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Abstract

Offline meta-RL usually tackles generalization by inferring task beliefs from high-
quality samples or warmup explorations. The restricted form limits their generality
and usability since these supervision signals are expensive and even infeasible to
acquire in advance for unseen tasks. Learning directly from the raw text about
decision tasks is a promising alternative to leverage a much broader source of
supervision. In the paper, we propose Text-to-Decision Agent (T2DA), a simple
and scalable framework that supervises offline meta-RL with natural language. We
first introduce a generalized world model to encode multi-task decision data into
a dynamics-aware embedding space. Then, inspired by CLIP, we predict which
textual description goes with which decision embedding, effectively bridging
their semantic gap via contrastive language-decision pre-training and aligning
the text embeddings to comprehend the environment dynamics. After training
the text-conditioned generalist policy, the agent can directly realize zero-shot
text-to-decision generation in response to language instructions. Comprehensive
experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates
high-capacity zero-shot generalization and outperforms various types of baselines.
Our code is available at https://github.com/NJU-RL/T2DA.

1 Introduction

Reinforcement learning (RL) has emerged as an effective mechanism for training autonomous agents
to perform complex tasks in interactive environments [1, 2], unleashing its potential across frontier
problems including preference optimization [3], diffusion model training [4], and reasoning [5, 6]
such as in OpenAI o1 [7] and DeepSeek-R1 [8]. Despite its achievements, one of the grand challenges
is generalization: building a general-purpose agent capable of handling multiple tasks in response
to diverse user commands [9]. Due to distribution shift and the lack of self-supervised pre-training
techniques, RL agents typically struggle with poor generalization to unseen tasks [10]. Offline meta-
RL tackles generalization via training on a distribution of offline tasks [11]. However, they usually
rely on high-quality samples [12] or warmup explorations [13] to infer task beliefs for generalization
at test time, while these supervision signals are expensive and even infeasible to acquire in advance
for unseen tasks [14]. This inspires us to explore a much broader source of supervision.

Recently, large language models (LLMs), pre-trained on extensive text corpora, can encode a wealth of
semantic knowledge with remarkable representation power and transferability [15]. The typical “text-
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to-text" interface enables task-agnostic architectures to achieve broad generalization with minimal or
no domain-specific data [16]. The availability of large-scale text collections for aggregate supervision
during model pre-training has revolutionized the language and multi-modal communities in recent
years [17]. Naturally, the above advancements highlight a promising question: Could scalable
pre-training methods that learn perception from the supervision embedded in natural language lead
to a similar leap forward in developing generalist agents for offline meta-RL?

Raw Decision Embeddings Dynamics-Aware Decision Embeddings

Raw Text Embeddings Aligned Text Embeddings
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Figure 1: t-SNE visualization of Ant-Dir where tasks with
target directions in [0, 2π] are mapped to rainbow-colored
points. Top: we encode multi-task data into dynamics-aware
decision embeddings to capture task-specific environment
dynamics. Bottom: we bridge the semantic gap between text
and decision via contrastive pre-training. The aligned text
embeddings follow a cyclic spectrum that exactly matches
the periodicity of angular directions in a physical sense. This
interesting finding shows that we effectively align text em-
beddings to comprehend environment dynamics and facilitate
convincing language grounding in decision domains.

RL typically learns from active in-
teractions with the outer world tied
to specific environment dynamics,
with unique decision-level represen-
tation distinct from the unbounded
perception-level representation of nat-
ural language [18]. Recent stud-
ies facilitate language grounding to
decision domains from various as-
pects, such as LLMs as policies [19,
20, 21], LLMs as rewards [22, 23,
24], and language-conditioned policy
learning [25, 26, 27]. Despite these
efforts, how to harness unbounded
representations of natural language
knowledge for building generalist de-
cision agents remains the following
challenges: i) LLMs, trained on text
corpora, typically lack grounding in
the physical world and fail to capture
any environment dynamics; ii) Lever-
aging LLMs for decision-making is
prone to knowledge misalignment due
to the semantic gap between the text
and decision modalities; iii) Scalable
implementations are necessary to fully
harness language knowledge to train
generalist decision models.

To tackle these challenges, we pro-
pose Text-to-Decision Agent (T2DA),
a simple and scalable pre-training framework for offline meta-RL via aligning language knowledge
with environment dynamics of decision tasks. First, we pre-train a generalized world model to encode
multi-task data into dynamics-aware decision embeddings, effectively capturing task-specific envi-
ronment dynamics. Second, inspired by CLIP [16], we predict which textual description goes with
which decision embedding, efficiently bridging their semantic gap via contrastive language-decision
pre-training. It distills the world model structure to the text modality and aligns text embeddings to
comprehend the environment dynamics. Finally, we deploy T2DA on two mainstream conditional
generation architectures, training generalist policies conditioned on aligned text embeddings. During
evaluation, natural language is used to reference learned decision perceptions or describe new ones,
and the agent can directly realize zero-shot text-to-decision generation according to textual instruc-
tions at hand. Extensive experiments show that T2DA transfers nontrivially to downstream tasks,
achieves high-capacity zero-shot generalization, and outperforms various types of baselines.

In summary, our main contributions are as follows:

• We present a generalized world model designed to capture the environment dynamics, facilitating
effective grounding of linguistic knowledge in decision domains.

• We introduce contrastive language-decision pre-training to bridge their semantic gap, aligning the
text embeddings to comprehend the environment dynamics.

• We propose a simple and scalable framework that supervises offline meta-RL with natural language,
and develop scalable implementations with the potential to train decision models at scale: Text-to-
Decision Diffuser and Text-to-Decision Transformer.
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2 Related Work

Offline Meta-RL learns adaptable policies from pre-collected datasets without requiring online
environment interaction [11, 28]. It addresses two fundamental challenges: the distributional shift
between behavior and learned policies in offline RL [29, 30], and the quick adaptation to unseen
tasks with minimal data. Existing approaches can be broadly categorized into the memory-based
(e.g., RL2 [31] and LLIRL [32, 33]), the optimization-based (MAML [34] and MACAW [11]), and
the context-based methods (e.g., PEARL [35], VariBAD [36], etc. [28, 13, 37]). Recent studies of
in-context RL attempt to leverage the in-context learning capability of transformers to improve RL’s
generalization via casting RL as an across-episodic sequential prediction problem with few-shot
prompting at test time [38, 39, 40, 41], such as AD [42] and DPT [43]. In general, the above
approaches rely on high-quality samples or domain knowledge to infer task beliefs during evaluation,
limiting their generality with this restricted form of supervision. This inspires us to explore a much
broader source of supervision from natural language.

LLMs for RL. Existing studies on leveraging LLMs for RL domains can be categorized into three
main threads: LLMs as rewards, LLMs as policies, and language-conditioned policy learning. The
first kind uses LLMs or VLMs (vision-language models) to automate the generation and shaping
of reward functions [44, 22, 23, 24] or state representations [45], providing denser information to
facilitate RL training. The second kind utilizes LLMs or VLMs as the policy backbone [18, 46, 47, 48].
Vision-language-action (VLA) models provide a direct instantiation of using pre-trained VLMs for
robotics, fine-tuning visually-conditioned VLMs to generate robot control actions, such as RT-2 [49],
OpenVLA [50], and π0.5 [51]. In contrast, we leverage LLMs to obtain task representations for offline
meta-RL and train conventional RL policies based on decision transformer or diffuser architectures.

Language-conditioned policy. We focus on the third kind that learns a language-conditioned policy,
extracting the world knowledge encoded in LLMs to help train offline meta-RL agents. Previous
studies acquire language embeddings using pre-trained LLMs like BERT and GPT [52], while these
embeddings are learned independently from decision tasks and may fail to capture domain-related
information. Early methods develop rule-based [53] or task-specific [54] intermediate representations
to capture task-related semantics, which can require a laborious design and lack scalability. Under an
imitation learning paradigm, BC-Z [25] trains a vision-based robotic manipulation policy conditioned
on pre-trained language embeddings, and BAKU [27] produces a simple transformer architecture
that fuses multi-modal vision-language information and temporal context for multi-task decision-
making. To improve language grounding, [55] translates natural language to task language with a
referential game, and [26] uses supervised fine-tuning to enable bidirectional translation between
language-described skills and rollout data. Overall, the challenges include the inability to capture
environment dynamics, knowledge misalignment due to semantic gaps, and limited model scalability.
In the paper, we tackle these challenges to fully harness LLMs for building generalist decision agents.

3 Method

In this section, we present Text-to-Decision Agent (T2DA), a simple and scalable framework to train
generalist policies. Figure 2 illustrates the overall pipeline, followed by detailed implementations in
the subsequent subsections. Corresponding algorithm pseudocodes are given in Appendix A.

3.1 Problem Statement

We consider a language-conditioned offline meta-RL setting. Tasks follow a distribution Mk=
⟨S,A, Tk,Rk, γ⟩∼P (M), sharing the same state-action spaces while varying in the reward and state
transition functions, i.e., environment dynamics. For each training task k, our system receives a
user-provided natural language supervision lk that describes the task (e.g., open the door), paired with
an offline dataset Dk =

∑
i(s

k
i , a

k
i , r

k
i , s

′k
i ) collected by arbitrary behavior policies. The agent can

only access the offline datasets
∑

k(lk,Dk) to train a generalist policy π(a|s, l) to follow language
instructions. At test time, natural language is used to reference learned decision perceptions or
describe new ones. The agent can perform text-to-decision generation in test environments in a
zero-shot manner, given any language instruction lnew at hand. The primary objective is to obtain a
highly generalizable policy that achieves strong zero-shot performance on unseen tasks.
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Figure 2: The overall pipeline of T2DA. (a) We encode the multi-task trajectories into dynamics-
aware decision embeddings and decode the generalized world model conditioned on that embedding,
effectively capturing the environment dynamics. (b) We bridge the semantic gap between decision
and text by fine-tuning the text encoder (initialized from popular language models such as CLIP or T5)
to align the produced text embeddings with dynamics-aware decision embeddings using contrastive
loss. It distills the world model structure from decision embeddings to the text modality, aligning text
embeddings to comprehend the environment dynamics. (c) We condition the generalist policy on the
aligned text embeddings, and develop scalable implementations with the potential to train decision
models at scale: Text-to-Decision Diffuser and Text-to-Decision Transformer. During evaluation, the
agent can directly realize zero-shot text-to-decision generation according to textual instructions at
hand, enabling high-capacity zero-shot generalization to downstream tasks.

3.2 Dynamics-Aware Decision Embedding

Natural language is a complex and unbounded representation of human instruction, and training
policies to harness language supervision is nontrivial. A standard approach is to convert language
instructions to simpler latent embeddings using popular pre-trained language models that can draw
on a wealth of knowledge learned from copious amounts of text. However, directly applying these
models to decision domains could fail to solve user-specific problems, as they are typically learned
independently of decision-making tasks. A major challenge is that LLMs trained on text corpora
typically lack grounding in the interacting environment and fail to capture its dynamics.

For effective grounding, the agent should comprehend environment dynamics of underlying decision
tasks. RL typically learns from active interactions with the outer environment. The world model, i.e.,
the reward and state transition functions p(s′, r|s, a), fully characterizes the environment and presents
a promising alternative to capturing environment dynamics. Hence, we introduce a generalized world
model to encode the multi-task decision data into a dynamics-aware embedding space. We separate
the reasoning about the world model into two parts: i) encoding the dynamics-specific information
into a latent embedding, and ii) decoding environment dynamics conditioned on that embedding.

First, we use a trajectory encoder ϕ to abstract multi-task decision trajectories into a compact
embedding z that captures task-specific dynamics. Specifically, we “tokenize" different elements (i.e.,
state, action, and reward) in the raw sequence τ = (s0, a0, r0, ..., sL, aL, rL) ∼ Dk, by lifting them
to a common representation space using element-specific tokenizers fsϕ, f

a
ϕ , f

r
ϕ as

τe = (es0, e
a
0 , e

r
0, ..., e

s
L, e

a
L, e

r
L), where est =f

s
ϕ(st), e

a
t =f

a
ϕ(at), e

r
t =f

r
ϕ(rt), ∀t ∈ [0, L]. (1)

We use a bi-directional transformer Eϕ to extract the dynamics-aware embedding from input tokens
as zk=Eϕ(τe). The bi-directional structure allows for capturing the forward and inverse dynamics.

Second, we introduce a decoder φ containing a reward modelRφ and state transition model Tφ. The
latent embedding is augmented into the input to predict the instant reward r̂t=Rφ(st, at; zk) and
next state ŝt+1=Tφ(st, at; zk). The encoder-decoder pipeline is jointly trained by minimizing the
reward and state transition prediction error conditioned on the decision embedding as

L(ϕ, φ) = Eτ∼Dk

[
Ezk∼ϕ(τ)

[
Et

[
(rt −Rφ(st, at; zk))

2
+ (st+1 − Tφ(st, at; zk))2

]]]
, ∀k. (2)
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In practice, we randomly sample a trajectory from the dataset as τ ∼ Dk and use its decision
embedding to decode the dynamics of other trajectories in the same dataset as τ∗ ∈ Dk\τ . The
reason is that, since the embedding has access to the entire trajectory’s information, using it to decode
the same trajectory can lead to deceptive traps during training. After proper training, we freeze the
world model for the subsequent learning phases.

3.3 Contrastive Language-Decision Pre-training

To successfully instruct generalist training with human language, we must bridge the semantic gap
between text and the “decision modality". Inspired by CLIP [16], we predict which textual description
goes with which training task, bridging their semantic gap via contrastive learning. The core idea is to
connect the language supervision with corresponding decision embeddings, distilling the world model
structure to the text modality and aligning text embeddings to comprehend environment dynamics.

Formally, given a batch of N (trajectory τ , textual task description l) pairs, we predict which of the
N ×N possible (trajectory, text) pairings across a batch actually occurred. We use the pre-trained
trajectory encoder in Sec. 3.2 to extract the dynamics-aware decision embedding from the trajectory
as z = ϕ(τ). The text encoder is a transformer-based model ψ that could be initialized from one of a
wide variety of popular language models, such as CLIP [16] or T5 [56]. Then, the text embedding zT
is easily derived by tokenizing the textual instruction l and feeding it to the encoder as zT = ψ(l).

We model the pre-training task as a text-decision multi-modal learning problem by fine-tuning the
text encoder while keeping the trajectory encoder fixed. The objective is to maximize the cosine
similarity of the decision and text embeddings of the N real pairs in the batch while minimizing the
cosine similarity of the embeddings of the N2−N incorrect pairings. The two directional similarities
between the modalities, which are transposes of each other, are defined as

sim(τ, l)=exp(α) · ϕ(τ)WD · ψ(l)WT

||ϕ(τ)WD|| · ||ψ(l)WT ||
, sim(l, τ)=exp(α) · ψ(l)WT · ϕ(τ)WD

||ψ(l)WT || · ||ϕ(τ)WD||
, (3)

where α is a learnable temperature controlling the range of similarities, andWD andWT are learnable
projections that map feature representations of each modality to a joint multi-modal embedding space.
The decision-to-text p(τ) and text-to-decision p(l) similarity scores in the batch are calculated as

p(τk) =
esim(τk,lk)∑N
i=1 e

sim(τk,li)
, p(lk) =

esim(lk,τk)∑N
i=1 e

sim(lk,τi)
. (4)

Let q(τ) and q(l) denote the ground-truth similarity scores, where negative pairs have a probability
of 0 and positive pairs have 1. We optimize a symmetric cross-entropy loss over similarity scores as

L(ψ) = 0.5 · Eτ,l [CE (p(τ), q(τ)) + CE (p(l), q(l))] , (5)

where CE is the cross-entropy between two distributions. To effectively adapt the text encoder to
the semantics of decision modality at a lightweight computing cost, we employ low-rank adaptation
(LoRA) [57] to fine-tune the text encoder with the above contrastive loss. Experiments in Appendix E
present the analysis of its efficiency and superiority compared to full-parameter fine-tuning.

This alignment process distills the environment dynamics from the decision embedding to the text
modality. The aligned text embeddings not only serve as mere linguistic representations but also
establish stronger comprehension of underlying decision tasks, effectively bridging the semantic gap
between language supervision and decision dynamics.

3.4 Generalist Policy Learning

A widely adopted manner to tackle generalization in RL domains is to condition the policy on some
representation that can capture task-relevant information, such as context-based meta-learning [35, 36]
and prompt-based methods [12, 14]. Under this unified framework, we formulate the generalist agent
as a task-conditioned policy model. There exists a true variable that represents the task identity, and
we use a latent representation h to approximate that variable. Then, a base policy π(·, h) can be shared
across tasks by conditioning on the task representation as πk(a|s)=π(a|s;hk),∀k. Previous studies
usually approximate the task representation by acquiring expert decision data [12] or exploring the
unseen task first [13]. This restricted form of supervision limits their universality and practicability
since expensive high-quality samples or explorations are needed to specify any new task.
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Motivated by the recent success of language models, we study a promising alternative that leverages
a much broader source of supervision. Natural language is a flexible representation for transferring
a variety of human ideas and intentions. Learning from its supervision can not only enhance the
representation power but also enable efficient knowledge transfer. We map the textual task description
l to a latent embedding ψ(l) via the fine-tuned text encoder in Sec. 3.3, and use it to approximate the
task representation as h≈ψ(l). Then, the task-agnostic generalist policy is approximated by

π(a | s; hk) ≈ π (a | s; ψ(lk)) , ∀k. (6)

At test time, the agent can directly perform text-to-decision policy generation according to any textual
instruction lnew at hand, enabling high-capacity zero-shot generalization to downstream tasks without
the need for expensive decision demonstrations or warmup explorations.

3.5 Scalable Implementations

We develop scalable implementations of T2DA using two mainstream conditional generation archi-
tectures that hold the promise to train RL models at scale: the decision diffuser [58] and the decision
transformer [59], yielding the following T2DA variants.

Text-to-Decision Diffuser (T2DA-D). Inspired by the recent success of text-to-image diffusion
models [60, 61], we implement the text-to-decision counterpart by modeling the policy as a return-
conditioned diffusion model with action planning. For model simplicity and scalability, we choose to
diffuse over the H-step state-action trajectory as

xc(τ) =

[
st st+1 ... st+H−1

at at+1 ... at+H−1

]
c

, (7)

where c denotes the timestep in the forward diffusion process, and c=0 corresponds to the unperturbed
data. 1 To enable a generalist policy with natural language supervision, we include the fine-tuned text
embedding ψ(l) as an additional condition to the diffusion model. To this end, the generalist policy
training is formulated as the standard problem of conditional generative modeling as

max
θ

Eτ∼D

[
log pθ

(
x0(τ) | R̂(τ); ψ(l)

)]
, (8)

where θ denotes diffusion parameters and R̂ is the return-to-go. During evaluation, we can cast
planning in RL as sampling from the diffuser. At each timestep, we observe a state st in the
environment, sample an H-step trajectory x0(τ) with the diffusion process conditioned on a target
return-to-go and task prompt ψ(l), execute the first action at in x0(τ), and transition to the next state
st+1. More details can be referred to as in Algorithms 3 and 5 in Appendix A.

Text-to-Decision Transformer (T2DA-T). We also implement T2DA with the causal transformer
architecture, drawing upon the simplicity, scalability, and associated advances in language modeling
such as BERT and GPT. We prepend a task prompt to the input of the causal transformer to realize
generalization across tasks, akin to Prompt-DT [12]. For each task, we take the prompt-augmented
trajectory τ+ as the input, which contains both the fine-tuned text embeddings ψ(l) and the most
recent H-step history sampled from offline datasets as

τ+ =
(
ψ(l); R̂t−H+1, st−H+1, at−H+1, ..., R̂t, st, at

)
, (9)

where the return-to-go R̂t is the cumulative rewards from the current time step till the end of the
episode. Then, the model predicts actions autoregressively using a causal self-attention mask. This
architecture introduces only one additional token compared to the standard decision transformer,
allowing minimal architecture change and lightweight cost for generalist training. More details can
be referred to as in Algorithms 4 and 6 in Appendix A.

1Decision diffuser diffuses over only states and trains another inverse dynamics model to generate actions.
In contrast, we only keep a unified diffusion model to i) ensure simplicity with a single end-to-end model in a
multi-task setting, and ii) unlock the potential of diffusion models at scale, rather than depending on additional
MLPs to generate part of the information, e.g., actions.
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Figure 3: Zero-shot test return curves of T2DA against baselines using Mixed datasets.

Table 1: Zero-shot test returns of T2DA against baselines using Mixed datasets, i.e., numerical results
of converged performance from Figure 3. Best results in bold and second best underlined.

Environment T2DA-T T2DA-D BC-Z CSRO UNICORN AD BAKU

Point-Robot −7.2±0.1 −8.4±0.2 −15.5±0.2 −13.7±0.5 −11.4±1.3 −15.8±0.2 −16.4±0.1

Cheetah-Vel −70.3±3.8 −60.4±1.8 −107.4±8.5 −92.6±5.9 −94.1±20.0 −107.6±2.3 −104.5±4.8

Ant-Dir 970.3±8.7 570.6±13.1 700.0±43.3 317.1±27.6 407.3±21.6 268.9±3.4 786.9±17.3

Meta-World 1274.5±48.4 1376.4±39.6 1053.8±33.8 1005.2±69.6 754.6±62.7 921.0±66.9 1187.6±18.2

4 Experiments

We comprehensively evaluate and analyze our method on popular benchmarking domains across
datasets of varying qualities, aiming to answer the following research questions:

• Can T2DA achieve consistent performance gain on zero-shot generalization capacity to unseen
tasks? We compare it to various types of strong baselines, including offline meta-RL, in-context
RL, and language-conditioned policy learning approaches. (Sec. 4.1)

• What is the contribution of each component to T2DA’s performance? We ablate both the T2DA-D
and T2DA-T architectures to analyze the respective impact of world model pre-training, contrastive
language-decision pre-training, and language supervision. (Sec. 4.2)

• How robust is T2DA across diverse settings? We evaluate T2DA against baselines using offline
datasets of varying qualities, and assess T2DA’s performance when initializing the text encoder
from different LLMs. (Sec. 4.3)

Environments. We evaluate T2DA on three benchmarks that are widely adopted to assess general-
ization capacities of RL algorithms: i) the 2D navigation Point-Robot; ii) the multi-task MuJoCo
locomotion control, containing Cheetah-Vel and Ant-Dir; and iii) the Meta-World platform for
robotic manipulation, where a robotic arm is designed to perform a wide range of manipulation tasks,
such as close faucet, lock door, open door, and press button. For each domain, we randomly sample a
distribution of tasks captioned with text descriptions, and split them into training and test sets. We
employ SAC [62] to independently train a single-task policy on each training task for offline dataset
collection. We develop three types of offline datasets: Mixed, Medium, and Expert, following the
common practice in offline RL [63]. Appendix B presents more details of environments and datasets.

Baselines. We compare T2DA to five competitive baselines that cover three representative paradigms
in tackling RL generalization: the context-based offline meta-RL approaches, including 1) CSRO [13]
and 2) UNICORN [37]; the in-context RL method of 3) AD [42]; and the language-conditioned policy
learning methods including 4) BC-Z [25] and 5) BAKU [27].

For evaluation, all experiments are conducted using five different random seeds. The mean of received
return is plotted as the bold line, with 95% bootstrapped confidence intervals of the mean indicated by
the shaded region. Appendix D gives detailed implementations of T2DA. Appendix E gives analysis
on fine-tuning of the text encoder.
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Figure 4: Ablation results using Mixed datasets. w/o world omits pre-training the trajectory encoder,
w/o align omits contrastive pre-training, and w/o text omits the language supervision.

Table 2: Numerical results of ablation study on both T2DA-D and T2DA-T using Mixed datasets, i.e.,
the final test returns after learning convergence from Figure 4. Best results in bold.

Environment T2DA-T w/o world w/o align w/o text T2DA-D w/o world w/o align w/o text

Point-Robot −7.2±0.1 −7.7±0.3 −9.2±0.2 −16.9±0.1 −8.4±0.3 −9.5±0.4 −10.1±0.2 −17.2±0.4

Ant-Dir 963.4±15.3 891.0±54.4 792.3±48.3 242.6±13.7 568.0±10.8 544.1±11.1 513.8±11.0 135.1±10.3

4.1 Main Results

We compare our method against various baselines under an aligned zero-shot setting. Figure 3
and Table 1 present test return curves and numerical results of converged performance on various
benchmark environments using Mixed datasets. A noteworthy point is that language-conditioned
baselines such as BC-Z and BAKU generally achieve better performance than offline meta-RL and
in-context RL baselines, especially in harder environments like Ant-Dir and Meta-World. This again
validates our motivation of exploring a much broader source of supervision from natural language,
harnessing the representation power and knowledge transferability embodied in pre-trained LLMs.

In these diversified environments, both T2DA-D and T2DA-T consistently achieve significantly
superior performance regarding learning speed and final asymptotic results compared to the three types
of baselines. In most cases, T2DA-D and T2DA-T take the top two rankings for the best and second-
best performance, and showcase comparably strong zero-shot generalization capacities on average
across all evaluated environments. It highlights the effectiveness of both T2DA implementations
using the two mainstream conditional generation architectures. Furthermore, our method typically
demonstrates lower variance during generalist policy learning, signifying not only enhanced learning
efficiency but also improved training stability.
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Figure 5: Results of robustness to data quality, where T2DA is compared to baselines using Expert
and Medium datasets. T2DA-D and T2DA-T achieve consistent superiority across various datasets.

4.2 Ablation Study

We compare T2DA to three ablations: 1) w/o world, it eliminates pre-training the trajectory encoder
and instead updates it jointly with the text encoder during contrastive pre-training; 2) w/o align, it
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Table 3: Numerical results of robustness to data quality where T2DA is compared against baselines
using Expert and Medium datasets, i.e., the final test returns after learning convergence from Figure 5.
Both T2DA-D and T2DA-T achieve consistent superiority across datasets of varying quality. Best
results in bold and second best underlined.

Expert T2DA-T T2DA-D BC-Z CSRO UNICORN AD BAKU

Point-Robot −6.4±0.2 −7.5±0.2 −14.4±0.4 −12.8±0.2 −11.5±1.7 −17.1±0.2 −15.4±0.1

Meta-World 1142.8±106.6 1387.7±21.6 935.5±26.7 1087.0±78.8 787.1±16.0 991.0±37.7 833.6±8.3

Medium T2DA-T T2DA-D BC-Z CSRO UNICORN AD BAKU

Point-Robot −10.7±0.4 −11.0±0.3 −16.6±0.2 −16.1±0.8 −14.9±0.5 −16.9±0.2 −16.1±0.1

Meta-World 1033.3±130.6 1025.3±43.6 756.9±103.4 854.1±17.9 715.8±93.5 585.7±126.1 669.5±11.4

omits contrastive language-decision pre-training and fixes the text encoder initialized from pre-trained
language models; and 3) w/o text, it completely removes the text encoder.

Figure 4 presents ablation results of both architectures. First, the erasure of pre-training the trajectory
encoder (T2DA vs. w/o world) results in decreased test returns with greater variances. It indicates that
capturing environment dynamics via the world model can enable more precise and stable knowledge
alignment between text and decision. Second, omitting the language-decision pre-training (w/o world
vs. w/o align) further decreases the performance. It confirms the existence of a semantic gap between
text and decision, whereas the gap can be effectively bridged by contrastive knowledge alignment.
Finally, removing the language supervision (w/o align vs. w/o text) can produce catastrophic
performance with poor zero-shot generalization, highlighting the necessity of leveraging a wealth
of knowledge from natural language. In summary, the performance of T2DA declines when any
component is omitted, verifying that all components are essential to its final capabilities.

4.3 Robustness Study

A reliable framework with scalability should be robust across diverse settings. We assess T2DA’s
robustness in two critical aspects: data quality and choice of text encoders.

Robustness to Data Quality. We compare T2DA against baselines using Expert and Medium offline
datasets. As shown in Figure 5 and Table 3, both T2DA-D and T2DA-T consistently outperform
baselines on these datasets. Notably, while most baselines suffer significant performance degradation
when trained on Medium datasets, T2DA maintains high-capacity generalization despite the lower
data quality. It showcases the promising applicability of T2DA in real-world scenarios where the
agent often needs to learn from sub-optimal data. In summary, T2DA achieves consistent superiority
across datasets of varying quality, yielding excellent robustness.
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Figure 6: Results of robustness to text encoders where T2DA
initializes the text encoder from CLIP, BERT, and T5, show-
ing that T2DA can efficiently harness language knowledge
embedded in different language models.

Robustness to Text Encoders. We
also investigate T2DA’s sensitivity to
different representations of language
supervision by initializing the text en-
coder from three distinct language
models: CLIP [16], BERT [64], and
T5 [56]. As shown in Figure 6,
the near-identical performance across
all language models highlights that
T2DA’s effectiveness is independent
of the specific text encoder architec-
ture. It suggests that T2DA can ef-
fectively leverage the semantic under-
standing capabilities inherent to differ-
ent language models while maintain-
ing consistent performance.

9



4.4 Visualization Insights

We gain deep insights into the knowledge alignment between text and decision through t-SNE
visualization on the example Cheetah-Vel task as shown in Figure 7.

Raw Decision Embeddings Dynamics-Aware Decision Embeddings

Raw Text Embeddings Aligned Text Embeddings

0.075 3.0

Figure 7: t-SNE visualization of Cheetah-Vel where tasks
with target velocities in [0.075, 3.0] are mapped into rainbow-
colored points. Top: the evolution from Raw Decision
Embeddings to Dynamics-Aware Decision Embeddings,
where the initially entangled trajectories are transformed
into well-separated clusters that highlight the successful cap-
ture of task-specific environment dynamics. Bottom: using
dynamics-aware decision embeddings to align text embed-
dings with contrastive loss. This inspiring finding verifies the
effective alignment of text embeddings to comprehend envi-
ronment dynamics and interpretable language grounding.

Decision Embeddings. Raw deci-
sion embeddings are derived from
a randomly initialized trajectory en-
coder. In the dynamics-aware embed-
ding space, sample points from dif-
ferent tasks are more clearly distin-
guished, and similar tasks are grouped
more closely. The initially entangled
trajectories are transformed into well-
separated clusters, highlighting the
successful capture of task-specific en-
vironment dynamics via the general-
ized world model.

Text Embeddings. Raw text embed-
dings are derived from pre-trained lan-
guage models, and are scattered with
a vague distribution structure. In the
aligned space, text embeddings fol-
low a more distinguished distribution
that matches the metric of task sim-
ilarity, highlighting successful bridg-
ing of the semantic gap. Notably, the
aligned embeddings form a clear rec-
tilinear distribution from red (low ve-
locity) to blue (high velocity), exactly
matching the rectilinear spectrum of
target velocities in a physical sense. It
verifies efficient comprehension of the
environment dynamics.

5 Conclusions, Limitations, and Future Work

In the paper, we tackle offline meta-RL challenge via leveraging a much broader source of supervision
from natural language. Improvements in zero-shot generalization capacities highlight the potential
impact of our scalable implementations: text-to-decision diffuser and text-to-decision transformer.
These findings open up new avenues for building more flexible and accessible generalist agents that
can understand and act upon natural language instructions without extensive domain-specific training.

Though, our agent is trained on lightweight datasets compared to popular large models. An essential
step is to implement on vast datasets with diversified domains, unleashing the scaling law with the
diffusion or transformer architectures. Another step is to deploy the idea of knowledge alignment in
VLA models, or deploy the text-to-decision paradigm on real robots toward embodied intelligence.
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A Algorithm Pseudocodes

Based on the implementations in Sec. 3, this appendix gives the brief procedures of each component
in T2DA. First, Algorithm 1 presents the pre-training of the generalized world model. Based on the
dynamics-aware decision embedding encoded by Algorithm 1, Algorithm 2 shows the contrastive
language-decision pre-training that bridges the semantic gap between text and decision, and aligns
text embeddings to comprehend the environment dynamics of decision tasks.

Then, Algorithm 3 and Algorithm 4 present the model training processes of Text-to-Decision Diffuser
and Text-to-Decision Transformer, respectively, where the generalist policy is conditioned on the
text embeddings fine-tuned in Algorithm 2. Finally, Algorithm 5 and Algorithm 6 show zero-shot
evaluations on test tasks, where the agent can directly realize text-to-decision generation according to
textual instructions at hand.

Algorithm 1: Pre-training the generalized world model
Input: Offline datasets Dtrain; Batch size m

Trajectory encoder ϕ; Reward decoderRφ and Transition decoder Tφ
1 for each iteration do
2 for i = 1, ...,m do
3 Sample a task Mk and obtain the corresponding dataset Dk from Dtrain
4 Sample two trajectories from Dk as τ = (s0, a0, r0, s1, a1, r1, ...) and

τ∗ = (s∗0, a
∗
0, r

∗
0 , s

∗
1, a

∗
1, r

∗
1 , ...)

5 Obtain the decision embedding by feeding τ to the trajectory encoder as z = ϕ(τ)
6 for t = 0, 1, ... do
7 Compute the predicted reward r̂∗t = Rφ(s

∗
t , a

∗
t ; z) and next state

ŝ∗t+1 = Tφ(s∗t , a∗t ; z) on trajectory τ∗

8 end
9 end

10 Update ϕ and φ jointly using loss

L(ϕ, φ) = 1
m

∑
i

∑
t

[
(r∗t −Rϕ(s

∗
t , a

∗
t ; z))

2
+
(
s∗t+1 − Tφ(s∗t , a∗t ; z)

)2]
11 end

Algorithm 2: Contrastive Language-Decision Pre-training
Input: Offline datasets Dtrain; Batch size N

Pre-trained trajectory encoder ϕ; Text encoder ψ
1 Freeze the trajectory encoder ϕ pre-trained in Algorithm 1
2 Initialize text encoder ψ from popular pre-trained language models like CLIP or T5
3 for each iteration do
4 Sample a batch of N (trajectory τ , textual task description l) pairs from Dtrain
5 Compute the symmetric similarities between the two modalities, sim(τ, l) and sim(l, τ), as in

Eq. (3)
6 Derive the decision-to-text and text-to-decision similarity scores, p(τ) and p(l), as in Eq. (4)
7 Update the text encoder ψ using LoRA by minimizing the symmetric cross-entropy loss L(ψ)

as in Eq. (5)
8 end

B Evaluation Environments and Dataset Construction

B.1 The Details of Environments

We evaluate T2DA and all the baselines on three classical benchmarks that are widely adopted to
assess the generalization capacity of RL algorithms, containing the following four environments:

• Point-Robot is a 2D navigation environment where an agent starts from a fixed origin and
navigates to a target location g. The agent receives its coordinate position as the observation
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Algorithm 3: Model Training of Text-to-Decision Diffuser
Input: Offline datasets Dtrain =

∑
k(Dk, lk); Pre-trained text encoder ψ

Noise model ϵθ; Batch size N
1 Freeze the text encoder ψ pre-trained in Algorithm 2
2 while not converged do
3 Sample a batch of N

(
trajectory x0(τk), language supervision lk

)
pairs from different tasks

in Dtrain
4 c ∼ Uniform({1, ..., C})
5 ϵ ∼ N (0, I)

6 xc(τ
k
st)← skt // Constrain the first state of the plan

7 Take gradient descent step on∇θ

∑N
k=1

∥∥∥ϵ− ϵθ (xc(τk), R̂(τ), ψ(lk), c)∥∥∥2
8 end

Algorithm 4: Model Training of Text-to-Decision Transformer
Input: Offline datasets Dtrain =

∑
k(Dk, lk); Pre-trained text encoder ψ

Causal transformer Fθ; Batch size N
1 Freeze the text encoder ψ pre-trained in Algorithm 2
2 while not converged do
3 Sample a batch of N (trajectory τk, language supervision lk) pairs from different tasks in

Dtrain
4 Get a batch of inputs B = {τ+k }Nk=1, where

τ+k =
(
ψ(lk), R̂

k
t−H+1, s

k
t−H+1, a

k
t−H+1, ..., R̂

k
t , s

k
t , a

k
t

)
5 apred = Fθ(τ

+
k ), ∀τ+k ∈ B

6 Minimize loss L(θ) = 1
N

∑
τ+
k ∈B

(
a− apred

)2
7 end

Algorithm 5: Zero-Shot Evaluation of Text-to-Decision Diffuser
Input: Language instruction lnew; Pre-trained text encoder ψ

Trained noise model ϵθ; Diffusion steps C; Guidance scale w
1 Obtain the text embedding from language instruction as ψ(lnew)
2 while not done do
3 Observe state st; Initialize xC(τ) ∼ N (0, αI)
4 for c = C, ..., 1 do
5 xc(τst)← st // Constrain the first state of the plan

6 ϵ̂← ϵθ (xc(τ), c) + w
[
ϵθ

(
xc(τ), R̂(τ), ψ(lnew), c

)
− ϵθ (xc(τ), c)

]
//

Classifier-free guidance
7 (µc−1,Σc−1)← Denoise(xc(τ), ϵ̂)
8 xc−1(τ) ∼ N (µc−1, αΣc−1)
9 end

10 Execute first action of plan as at ← x0(τat
)

11 t← t+ 1
12 end

and outputs actions in the range of [−0.1, 0.1]2, representing displacement in the X- and Y -axis
directions. The reward is the negative Euclidean distance to the goal: rt = −||st − g||2, where
st denotes the current position. The maximal episode step is set to 20. Tasks differ in the target
location g that is randomly sampled within a unit square of [−0.5, 0.5]2. Each task is captioned
by a text description as “Please navigate to the goal position of g".

• Cheetah-Vel is a multi-task MuJoCo environment where a planar cheetah robot aims to run a
target velocity vg along the X-axis. The reward function combines a quadratic control cost and a

18



Algorithm 6: Zero-Shot Evaluation of Text-to-Decision Transformer
Input: Language instruction lnew; Pre-trained text encoder ψ

Trained casual transformer Fθ; Target return G∗

1 Obtain the text embedding from language instruction as ψ(lnew)

2 Initialize desired return R̂ = G∗

3 for each timestep t do
4 Observe state st
5 Obtain the H-step history trajectory as τ =

(
R̂t−H+1, st−H+1, at−H+1, ..., R̂t, st

)
6 Augment the trajectory with the text embedding as τ+ = (ψ(lnew), τ)
7 Get action at = Fθ (τ

+)

8 Step env. and get feedback s, a, r, R̂← R̂− r
9 Append (R̂, s, a) to recent history τ

10 end

velocity matching term as rt = −0.05||at||2 − |vt − vg|, where at and vt represent the action and
current velocity, respectively. The maximal episode step is set to 200. Tasks differ in the target
velocity vg that is randomly sampled from a uniform distribution as vg ∼ Uniform[0.075, 3.0].
Each task is captioned by a text description as “Please run at the target velocity of vg".

• Ant-Dir is also a multi-task MuJoCo environment where a 3D ant robot navigates toward a
target direction θ. The primary reward component measures directional alignmentas rforward =
vx cos θ + vy sin θ, where (vx, vy) represents the horizontal and vertical velocities. The final
reward incorporates additional terms for the control cost, contact penalty, and survival bonus. The
maximal episode step is set to 200. Tasks differ in the goal direction θ that is uniformly sampled
from the full space as θ ∼ Uniform[0, 2π]. Each task is captioned by a text description as “Please
walk toward the target direction of θ".

• Meta-World comprises 50 robotic manipulation tasks where a robotic arm interacts with various
objects on a tabletop. Each task’s reward function (ranging from 0 to 10) combines multiple com-
ponents for fundamental behaviors (such as reaching, grasping, and placing), with 10 indicating
successful completion. The maximal episode step is set to 200. Table 4 illustrates the detailed
description of the training and test tasks. More details can be found in [65].

For each domain of Point-Robot, Cheetah-Vel, and Ant-Dir, we sample 50 tasks in total and split
them into 45 training tasks and 5 test tasks. For Meta-World, we use 18 training tasks and 4 test tasks
as detailed as shown in Table 4.

B.2 The Details of Datasets

We employ the soft actor-critic (SAC) algorithm [62] to independently train a policy for each task
and save policy checkpoints at different training steps. The hyperparameters used for SAC training
across all environments are listed in Table 5. We consider three types of datasets as

• Medium: We load the checkpoint of a medium policy that achieves approximately half the
performance of expert policies, and use the medium policy to generate a number of trajectories to
construct the Medium dataset.

• Expert: We load the checkpoint of an expert policy that achieves the highest return after the
convergence of training, and use the expert policy to collect several trajectories to construct the
Expert dataset.

• Mixed: We load all saved checkpoints of policies at different training steps, and use these policies
to generate a diverse set of trajectories to construct the Mixed dataset.

Specifically, we collect 200 trajectories for each kind of dataset in all evaluated environments.
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Table 4: Details of the training and test tasks of Meta-World.

Training Task Description
faucet-close rotate faucet clockwise
door-lock lock door by rotating clockwise
door-unlock unlock door by rotating counter-clockwise
window-close push and close window
window-open push and open window
coffee-button push button on coffee machine
drawer-open open drawer
door-open open door with revolving joint
button-press press button
button-press-topdown press button from top
button-press-topdown-wall bypass wall and press button from top
button-press-wall bypass wall and press button
handle-press press handle down
handle-pull pull handle up
plate-slide-back slide plate back
plate-slide-side slide plate side
plate-slide slide plate
plate-slide-back-side slide plate back side
Test Task Description
faucet-open rotate faucet counter-clockwise
drawer-close push and close drawer
reach-wall bypass wall and reach goal
handle-press-side press handle down sideways
handle-pull-side Pull a handle up sideways
hand-insert Insert the gripper into a hole

Table 5: Hyperparameters of SAC used to collect multi-task offline datasets.

Environments Training Warmup Save Learning Soft Discount Entropy
steps steps frequency rate update factor ratio

Point-Robot 2000 100 40 3e-4 0.005 0.99 0.2
Cheetah-Vel 500000 2000 10000 3e-4 0.005 0.99 0.2
Ant-Dir 500000 2000 10000 3e-4 0.005 0.99 0.2
Meta-World 1000000 5000 100 1e-3 0.005 0.99 0.2

C Baseline Methods

This section gives details of the competitive baselines, including context-based offline meta-RL
(OMRL), in-context RL, and language-conditioned policy learning approaches. These baselines
are thoughtfully selected to cover the main studies that tackle the generalization problem of RL
algorithms. The baselines are introduced as follows:

• CSRO [13], Context Shift Reduction for OMRL. It addresses the context shift problem in offline
meta-RL through two key components: 1) During meta-training, it employs a max-min mutual
information representation learning mechanism to minimize mutual information between the task
representation and the behavior policy while maximizing mutual information between the task
representation and the task information; 2) During meta-test, it introduces a non-prior context
collection strategy to first randomly explore the environment and then gradually update the task
representation.

• UNICORN [37], Unified Information Theoretic Framework of Context-Based Offline Meta-
Reinforcement Learning. It provides a general framework to unify several context-based offline
meta-RL algorithms by proving that they optimize different bounds of mutual information between
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the task variable M and latent representation Z. Based on this theoretical insight, it proposes a
supervised and a self-supervised implementation of the mutual information derivation I(Z;M).

• AD [42], Algorithm Distillation. It distills RL algorithms into neural networks by modeling their
training histories with a causal sequence model. Using a dataset of learning histories generated by
a source RL algorithm, AD trains a causal transformer to autoregressively predict actions given
their preceding learning histories as the context, enabling in-context policy improvement without
updating network parameters.

• BC-Z [25], Behavior Cloning Z. It is an imitation learning system designed for zero-shot
generalization to novel vision-based manipulation tasks. It flexibly conditions the policy on
pre-trained embeddings of natural language or video of human-performing tasks. To align BC-
Z to the benchmarks investigated in this paper, we replace the video data with RL datasets
D =

∑
i(si, ai, ri, s

′
i) and modify its video encoder to a trajectory encoder ϕ identical to

that used in T2DA. This adjustment for a fair comparison results in the optimization objec-
tive: min

∑
task k

∑
(s,a)∼D [− log π(a|s, ψ(lk)) +Dcos(ψ(lk), ϕ(τk))], where Dcos denotes the

cosine distance.

• BAKU [27], an efficient transformer architecture for multi-task policy learning that improves
upon prior work in offline imitation learning. It carefully integrates multiple key components:
observation trunks for multi-modal fusion, action chunking for smoother control, multi-sensory
observation processing, and modular action heads for flexible prediction. The model is optimized
through behavior cloning with the objective: min

∑
task k

∑
(o,a)∼D |a − π(a|o, Tk)|2, where o

represents multi-modal observations and Tk denotes the task instruction. For a fair comparison,
we adjust BAKU to the language-conditioned zero-shot setting.

• Prompt-DT [12], Prompt-based Decision Transformer. It is a DT-based offline meta-RL method
that leverages the transformer architecture and prompting mechanisms to enable few-shot adapta-
tion. It introduces trajectory prompts, which consist of short demonstration segments from the
target task, to encode task-specific context and guide policy generation. Without requiring any
fine-tuning on unseen tasks, Prompt-DT achieves strong few-shot performance through expert
demonstrations in contructed prompts.

• MetaDiffuser [66], a diffusion-based offline eta-RL method that considers the generalization
problem as conditional trajectory generation task with contextual representation. It trains a context
conditioned diffusion model to generate task-oriented trajectories for planning. To further enhance
the dynamics consistency of the generated trajectories while encouraging trajectories to achieve
high returns, it introduces a dual-guided module in the sampling process of the diffusion model.

• Meta-DT [14], Meta Decision Transformer. It harnesses the sequential modeling capability of
the transformer architecture and enables robust task representation learning through a disentangled
world model, thereby achieving efficient generalization in offline meta-RL. It learns a compact
task representation via context-aware world model, used as a contextual condition to guide task-
oriented sequence generation. Complementary to the task representation, it selects a self-guided
trajectory segment from online interactions to further exploit the architectural inductive bias.
Thereby, Meta-DT exhibits strong few- and zero-shot performance without expert demonstrations.

For a fair comparison, all baselines are adjusted to an aligned zero-shot setting, where no warm-start
data is available before policy evaluation. All these baselines can only use samples generated by the
trained meta-policy during evaluation to infer task representations.

D Implementation Details of T2DA

D.1 Network Architecture and Hyperparameters

• World Model. We implement the generalized world model using simple architecture: a trajectory
encoder and two decoders for the reward and state transition prediction. Specifically, the trajectory
encoder consists of a transformer encoder with 6 layers, where each layer contains a multi-head
self-attention module (8 heads) and a feed-forward network with ReLU activation. States, actions,
and rewards in the raw trajectory are first tokenized into 256-dimensional vectors through separate
linear layers. These embeddings are concatenated and processed by the transformer encoder to
produce a 256-dimensional decision embedding z via mean pooling and linear projection. Two
MLPs serve as decoders: a reward decoder that predicts the instant reward r given the tuple
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(s, a, s′; z), and a state transition decoder that predicts the next state s′ given the tuple (s, a, r; z).
Both MLPs utilize two hidden layers of 256 dimensions each.

• Text Encoder. We initialize text encoders from pre-trained CLIP [16], BERT [64],
and T5 [56] in this paper. Specifically, we use openai/clip-vit-base-patch32,
google-bert/bert-base-uncased, and google-t5/t5-small, respectively.

• Diffusion Architecture of T2DA. We implement the diffusion architecture of T2DA-D based
on the decision diffuser [58] framework 2. Following DiT [67], we replace U-Net backbone with
a transformer to represent the noise model ϵθ. Each block employs a multi-head self-attention
module followed by a feed-forward network with GELU activation [68], using adaptive layer
normalization (adaLN) for conditioning. The model processes state-action trajectories through
linear embeddings, which are combined with positional embeddings derived from RL timesteps.
The diffusion time embeddings are encoded via sinusoidal embeddings processed through an
MLP. For conditioning, text embeddings and returns-to-go are concatenated with diffusion time
embeddings. The detailed configurations and hyperparameters of T2DA-D are presented in
Table 7.

• Transformer Architecture of T2DA. We implement the transformer architecture of T2DA-T
based on the decision transformer [59] framework 3. Specifically, we employ modality-specific
embeddings for states, actions, returns-to-go, and timesteps. The timestep embeddings serve as
positional encodings and are added to each token embedding. These tokens are concatenated with
text embedding of task description and fed into a GPT architecture which predicts actions autore-
gressively using a causal self-attention mask. The detailed configurations and hyperparameters of
T2DA-T are presented in Table 6.

Table 6: Configurations and hyperparameters in the training process of T2DA-T.
Configuration Point-Robot Cheetah-Vel Ant-Dir Meta-World

layers num 3 3 3 3
attention head num 1 1 1 1
embedding dim 128 128 128 128
horizon 20 200 40 50
training steps 100000 70000 100000 100000
learning rate 1e-4 2e-4 1e-4 1e-4

Table 7: Configurations and hyperparameters in the training process of T2DA-D.
Configuration Point-Robot Cheetah-Vel Ant-Dir Meta-World

DiT layers num 4 4 8 4
DiT attention head num 8 8 8 8
embedding dim 128 128 256 128
horizon 10 50 40 50
diffusion steps 20 20 20 20
training steps 100000 70000 100000 100000
learning rate 5e-5 1e-4 1e-4 1e-4

D.2 Computation

We train our models on one Nvidia RTX4080 GPU with the Intel Core i9-10900X CPU and 256G
RAM. Dynamic-aware decision embedding and constrastive language-decision pre-training cost
about 0.5 hours. The generalist policy training cost about 0.5-3 hours depending on the complexity
of the environment.

2https://github.com/anuragajay/decision-diffuser
3https://github.com/kzl/decision-transformer
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E Analysis of Parameter-Efficient Fine-tuning

As stated in Sec. 3.3, we employ LoRA, a classical parameter-efficient fine-tuning method, to fine-
tune the text encoder at a lightweight cost. As shown in Table 8, the number of trainable parameters
is substantially smaller than full-parameter fine-tuning (less than 1%), enabling much more efficient
computation and memory usage. To investigate whether a limited number of trainable parameters
constrains the capacity for knowledge alignment, we evaluate T2DA’s performance by comparing
LoRA fine-tuning with full-parameter fine-tuning during contrastive language-decision pre-training.
Figure 8 illustrates the results on representative environments with the text encoder initialized from
CLIP. Obviously, the two fine-tuning approaches yield nearly identical performance, highlighting
T2DA’s superior parameter efficiency of T2DA without sacrificing effectiveness.

Table 8: The number and memory usage of parameters for LoRA fine-tuning and full-parameter
fine-tuning.

Method Trainable parameters (Memory) Total parameters (Memory) Percentage

LoRA Tuning 589,824 (2.25MB) 63,755,776 (243.21MB) 0.93%
Full Tuning 63,165,952 (240.96MB) 63,165,952 (240.96MB) 100%
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Figure 8: Test return curves of T2DA using LoRA-tuned and fully-tuned CLIP text encoders. With
less than 1% parameter count, T2DA using LoRA fine-tuning yields nearly identical performance
compared to full-parameter fine-tuning, highlighting T2DA’s superior parameter efficiency without
sacrificing effectiveness.

F Analysis of Training Pipline

T2DA separately trains three key components: (a) decision embedding, (b) knowledge
alignment, and (c) generalist policy. To demonstrate the effectiveness of this modular ap-
proach, we conducted ablation studies comparing our method against two alternatives: jointly training
(a)+(b), and jointly training all three components (a)+(b)+(c) simultaneously. As shown in Table 9,
our separate training pipeline achieves substantial performance gains of 20%-56% across different en-
vironments. This modular architecture not only provides a more stable training process but also offers
superior scalability, as individual components can be easily substituted or upgraded independently
without affecting the entire system.

Table 9: Ablation study results on modular architecture. Best results in bold.

Environment T2DA (a)+(b) (a)+(b)+(c)

Point-Robot −7.2 −8.9 −16.3
Meta-World 1274.5 1008 817.3
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G Meta-RL Baselines with Goal Information

For comprehensive evaluation, we enhanced meta-RL baselines by incorporating goal information
into their observation space. This approach provides a standardized framework where all compared
methods have access to equivalent task information.

The results in Table 10 demonstrate T2DA’s performance advantages over the goal-enhanced baselines,
further validating the effectiveness of leveraging natural language supervision. This goal-integrated
setting was maintained consistently for all meta-RL baseline comparisons throughout the paper.

Table 10: Performance comparison with goal-enhanced meta-RL baselines. Best results in bold.

Environment T2DA CSRO (w/ goal) UNICORN (w/ goal)

Cheetah-Vel −60.4± 1.8 −84.0± 4.3 −82.7± 9.2
Ant-Dir 970.3± 8.7 384.4± 30.1 427.1± 25.3

H Performance on Unstructured Language Instructions

This section presents an evaluation of the method’s generalization capabilities when confronted with
less structured, ambiguous, or noisy natural language instructions. Experiments were conducted
where tasks were captioned using two additional types of textual descriptions.

Task descriptions were reconstructed in two distinct linguistic styles:

• Noisy style: "Um, there’s this location I think... somewhere around {round(number=task[0],
ndigits=2)}-ish in the x direction? And maybe {round(number=task[1], ndigits=2)} or so up?"

• Conversational style: "Could you move over to the spot that’s roughly {round(number=task[0],
ndigits=2)} units to the right and {round(number=task[1], ndigits=2)} units up? Thanks!"

Results demonstrate T2DA’s consistent performance across these different textual description formats:

Table 11: Performance comparison across different instruction styles.

Environment T2DA T2DA (Noisy) T2DA (conversational)

Point-Robot −7.2± 0.1 −7.6± 0.1 −8.0± 0.1

These findings highlight the robustness of leveraging natural language supervision, as the language
representations effectively capture task-relevant information and successfully extrapolate meta-level
knowledge across tasks presented with varying textual descriptions.

I Experimental Results on Humanoid

This section presents experimental results on stimulated humanoid robot benchmark [69]. Table
12 shows the converged performance of T2DA and baselines using Mixed datasets under aligned
zero-shot setting. The results demonstrate that T2DA consistently outperforms baselines in this more
challenging environment.

Table 12: Performance comparison of different methods on Humanoid. Best results in bold and
second best underlined.

Method T2DA-T T2DA-D BC-Z DT DD CSRO UNICORN AD

Returns 610.4 575.4 531.7 520.3 381.3 520.3 505.6 427.4
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J Comparison to More OMRL Baselines

In this section, we compare T2DA to three additional OMRL baselines: Meta-DT [14], MetaDif-
fuser [66], and Prompt-DT [12]. More details about these baselines can be found in Appendix C. The
results in Table 13 demonstrate T2DA’s consistent superiority over these OMRL baselines.

Table 13: Performance comparison with OMRL baselines. Best results in bold.

Environment T2DA-T T2DA-D Meta-DT MetaDiffuser Prompt-DT

Point-Robot −7.2± 0.1 −8.4± 0.2 −8.4± 0.4 −11.7± 0.6 −14.3± 1.7
Cheetah-Vel −70.3± 3.8 −60.4± 1.8 −78.2± 5.3 −86.5± 4.8 −94.6± 8.1
Ant-Dir 970.3± 8.7 570.6± 13.1 922.1± 11.9 858.5± 42.5 895.2± 17.3

K Limitations

We tackle the offline meta-RL challenge via leveraging the supervision from natural language. Our
scalable implementations demonstrate that the generalist RL agent can understand and act upon
natural language instructions in a zero-shot manner. While our approach uses relatively lightweight
datasets compared to large models, it demonstrates promising results. An essential step of future work
is to implement on vast datasets with diversified domains and deploy the text-to-decision paradigm
on real robots toward embodied intelligence.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please refer to the Abstract and Section 1: Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 5: Conclusions, Limitations, and Future Work, and
Appendix K.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work does not include theory assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Appendix A for algorithm pseudocodes. Appendix B for the
details of environments and dataset construction, and Appendix D for the implementation
details and hyperparameters of our method. Our source is included in the supplementary
materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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benchmark).
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Section 4: Experiments, Appendix B, Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to Section 4: Experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix D and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Please refer to Appendix A, Appendix B and Appendix D for details of
our implementation and dataset construction. We also provide our source code in the
supplementary materials.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Section 5: Conclusions, Limitations, and Future Work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We construct the datasets used in this work ourselves, and not use existing
assets, please refer to Appendix B for details.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our work does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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