, which could be lilacs,
positioned on the left side of the glass stem. The wine glass and flowers are
set against a blurred background that gives the impression of greenery.

Figure 7: Long captions generated by our synthetic LLaVA captioner. The captions generated are
highly diverse and add in much more intricate details of compositionality, colors as well as concepts
which are not present in the original ImageNet dataset. The captions generated for our augmented
images are also highly coherent and explain the scene in a much more realistic way.

The noise € is sampled from the Normal distribution, as in the usual diffusion equation. Similarly, the
noisy image x; is obtained by x:=+/7(t)xo + /1 — y(t)e.

This novel loss function is more involved than the regular diffusion training; yet, in practice, it is
very easy to implement and can be done entirely during the mini-batch construction as described in
Algorithm [T}

Figure [§]illustrates our complete CutMix pipeline.
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Algorithm 1 Batch with CutMix image augmentation

1: Input: dataset A, Ajn, augmentation time 7, augmentation probability p, batch size m

2: B+ {}

3: fort=1tomdo
4 t~U0,T)

5 (zg,0)~ A

6: ift > 7 then
7: p~ By

8: if p then

9: (z0,¢) ~ Ala
10: end if

11:  endif

122 e~N(0,1)

13: xp = /y(O)zo + /1 —(t)e
14: B+« BU{(xt,c,t)}

15: end for

16: Return: B

I_ LLaVA == | Long captions
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«
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o
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g
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LLaVA Long captions z
Data Curation Model Training

Figure 8: Pipeline of our Cutmix Data Curation and Training process. Starting from ImageNet,
we a) use LLaVa VLM to caption the images into long detailed caption (top branch left) and b) use
several CutMix strategies to create new images combining several ImageNet concepts and caption
them using LLaVa into long and detailed captions (bottom branch left). During training, we sample
batches of normal and CutMix images and we select from each batch depending on the timestep ¢ at
which the CutMix strategy is valid and a probability p of sampling CutMix images.

E.2 CutMix Augmentation Ablations
E.2.1 Ablation on CutMix settings

First, we analyse the performances of the pixel augmentations for {CMl/ 2, CMY*, CcMY/?
CM'/16  CM! } settings. We fix the probability of using a pixel-augmented image in the batch
when ¢ > 7 to p = 0.5 and we measure both image quality and composition ability. Results are
reported in Table[9]

For image quality, all settings seem to perform similarly, with CM'/2 being the best at 6.13 FID
and CM“" being the worst at 6.81 FID. This indicates that all settings are able to avoid producing
uncanny images that would disturb the training too much.

For composition ability, CM'/1¢ can improve over the baseline on extended prompts, whereas CM¢¥
can improve over the baseline on original prompts. Overall, only CM?! manages to keep closer
performances between the original prompts and the extended ones. Since CM*! is a mixture of
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all other settings, it also has the most diverse training set and is thus harder to overfit. As such, we
consider CM%! for the best models.

Model CutMlX FID| GenEvalt
Settings o *

cMY?2 613 046 055
cMY* 641 049 053
CM'Y/? 663 051 051
CMY'% 642 047 056
cM*4 6.81 0.3 0.5

CAD-I

Table 9: Ablation study on CutMix settings. The probability of sampling CutMix images used here
is p = 0.5. Models are trained for 250k steps. FID is computed on the ImageNet val set with long
prompts, using the Inception-v3 backbone. ¢ means original GenEval prompts. x means extended
GenEval prompts.

GenEvalt

Model p FID| o N

0 6.16 051 0.55
025 599 055 0.58
0.5 641 049 053
075 6771 045 0.53
1 6.07 048 0.49

CAD-I

Table 10: Ablation study on probability p of sampling a CutMix image during training. The CutMix
setting is CM'/%. Models are trained for 250k steps. FID is computed on ImageNet val set with long
prompts, using the Inception-v3 backbone. ¢ means original GenEval prompts. x means extended
GenEval prompts.

GenEvalt

Model T FID| o .

300 699 051 053
400 6.62 055 0.57
500 6.16 048 0.55
600 590 050 0.55

CAD-I

Table 11: Ablation study on timestep threshold 7. The CutMix setting is CM® . Models are trained
for 250k steps. FID is computed on ImageNet val set with long prompts, using the Inception-v3
backbone. ¢ means original GenEval prompts. x means extended GenEval prompts.

E.2.2 Ablation on CutMix probability

Next, we analyse the influence of the probability p of using a pixel augmented image in the batch,
when the condition on ¢ is met. Results for p € {0.25,0.5,0.75, 1.0} are shown in Table[10} using
CM'/* pixel augmentations.

As we can see in terms of image quality, the FID is slightly degraded by having too frequent pixel
augmentation (p > 0.5). This can be explained by the fact that pixel-augmented images are only seen
when ¢ > 7. As such, a high value for p creates a distribution gap between the images seen for ¢ > 7
and the images seen for ¢t < 7.

Composition ability shows a similar behaviour with the GenEval overall score decreasing when p
increases for both the original and the extended prompts. As such, we consider p < 0.5 for the best
models.
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E.2.3 Ablation on threshold 7

Finally, we analyse the influence of the threshold 7, which enables CutMix images to be sampled
in training batches. Table[IT]shows the FID Inception on ImageNet Val and the GenEval scores of
models trained with different 7 values.

We find that 7 = 400 results in the highest GenEval score of 0.55 on original prompts and 0.57 on
extended prompts, while 7 = 600 yields the lowest FID on ImageNet Val. As such, we use 7 = 400
for the best models.
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F Cropping details

Our cropping training methodology (see Figure [0) removes spurious concept correlations due to its
masking scheme. We maintain the original captions and force the model to independently identify
relevant textual elements. This creates a more challenging learning task for the model that enhances
text-image alignment. During training, we only consider tokens corresponding to small portion of the
image and mask out the rest from both the loss function and cross-attention layers. Given we do this
online, this is highly efficient and also allows an infinite training set based on ImageNet to train on.
For making the model understand the full dynamics of the training data, in our training scheme with
crops, we only feed cropped images to the model with a probability, p = 0.5. In rest of the cases, we
use entire image. To keep the training scheme as simple as possible, for cropped versions, we only
use crop resolution of >50% of the normal resolution.

LLaVA Long captions

Long captions ===

k} Denoisin,
: [BE g
o |- Model
: |©E
E |e8
=
P> p g
£
2
=%
Z
LLaVA Long captions z
Data Curation Model Training

Figure 9: Pipeline of our Cropping Data Curation and Training process. Starting from ImageNet,
we a) use LLaVa VLM to caption the images into long detailed caption and b) use cropping strategies
to create new images from ImageNet by cropping. We keep the same captions as if we were using
the original image. During training, we do cropping online with a probability p of sampling cropped
images. The crop images can have any resolution >50% of the original resolution.
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s7 G Qualitative results prompts

545 Here we show the prompts used to make the Figure ] Note that for AIO we use the short version of
s49 the prompt as it is closer to its train distribution:

550 1. A pirate ship sailing on a streaming soup

551 The image showcases a colossal, exquisitely crafted pirate ship, its presence
552 commanding and larger-than-life, as it sails triumphantly across a boundless sea
553 of steaming soup. The ship’s hull, made of dark, polished wood, is adorned with
554 intricate carvings of dragons and waves, while its three towering masts support
555 vast, billowing sails that glow faintly in the warm, golden light radiating from
556 the broth. The soup is a vibrant, aromatic masterpiece, with swirls of rich broth,
557 floating islands of noodles, and vibrant vegetables like carrots, bok choy, and
558 mushrooms creating a textured, immersive landscape. The ship’s deck is alive with
559 detail—ropes coiled neatly, barrels stacked high, and a crow’s nest peeking above
560 the sails, all slightly damp from the soup’s rising steam. The bowl, an enormous,
561 ornate vessel, is crafted from gleaming porcelain, its surface painted with delicate,
562 hand-drawn scenes of mountains and rivers, adding a layer of cultural richness
563 to the surreal composition. The scene is both absurd and breathtaking, blending
564 the grandeur of a seafaring adventure with the comforting, whimsical charm of a
565 bowl of soup, creating an image that is unforgettable and endlessly imaginative.
566 2. A hedgehog and an hourglass

567 The image features a small, brown hedgehog with its characteristic spiky coat,
568 standing near an hourglass in the middle of a dense forest. The hourglass is made
569 of clear glass, and fine grains of sand are visible as they fall from the top chamber
570 to the bottom. The forest surrounding the hedgehog and the hourglass is lush
571 and green, with tall trees and thick undergrowth. Sunlight filters through the
572 leaves, creating dappled patterns on the forest floor. The scene evokes a sense of
573 tranquillity and the passage of time. The hedgehog appears to be observing the
574 falling sand, perhaps contemplating the fleeting nature of time.

575 3. A teddy bear riding a motorbike

576 A plush teddy bear, adorned with a shiny black motorcycle helmet and a
577 flowing red cape, is perched confidently on a miniature red motorcycle. The toy
578 bike and its adventurous rider are positioned against the bustling backdrop of Rio
579 de Janeiro, with the iconic Dois Irmaos mountain peaks rising majestically in the
580 distance. The scene captures the playful contrast between the soft texture of the
581 teddy bear and the sleek metal of the motorcycle, all under the bright Brazilian
582 sun.

583 4. A teapot and some cookies

584 A detailed illustration of a teapot sitting on a decorative tablecloth, with
585 delicate floral patterns and intricate stitching. The teapot itself has a sturdy handle
586 and a gleaming silver spout, emitting a gentle steam as if freshly poured. The
587 surrounding table features a few scattered tea leaves, and a plate with a few
588 cookies, adding a touch of warmth and coziness to the scene. The illustration style
589 is whimsical, with bold lines and vibrant colors, creating a sense of playfulness
590 and inviting the viewer to take a sip from the teapot.

591 5. A goat on a mountain top

592 A detailed photograph of a majestic goat standing atop a rocky outcropping, its
593 white coat speckled with patches of brown and its curved horns reaching towards
594 the sky. The goat’s eyes are alert, and its ears are perked up, as if listening to some
595 distant sound. In the background, a serene landscape unfolds, with rolling hills
596 and a distant mountain range, all bathed in soft, warm sunlight that casts gentle
597 shadows across the goat’s fur.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main claim of achieving com-
petitive text-to-image generation results using only ImageNet with augmentations, reaching
performances of larger models. This is supported by the experimental results presented in
Sections Pland

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations (See Section [2|such as early overfitting due to
the smaller scale of ImageNet and challenges in complex compositional generalisation with
ImageNet’s object-centric nature.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper’s contributions are empirical, focusing on a novel training setup and
experimental validation rather than new theoretical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper details the architectures used (DiT-I and CAD-I), the dataset
(ImageNet), text and image augmentation strategies (TA, IA - CutMix, Crop), captioning
details, and training procedures. Specifics about CutMix settings and the modified loss
function are provided in the appendix.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:[Yes]

Justification: The paper explicitly states that all the training data are hosted at https:
//huggingface.co/datasets/anonymous_for_review and all the code and models
are hosted at https://github.com/anonymous_for_review" Appendices[C|[E] D, and
E also provide implementation, captioning, and CutMix details.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper discusses the dataset (ImageNet), evaluation on ImageNet-50k vali-
dation and MSCOCO-30k. It also details model architectures, text and image augmentations,
and scaling to higher resolution (Section 2] Appendix [C]provides further implementation
details including the use of a pre-trained VAE and TS text encoder with HuggingFace links.
Appendix [E| provides details on CutMix settings, including the probability 'p’ and threshold
"7 Appendix [F] provides details on Crop settings. While specific optimizer details (AdamW,
learning rate schedule, etc.) are not explicitly in the main text, one could find them in the
config files of the training code.
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7.

10.

11.

12.

Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper reports various metrics (FID, CLIPScore, GenEval, DPGBench,
PickScore, Aesthetic Score, VILA Score) in tables. However, measures of statistical
significance are not reported for these experimental results.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper states that the compute budget is about 500 H100 hours for one
training. It also mentions that the high-resolution fine-tuning takes an "additional 100,000
steps". While specific memory or detailed per-experiment breakdowns are not extensively
provided in the main text, the overall compute budget is mentioned.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research focuses on text-to-image generation using a publicly available
dataset (ImageNet) and aims to improve reproducibility and accessibility. The paper dis-
cusses potential societal impacts in the conclusion.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The conclusion mentions positive impacts such as computational efficiency,
opening possibilities for specialized domain adaptation. While direct negative impacts
are not extensively detailed, the call for "more sustainable and responsible development"
acknowledges the broader context.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper focuses on training models on ImageNet, a well-established and
curated dataset, rather than scraped web data. While image generation models can have
misuse potential, the paper’s contribution is more on the methodology of training with
open-source data and does not introduce new large models trained on high-risk scraped data.
The provided models are relatively small (300-400M parameters).

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites ImageNet [41] as the primary dataset. It also mentions using
pre-trained VAE from Stable Diffusion [40] and T5 text encoder, providing HuggingFace
links containing license information. The LLaVA captioner [32] used for generating

captions is also cited with a HuggingFace link. References are provided for architectures
like DiT [35] and RIN [20].

27


https://neurips.cc/public/EthicsGuidelines

701

702

704

705
706
707

708

710
71

712

713
714

715
716

717
718
719
720

721

722

723

724
725
726
727

728

729
730
731

13.

14.

15.

16.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]

Justification: The models developed and the augmented training data (ImageNet with
synthetic captions and CutMix augmentations) are hosted on HuggingFace and GitHub with
complete documentation.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research described in the paper does not involve crowdsourcing experi-
ments or research with human subjects for data collection or evaluation.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve research with human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper explicitly states the use of LLaVA [32], a Vision-Language Model
(VLM) for generating synthetic captions for the ImageNet dataset. The details of the LLaVA
model used and the prompting strategy are provided in Appendix [D]
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