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ABSTRACT

Large Language Models (LLMs) are known to memorize portions of their train-
ing data, sometimes reproducing content verbatim when prompted appropriately.
Existing memorization research rarely explores how training data influences mem-
orization and often limits the experimental setup to a binarized memorization
vs non-memorization catagory. In this work, we investigate a fundamental yet
under-explored question in the domain of memorization: How to quantitatively
characterize memorization difficulty using intrinsic properties of training data in
LLMs? Inspired by early studies using compression algorithms to filter out simple
memorization cases, we explore the link between training data compressibility
and memorization. Through experiments on a wide range of open models without
various setups, we present the Entropy–Memorization Law. It suggests that at
the set-level, data entropy (estimator) is linearly correlated with memorization
score. We also further investigate EM Law with several dimensions: visualizing
vocabulary size as an implicit factor, and applying the law to data with disparate
semantics.

1 INTRODUCTION

Large Language Models (LLMs) demonstrate remarkable performance in capturing linguistic patterns
and generating coherent text (Vaswani et al., 2017; Radford et al., 2019). It is sweeping across
every domain in natural language processing. Alongside dominating performance through various
benchmarks, a critical phenomenon has emerged: LLMs are shown to memorize and reproduce
verbatim sequences from their training corpora (Carlini et al., 2019; 2020). This memorization
behavior has raised growing concerns, particularly in terms of privacy leakage and intellectual
property protection. For example, studies have shown that LLMs can inadvertently generate personally
identifiable information (PII) (Carlini et al., 2020), or proprietary data from books (USAuthorsGuild,
2023; LLMLitigation, 2023) and news articles (Michael, 2023). Most recently, Anthropic reached a
USD 1.5 billion settlement with authors over the unauthorized use of copyrighted books, underscoring
the growing legal risks surrounding LLM training data (The New York Times, 2025).

As scaling laws (Kaplan et al., 2020) drive LLM developers to expand model capacity and training data
for performance improvements, research (Wang et al., 2025; Ippolito et al., 2023) has demonstrated
that memorization scales with model size. Broader data exposure in LLM training elevates the risk of
leakage for all internet-sourced content. Furthermore, memorization is shown to be necessary for
generalization (Feldman & Zhang, 2020) Therefore, advancing the theoretical understanding of the
factors that shape memorization has become a crucial and urgent issue in LLM development. Factors
can be categorized into three types: model training paradigms, test-time compute (i.e. prompting
strategies), and training data. However, existing literature is limited in two aspects:

First, previous memorization studies mainly focus on prompting strategy (Carlini et al., 2020;
Schwarzschild et al., 2024), and training paradigm (Chu et al., 2025). The role of training data
in memorization is under-explored. Regarding this topic, the existing research limits the scope to
duplicated data, where researchers find out that data duplication significantly increases memoriza-
tion (Kandpal et al., 2022; Biderman et al., 2023b). There is a lack of systematic investigation on
how intrinsic properties of training data affect memorization. We argue that as the core of data-driven
Machine Learning methods, training data should be explored in depth.

Second, most existing memorization explorations are limited to qualitative studies. Most research
work typically regards memorization within a binary framework Carlini et al. (2020); Zhang et al.
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(2023); Prashanth et al. (2025); Schwarzschild et al. (2024). The only well-known quantitative study
is by Carlini et al. (2023), where researchers reveal three log-linear relationships on three properties:
model scale, data duplication, and context length. However, these properties are not intrinsic to
training data.

Concerning the above limitations, this paper addresses an open and under-explored question: How
to characterize memorization difficulty of training data in LLMs quantitatively?. This paper
formulates memorization difficulty using an integer-valued memorization score. With a proper
definition of memorization score, this paper then seeks metrics directly related to training data that
approximate the memorization score. In this way, we quantitatively explore the relationship between
memorization score and training data.

Specifically, this work explores the possibility of adopting compressibility of training data as our
proxy. Such a choice is inspired by early memorization work Carlini et al. (2020), where researchers
use text compressors to filter out “simple” memorization cases, e.g., counting from 1 to 100. From
another perspective, the community may implicitly assume that highly compressible text corresponds
to lower memorization difficulty, but it is not examined formally and rigorously. On the other hand,
entropy is closely related to compressibility. The source coding theorem (Shannon, 2001) states
that the entropy of a distribution provides the fundamental lower bound on the average code length
achievable for samples drawn from that distribution.

In this paper, inspired by the above facts, we apply two metrics related to compressibility: zlib
compression (Deutsch & Gailly, 1996; Carlini et al., 2020) and entropy (estimators). We consider
metrics adopted at two levels: instance-level and set-level. We empirically show that the set-level
entropy estimator approximates the memorization score well. Measuring fitness by linear regression,
we achieve r > 0.9 across a wide range of popular LLMs. We dub this core finding of the study as
Entropy–Memorization Law. It suggests that higher entropy correlates with a higher memorization
score in LLMs.

Our entropy estimator enjoys twofold benefits: 1) the metric gives a quantitative description of
memorization. The quantitative metric advances beyond the traditional binary setting of memorization
with qualitative empirical observations. A quantitative metric facilitates the assessment of privacy
risks for LLM providers. 2) the metric is model-agnostic. A model-agnostic is compute-efficient. It
does not require back propagation with a large number of model weight. In contrast, model-aware
approaches, like influence functions (Koh & Liang, 2017; Feldman & Zhang, 2020) typically require
hessian computation or even re-training, which is not affordable on LLMs.

EM Law is empirically validated on a wide range of pre-trained models, including the OLMo
family (Groeneveld et al., 2024), OpenLlama (Geng & Liu, 2023), and Pythia (Biderman et al.,
2023b). We also explore EM Law in various experimental setups, including continuation length,
inference sampling strategy.

We conduct thorough investigations into EM Law under several dimensions. First, we consider an
implicit factor that shapes EM Law: the support set over which entropy is defined. We identify that
lower memorization-score data comprises exponentially-linear fewer unique tokens, and achieves
linearly higher entropy values given the support size.Second, we discuss EM Law under data with
different semantics, and it turns out that the slope and intercept of the resulting regressed line exhibit
a significant difference under different semantic data.

2 EXPERIMENTAL SETUP

Threat Model This paper assumes a hypothetical engineer who studies the characterization of
training data on an LLM. Therefore, it is necessary for the engineer to have full access to the LLM
and its training data. This engineer freezes other potential confounders to the memorization score,
including prompt strategy, and training paradigm.

This paper studies pre-trained-only LLM, (i.e. “base” version of LLMs), since post-training may
involve different model training paradigms, bringing uncontrollable noises to our experiments.

Choices of LLM and Training Corpus We select three state-of-the-art open-data LLMs: OpenL-
lama (Geng & Liu, 2023),
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We selected four family of pre-trained only LLMs: (1) OLMo (Groeneveld et al., 2024) pre-trained on
Dolma (Soldaini et al., 2024) dataset, and (2) OLMo-2 (OLMo et al., 2024) pre-trained on OLMo-2-
1124-Mix (OLMo et al., 2024) dataset; (3) OpenLlama (Geng & Liu, 2023) pre-trained on Redpajama
(Computer, 2023); (4) Pythia (Biderman et al., 2023b) pre-trained on the Pile (Gao et al., 2020).

Prompting Strategies In this study, we consider a Discoverable Memorization (DM) scenario (Nasr
et al., 2025; Carlini et al., 2023; Kandpal et al., 2022; Ippolito et al., 2023). Formally, DM denotes the
following: we sample N token sequences from the training dataset. Each sequence is partitioned into
(p, s), where p (first |p| tokens) serves as the prompt and s (remaining tokens) serves as the answer
for model θ. Afterwards, LLM θ generates response r = θ(p). The memorization score measures the
difference between two sequences r and s. By default, we set |p| = 100 and |s| = |r| = 50, following
the popular setup in the community (Al-Kaswan et al., 2023). However variants of continuation
length will be discussed in Section 5. We defer the detailed statistics of the sampled datasets to
Appendix A.

The token sequence sampling strategy is as follows: we repeatedly randomly sample a sequence
(length > |p+ s|) from the dataset until the number reaches the required number.

Filtering Trivial Memorization We exclude trivial memorization cases that fall outside the scope
of our interest: the LLM response r may exhibit highly lexical overlap with the prompt p. For
instance, LLM may copy a long URL from the prompt as the response. Although such a response
may match the answer, however, such a match should be attributed to the prompt, instead of the
memorization capacity of LLM. To conduct filtering, we design a Longest Common Subsequence
(LCS)-based filtering method. We establish a thresholding strategy based on LCS: samples for
which LCS(p, s) ≥ |s|

2 are excluded from further memorization analysis, while samples below the
threshold are retained.

Memorization Score A binary classification does not provide quantitative description on memo-
rization. We therefore need a memorization score d(r, s), measuring the differences between response
r and answer s at the token level. Following previous memorization work (Dong et al., 2024), we
uses edit distance (Levenshtein et al., 1966), defined by the minimal number of single-token edit
operations – insertions, deletions, and substitutions – required to transform one sequence into another.
A higher memorization score indicates lower similarity between two sequences.

Depending on the notions of memorization, other memorization scores are adopted in the community.
The traditional one is exact match (Carlini et al., 2023; Tirumala et al., 2022; Carlini et al., 2019;
2020), is a binary decision, which is limited. Another line of research uses semantic similarity,
measuring the similarities based on sentence embeddings generated by LMs (Reimers & Gurevych,
2019; Chen et al., 2024). However, memorization at the semantic level could be subjective. Therefore,
Levenshtein distance is a good fit as a memorization score in our study.

To summarize, the research question in this paper is formulated as follows:

Assumption. A fixed pre-trained LLM θ, a fixed prompting strategy DM to generate p, and
a memorization score d(r, s) = d(θ(p), s).
Goal of the study. Find an approximator function M(s) of memorization score d(r, s).

3 THE FIRST ATTEMPT: INSTANCE-LEVEL COMPRESSIBILITY

How to characterize training data s? Inspired by the history of using compression algorithms to
filter out simple memorization cases, we explore the link between training data compressbility and
memorization. We suspect that higher compression rate answers exhibit greater randomness, and
may be harder to be memorized.

Regarding compressibility, we employ two metrics: zlib compression ratio, and an estimated en-
tropy 1 (Deutsch & Gailly, 1996) based on empirical point probabilities (Carlton, 1969).

1We assume a base-2 logarithm for all entropy calculations throughout the work.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Two metrics correspond to two types of lossless coding algorithms in information theory: coding
schemes for sources with memory and without memory, i.e., memoryless.

Both metrics are instance-wise, i.e., calculated per sequence. Here are the formal notations to describe
the calculation. An instance si = (s1i , s

2
i , ..., s

|si|
i ) is a sequence, where sji is a token. All tokens

within si form the sample space Ti. Then for each token x ∈ Ti, the empirical point probabilities
p̂i(x) are calculated as:

p̂i(x) =
1

|s|

∣∣∣{j | sji = x}
∣∣∣ . (1)

p̂i(x) is the relative frequency of x in the observed sequence. In this attempt, we use entropy estimated
by the empirical point probabilities as our approximator M(si):

M(si) ≜ −
∑
x∈Ti

p̂i(x) log p̂i(x) (2)

In practice, the distribution for language is unknown. we instead learn from samples. The above
estimator approximates entropy by viewing the point probability as samples from the empirical
distribution itself.

With the established M(si), we are interested in whether M(si) is a good approximator of the
memorization score d(ri, si). To achieve this, we gather all (M(si), d(ri, si)) pairs obtained by
empirical observations in a scatter plot, and further study their correlation. The detailed algorithm is
as follows:

Algorithm 1: Instance-wise entropy estimator.
Input: LLM θ, and its training corpus D
Output: Plot of (d(ri, si),M(si))

1 Sample N prompt-answer pairs{(pi, si)} from D;
2 for i← 0 to N − 1 do
3 ri ← θ(pi);
4 p̂i ← EmpProb(r, s)// Eq. 1
5 M(si)←

−
∑

x∈Ti
p̂i(x) log p̂i(x)// Eq. 2

6 d(ri, si)← dlev(ri, si)
7 Plot (d(ri, si),M(si));
8 end Figure 1: Memorization score v.s. entropy

estimator observed on OLMo-1B.

We run algorithm 1 on the OLMo-1B model, and obtain the scatter plot as illustrated in Fig. 1. A
linear regression based on ordinary least squares is conducted on the plot.

The regression analysis suggests a positive linear relationship between Levenshtein Distance-based
memorization score and our approximator. However, the observed pattern is very noisy, as demon-
strated by the weak Pearson correlation r = 0.581. Zlib is also shown to fit poorly, where we defer
the details to Appendix B.1.

We regard the failure of our first attempt as due to the limitation of sample space. In our experimental
setup, an LLM generates up to |si| = 50 tokens. Hence, the sample space size |Ti| is upper bounded
by 50 in ideal cases. This space is orders of magnitude smaller than the full token space. In reality,
the full token space is defined by the tokenizer vocabulary, and the vocabulary size of the OLMo-1B
tokenizer is about 50k. Therefore, our entropy estimation is too noisy to reflect the real-world
scenarios. Our second attempt addresses the limitation and will be discussed in the next section.

Summary. Both zlib and the entropy estimate fail to fit memorization score at instance-level,
since sample space is orders of magnitude smaller than the full token space.

4
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4 THE SECOND ATTEMPT: SET-LEVEL COMPRESSIBILITY

For the entropy estimator, we regard that our first attempt’s failure is attributed to insufficient sample
space for entropy estimation. The second attempt addresses this by substantially expanding the
sample space. We observe that in the first attempt (Fig. 1), for a fixed memorization score, we
constructed more than one (even thousands of) estimates. Then an intuitive idea is to aggregate these
estimates to a new robust estimate. Specifically, we expand the sample space from tokens with one
instance, to all the instances with the same memorization score. The idea is the same as building
“level-sets” of memorization score. Mathematically, for a fixed memorization score e, the new sample
space

Te =
⋃{

sji | d(ri, si) = e, i ∈ {0, · · · , N − 1}, j ∈ {0, · · · , |s| − 1}
}
. (3)

Then the empirical probabilities p̂e(x) are calculated within new sample space Te:

p̂e(x) =
1

N |s|

∣∣∣{(i, j) | sji = x, d(ri, si) = e}
∣∣∣ . (4)

Algorithm 2: Level-set-wise entropy estimator.
Input: LLM θ, and its training corpus D
Output: Plot of (e,M(se))

1 Sample N prompt-answer pairs{(pi, si)} from D;
2 for i← 0 to N − 1 do
3 ri ← θ(pi);
4 d(ri, si)← dlev(ri, si)
5 end
6 for e← 0 to |s| − 1 do
7 p̂e ← NewEmpProb(r, s) // Eq. 4
8 M(se)← −

∑
x∈Te

p̂e(x) log p̂e(x);
9 Plot (e,M(se)).

10 end

The new empirical probabilities benefit
from a larger sample space. Similar to
Eq. 2, we then use new empirical probabili-
ties to derive a new level-set-based entropy
estimate to approximate the memorization
score e.

M(se) ≜ −
∑
x∈Te

p̂e(x) log p̂e(x) (5)

The modified algorithm is as shown in
Alg. 2. It turns out that the level-set-based
entropy estimator is shown to be a good
approximator of memorization score, as
demonstrated in Figure 2 below.
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(b) Level-set-based Entropy Estimator.

Figure 2: Comparison of set-level compressibility metrics on OLMo-2-1124-7B.

At set-level, entropy estimator outperforms zlib compression rate on memorization score
approximation.

5 ENTROPY–MEMORIZATION LAW

We run algorithm 2 on an extensive range of open-dataset LLMs, present the empirical results in
Fig. 3. We observe very strong linear empirical results (r = 0.972 and 0.945 respectively) on both
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plots. It indicates that the level-set-based entropy estimator is an effective linear approximation
of memorization score. We name this discovery as Entropy-Memorization Law. Additional results
are available in Appendix B.3.
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Figure 3: Entropy–Memorization Law on open-dataset LLMs.

Entropy–Memorization Law is preseved under varying continuation lengths We explores
different continuation token lengths, including {10, 20, 30, 40, 50}. As a demonstration, we use
OLMo-2-1124-7B and its training dataset OLMo-2-1124-Mix in this experiment. Note that we
rescaled the memorization score to the range [0, 1] in the plot for better presentations.
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Figure 4: Entropy–Memorization Law under varying genera-
tion token lengths.

Figures 4 present the experimental
result when generation token length
varies. The Pearson correlation coef-
ficients (r) remain very high (ranging
from 0.92 to 0.98) across all settings,
indicating robust fitness under varying
token lengths. Although regression
lines have different slopes and inter-
cepts, the y-value reaches about 11
when the memorization score e = 50.
Besides, M(s50) ≈ 11.

Another observation is that there is
a monotonic increase in the intercept
values of the fitted regression lines as
the generation token length increases.
This matches our expectations derived
from information theory. Denote the
vocabulary size as |V |, n-sequence has |V |n potential outcomes; hence when n gets larger, the
maximum entropy of n-sequence increases.

In appendix B.2, we also explore various LLM inference sampling strategy, including temperature,
top-p and and top-k sampling.

5.1 NORMALIZED ENTROPY–MEMORIZATION LAW

In our framework, entropy is determined by two key factors: (1) the cardinality of the possible
outcomes (sample space size), and (2) the distribution of empirical probabilities across these outcomes.
Mathematically, given n possible outcomes, the entropy of a discrete random variable (r.v.) is upper
bounded by−

∑n
i=1

1
n log 1

n = log n. The upper bound is achieved when r.v. is uniformly distributed.
Hence, a two-outcome r.v. has maximum entropy log 2 = 1 bit, while a three-outcome r.v. yields
maximum log 3 bit entropy. Then, we are interested in the roles of these two factors in entropy
calculation.
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For each memorization score, we report the sample space size formed in Fig. 5. The statistics are
calculated following the same experimental setup on OLMo-2-1124-7B. Specifically, we depict
(e, Te) pairs using green cross sign ×. The experimental result indicates that the sample space, or
unique token count, grows exponentially as memorization score increases. Remarkably, while the
full dataset contains tens of millions of tokens, perfect memorization (score=0) occurs within merely
28 unique tokens.
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Figure 5: Memorization score v.s. Nor-
malized entropy on OLMo-2-1124-7B. Note:
“unique token count” scale is exponential.

After obtaining the sample space size, we examine
how empirical probabilities are distributed in the
space. It is characterized by normalized entropy:

M(se) ≜
M(se)

Hmax,e
=

M(se)

log |Te|
, (6)

where M(se) normalizes the entropy estimate M(se)
by its theoretical maximum Hmax,e. Values approach-
ing 1 indicate a near-uniform distribution over the
token set Te, while lower values suggest greater non-
uniformity.

Following the same setup on OLMo-2-1124-7B, we
plot (e,M(se)) using blue dots on Figure 5 to ob-
serve how the normalized entropy estimator changes
with the memorization score. Interestingly, we ob-
serve a linear trend that normalized entropy decreases
as the memorization score increases. In appendix B.4,
we discuss the pattern with different sequence length.

Summary. Lower memorization-score data comprises exponentially-linear fewer unique
tokens, and achieves linearly higher entropy values given the support size.

5.2 ENTROPY-MEMORIZATION LAW IS ROBUST UNDER DISPARATE SEMANTIC DATA

We employed a semantic-agonistic strategy to sample the dataset in the main body. This section then
explores Entropy–Memorization Law under different semantic data. We chunk the sampled dataset
into k = 16 semantic clusters, develop a strategy to find the semantics of each cluster, and then
examine EM Law under these disparate semantic data. This experiment was based on the OLMo-1B
model using 240,000 sample pieces.

Semantic Clustering Pipeline The specific steps are as follows:

1. Extracting semantics of token sequences using sentence embeddings. In this step, sentence
embeddings projects a token sequence to a high-dimensional vector space, where seman-
tically similar sequences are mapped to nearby points. Such embedding techniques are
implemented by a twisted verison of pre-trained LLM.

2. Clustering. With semantic embeddings, we apply K-Means (Lloyd, 1982) in the latent space
and partition the data into k = 16 semantic clusters.

3. Identifying semantics of the cluster. Since the clustering methods are performed in a latent
space which is not interpretable, we develop an highly-automated pipeline to identify the
semantics of each cluster. The core algorithm is differential clustering (Zhang et al., 2025).

4. Run Algorithm 2 on 16 partitions of the dataset. For each cluster, a linear regression is
applied. We report the Pearson correlation coefficient, slope, and intercept and visualize the
fitted lines.

To implement step 1, we select a popular model all-mpnet-base-v2 (huggingface, 2025) from Sentence
Transformers in Huggingface as the encoder. In Appendix C, we present how we implement step 3 in
the pipeline, and provide detailed clustering results with labeled semantics.
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Cluster r Slope Intercept

01 – Scientific Research and Technology 0.82 0.04 7.86

02 – Address and Organizational Identifiers 0.86 0.05 4.95

03 – Religious and Biblical Text 0.91 0.05 6.56

04 – Community Engagement and Activities 0.88 0.03 8.73

05 – Social Development and Policy 0.88 0.06 7.27

06 – Software Development Configuration 0.91 0.06 6.30

07 – Spiritual and Religious Beliefs 0.91 0.05 6.87

08 – Health Risks and Medical Studies 0.89 0.08 5.77

09 – Economic Indicators and Growth 0.86 0.08 6.23

10 – Evolutionary Biology and History 0.86 0.03 8.45

11 – Fantasy Narrative (Harry Potter) 0.83 0.05 7.25

12 – Personal Experiences and Emotions 0.89 0.05 7.22

13 – Linguistic and Semantic Analysis 0.82 0.04 8.42

14 – Genetic and Biomedical Research 0.75 0.05 7.39

15 – Programming Command Scripts 0.87 0.02 8.93

16 – Political Events and Commentary 0.89 0.05 7.53

Figure 6: Clustering sentence embeddings using OLMo-1B pre-training dataset. We apply T-
SNE (van der Maaten & Hinton, 2008) for dimension reduction.

Experimental Results Figure 6 presents overall results. It is verified that Entropy-Memorization
Law is observed among all clusters of data.

Moreover, another interesting finding is that, in general, different clusters exhibit distinctive intercept
and slope values. For example, cluster 1 (Address and Organizational Identifiers) exhibits low
intercept, while cluster 3 (Community Engagement and Activities) and 14 (Programming) exhibit
high intercepts.

We confirm that Entropy-Memorization Law is robust under disparate semantic data clusters.
Moreover, intercepts and slopes are different for different semantic data.

6 RELATED WORK

6.1 FACTORS SHAPING MEMORIZATION

Since the discovery of the memorization phenomenon in the late 2010s (Zhang et al., 2017; Carlini
et al., 2019; 2020; Feldman, 2020), the AI Security and Privacy research community has maintained
a strong interest in the phenomenon and its implications. The following paragraphs examine how
memorization in language models is influenced by key factors, including training data, model
paradigm, and prompting strategy.

Data shapes memorization. Several literature suggests that (Kandpal et al., 2022; Biderman et al.,
2023b) duplicated data significantly increases memorization. Larger models trained on bigger datasets
show increased memorization (Biderman et al., 2023a;b). Other studies (Tirumala et al., 2022; Wang
et al., 2025) investigate how memorization manifests across data with varying semantics and sources.

Model Paradigm shapes memorization. Beyond pre-trained language models, recent work has
explored memorization in post-training stages. Chu et al. (2025) demonstrate that supervised fine-
tuned (SFT) LLMs exhibit stronger memorization tendencies than those trained with reinforcement
learning (RL). Additionally, Nasr et al. (2025) reveal that safety-aligned models still retain memorized
data.

Prompting Strategy shapes memorization. Researchers employ three main types of prompting
strategies for language models, categorized by threat models. A significant body of work relies on
manual efforts or template-based approaches to generate prompts at scale, as seen in Carlini et al.
(2019; 2020); Kim et al. (2023). Studies such as Carlini et al. (2020); Kandpal et al. (2022); McCoy
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et al. (2021) demonstrate that longer prompts substantially increase the likelihood of reproducing
memorized training data sequences. Another line of research constructs prompts directly from existing
data sources, such as training corpora or web data (Nasr et al., 2025; Carlini et al., 2023; Kandpal et al.,
2022; Ippolito et al., 2023; Aerni et al., 2025). Recent advances involve more sophisticated strategies
that leverage synergies between LLMs and training data. For instance, Zhang et al. (2023) quantify
how a model’s performance on an example x depends on whether x was included in the training data.
Additionally, Schwarzschild et al. (2024) adapts GCG (Zou et al., 2023)—a prompt optimization tool
originally designed for adversarial attacks—to generate effective extraction prompts.

7 LIMITATIONS AND BROADER IMPACTS

7.1 LIMITATIONS

Empirical experiments. Our work adopts a single set of prompting strategy (DM) and memorization
score (edit distance) in our memorization experiments. Although the setup is commonly used by other
studies, other combinations exist. We would like to explore adversarial compression (Schwarzschild
et al., 2024), and non-adversarial reproduction (Aerni et al., 2025) in our future work.

Memorization score prediction. Due to limitation of sample space as discussed in Section 3, our
strategy does not enable memorization score prediction at the instance level.

7.2 IMPLICATIONS AND SOCIETAL IMPACT

EM Law facilitates the theoretical understanding of factors in LLM memorization. For trainers of
LLMs, our work contributes a guideline in model audition: lower entropy data is at higher risk of
leakage. LLMs trainers can pre-screen training datasets to assess memorization risk.

Besides, by applying Entropy-Memorization Law on test data, it is observed that the plot behaves
very differently from training dataset. we discover a simple strategy for the Dataset Inference (DI)
task. DI aims to tell the membership (1 for training data, and 0 for testing data) at dataset-level. We
defer the details to Appendix D.

To the best of the authors’ knowledge, this research does not introduce any additional negative societal
impacts.

8 CONCLUSIONS

This paper presents Entropy-Memorization Law: a level-set-based entropy estimator of training data
chunks linearly approximate edit-distance-based memorization score. Further investigation indicates
that in EM Law is robust under different sequence length, sampling strategies, and data clusters with
different semantics. By examining vocabulary size, it is revealed that lower memorization-score data
comprises exponentially-linear fewer unique tokens, and achieves linearly higher entropy values
given the support size.

For future work, we plan to explore why the proposed level-set-based entropy estimator fits memo-
rization score so well. Potential theoretical tools include the long-tail theory by Feldman and other
researchers (Feldman, 2020; Feldman & Zhang, 2020), and multi-calibration in LLMs (Detommaso
et al., 2024). Such efforts may also shed light on interpreting slope and intercept resulting from the
EM Law.

REPRODUCIBILITY STATEMENT

This paper uses existing open-research LLMs and their corresponding training datasets. All model
weights, training datasets are accessible through web hosting services. The detailed process on data
preparation has been included in Section 2. For algorithms adopted in this paper, zlib is free to access
online; and we have provide enough details for the level-set-based entropy estimator.

After the submission is accepted, we will release related code to the research community.
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A DETAILS ON EXPERIMENTAL SETUP

A.1 COMPOSITION OF SAMPLED DATASET

We constructed datasets with sizes 240,000 and 300,000, respectively, for Dolma and OLMo-2-1124-
Mix. Table 1 and 2 presents the composition of sampled datasets after LCS filtering.

B EXTENDED RESULTS ON ENTROPY-MEMORIZATION LAW

B.1 INSTANCE-LEVEL COMPRESSIBILITY

Figure 7 presents the result of instance-level zlib compression ratio. It fails to fit memorization score.

B.2 ADDITIONAL RESULTS WITH VARIOUS SAMPLING STRATEGY OF LLMS

In the main body of the paper, we assume a fixed temperature of 0.8. In this subsection, we adopt
different sampling strategies of LLMs and discuss how these strategies might shape EM Law. Due to
computation constraints, we conduct our experiments on a subset “DCLM1” with OLMo-2-1124-7B.
The size of the subset is around 28,000.

13

http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://openreview.net/forum?id=IQxBDLmVpT
https://openreview.net/forum?id=sKYHBTAxVa
https://openreview.net/forum?id=sKYHBTAxVa
https://openreview.net/forum?id=Sy8gdB9xx
https://proceedings.neurips.cc/paper_files/paper/2023/file/7bc4f74e35bcfe8cfe43b0a860786d6a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7bc4f74e35bcfe8cfe43b0a860786d6a-Paper-Conference.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 1: Source Counts of Dolma

Source Dataset Count
pes2o 39,777

cc 39,743
books 39,598
reddit 39,373
stack 38,865
wiki 23,115
Total 219,186

Table 2: Source Counts of OLMo-2-1124-Mix

Dataset Count
algebraic-stack 797
arxiv 1,464
dclm1 28,130
dclm2 27,984
dclm3 28,014
dclm4 28,163
dclm5 28,049
dclm6 28,065
dclm7 28,060
dclm8 28,091
dclm9 28,040
dclm10 28,032
open-web-math 499
pes2o 4,364
starcoder 5,280
wiki 276
Total 293,308
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Figure 7: Instance-level zlib compression rate v.s. memorization score on Olmo-1B

We consider combinations of temperature, top-k sampling, and nucleus sampling (top-p). The
experimental results are summarized in Tab. 3, and details are shown in Fig. 8 - 13. Under all
sampling strategies we have explored, we empirically observe that EM Law holds with r > 0.92.
Beyond that, we made a few observations here:

• The zero-distance point (0,M(s0)) exhibits a significant deviation from the regression line
in both plots.

• Intercept and slope are dependent if we fix the LLM and dataset. The general pattern is that
when the intercept increases, the slope decreases. In fact, when the memorization score e=
50. Besides, M(s50) ≈ 11. Although different regression lines have different slopes and
intercepts, the y-value reaches about 11. This might indicate that intercept and slope may
have a degree of freedom 1.

• With a fixed temperature, enabling top-k or top-p sampling increases intercept and decreases
slope.

• The estimated normalized entropy decreases with the memorization score increasing.

The first two observations are consistent with observation points 2 and 3 in Section 5.
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Table 3: Entropy-Memorization Law under different LLM sampling strategy

Strategy r Intercept Slope
Temp=0 0.933 5.490 0.106
Temp=0.5 0.936 5.474 0.106
Temp=0.8 0.926 5.011 0.113
Temp=0.8, top_p=0.5 0.935 5.599 0.103
Temp=1 0.944 4.646 0.118
temp=0.8, top_k=10 0.944 5.138 0.111
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Figure 8: Temp=0
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Figure 9: Temp=0.5
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Figure 10: Temp=0.8
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Figure 11: Temp=0.8, Top p=0.5
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Figure 12: Temp=1
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Figure 13: Temp=0.8, top-k=10
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Figure 14: zlib compression rate v.s. memorization score for OpenLlama-7B
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Figure 15: Level-set-based Entropy estimate v.s. memorization score for OpenLlama-7B

B.3 ENTROPY-MEMORIZATION LAW

The experimental results on OpenLlama-7B are shown in Figure 14 and 15. The findings are
consistent with the pattern observed in the main paper body.

B.4 NORMALIZED ENTROPY–MEMORIZATION LAW
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Figure 16: Normalized Entropy–Memorization Law for OpenLlama-7B
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Figure 17: Estimated normalized entropy vs memorization score.

Fig. 17 presents the (estimated) normalized entropy v.s. memorization score. The findings are
consistent with the findings that we observed in main paper body. Moreover, |r| increases from 0.82
to 0.97 as generation length decreases.

C EXTENDED RESULTS ON ENTROPY-MEMORIZATION LAW UNDER
DISPARATE SEMANTIC DATA

C.1 TECHNICAL DETAILS ON INTERPRETING SEMANTICS OF EACH CLUSTER

To identify the semantics of each cluster, we build a pipeline that significantly reduces human
annotation efforts. The pipeline is as follows:

1. Detect distinctive samples within each cluster. Zhang et al. (2025) formulates this task as
a differential clustering problem and proposes a FINC method. To quantitatively measure
semantic distinctions among the 16 clusters obtained via K-means, we conducted 16 FINC
comparisons. For each cluster Ci, we set Ci as the novel dataset and the union of the remaining
15 clusters as the reference set. The input to FINC is the sentence embeddings of all instances
in the set, and FINC suggests the distinctive samples in the cluster.

2. Keywords summarization. In this stage, we use tri-grams as effective descriptors for naming
and interpreting cluster identities. Specifically, we use i) spaCy (PyPI, 2025) to perform
named entity recognition and dependency parsing to ensure that extracted units are linguistically
complete phrases (e.g., “protective spell harry”, “lend broom fly”), and ii) YAKE (Campos et al.,
2020) to ranks terms using heuristics such as frequency, context, and positional distribution.

3. Human annotation. Based on summarized keywords, human annotators further summarize the
semantics of the cluster.

C.2 ENTROPY–MEMORIZATION PLOT FOR EACH CLUSTER

C.3 INTERPRETING SEMANTICS OF EACH CLUSTER

Table 4 presents top-5 keywords and human-annotated semantic labels for each cluster.
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(a) Cluster 0 (b) Cluster 1

(c) Cluster 2 (d) Cluster 3

(e) Cluster 4 (f) Cluster 5

(g) Cluster 6 (h) Cluster 7

Figure 18: Clusters 0–7.
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(i) Cluster 8 (j) Cluster 9

(k) Cluster 10 (l) Cluster 11

(m) Cluster 12 (n) Cluster 13

(o) Cluster 14 (p) Cluster 15

Figure 18: Clusters 8–15.
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Table 4: Semantics of each cluster (cluster 0-7)

Cluster 0: Scientific Research and Technology
Score Keyword Phrase
1.28e-04 translate depth direction
1.28e-04 design fabrication characterization
1.28e-04 pct design fabrication
1.28e-04 manipulation pct design
1.23e-04 sensor control manipulation

Cluster 1: Address and Organizational
Identifiers

Score Keyword Phrase
1.74e-05 street number city
1.54e-05 party committee number
1.54e-05 city number
1.52e-05 type number form
1.46e-05 conduit state number

Cluster 2: Religious and Biblical Texts
Score Keyword Phrase
7.94e-05 people sword thy
7.94e-05 thy people sword
7.91e-05 jacob son reuban
7.84e-05 son brother house
7.80e-05 son lord hath

Cluster 3: Community Engagement and
Activities

Score Keyword Phrase
1.05e-04 irrigation evaporate leave
1.05e-04 bullet time jump
1.04e-04 community meetup world
1.03e-04 community kid spout
1.02e-04 year electronic music

Cluster 4: Social Development and Policy
Score Keyword Phrase
1.34e-04 dramatically drive price
1.33e-04 develop skill team
1.33e-04 prefer policy influence
1.33e-04 outwith prefer policy
1.33e-04 sector real passion

Cluster 5: Software Development Configuration
Score Keyword Phrase
2.39e-05 true plugin proposal
2.29e-05 node optional true
2.27e-05 header content type
2.26e-05 true ellipsis true
2.26e-05 dev true child

Cluster 6: Spiritual and Religious Beliefs
Score Keyword Phrase
9.67e-05 thy mind thy
9.61e-05 death eternal life
9.54e-05 create sustain universe
9.52e-05 world drive ulterior
9.52e-05 behavior world drive

Cluster 7: Health Risks and Medical Studies
Score Keyword Phrase
1.06e-04 health increase risk
1.06e-04 evaluate risk factor
1.05e-04 pregnancy increase risk
1.05e-04 disease high risk
1.05e-04 high disease risk
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Table 5: Semantics of each cluster (cluster 8-15)

Cluster 8: Economic Indicators and Growth
Score Keyword Phrase
2.54e-05 billion country oda
2.51e-05 permanent surface runway
2.51e-05 kwh capita growth
2.50e-05 imf intelsat interpol
2.48e-05 price growth rate

Cluster 9: Evolutionary Biology and History
Score Keyword Phrase
4.49e-04 primatology million year
4.48e-04 mutate gene ancient
4.48e-04 start million million
4.45e-04 paleolithic million year
4.44e-04 account million year

Cluster 10: Fantasy Narrative (Harry Potter)
Score Keyword Phrase
4.98e-05 dumbledore harry meet
4.95e-05 forward harry ron
4.94e-05 muggle bystander incredulously
4.72e-05 sirius black peril
4.71e-05 harbor end time

Cluster 11: Personal Experiences and Emotions
Score Keyword Phrase
1.07e-04 hunt season roll
1.06e-04 love good love
1.06e-04 thing work happen
1.05e-04 decision normal result
1.04e-04 understand thing happen

Cluster 12: Linguistic and Semantic Analysis
Score Keyword Phrase
1.22e-04 interpret apply male
1.20e-04 ingen det finne
1.20e-04 finne ingen det
1.19e-04 title aktivt medlem
1.17e-04 confusion attain agenda

Cluster 13: Genetic and Biomedical Research
Score Keyword Phrase
8.51e-05 mesenchymal stem cell
8.40e-05 screen gene foster
8.27e-05 interaction show high
8.26e-05 expression level gene
8.25e-05 search perform blast

Cluster 14: Programming Command Scripts
Score Keyword Phrase
4.64e-06 text text ohm
4.57e-06 delaytimer command
4.03e-06 dark text text
3.94e-06 command runcmd
3.66e-06 cost command type

Cluster 15: Political Events and Commentary
Score Keyword Phrase
1.41e-04 white house official
1.41e-04 idea african americans
1.38e-04 african americans woman
1.38e-04 end war year
1.37e-04 snc lavalin scandal
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D DATASET INFERENCE USING EM LAW

D.1 ENTROPY MEMORIZATION LAW ON TEST DATA

Running algorithm 2 on training dataset of LLMs, we discovered Entropy-Memorization Law. This
section then explores another question that naturally arises – what happens if we run the same
algorithm on test dataset? It turns out that the plot behaves very differently from training datasets.

Figure 19 presents the plot of applying the entropy estimator and normalized entropy estimator to test
data. To maintain consistency throughout the paper, we use the terms used for memorization with
slight abuse. For example, the memorization score still measures the distance between the ground
truth and the model’s response, but the model is not actually “memorizing” training data. Following
the same setup described in the main body, we select data from LiveBench (White et al., 2025) from
2024-06-25 to 2024-11-25. The time property guarantees that LiveBench is non-member data for
OLMo-2-1124-7B. LiveBench is licensed under CC BY-SA 4.0 International License.
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Figure 19: Entropy Memorization Law on OLMo-2 with LiveBench dataset.

With around 3k samples from LiveBench, we observe that:

• Level-set-based entropy is still a good indicator of LLM performance, as demonstrated by the
high Person’s r. The sample space also approximately grows exponentially as the memorization
score increases.

• However, compared with training data, the intercept is lower, and the slope is higher. There is
less coverage of low memorization scores, especially for memorization scores within 0-10.

• at low-distance set, it is observed that OLMo-2 is producing low-entropy text. The entropy is
much lower than what we observed on train data.

Here is a case study on a 2-distance memorization:

Prompt Text

Please create a valid join mapping between CSV Table A and CSV Table B. Each column in
A maps to 0 or 1 columns in B. Return your response as a Python dictionary, formatted as
col_name_in_df_a : col_name_in_df_b. Please return only the dictionary.
CSV Table A: Areas,freq_1,freq_2,freq_3,freq_4,freq_5,freq_6 0.0,0.0,0

Generated Text

.0,0.0,0.0,0.0,0.0
1.0,0.0,0.0,0.0,0.0,0.0,0.0
2.0
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Given the prompt given in this case study, OLMo-2 generates repeated numbers, exhibiting low
entropy. Based on the above observations, we thus derive a simple strategy to tell the difference
between train data and test data for LLM. In the AI community, this task is studied under the name
Dataset Inference.

D.2 EMBEDI: ENTROPY-MEMORIZATION LAW-BASED DATASET INFERENCE

Dataset Inferences Dataset Inference (DI) (Maini et al., 2024; 2021) builds on the idea of member-
ship inference attacks (MIA). While both MIA and DI aim to identify whether some suspect data was
part of the training data, they differ on the amount data required. MIA operates at instance (sentence)
level, however, DI operates on a collection of instances – in reality, the suspect data used for DI could
be a book.

In practice, DI can identify potential test set contamination, to provide a calibrated performance
evaluation of LLMs. DI may also detect unauthorized usage of copyrighted training data, thus
promoting the protection of intellectual properties. Moreover, by using more data to determine
membership, DI is deemed to be more realistic than MIAs. As Maini et al. (2021) presented that
as the size of the training set increases, the success of membership inference degrades to random
chance. EMBEDI is inspired by several empirical observations. First, over-parametrization of LLMs
may lead to overfitting on training data, resulting in a generalization gap between training data and
testing data; then, LLM may perform well on low-entropy testing data, resulting in a low intercept in
EM Law. Besides, given a fixed dataset and LLM, empirical evidence suggests that the intercept and
slope generated by Algorithm 2 are dependent. This inspires us to develop the following strategy for
dataset inference:

Given an LLM θ and dataset D, run Algorithm 2 and get intercept k. Compare k with a
pre-defined threshold τk. Assign label 1 (i.e., member) if k > τk, assign label 0 otherwise.

Amount of data required for EMBEDI Effective dataset inference requires reliable entropy
estimation and diverse memorization score distributions. In the main body, we have revealed that the
frequency of a low memorization score is exponentially smaller than that of a high memorization one.
We, therefore, set the minimum sample size to n = 1,500, with each sample is a 150-token sequence.

D.3 EXPERIMENTAL RESULTS ON DATASET INFERENCE

Table 6: Extended result on dataset inference

LLM Dataset Intercept Slope Prediction Label
OLMo-2 LiveBench 2.202 0.155 0 0
Pythia MIMIR_cc -2.048 0.251 0 0
Pythia MIMIR_cc 3.992 0.091 1 1

OLMo-2 OLMo-2-1124-Mix 3.724 0.142 1 1
Pythia MIMIR_full 6.297 0.092 1 0
Pythia MIMIR_full 6.166 0.095 1 1
Pythia MIMIR_tarxiv 1.156 0.174 1 1
Pythia MIMIR_tarxiv -0.910 0.0227 0 0
Pythia MIMIR_wiki 3.006 0.131 1 0
Pythia MIMIR_wiki 2.894 0.133 1 1

Selected LLMs. We select OLMo-2-1124-7B (“OLMo-2”), Pythia-6.9b-deduped (Biderman et al.,
2023b) (“Pythia”).

Selected Datasets. We select LiveBench (White et al., 2025) and MIMIR (Duan et al., 2024). For
LiveBench, we use data from 2024-06-25 to 2024-11-25. MIMIR is a public dataset originally for
evaluating MIAs on the Pythia suite by re-compiling the Pile (Gao et al., 2020) train/test splits. For
MIMIR, we use “Pile CC” “temporal arXiv”, “wiki” subset, and full dataset (“full”) for evaluation.
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Note that LiveBench and Temporal arxiv are temporal-cutoff-based, while the remaining dataset is
i.i.d.-based.

Threshold for each LLM. In EMBEDI, we assign a threshold for each LLM. We empirically set τk
to 0 and 3 for Pythia and OLMo-2, respectively. Other variants of thresholding strategy include
domain-specific thresholding, and we leave it to future work.

Table 6 presents the overall results of EMBEDI on the dataset inference task.

Discussions EMBEDI enjoys several advantages: it is compute-efficient – it only requires LLM
inference on n samples. No training is required. It does not require any additional reference models.

E COMPUTE

All experiments were conducted on a GPU cluster equipped with 4 NVIDIA RTX 3090 GPUs (24GB
CUDA memory per card), running Ubuntu 22.04. We use VLLM (Kwon et al., 2023) to speed up
inference.
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