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Abstract

Decoding visual signals holds an appealing potential to unravel the complexities
of cognition and perception. While recent reconstruction tasks leverage powerful
generative models to produce high-fidelity images from neural recordings, they
often pay limited attention to the underlying neural representations and rely heavily
on pretrained priors. As a result, they provide little insight into how individual
voxels encode and differentiate semantic content or how these representations
vary across subjects. To mitigate this gap, we present an insightful Multi-subject
Invariant Neural Decoding (:MIND) model, which employs a novel dual-decoding
framework—both biometric and semantic decoding—to offer neural interpretabil-
ity in a data-driven manner and deepen our understanding of brain-based visual
functionalities. Our :MIND model operates through three core steps: establishing
a shared neural representation space across subjects using a ViT-based masked
autoencoder, disentangling neural features into complementary subject-specific
and object-specific components, and performing dual decoding to support both
biometric and semantic classification tasks. Experimental results demonstrate that
tMIND achieves state-of-the-art decoding performance with minimal scalability
limitations. Furthermore, :MIND empirically generates voxel-object activation
fingerprints that reveal object-specific neural patterns and enable investigation of
subject-specific variations in attention to identical stimuli. These findings provide
a foundation for more interpretable and generalizable subject-invariant neural de-
coding, advancing our understanding of the voxel semantic selectivity as well as
the neural vision processing dynamics.

1 Introduction

Deep learning models have recently been adopted in neuroscience as powerful tools for modeling
brain activity, especially in the study of vision and cognition [6, 9} |19, 26]]. A central goal in cognitive
neuroscience is to understand how the brain transforms sensory input into meaningful representations
that support recognition, memory, decision-making, and attention. Unlike behavioral annotations,
neural signals provide a direct readout of these internal processes, revealing perceptual [3]], emotional
[32]], and attentional dynamics [27] that cannot be fully captured by explicit labeling. Among
available neural modalities, functional Magnetic Resonance Imaging (fMRI) [29] has been especially
influential for its ability to non-invasively measure distributed patterns of cortical activity, enabling
the study of how complex visual concepts are represented across brain regions. As such, fMRI not
only offers a promising supervisory signal for aligning neural activity with computational models,
but also serves as a critical tool for probing the neural basis of cognition and vision [16].
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Figure 1: Overview of our framework. :MIND involves biometric decoding (identifying individuals)
and semantic decoding (classifying perceived objects). fMRI voxel signals are first flattened and
encoded by a pretrained Masked Autoencoder (MAE) to generate latent neural tokens, which are then
passed through a learnable subject-object disentanglement block via orthogonal basis transformation
B = (Byubj; Bopj). The resulting biometric neural tokens are directly pooled for subject classification,
while the semantic neural tokens act as keys and values in a cross-attention module with the CLIP
latent features of the corresponding visual stimuli as queries to reflect the semantic contents captured
by each subject. The fused representation is then pooled for multi-label object classification.

Most recent research has focused on reconstructing visual stimuli from brain activity by projecting
neural representations into deep visual spaces and employing generative models such as GANs
or diffusion models [55, 22} 35138l 41]]. These approaches have yielded visually plausible, high-
resolution images, suggesting that deep learning can serve as a bridge between brain activity and
imagery. However, despite these remarkable achievements, we argue that reconstruction alone is
Jundamentally inadequate for understanding brain vision mechanism. Specifically, the following
limitations exist:

* Reconstruction relies heavily on pretrained generative priors, which often dominate the decod-
ing process and may introduce model-specific biases that obscure genuine neural content.

* Brain recording may not encode all fine-grained details necessary for accurate reconstruction—
especially across subjects—rendering pixel-level reconstruction ill-posed and often misleading. This
ultimately shifts the focus from reconstruction to generation.

Thus, we argue that reconstructing visual stimuli is neither a reliable nor interpretable strategy for
decoding neural representations. A more effective alternative is to classify the subject’s perceptual
experience directly from fMRI data, enabling the identification of visual concepts embedded in
neural responses [44]]. This discriminative classification-based approach supports evaluation through
standard metrics and allows researchers to disentangle both shared and individual-specific semantic
components of brain activity—capabilities that reconstruction methods often fail to provide.

Technically, current neural decoding solutions follow two main strategies: single-subject models
(5, 122} 241 2511351 138]], which suffer from data scarcity, overfitting, and poor scalability due to the
high cost of fMRI collection; and multi-subject models [4} [36, |41} 44E|, which face substantial
inter-subject variability from anatomical and functional differences. This can lead to entangled neural
representations, where subject-specific and object-related signals become mixed [[10]], degrading
decoding performance and interpretability. This raises a key research question:

“How can we develop a discriminative neural decoding framework that generalizes
across individuals while preserving subject-specific semantic interpretations of
visual stimuli?”

To answer this, we present a novel approach to decoding brain activity using deep classification
models, aiming to capture shared neural representations across individuals while preserving per-
sonalized interpretations shaped by diverse experiences and backgrounds. Toward this goal, we
introduce the insightful Multi-subject Invariant Neural Decoding (;MIND) model-a dual-decoding

2See Appendix for detailed related works.



framework (Figure [T} that supports both biometric decoding (identifying individuals) and semantic
decoding (classifying perceived objects). By constructing voxel-object activation maps and examining
subject-specific attentional patterns in response to complex, multi-object scenes, :MIND offers a
principled path to disentangling individual and shared components of visual perception, ultimately
advancing our understanding of brain-vision mechanisms. To sum up, our contributions are threefold:

* We introduce a multi-subject dual-decoding framework that disentangles neural signals into subject-
specific and object-specific components, enabling scalable and subject-aware brain analysis with
state-of-the-art semantic and biometric decoding performance.

* We develop a visual-neural interaction module that identifies object-voxel activation patterns in a
data-driven manner, revealing how different subjects encode object-level semantics in the brain.

* We perform a comprehensive analysis of attention-based variability across subjects viewing the
same visual stimuli, providing insights into individualized neural responses under time-constrained
conditions.

2 Proposed Method

2.1 Problem Formulation

Consider a neural dataset containing brain activities of subjects S in response to visual stimuli drawn
from an image dataset with M samples D = {(X;,y;)}£,, where each visual stimulus X is a
three-channel image with a resolution of H x W, paired with a non-exclusive ground-truth label
y: € R representing C' object categories. During neural recordings, all images X are viewed by
a group of subjects S. For each subject s € S viewing the i-th image X;, an fMRI voxel response
Vs is recorded, capturing neural activity specific to the subject-image pair. Note that the voxel
signal V; , is flattened as an 1D vector with various lengths (12,682 ~ 17,907) across subjects due to
biometric differences in neural structure. Following [3]], we apply wrap-around padding to achieve a
uniform voxel length L. Details on pre-processing procedures are provided in Appendix [A.3.2]

2.2 Framework Overview

Our goal is to decouple arbitrary fMRI voxel signals into subject-invariant and subject-specific
components from both semantic and biometric perspectives by developing a visual-neural model M.
Formally, this can be expressed as a mapping:
M RIOWE  RE 5 RY x RIF
—_— ~—~ ~

image voxels semantics  biometrics

ey

where semantic decoding seeks to extract object-related neural representations that are consistent
across subjects, whereas biometric decoding focuses on capturing subject-specific neural patterns
that are independent of the visual stimuli.

To address both tasks, we propose the insightful Multi-subject Invariant Neural Decoding model, ab-
breviated as IMIND. Building on the SC-MBM framework [5]], our method constructs a d-dimensional
shared latent neural space JF across subjects to reduce the noise and redundancy inherent in fMRI
signals [40]. Specifically, we employ a Vision Transformer (ViT)-based encoder £ : R — RNV >4
that projects each input voxel signal V into a set of N neural feature tokens, denoted as F = {f; }5-\7:1,
where each f; is a d-dimensional neural feature token. This yields N neural representations per fMRI
input, all embedded in the shared latent space F. The encoder £(+) is pretrained using a masked
autoencoding objective in a self-supervised manner, emphasizing voxel-wise reconstruction.

Subsequently, we disentangle the learned features into object-specific and subject-specific components.
The subject-specific features are used for subject classification (biometric decoding), while the object-
specific features are aligned with frozen CLIP visual embeddings of the corresponding images via a
cross-attention mechanism, enabling multi-label object classification (semantic decoding).

2.3 Subject-Object Disentanglement

The self-supervised pretraining reduces noise and redundancy in fMRI signals by encouraging the
model to capture generalizable patterns. However, the resulting neural features J are not explicitly



tailored for downstream decoding tasks such as biometric identification or semantic classification.
Because the reconstruction objective treats all latent information as equally relevant, it often leads to
entangled representations—mixing subject-specific and object-specific components. This entanglement
limits the interpretability of the learned features and hinders task-specific performance, especially
when distinguishing between individual variability and shared visual semantics is essential.

Mathematically, this can be formalized by interpreting each neural feature token f =
(f1, f2,- .., f4) € R? as the coordinate representation of a corresponding neural point p in the
latent neural feature space F. By default, this representation is expressed with respect to the standard
basis E = {e, € R?}[¢_, of RY, denoted as [p]g:

d
ple:=f=>_ frer € R% 2)
k=1

From this perspective, the entanglement of subject-specific and object-specific information within f
can be attributed to the default use of E as the basis for spanning the neural feature space F. As E
is implicitly determined by the self-supervised task in the first training stage, this choice is beyond
direct control, resulting in an inevitable blending of both subject and object information within the
feature representation f for any neural point p € F.

To enable effective downstream biometric and semantic decoding, we propose a solution from the per-
spective of feature disentanglement [8, |14} 39} 43]. We begin with assuming that the subject-specific
and object-specific information within a neural point p are linearly entangled in the current neural
feature representation f under the basis E. While this may not fully characterize the complexities
of neural dynamics, it serves as a simplified approximation to provide a meaningful step toward
understanding the interplay between subject-specific and object-specific information. More crucially,
this assumption applies at the latent feature level, not at the original fMRI signal level. At this level,
the assumption is reasonable, as it aligns with the principles of deep classification tasks, where linear
MLP classifiers rely on deep neural networks to transform inputs into linearly separable features for ac-
curate classification. Based on this assumption, we resolve the linear entanglement by re-representing
p with respect to a new basis B. Specifically, we seek a learnable basis B = (Bsubj, Bobj) of R4
space that perfectly separates the subject-specific and object-specific features. Mathematically, this
re-representation would allow z, the representation of the same neural point p with respect to the
new basis B, to be distinctly split into subject-specific zy; and object-specific zq; components:
z=[plB = ([Pl +[Plp,, ) = (Zsubj> Zorj) € R™. 3)

subj obj

According to the mathematical property of bases, the separation of zg; and zy; is guaranteed as long
as B forms an orthonormal basis of R?, i.e., BBT = I;, where 1, is the identity matrix of rank d.
With this orthonormality condition satisfied, the transformation from the original representation of f
to the new representation z of the same neural point p can be derived as follows:

z=[pls =B '[ple =B [p]g =B'f € R". 4)
Combined with Eq. (3), we finally arrive at our subject-object disentanglement formulation:
Zsubj = BsTubjf S ]Rdsuhj and Zobj = B(—)E)jf c Rduhj. 3)

From a feature transformation perspective, we realize subject-object disentanglement by decomposing
the original neural space F into two complementary (orthogonal) subspaces: the subject-specific
neural subspace F,; and the object-specific neural subspace ;. This disentanglement is achieved
by learning two orthonormal sets, Byyj € R?*%ti and Boy; € R4 which span Fj and Fop;
respectively. In our framework, doy; is treated as a user-defined value, with dgp,j := d — dgp; to
complete the basis. A formal and theoretic proof is provided in Appendix [A.2]

The complementary relationship, ' = Fapj © Fobj, guarantees a clear separation of subject and
object information in the transformed neural representation z = (Zgpj, Zobj) € R for each neural
point p € F, establishing a foundation for the subsequent biometric and semantic decoding tasks.

2.4 Biometric & Semantic Decoding

In this section, we describe our approach to decoding fMRI signals biometrically and semantically.
Note that an fMRI signal V is represented by F as a set of N neural tokens {f; };VZI within the



latent neural space F. Based on Eq. (3), the subject-specific feature map Zgy; € RY X v and
object-specific feature map Zp; € RV > are generated from F € R4 as follows:

Zgwj = FBgwj and  Zg,y = FBgy;. (6)

2.4.1 Biometric Decoding

The biometric neural decoding is driven by a supervised multi-subject classification task. We apply
a Global Average Pooling (GAP) operator, Gy : R *dwi — Rdwi, o the subject-specific neural
feature map Zg,y, to build a subject class token:

ch:ll:bj = gsubj(zsubj)- (7)
Finally, a linear multi-subject classifier Cypj : R% — R¥ is applied for the final biometric prediction:
ysubj = Csubj (Z;lfbj) 8)

2.4.2 Semantic Decoding

To establish a feature-level connection between the fMRI voxel signals V and the semantic content
of visual stimulus X, we utilize the vision feature map Fyx € RNxxdx extracted from the last layer of
a frozen CLIP visual encoder [33]]. In contrast to most neural vision approaches that project fMRI
features into the CLIP visual space [} 38], our method takes the opposite strategy by treating the
CLIP vision features as queries to extract corresponding neural object features from Zgp;.

This design is motivated by the complementary roles of CLIP and fMRI signals. CLIP features
encode subject-invariant and stimulus-driven semantics with rich spatial and conceptual structure,
effectively serving as a pseudo-ground-truth reference for object existence. In contrast, fMRI
captures subject-specific neural responses that reveal how different individuals attend to these
semantic components. To fuse these two modalities, we applied a multi-head cross-attention extractor
A RN Xdx o RN Xdob 5 RNV Xdotj _y RNxXdovi defined as follows:

Zg)’j‘ = A(Query = Fy, Key = Zqpj, Value = Zop;). )

Here, the CLIP embeddings act as queries, while the fMRI-derived Z; serves as keys and values.
This configuration ensures that the fused representation remains fundamentally neural in nature: fMRI
signals determine what semantic components are prioritized, while CLIP provides the structured
semantic reference frame. The resulting cross-attention has two key effects:

* Semantic Prioritization - CLIP embeddings query the fMRI features, and attention weights
highlight which parts of the CLIP semantic space align with neural activations. This allows the
model to anchor predictions in semantically grounded content;

* Subject-Specific Modulation - The fMRI responses modulate CLIP-driven semantics in a subject-
dependent manner, enabling the model to capture how different individuals selectively emphasize
different attributes of visual stimuli that share similar semantic contents.

In this way, CLIP will not dominate or overwrite the neural signal, but rather provides a semantically
structured scaffold. The fMRI features dynamically shape which aspects of that structure are
emphasized, yielding a bi-directional synergy. Our semantic decoding thus remains primarily rooted
in the fMRI modality, with CLIP assisting in refining object-specific neural features for final multi-
label object classification. Similar to what we have done in the biometric decoding in the previous
section, a global feature operator Gop; : RV *dovi s R transforms Z(l;;’j‘ into an object class token:

25 = Gonj (ZgeX)- (10)
Following that a multi-label object classifier Cop; : R+ — R is applied for final semantic prediction:

Fobj = Conj (Z5h))- (11)



2.5 Model Training

The training process of our model consists of two stages. In the first stage, we follow the approach
of SC-MBM [55] to pre-train a ViT-based masked autoencoder for fMRI data, constructing a latent
neural space via minimizing reconstruction error with a Mean-Square Error (MSE) loss.

In the second stage, we retain only the fMRI encoder £(+) from the first stage and optimize it with
all other parameters in the proposed architecture. Three loss functions guide this stage. First, for
biometric decoding, we introduce a subject classification loss Lgpj, which computes the cross-entropy
Hce with softmax activation against the one-hot label yp,; from the ground-truth subject index yuvj:

Lgubj := Hce (softmax (Fsub) » Ysubj)- (12)

For multi-label semantic decoding, we employ an object loss L, which is a binary cross-entropy
function Hpcg with sigmoid activation o (-):

Lobj := Hpce (0 (Fobj) » Yobj)- (13)

Finally, we impose an orthonormal constraint on the learnable basis concatenation B = (Byypj, Bob;),
as defined in Eq. (6). This orthonormal loss L, ensures the perfect separation of subject-specific and
object-specific features by minimizing Low, := |[BB' — 14|, where |-|| indicates the Frobenius
matrix norm, and I; € R%*? is the identity matrix of rank d.

In summary, in the second training stage, the total objective £ is formulated as:
L = Lo + Lobj + ALorh, (14)

where A serves as a trade-off hyperparameter to balance the orthonormal constraint against the subject
and object classification losses, which are considered equally important and share the same scale.

3 Experiments

3.1 Experimental Setup

Dataset. We evaluate our iMIND framework using the Natural Scenes Dataset (NSD) [2]], a compre-
hensive, publicly available fMRI dataset capturing brain responses from 8 human subjects viewing
natural scenes from MS-COCO [23]]. Each subject passively viewed a set of 10,000 images for 3s,
each repeated three times; 1,000 of these images were shared across all subjects, while the remaining
9,000 were unique to each individual, with no overlap between subjects. Due to incomplete sessions
and data availability restrictions, not all trials are accessible for every subject, resulting in a total
of 213,000 trials across all participants before pre-processing. In line with previous NSD studies
[L7,1350136, 138, we used standardized train/test splits and averaged fMRI activations over repetitions
for each image within each subject. This pre-processing yielded 69,566 training samples and 7,674
test samples, allowing us to train a single multi-subject model across all 8 subjects. Additional details
on NSD data, fMRI pre-processing, and i{MIND implementation can be found in Appendix

3.2 Neural Decoding Performance

Semantic Decoding. For the semantic decoding task, we evaluate and compare with other models
using three standard metrics for multi-label classification: mean Average Precision (mAP), the area
under the receiver operating characteristic curve (AUC), and Hamming distance (Hamming). Table|[T]
categorizes models based on their ability to process multi-subject fMRI signals simultaneously or
on a per-subject basis, as well as the modalities used for object classification. While our :MIND
model is designed to process both image and fMRI modalities, it can also be adapted as a single-
modality model by simply removing the cross-attention mechanism in Eq. (9) and using Z; in
Eq. (6) directly for semantic decoding. Experimental results indicate that iMIND achieves superior
performance across all three metrics, establishing a new state-of-the-art for semantic decoding in
both single-modality and multi-modality settings.



Table 1: Semantic decoding performance on the NSD dataset.

Model Type | Methods \ Modalities mAP1 AUCt Hamming |
Sinelesubiect MLP [44]* fMRI 258 854 033
gie-subj ViT [44)* fMRI 238 815 032
MLP [44]* fMRI 150 767 039
VAT [44])* fMRI 156 755 038
Multiosubioct EMB [4] fMRI 220 825 035
) CLIP-MUSED [44] | fMRI+Image+Text  .258 877 030
: fMRI 309 913 027
‘{MIND (Ours) fMRI+Image 784 984 012

* directly sourced from [44] as benchmarks due to the limited research on semantic neural decoding
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Figure 2: Average activations of tokens in Zy; for the object Chair.

Biometric Decoding. To the best of our knowledge, Table 2: Biometric decoding performance_
no existing neural decoding models support subject -

classification using the fMRI modality. To provide Method ‘ Setting SCCaRMCE
a comprehensive and fair evaluation, we established K-Means
baseline models following the exact preprocessing
steps from our proposed method and conducted both
supervised and unsupervised biometric decoding, as MLP
presented in Table [2] Top-1 accuracy (ACC) and
Matthews Correlation Coefficient (MCC) [28]] are
used as metrics. The poor performance of naive ~ iMIND | = 999 999
subject classification methods underscores the com-
plexity of neural data across subjects, whereas the near-perfect classification achieved by iMIND
highlights the effectiveness and necessity of our subject-object disentanglement approach. This
demonstrates that within our framework, biometric fMRI features are highly discriminative across
subjects and our linearity assumption is reasonable. By facilitating the extraction of task-relevant
features, our disentanglement method further enhances downstream semantic and biometric decoding.
Details on how we build biometric decoding baselines are provided in Appendix [A.4]

Euclidean 181 .068
Cosine 232 126

Plain 283 181
L2 norm 377 .290
L2+ RelLU .573 .526

3.3 Subject-Invariant Decoding

The primary motivation for the subject-object disentanglement design, introduced in Section[2.3] is
to decompose the entangled neural feature F into subject-specific and object-oriented components
Z i and Zy,; for a better biometric and semantic decoding. This approach expects object-wise token
contributions in Z,; to remain consistent across subjects. Using the object chair as an example, we
visualize 280 tokens’ activations averaged across all correct predictions by subject in Figure [2] It
turns out that at the feature level, our method successfully achieves subject-invariant decoding, as
token activations display high similarity with only negligible subject-level variations. This outcome
demonstrates our model’s effectiveness in extracting object-specific information from complex fMRI
data, offering a robust framework for multi-subject fMRI decoding.

3.4 Visual-Neural Relationship

We empirically investigate the relationship between brain activities and semantic objects in visual
stimuli, leveraging both GradCAM [37] and Attention Roll-out [[1]].

Subject-wise 1D Activation Pattern. Taking subj0l as an example, we calculate voxel-wise
activations within low-level visual regions of interest (ROIs) (V1-V4) and a wider high-level visual
ROl in response to three objects: person, horse, and chair. This calculation takes the median activation
across all true positive samples predicted by our model on the test set. As shown in Figure 3| the
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Figure 3: 1D Object-Voxel activations by brain vision ROIs for subjO1.
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Figure 4: 3D Object-Voxel activations of person, car, bird, and horse for subj01, subj03, and subj05.

y-axis represents median activation, while the x-axis represents voxel IDs, providing a clear overview
of the active voxels across both low-level and high-level visual ROIs when subj01 recognizes each
object. The unique activation patterns, with specific voxels responding to each object, indicate that
brain voxels function differently from image pixels. In images, object locations are believed spatially
random, so evaluating pixel-wise activation does not yield consistent spatial activation patterns. In
contrast, fMRI voxels exhibit specialized roles in processing visual information, suggesting that brain
voxels are organized by functional responsibility with a degree of spatial invariance—especially in
high-level visual ROIs. This conclusion aligns with the existing studies from neuroscience [20, 21]].

Cross-subject 3D Activation Pattern. We present 3D brain activation patterns in Figure @] for four
objects—person, car, bird, horse—visualized across three subjects: subjO1, subjO3, and subj05. Light
yellow regions denote non-visual areas that were excluded from the dataset, resulting in uniformly
absent signals in these regions. Based on the visualization, the following observations are made:

» Consistency across subjects: the objects bird and horse show a broad similarity across subjects,
particularly in the region of the higher visual cortex and predominantly in the left hemisphere. This
consistency suggests that certain high-level features associated with animals may be processed in
similar ways across individuals, reflecting stable visual processing pathways in the brain.

* Object sensitivity: the activation intensity for object person appears stronger and more concen-
trated, indicating that the brain may allocate increased neural resources or “attention” to socially
relevant stimuli (people), compared to less socially significant objects like bird. This result is
supported by neuroscience research [[15} 42].

* Representational flexibility: while general patterns are shared across subjects, the intensity and
spatial distribution of activation vary slightly for certain objects, such as car. These variations
may reflect individual differences in brain anatomy or prior experiences that influence object
representation and visual information processing. This flexibility of the brain’s adaptability to
personal needs and experiences is known as neural plasticity [[7, [11}30].

3.5 Variations in Subject Attention

A key contribution of :MIND is its use of subject-invariant CLIP visual features to explore how
different subjects focus on distinct objects when receiving the same stimulus. Figure [3]illustrates
this attention variation: the first column displays the original visual stimulus with six ground-truth
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Figure 5: Variations in subjects’ attention to different objects. The leftmost image shows the visual
stimulus, labeled with six objects: person, dining table, cup, fork, hot dog, and chair. Four of them
are selected for visualization. Plots in the second column represent the shared attention across all
subjects, and the remaining eight columns show the residual, subject-specific attention alongside

predicted probabilities to compare recognition confidence and priority.
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annotations, the second column represents the shared attention map common across all subjects,
and the remaining eight columns show the residual, subject-specific attention patterns. Four object-
specific attention maps are visualized on rows with predicted logits to compare recognition confidence.
Considering images are shown for only 3s [2]], patterns of attention and object recognition offer even
more intriguing insights into rapid, automatic processes of visual information and neural encoding.
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must rapidly parse and prioritize
elements of a complex scene. No-
tably, despite occupying only a
modest portion of the image, the
object chair consistently receives
high attention across all subjects.
This suggests that chairs are pro-
cessed in an early, feed-forward
manner—likely due to their high 02
salience and distinctive visual fea-
tures that enable rapid recognition
under time constraints. To vali-
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confidence for chair in the train- Figure 6: Recognition of chair by object size.

ing set across subjects, grouped

by object size (Figure[6). The results confirm that chairs of sufficient size are reliably identified by all
participants. This immediate and confident response highlights the efficiency of the visual system in
detecting familiar, contextually relevant objects with minimal cognitive effort.

Subject-specific Focus Under Time Con- o
straints: Under these brief viewing conditions,
subject-specific differences in attention to ob- _
jects like cup, fork, and hot dog become espe- ¢
cially revealing. Variation in attention to cup,
particularly with subjO1 and subjO3 achieving oxss
recognition confidence (predicted probabilities

> 0.5) by focusing more precisely on its loca- =™
tion, suggests that these individuals may possess s
faster or more selective attentional strategies.

Such patterns point to individual differences in SUDIOT SublOz - sublO3 sublos subloS  subl06 sublo7  sublos
visual processing speed, attentional control, or Figure 7: Sensitivity to cup across subjects.
perceptual expertise that influence object prioritization under time constraints. These findings are
consistent with training results (Figure[7), where subj01 and subj03 show the highest sensitivity to
cups, as measured by weighted MCC. Interestingly, although none of the subjects successfully recog-

Weighted MCC on cup




nize fork or hot dog in Figure[3] all but subjO2 allocate more attention to fork than hot dog, suggesting
a subtle yet consistent attentional bias that reflects object familiarity or contextual relevance.

To the best of our knowledge, the proposed :MIND is the first model to capture subtle variations in how
quickly and differently individuals allocate attention within a constrained time frame, demonstrating
the model’s robustness in simulating real-world neural processes. The model’s ability to account
for both shared and individual-specific attention patterns in response to brief stimulus exposure can
inform the development of neural decoding approaches that better reflect human variability, especially
in time-sensitive applications like real-time scene analysis or autonomous driving. Complete details
for all visualized figures are provided in the Appendix.

. . . Table 3: Ablation on loss functions.
In sum, the fact that subjects allocate attention differ-
ently within just a few seconds underscores the effi- ID | Labj  Lom A mAP (%)
ciency of neural mechanisms in prioritizing objectsand ~ Full | v/ v 1 78.36
the role of individual cognitive differences. This rapid,

nuanced attention mapping highlights how our iMIND ! v ~T151(])
; . 2 v d  -11.17 Q)

framework captures the interplay of shared and indi-
. S - . 3 -11.07 ()

vidual neural patterns, bridging cognitive neuroscience
with computational modeling to decode visual attention 4 v v 01 -094()
in real-world scenarios. 5 v v 1 295 1)
6 v v 10 -084)

3.6 Ablation Studies

Loss Functions. Our novel designs—subject-object disentanglement and the dual-decoding
framework—are considered two key factors in achieving SOTA semantic decoding performance.
To evaluate their effectiveness and necessity, we test combinations of the two loss functions, Lgp;
and L, along with a trade-off hyperparameter A. Table|3|confirms that both L, for subject-object
disentanglement and the dual-decoding design are crucial for achieving high semantic performance.
Moreover, the trade-off parameter seems to have a minimal effect on the overall results. The optimal
model utilizes all three loss functions with a trade-off parameter of A = 0.1.

Model Variants. We investigate the impact of two key  Table 4: Ablation on heads and dp;.
hyperparameters on the performance of semantic decoding: ID ‘ Head(s) duw; mAP (%)

dobj» the dimension of the neural object space for subject-
object disentanglement in Section and h, the number ~ Full | 4 700 78.36

of heads in multi-head cross-attention module in Eq. @]) 1 1 700 -1.95(})
According to Table[d] increasing the number of heads does 2 2 700 -1.12(})
not necessarily lead to performance gain, as it may result in B 6 700 -1.35())
potential overfitting. In addition, we found that performance 4 8 700 -9.18 (})
degradation remains minimal as long as there is sufficient
feature space allocated for the neural object information. 5 4 100 -4.01 (1)
Ultimately, the optimal object classification performance, in 6 4 200 -2.11 ()
terms of mAP, is achieved with h = 4 and d; = 700. 7 4 300 -1.04 ())
8 4 400 -1.38())
. 9 4 500 -0.89 ()
4 Conclusion 10 4 600 -1.14(})

In this paper, we introduce an innovative multi-subject dual-decoding framework that decomposes
latent fMRI representations into distinct subject-specific and object-specific components using a
robust basis transformation. This approach enables precise biometric decoding through individualized
neural features, while shared object-oriented features facilitate subject-invariant semantic decoding
by querying with CLIP-derived visual representations. Our framework not only establishes a new
benchmark for semantic decoding accuracy but also reveals variations in attentional focus across
subjects when viewing identical visual stimuli. Additionally, we construct object-specific activation
patterns at the voxel level, offering data-driven insights into the brain’s visual processing mechanisms.

In future work, we aim to leverage large-scale fMRI datasets to develop more robust and informative
pretrained models for extracting latent neural features. Additionally, we plan to collaborate with brain
scientists to deepen our understanding of how specific voxel patterns in fMRI data relate to semantic
object representations. This domain knowledge will help bridge the gap between visual features and
neural signals, further enhancing the interpretability and accuracy of brain-based decoding models.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: we clearly state our contributions that match claims made in the abstract and
introduction. we also did theoretic proof and conduct extensively experiments to validate
our claims in the result section in the main paper and in Appendix

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Due to page limit, we don’t include a limitation section in the main paper.
Instead, we point out the limitation of the proposed method in Appendix

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: We don’t make any theoretic contributions in the paper, but we do rely on the
assumption that the subject and object information is linear entangled in the latent fMRI
space.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details necessary for reproducing the experimental results are fully de-
scribed in either the main paper or appendix. The code will be released upon acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In appendix, we describe the used dataset as well as the version of publicly
available pretrained deep models we rely on in details.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to the implementation details in appeix for all the details regarding
hyperparameter choice, preprocessing, etc.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We don’t do statistical significance check simply because our model outper-
forms existing models by a large margin that don’t need a statistical test to prove it. Also,
the model is trained and tested on a large dataset. It would be time-consuming to do such
test.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list the computing resources needed for the proposed method, whose
parameters are publicly available.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We closely follow the code of ethics by NeurIPS.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is an exploring work and far away from application. So, it may not
have any societal impacts for now.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: we don’t think the rease of our data or models will have a high risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data and the pretrained deep models are fully described. We give credits
to the original creator in the main paper.

Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release our code upon acceptance, which include new assets such as
trained model weights.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: Our research relies on human neural signals data, but it has no potential risks
for incurred participants.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: Our research relies on human neural signals data, but it has no potential risks
for incurred participants.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Related Work
A.1.1 Single-Subject v.s. Multi-Subject Models

The application of deep learning to neural data has initially centered on single-subject models tailored
to individual participants. BrainDiVE [24] adopts a generative approach, synthesizing images pre-
dicted to activate specific regions of the human visual cortex. Moving beyond visual modalities, Mind
Reader [22]] incorporates textual information to reconstruct complex images containing multiple
objects from brain activities. Extending this multimodal approach, BrainSCUBA [25] takes advantage
of contrastive vision-language models and large-language models to generate voxel-wise captions,
eliminating the need for human-annotated voxel-caption data. While single-subject models have
achieved notable success, they face inherent limitations. These models require large amounts of
subject-specific data to train robust models, which is challenging given the high costs and effort
involved in collecting fMRI data. Furthermore, they are prone to overfitting, exhibit poor general-
izability across individuals, and struggle with scalability when applied to larger datasets or diverse
populations.

To overcome these challenges, multi-subject models aim to unify data across participants, enabling
shared representation learning. However, this approach introduces significant complexity due to inter-
subject variability, which arises from static anatomical differences and dynamic functional responses.
Various methods have been proposed to overcome these obstacles. [4] employs subject embeddings
and recurrent architectures to account for inter-trial and inter-subject variability, outperforming many
single-subject models in predicting MEG time series. MindBridge [41] introduces a biologically
inspired aggregation function and a cyclic fMRI reconstruction mechanism to achieve subject-
invariant representation learning. MindEye2 [36] aligns spatial patterns of fMRI activity to a shared
latent space using subject-specific ridge regression, improving out-of-subject generalization with
limited training data and achieving state-of-the-art results in image retrieval and reconstruction.
More recently, CLIP-MUSED [44] introduced learnable subject-specific tokens to facilitate the
aggregation of multi-subject data without a linear increase in model parameters. This approach
integrates representational similarity analysis (RSA) to guide token representation learning based on
the topological relationships of visual stimuli in the latent visual space.

These advancements demonstrate the potential of multi-subject models to surpass the limitations of
single-subject approaches, providing more generalizable and scalable solutions for neural decoding
tasks. However, to the best of our knowledge, existing multi-subject neural decoding models
predominantly adopt what we term a suppressive strategy for handling inter-subject variability.
This approach aims to minimize subject-specific differences during learning, progressively refining
features to become more task-relevant as the model deepens. In these frameworks, subject-specific
information is often treated as noise or an obstacle to effective decoding. In contrast, our iMIND
framework proposes an instructive strategy. Rather than suppressing subject-specific differences, our
model embraces this variability by explicitly disentangling subject-specific features from task-relevant
ones. By doing so, :tMIND not only preserves individual-specific neural representations but also
leverages them positively to enhance both subject-specific and shared task-related decoding. This
dual-decoding approach enables iMIND to achieve superior performance while offering insights into
both individual neural patterns and shared semantic representations.

A.1.2 Vision-Neural Interactions

Decoding visual information from neural signals is an inherently multi-modal task, involving the
alignment and interaction of at least two modalities: images and neural signals (eg., fMRI). Broadly
speaking, approaches for vision-neural modality alignment can be categorized into two branches
based on the direction of projection between visual and neural spaces.

The first branch projects neural signals into a pre-trained latent visual space. This approach is
exemplified by works such as [35]], which maps flattened spatial patterns of fMRI activity across 3D
cortical tissue cubes into the image embedding space of a pre-trained CLIP model. Similarly, [38]
predicts latent representations of presented images from fMRI signals within the early visual cortex.
Other notable works in this branch include [522}36}41]], which leverage pre-trained visual generative
models, such as GANs [34] and diffusion models, for reconstruction tasks. These models capitalize
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on large-scale visual datasets and avoid re-training resource-intensive generative architectures, which
would otherwise be infeasible given the scarcity of paired neural-visual data. The second branch
adopts the opposite approach by projecting latent visual image features into the neural space. This
method is particularly useful for generating synthetic stimuli that activate specific brain regions,
enabling the study of feature preferences in different areas of the brain. Classic examples include
[L8L 24, 25]], which investigate neural activation patterns in response to synthetic stimuli derived from
visual features.

Our :MIND model takes a fundamentally different approach to vision-neural modality interaction.
Rather than projecting between modalities, we use CLIP-derived vision features as queries to extract
corresponding neural object features directly from neural representations. This design choice is
motivated by several factors. First, as a semantic neural decoding framework, :MIND does not rely
on resource-intensive generative models. Second, direct projections between modalities often result
in significant information loss and modality gaps that require careful handling. Most importantly,
our approach is expected to enable the investigation of subject-specific attention variations when
viewing the same visual stimuli. By treating the CLIP vision features as pseudo-ground-truths for
object presence, we leverage their subject-invariant properties as an anchor to explore how neural
responses to specific objects differ across subjects. This design uniquely aligns with the goals of
understanding inter-subject variability in neural decoding.

A.2 Theoretic Validation for Basis Transformation

In this section, we present the basis transformation in linear algebra and establish the relationship
between coordinates in different bases. The derivation ensures clarity in transitioning from one basis
to another, essential for interpreting subject-specific neural space Fg,; and object-specific neural
space JFop; mentioned at the end of Section [2.3|in the main paper. We begin with the following formal
claim:

Claim Let V be a vector space of cardinality d over R, with a standard basis E = {ej,ea,...,e4}
of R? and an arbitrary basis B = {by,bs, ..., by} of R%. For any vector v € V), if its coordinate
with respect to the standard basis E is given by [v]g € R?, then its coordinate with respect to the
basis B can be derived as:

[vle = PeoB - [V]E, (15)

where Pg_,p € R4*? is the change-of-basis matrix from E to B, defined as:
I T s

(16)

Proof Since v € V and E forms a basis for the vector space V, v can be written as a linear
combination of all basis vectors from E:

d
v=> ape;, (17)
=1

where a; € R are scalars. In this case, the coordinate of v with respect to E is:
[Vl = (al,ag,...,ad)—r € R%. (18)

Similarly, because B also forms a basis for V, we can express v as:

d
v = Z w;b;, (19)
1=1

where w; € R are scalars. The coordinate of v with respect to B is:

[v]g = (wl,wz,...,wd)T e R4 (20)
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Since each basis vector e; within E is also an element of the vector space V, it can also be written as
a linear combination of all basis vectors from B:

d
=> pjib;. 21)
j=1
Writing the equation above in matrix form, we obtain:
P11 P12 - Piud
[el ey - edl = bz ’ b2d [bl b2 bd‘| . (22)
Pd1 Pd2 - Pdd
Denoting the middle matrix as P and solving it, we get:
P11 P12 - Pid
N N A
P.= | 21 — |b;y by --- bg| . (23)
Pd1 Pd2 - DPdd

Next, let’s plug each e; into Eq. (T7) using the formulation of Eq. (ZI):

d d d
T 0 Zpﬂ =2 0 awi)b;. 24
=1 i=1

- j=1 i=1
Combining with Eq. (T9), we have:

d d d
Z U}jbj = Z(Z aipji)bj. (25)
j=1 j=1 i=1

Move everything to the left hand:

d d
> lw; — (O aipji)lb; = 0. (26)
Jj=1 =1

According to the claim, B = {by,ba, ..., by} is a basis of R®. Therefore, Eq. (26) holds if and
only if:

d
wj =Y aip; =0 forj=12....d. (27)
i=1
Equivalently, we have:
wl . pu P11 P12 Pud| rey
P 300 I B L 28)
Wd di par Paz - Paad L%

Using the coordinates expression defined in Eq. (I8) and Eq. (20) along with Eq. (23], we obtain the
following equation:

T s
b; by -+ by . 29)

vl =P -[vlg where P =

Finally, we complete the proof of the claim.

In our :MIND model, subject-object disentanglement is achieved through a basis transformation
described above, where the new basis B is treated as learnable parameters optimized by loss prop-
agation. We further enforce the orthonormality constraint on B, as this ensures that any subspace
spanned by a subset of B is orthogonal (complementary) to its counterparts in the original feature
space. Specifically, in our model, this constraint guarantees that the subject-specific neural space Fup;,
spanned by By, and the object-specific neural space Fop;, spanned by By, are complementary
and non-overlapping. Consequently, this orthogonal decomposition yields a perfect separation of
subject-specific and object-specific neural features within the latent neural representations.
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A.3 NSD dataset, Pre-processing, and Implementation
A.3.1 NSD Dataset

The Natural Scenes Dataset (NSD) [2] is a groundbreaking resource in cognitive neuroscience
and artificial intelligence, designed to capture extensive, high-resolution fMRI data during natural
scene perception. It includes whole-brain fMRI measurements of eight human participants at 7T
field strength, with a spatial resolution of 1.8 mm. Participants viewed a total of 70, 566 natural
scene images, with 10, 000 unique images per subject (9,000 unique to each participant and 1, 000
shared across all participants). Images were sourced from the richly annotated Microsoft COCO
dataset [23]], ensuring ecological relevance and diversity. The experiment was conducted over 30—40
sessions per participant, taking a rapid event-related design with continuous recognition tasks to
guarantee engagement and probe both short- and long-term memory processes. During neural
recording, participants were tasked with identifying objects in the image, with each visual stimulus
presented for only three seconds per trial. This design makes the NSD particularly well-suited for
investigating the mechanisms of rapid attention and visual recognition in human vision. Advanced
pre-processing completed by the authors, including denoising and voxel-specific hemodynamic
response modeling, yielded high-quality single-trial beta estimates with exceptional signal-to-noise
ratios. Complementing the functional data, NSD includes extensive anatomical scans, resting-state
data, and behavioral performance measures, enabling multi-faceted investigations of vision and
memory. This dataset, with its unparalleled scale and quality, serves as a valuable benchmark for
developing and testing machine learning models that aim to decode brain activity and simulate
neural representations of natural scenes. In addition, the NSD dataset supports multiple widely used
neuroimaging atlases to facilitate data analysis and integration with existing frameworks. Functional
data are provided in both native cortical surface space and standard volumetric spaces, including
fsaverage [[13l]] and MNI152 [31], enabling compatibility with tools like FreeSurfer [[12] and FMRIB
Software Library. Additionally, the dataset includes manually defined regions of interest (ROIs) for
retinotopic mapping and category-selective areas, such as the early visual cortex and higher-order
regions in the ventral visual stream, which is the atlas that we used in our :{MIND model. These
comprehensive atlases allow researchers to seamlessly apply NSD data to diverse analytic pipelines
and cross-study comparisons.

A.3.2 Preprocessing

Our preprocessing pipeline begins with splitting the dataset into training and testing sets. Due to
incomplete sessions and data availability constraints, not all trials are accessible for every subject,
resulting in a total of 213, 000 trials across all participants. Among these, neural recordings corre-
sponding to 1, 000 images viewed by all subjects are allocated to the testing set, comprising a total of
21, 118 test trials. The remaining neural recordings, corresponding to images viewed exclusively by
individual subjects, are included in the training set, resulting in 191, 882 training trials. Both training
and testing trials are standardized voxel-wise using the mean and standard deviation calculated from
the training set. Since each image is presented to a subject three times, we average the fMRI responses
across repetitions for each image within each subject. This results in 69, 566 training samples and
7,674 testing samples, allowing us to train and evaluate a single multi-subject model across all eight
subjects. For each sample, we use the nsdgeneral atlas provided by the NSD dataset to extract visual
voxel signals as a 1D vector. However, the number of visual voxels varies between subjects due to
anatomical differences, with the voxel length L, ranging from 12,682 to 17,907 across subjects.
To unify the input length, we apply a padding strategy inspired by Mind-Vis [5]], which conducts
wrap- -around padding. This approach avoids issues arising from truncation or constant padding to the
maximum voxel length. Additionally, since our fMRI encoder is based on a Vision Transformer (ViT),
which requires input lengths divisible by the user-defined patch size (64 in our model), we adjust
the uniform voxel length L accordingly. The final voxel length across subjects is set to L = 17,920,
ensuring compatibility with the model while maintaining consistency across participants.

A.3.3 Implementation Details

As described in Section [2]of the main paper, our proposed architecture is trained in two stages. The
first stage involves pre-training a ViT-based masked autoencoder, similar to SC-MBM [5], using a
self-supervised fMRI reconstruction task. In this stage, we choose a patch size of 64 voxels with
a masking ratio of 0.75. The encoder has a hidden dimension of 768 and consists of 12 layers
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Table 5: Generalizability to unseen subjects

ID | Trainedon  Testedon  mAP (%)
M7 subjO1-07  subjO1-07 7904
subj01-07 subj08 7842
subj01-08  subjol—07  .7842
M8 (Full) ‘ subj01-08  subj08  .7909

of 6-head self-attention, while the decoder has a hidden dimension of 512 and 8 layers of 8-head
self-attention. In the second stage, we discard the decoder and inherit only the encoder from the first
stage, which outputs pre-trained feature F € RV X4 with N = 280 and d = 768. We set the object
neural space dimension dg,; = 700 and choose a 4-head cross-attention module for fMRI-vision
feature interactions. The CLIP visual encoder we used is clip-vit-base-patch16 released by OpenAl,
which remains frozen at all stages of the proposed framework. A trade-off parameter A of 0.1 is set
by default to enforce the orthonormal constraint of the learnable basis B. A detailed investigation is
provided in Section [3.6] During this stage, all parameters are optimized end-to-end for subject and
object classification tasks. For either stage, we train the model for 100 epochs, including 10 warm-up
epochs. The learning rate is initialized at 7.5 x 10~* and terminated at zero adjusted dynamically by
a cosine scheduler. The batch size is set to 200. Optimization is performed via the AdamW optimizer
with a weight decay of 0.05. All experiments are conducted on two Nvidia RTX 6000 Ada GPUs,
with the first stage taking approximately 1.5 hours and the second stage around 2 hours to complete.

A.4 Subject Classification Baselines

To the best of our knowledge, no existing models support subject classification. To provide a
comprehensive evaluation, we established baseline models using the exact fMRI preprocessing
steps in Appendix and conducted both supervised and unsupervised biometric decoding.All
methods are trained and tested on identical data splits and fMRI voxel sets as iMIND, ensuring a fair
comparison on the same held-out unseen test set.

For supervised learning, we employ a single linear layer trained in two ways:

* Linear Regression: We minimize the mean squared error (MSE) between the input (padded fMRI
voxel signals) and the target (one-hot subject IDs), using the ordinary least squares closed-form
solution;

* Classification: We train an identical architecture with cross-entropy loss, treating subject identifica-
tion as a standard classification task.

For unsupervised learning, we evaluate K-Means clustering with two distance metrics:

¢ Euclidean (L2) distance;

* Cosine similarity.

Since the number of subjects is known (8), we set the number of clusters to 8 as well. To measure
performance, we compute accuracy and MCC by optimally aligning the learned clusters with ground-
truth subject IDs.

A.5 Subject Generalizability

For completeness, we conducted an additional experiment to assess subject generalizability within
NSD as shown in Table[5] In our original setup (denoted as M8), iMIND was trained on data from all
8 subjects. For this experiment, we introduced a variant (M7), where iMIND was trained using only
the first 7 subjects and tested on the held-out data of subj08. M7/MS8 achieved an overall mAP of
.7904/.7842 on the first 7 subjects and .7842/.7909 on subj08. These results demonstrate that our
proposed method exhibits a reasonable and strong generalizability in neural signal semantic decoding,
particularly for unseen subjects.
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A.6 Limitations

While our method achieves state-of-the-art performance in both semantic and biometric decoding
tasks, several limitations remain unresolved.

First, the current approach to neural feature extraction may not be optimal. Although functional,
the pretrained neural reconstruction stage produces fMRI reconstructions—both numerically and
visually—that underperform compared to the ground-truth voxel signals. This suggests that the
masked autoencoder (MAE) backbone may not be the most effective architecture for this task,
warranting further exploration.

Second, flattening voxel inputs discards crucial spatial relationships among neighboring voxels,
despite neuroscientific evidence that proximal voxels exhibit functional coupling in visual processing.
Future work could explore advanced architectures—such as 3D SwinTransformers, which are explicitly
designed for volumetric fMRI data and have demonstrated efficacy in neurological disease diagnosis—
to better preserve spatial hierarchies and improve feature learning.

Third, we acknowledge that the brain’s functional dynamics are fundamentally non-linear and com-
plex. Our assumption that subject-specific and object-specific components are linearly entangled at
the latent feature level is a simplifying inductive bias introduced to enable interpretable, computa-
tionally tractable disentanglement. We agree it fully captures the richness of brain representations;
rather, it serves as a first-order approximation that enables clear factorization of subject identity and
semantic content from fMRI signals. If the linearity assumption does not fully hold, we expect the
following potential implications:

* If subject-object interactions are fundamentally non-linear, the disentangled object repre-
sentation Z; may still retain residual subject-specific information, potentially introducing
subject bias in semantic decoding and diminishing our model’s generalizability for unseen
subjects.

» Conversely, enforcing strict linear disentanglement may suppress relevant non-linear object
features in Zp;, potentially smoothing out sharp voxel-object modulations or degrading
decoding performance for fine-grained categories.

Last, our analysis of visual mechanisms relies on post hoc interpretation methods (Grad-CAM
and Rollout), which provide only approximate explanations of model behavior. A more principled
approach would involve explainable-by-design architectures for fMRI feature extraction, which we
leave for future work.

A.7 Broader Impacts

Our work represents a pioneering step toward decoding the brain’s visual processing mechanisms,
with far-reaching implications for both neuroscience and artificial intelligence. By modeling how the
brain transforms visual signals into neural activity and high-level semantics, we aim to uncover the
fine-grained functional organization of visual regions—such as those specialized for distinguishing
closely related objects (e.g., dogs vs. cats).

This understanding could enable breakthroughs in brain-computer interfaces (BCls), where precise
neural decoding could restore or augment vision for impaired individuals. Conversely, it also raises
ethical considerations: the same principles could theoretically be used to manipulate neural signals,
artificially inducing semantic perceptions (e.g., generating "fake" visual concepts in the brain). Such
capabilities would necessitate rigorous ethical frameworks to prevent misuse while maximizing
societal benefit.

Further, our computational approach bridges Al and neuroscience, offering interpretable models
that could inspire more biologically plausible machine vision systems. By aligning artificial and
biological vision, we may accelerate progress in both fields—from improving AI’s robustness to
advancing treatments for neurological disorders.

A.8 Technical Details on Object-Voxel Visualization

In our experiments, we empirically investigate the relationship between brain activities and semantic
objects in visual stimuli. In this section, we detail how voxel contributions to object recognition are
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visualized in our framework. Given an input fMRI voxel signal V € R%, we obtain its object-specific
neural feature map Zy; € RN ¥dori pefore cross-attention module in our model. Using GradCAM
[37], we are able to build an activation map t € RY, which quantifies the contribution of each neural
token zqp; € R%» in object-specific neural feature map Zy; € RN Xdoti to the correct recognition of
the object of interest.

Unlike CNN-based models, which can simply resize ¢ to match the size of the input V because of
their spatial invariance nature (a one-to-one correspondence between input patches and latent feature
vectors), our ViT-based neural encoder in tMIND model lacks such spatial invariance properties by
default. For instance, the first neural token in Zp; does not necessarily correspond to the first voxel
patch of V, making direct resizing infeasible.

To address this, we leverage Attention Roll-out [[1] to approximate how information flows from the
input voxels V to the neural tokens in feature map Zy;. Specifically, this information flow in our
ViT-based encoder can be measured as follows:

Al = ADACD L AR AD), (30)

where A(F) ¢ RNV*N represents the attention weights in the k-th self attention layer of the ViT
encoder. Based on the mathematical property of the self-attention mechanism, the element a;; of the
attention weights A at every transformer block defines how much attention flows from the token j in
the previous layer to the token i in the next layer. Therefore, each element a! ; within A! defined in
Eq. @ quantifies the degree of information flow from the j-th voxel patch of input fMRI signal
V € R” to the ¢—th token in the feature map Zgp;.

Next, we combine the GradCAM-based token contributions t € R with the cumulative information
flow A! to derive the voxel-level activation measurement T

T=t-A' eRV. (31)

Here, T measures the contribution of each voxel path immediately after embedding the original
1D voxel signal V of length L into IV patches. Since T is now positionally aligned with the input
voxel patches, it can be safely upsampled from size NV to L to obtain a voxel-level activation map
for each fMRI sample. Unfortunately, this upsampled activation map is partially synthetic because
wrap-around padding was applied during preprocessing to achieve a uniform, model-compatible
voxel length L across subjects. This padding introduces artificial “fake” voxels. The advantage of the
wrap-around padding strategy is that it allows us to trace the origins of these fake voxels. To restore
the true voxel activation map, we retain the activations of the real voxels, while for the fake voxels,
we trace their origins and assign their values as the maximum of the original and artificial activations.
This approach ensures that the restored activation map accurately represents the contributions of real
voxels while mitigating the impact of synthetic padding.

Finally, this process is repeated across all samples containing the object of interest, enabling us to
investigate voxel semantic selectivity, as illustrated in Figure [3] of the main paper. To achieve the 3D
activation like Figure[d]in the main paper, we can just map each flattened voxel back to 3D brain space
using the provided nsdgeneral atlas. This methodology allows us to map neural activations back to
their voxel-level origins, providing insights into the relationship between neural representations and
object recognition.

A9 Technical Details on Figure [6]

We first computed the pixel occupation ratio for all training images containing the object chair. This
ratio was derived by dividing the number of chair pixels (using MS-COCO annotations for masking)
by the total image resolution. Since the raw pixel ratios exhibited a highly skewed distribution, we
applied a log transformation to approximate a normal-like distribution as shown in Figure[A.9]

Next, we calculated the mean p and standard deviation o of the log-transformed ratios. To partition
the chairs into size-based categories, we defined three intervals:

* Small chairs: (—oo, u — 0.50)
* Medium chairs: (@ — 0.50, 4 + 0.50)
e Large chairs: (1 + 0.50,0)
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Figure 8: Chair pixel ratio distribution in training set

Finally, for each subject, we generated a boxplot of the predicted probabilities for the chair class,
stratified by these size groups.

A.10 Technical Details on Figure[7]

To analyze differences in subjects’ sensitivity to the object cup, we first computed the pixel occupation
ratio for all training images containing cup and calculated the baseline MCC subject by subject as
the pre-adjusted sensitivity measure. Since each subject viewed distinct images during training, we
accounted for distribution shifts in both the size and frequency of cup appearances across subjects.
To ensure a fair comparison, we adjusted the MCC by normalizing it with the subject-wise average
pixel ratio. The resulting weighted MCC is visualized in Figure[7]

A.11 More Analytical and Visual Results
A.11.1 Voxel Sensitivity

To examine voxel sensitivities, we analyzed the mean (x-axis) and standard deviation (y-axis) of
voxel activations across five brain ROIS for objects bench and chair, as presented in Figure[ATT.1]
The results indicate a quadratic relationship in voxel sensitivity across these regions, allowing us
to classify voxels into three distinct groups based on their mean activation and variability (standard
deviation). Each group reflects a unique role in semantic decoding within visual regions:

» Bystanders — This group, characterized by the lowest mean and standard deviation, consists of
voxels that consistently contribute minimal information to the semantic decoding of visual stimuli.
These voxels are either not responsible for distinguishing specific objects (bench and chair) or
likely located in regions less involved in object discrimination, and instead providing generalized
but stable responses across diverse stimuli.

* Discriminators — This higher mean and the highest standard deviation group includes voxels that
show selective, highly variable responses, playing a key role in differentiating between features and
supporting object-specific sensitivity. These voxels likely drive the flexibility needed for nuanced
and accurate decoding of semantic information in visual stimuli.

* Supporters — The highest mean, low standard deviation voxels, characterized by strong, consistent
activation, likely represent core object features and provide a stable foundation for robust and
invariant decoding across subjects. They likely provide stable, foundational support for correctly
classifying objects across different conditions.

These findings suggest that voxel sensitivity patterns vary across the visual hierarchy, with each group
contributing distinct vision information-processing roles in object recognition in the brain.

A.11.2 Single-subject 1D Activation Pattern

Similar to Figure [3]in the main paper, we provide more visualization results on 1D Object-Voxel
activation below:
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Figure 13: 1D Object-Voxel activations by brain vision ROIs for subjO4.
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Figure 14: 1D Object-Voxel activations by brain vision ROIs for subj05.
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Figure 15: 1D Object-Voxel activations by brain vision ROIs for subj06.
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Figure 16: 1D Object-Voxel activations by brain vision ROIs for subj07.
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Figure 17: 1D Object-Voxel activations by brain vision ROIs for subj08.




A.11.3 Cross-subject 3D Activation Pattern

Similar to Figure [ in the main paper, we provide more visualization results on 3D Object-Voxel

activation below:
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Figure 18: 3D Object-Voxel activations of person, bicycle, car, and motorcycle for subj01, subjO3,
subj04, and subj05.
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Figure 19: 3D Object-Voxel activations of airplane, train, truck, and boat for subj01, subj03, subj04,

and subj05.
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Figure 20: 3D Object-Voxel activations of boat, traffic light, fire hydrant, and stop sign for subjO1,
subj03, subj04, and subj05.

bench

bird

subjo1

R

ki

B

subj03

X

¥%

subjod

w&

¥

%€

subjos

g%

¥

8%

B

Figure 21: 3D Object-Voxel activations of bench, bird, cat, and dog for subj01, subjO3, subjo4, and

subj05.
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Figure 22: Variations in subjects’ attention to different objects. Four objects: person, cup, chair, and
dining table are selected for visualization.

A.11.4 Variations in Subject Attention

Similar to Figure 4 in the main paper, we provide more visualization results on variations in subjects’
attention to different objects in the same image. The leftmost image shows the visual stimulus. Plots
in the second column represent the shared attention across all subjects, and the remaining eight
columns show the residual, subject-specific attention alongside predicted probabilities to compare
recognition confidence and priority.
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Figure 23: Variations in subjects’ attention to different objects. Four objects: cup, fork, knife, and
dining table are selected for visualization.
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Figure 24: Variations in subjects’ attention to different objects. Three objects: person, car,
are selected for visualization.
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Figure 25: Variations in subjects’ attention to different objects. Three objects: person, sports ball,
and tennis racket are selected for visualization.
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