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Abstract
Credible forecasting and representation learning
of dynamical systems are of ever-increasing im-
portance for reliable decision-making. To that
end, we propose a family of Gaussian processes
for dynamical systems with linear time-invariant
responses, which are nonlinear only in initial con-
ditions. This linearity allows us to tractably quan-
tify forecasting and representational uncertainty
simultaneously—alleviating the challenge of mul-
tistep uncertainty propagation in GP models and
enabling a new probabilistic treatment of learning
representations. Using a novel data-based sym-
metrization, we improve the generalization ability
of GPs and obtain tractable, continuous-time pos-
teriors without the need for multiple models or
approximate uncertainty propagation.

1 Introduction
Learning predictive models for forecasting dynamical sys-
tems is of paramount importance due to complex and of-
ten unknown interactions between quantities of interest
(Brunton & Kutz, 2019). The great utility of such mod-
els helps advance various different fields such as fluid me-
chanics (Kundu et al., 2015), molecular biology (Lindorff-
Larsen et al., 2011), robotics (Billard et al., 2022) or safety-
constrained decision making (Hewing et al., 2020b; Brunke
et al., 2022). Dynamical system descriptions commonly re-
quire simulation for forecasting and uncertainty propagation,
which can be difficult for non-parametric data-driven mod-
els (Hewing et al., 2020a; Beckers & Hirche, 2022). From
real-world measurements of complex and unknown dynami-
cal systems, data often comes in the form of sequential data
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that can be arbitrarily and non-uniformly sampled. Despite
such discrete observations, there is often a certain regularity
in the evolution of quantities interest (Biloš et al., 2023) in
various different domains, from medical, industrial to finan-
cial (Sezer et al., 2020; Deb et al., 2017; Lim & Zohren,
2021)—making it important to impose structure that discour-
ages temporal fluctuations. To account for these challenges
in modeling dynamical systems, the choice of representa-
tions when learning from data becomes a deciding factor in
the difficulty of forecasting as well as inference, especially
when modeling complex phenomena (Mezić & Banaszuk,
2004) or long time-series (Gu et al., 2022). To address
the above challenges we consider non-parametric learning
paradigms along with their appeals and challenges, empha-
sising uncertainty quantification and forecasting simplicity.

The linearity of Koopman operators and the forecast simplic-
ity of linear time-invariant (LTI) models coming from their
eigendecompositions, lead to their increasing popularity in
learning dynamical systems (Bevanda et al., 2021; Otto &
Rowley, 2021; Brunton et al., 2022). Nevertheless, existing
LTI predictor models based on operator regression are
limited to dissecting long-term components of stationary
dynamics (Korda & Mezić, 2018; Klus et al., 2020; Kostic
et al., 2022; 2023). While this approach is well-versed for
stationary data and reversible dynamics, most real-world
dynamical systems are irreversible and often even nonsta-
tionary (Wu & Noé, 2020). Thus, an increasing amount
of methods considers dynamics-informed kernels (Zhao &
Giannakis, 2016; Berry & Sauer, 2016; Banisch & Koltai,
2017; Alexander & Giannakis, 2020; Burov et al., 2021;
Dufée et al., 2024; Bevanda et al., 2023). By incorporating
samples of the dynamics from sequential data into the ker-
nel, eigenfunctions of Koopman operators can be accessed
for both ergodic (Dufée et al., 2024) and transient settings
(Bevanda et al., 2023). However, approaches of this type of-
fer no forecast confidence bounds, lack principled tools for
model selection and handling observation noise, cf. Table 1

Approach LTI End-to-end Bayesian

GP-based ✗ ✓ ✓
Koopman-based ✓ ✗ ✗

this paper ✓ ✓ ✓

Table 1: Dynamical systems modeling approaches
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In this work we present Koopman-Equivariant Gaussian
Processes (KEGPs), the first universal GP models with
fully tractable and closed-form confidence bounds for
multi-step prediction. This is enabled by latent dynam-
ics based on simple LTI responses from a nonlinear func-
tion of the initial condition. Our GP model provides en-
hanced generalization ability through intrinsic symmetries
(Koopman-equivariants) and delivers continuous-time pos-
teriors without requiring time-derivative data. KEGPs allow
for tractable quantification of both forecasting and repre-
sentational uncertainty simultaneously – alleviating a tradi-
tional challenge of GPs and enabling a novel probabilistic
treatment of learning representations of dynamical systems.

2 Preliminaries and problem statement
The following covers the necessary prerequisites for setting
up the subsequent interplay between GPs, linear operators,
and intrinsic dynamical system symmetries.

2.1 Preliminaries

System class We consider state-space models with Lip-
schitz dynamics and measurement functions

ẋ = f(x) ∈ X ⊂ Rn, y = h(x) ∈ R (1)

that have a well-defined flow Ft(x0) :=
∫ t
0
f(x(τ))dτ .

The required local Lipschitz continuity is natural to physical
systems that often evolve “smoothly”. The canonical fore-
casting model for (1) is y(t,x0) := ht(x0) ≡ h ◦ Ft(x0),
see Figure 1 (left). In practice, however, a numerical inte-
gration scheme is used to approximately solve the integral
F̃t∆ ≈ Ft∆ for a shorter time-interval t∆ soH = t/t∆ ∈ N,
so the actual forecast becomes

y(t,x0) ≈ h ◦ F̃t∆ ◦ · · · ◦︸ ︷︷ ︸
H×

F̃t∆(x0) (2)

Koopman operator-based modeling We can obtain a sim-
pler (linear) forecasting model, by utilizing the fact that
the composition of a function h with the flow Ft can be re-
placed by the linear Koopman operator At : C(X) → C(X)
with Ath(x0) := h(xt) (Koopman, 1931; Cvitanović et al.,
2016). This representation is depicted in Figure 1 (middle).
For a forward complete system (Krstic, 2009) on a compact
non-recurrent domain X[0,T ], we can forecast using an LTI
predictor (Bevanda et al., 2023)

y(t,x0) ≈ [Ath̃](x0), At : H → H (3)

where H is a suitable finite-dimensional hypothesis space
and h̃ is the restriction of h to H. Note that At ≡ PHAt|H ,
where PH is the (orthogonal) projector onto H. Construct-
ing a suitable H is nontrivial as the domain C(X) of the true
operator At is infinite-dimensional. For practicable models,

it is critical to obtain an accurate finite-dimensional restric-
tion At|H :H → C(X), which is a challenging task (Kostic
et al., 2024). As such, it is at the core of our representation
learning problem.

2.2 Problem statement

In this paper, we consider the problem of determining a
representation of At acting on an observable h satisfying
the following properties.

1. Closure: The hypothesis H satisfies ∥At−At|H∥ = 0.

2. Richness: H is “big enough” to span h, i.e. H is
universal – dense in C(X).

3. Generalization: Fast estimation error decay due
to a, non-local, non-stationary kernel that does not
introduce bias.

Closure and richness are crucial to control learning bias.
If the closure property is not upheld, the dynamics of the
learned system drift away and lose their consistency with
the actual dynamics. Insufficient richness leads to the model
being incapable of making accurate predictions, as the ob-
servable of interest can not be represented. Finally, gen-
eralization is paramount in scenarios with limited data, as
non-asymptotic effects dominate the quality of the model.

By exploiting the linearity of the model (3) together with the
symmetry contained in trajectories, we learn a suitable hy-
pothesis space H using Gaussian process regression. This
allows us to tractably quantify both forecasting and rep-
resentational uncertainty simultaneously – alleviating the
traditional challenge of GPs and enabling a novel probabilis-
tic treatment of learning representations in the form of LTI
predictors.

3 Closure via latent LTI symmetries of
trajectory data

Our work builds upon the extensive literature on GPs (Ras-
mussen & Williams, 2006; van der Vaart & van Zanten,
2008; Kanagawa et al., 2018; Ridderbusch et al.), their in-
terplay with linear operators (Särkkä, 2011; Matsumoto
& Sullivan, 2024) and our newly introduced concept of
Koopman-equivariance. As depicted in Figure 1, Koopman
operators allow us to relate the action of the dynamics on the
input of a measurement function (state-space) to its action
on the output of the measurement functional (functional-
space). Equivariance – the equivalence – of input and output
action provides a constructive way to extract LTI factors of
dynamical systems based on trajectory data.
LTI dynamical factors When a Koopman operator is spec-
tral, we can consider dynamical systems at the level of flows
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State-space

x0 = x(0)
xt = Ft(x0)
yt = h(xt)

nonlinear
finite-dimensional

g: X → F
h: F → C−−−−−−→

Functional-space

h0 = h
ht = Ath0

yt = ⟨ht, g(x0)⟩

linear
infinite-dimensional

ϕ: H → C−−−−−−→

Factor-space

ϕ0 = ϕ(x0)
ϕt = Atϕk
ŷk = ϕ⊺

01

linear time-invariant
finite-dimensional

Figure 1: Using operator-theoretic ideas to trade-in a state-space model for a functional- or factor-space model.

through the semi-conjugacy ϕ ◦ Ft = eλt ◦ ϕ, that defines
dynamical factors/modes (Mezić & Banaszuk, 2004)

ϕt(x) := ϕ (Ft(x)) = eλt ϕ(x). (4)

where λ ∈ spec(L) is an eigenvalue of the Lie derivative
(Koopman generator) (Lasota & Mackey, 1994). The map
eλt is often called a (topological) factor of Ft, and, con-
versely, the flow Ft is called an extension of eλt (Zeng,
2018). This notion of semi-conjugacy provides a rigorous
description of (simple) linear time-invariant dynamics eλt

that are an LTI factor of (1). Those factors can be combined
to yield an LTI basis for system representation, as depicted
in Figure 1 (right). Nevertheless, it may be unclear how
to obtain such dynamical factors in a generic fashion for
unknown systems without an additional feature regression
stage. Next, we will introduce the key concept to enable
that, which we refer to as Koopman-equivariance.
Subgroup equivariance for dynamical systems Let Tt :
X → X be a set of transformations on X for the ab-
stract semigroup with parameter t ∈ T . We say a function
ϕ : X → Y is equivariant to t if there exists an equivalent
transformation on its output space St : Y → Y such that
ϕ (Tt(x)) = St(ϕ(x)) (Satorras et al., 2021). This effec-
tively means that Tt and St essentially describe the same
transformation but in different spaces.

Based on the above idea of equivariance, we formalize an
intrinsic symmetry of a dynamical system through the inter-
play of the flow semigroup {Ft}t∈T that produces dynami-
cal system trajectories and its corresponding LTI dynamical
factors (4).

Definition 3.1 (Koopman-equivariance). Let T be a com-
pact subset of the time axis and M a manifold. A map
ϕλ : M 7→ M is called Koopman-equivariant if ϕλ ◦ Ft =
eλt ϕλ on M for any t ∈ T.

Considering trajectories as the unit of data, the defined
Koopman-equivariance allows us to obtain LTI dynamical
factors for our dynamical system before the inference itself
even starts and satisfes the closure property.

3.1 Koopman-equivariant GPs: from past to future

Following Definition 3.1, we would require access to future
trajectories for Koopman-equivariance. However, it suffices
to symmetrize for the evaluation of a dynamical factor at
the current state ϕλ |x in order to benefit from improved
performance at test time. Hence, we form a causal model
that utilizes the past for symmetrization to forecast the future
model : x[Tp,t0] 7→ y[t0,Tf ] in a reliable fashion. To do so,
we employ a symmetrization approach that guarantees that
any function is immediately an LTI dynamical factor of the
underlying dynamical system given access to trajectory data.

Since this approach allows us to use a standard GP regres-
sion formulation, hyperparameter optimization is straight-
forward, and GP approximations can be readily employed.

To implement the idea of Koopman-equivariance, we follow
the agnostic symmetrization approach of (Kim et al., 2023;
Nguyen et al., 2023) to obtain a constructive expression.

ϕλ |x = Eλ[ψθ] = Et∼U([Tp,t0]])

[
e−λt ψ (x(t)))

]
(5a)

ψ(x) ∼ GP(ψ̂(x), kψ(x,x
′)) (5b)

By the closedness of Gaussian processes under linear
operators (Matsumoto & Sullivan, 2024), ϕλ follows a
Koopman-equivariant Gaussian process distribution, i.e.,
ϕλ ∼ GP(ϕ̂λ, kϕλ

), equipped with a covariance in the
space of equivariant objects based on the past trajectory
data, fulfilling Definition 3.1.

4 Rich representations using LTI factors
While (5) addresses the closure property, it is not rich
enough to represent generic observables h over a time in-
terval [t0, Tf ]. Fortunately, given a sufficiently rich set of
eigenvalues, we get a rich representation (3) by setting the
hypothesis to H := span{ϕλ1

, · · · , ϕλD
} and the operator

to At := diag([eλ1t · · · eλDt]) in (3). Then, dynamics (1)
are universally representable (Korda & Mezić, 2020) in the
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form of a modal decomposition

ỹt(·) :=
∑
j∈[D]

eλjt ϕλj
(·). (6)

so ∀ε ∈ R+ ∃ỹt(·) such that ∥yt − ỹt∥∞ ≤ ε with
ϕλj

∈ C(X), λj ∈ C and t ∈ [0, T ]. Such a perspective is
shown to be a fruitful theoretical framework for building
predictive models for dynamical systems with the mild re-
quirement of non-recurrence (Bollt, 2021; Korda & Mezić,
2020; Bevanda et al., 2023; 2024).

4.1 Mode decomposition-induced GP structure

Trajectory-based GP With the predictor structure fully
defined in (6), we place a prior on constituent factors via the
eigenvalue distribution λ ∼ ρ̂θ ≈ ρ(spec(At)) of the Koop-
man operator. As our goal is to obtain a high-likelihood
representation – enabling automated model selection – we
integrate the parameters of the distribution into Bayesian
model selection. Finally, in order to use the mode decompo-
sition (6) structure we employ a finite sample approximation
of ρ̂θ using D spectral components. Each of the sampled
spectral components defines a prior

{ϕλj (xtraj) ∼ GP(ϕ̂λj (xtraj), kϕλj
(xtraj,x

′
traj))}j∈[D]. (7)

Adding LTI temporal dynamics Assuming no corre-
lation between different factors {ϕλj

}j∈[D] immediately
induces a structured prior from (5) given by ỹt(·) ∼
GP(ŷt(·), ky(·, ·)), where the corresponding kernel factor-
izes into a linear temporal and nonlinear spatial component.

ŷ(t, ·) =
∑
j∈[D]

eλjt ϕ̂λj
(·), (8a)

ky((t, ·), (t′, ·′)) :=
∑
j∈[D]

kTj(t, t
′)kϕλj

(·, ·′), (8b)

where kTj(t, t
′) = eλjt eλ

∗
j t

′
and ϕ̂λj

(·), kϕλj
(·, ·) are

defined via (5). Conceptually, this kernel is akin to a
simulation-induced kernel (Chen, 2018). However, it is
universal for nonlinear system responses and symmetrized
using Koopman-equivariance.

Intuitively, the LTI featurization
{
kTj (t, t

′)
}
j∈[D]

can be
considered as a prior on the temporal properties of the pre-
dictor. Temporal covariance with decay |λ| close to zero
will result in models with uniform uncertainty over time,
while taking negative or positive decays will result in mod-
els with contracting or expanding uncertainty, respectively.
Using this featurization, the model is guaranteed to be LTI.

5 Numerical experiments
We implement KEPGs using GPJax (Pinder & Dodd,
2022) and compare them to a simple continuous multi-task

predator-prey halfcheetah weather
#N 256 4048 1024
#n /#H 2/16 24 / 16 8/18

KEGP MSLL -1.19±0.05 -0.70±0.02 -0.74±0.03
RMSE 0.31±0.01 0.50±0.01 0.51±0.01

MTGP MSLL -0.61±0.10 0.00±0.00 0.00±0.00
RMSE 0.42±0.05 1.00±0.00 1.08±0.00

Table 2: KEGP vs MTGP in MSLL and RMSE over 5 iid.
simulations. #N denotes the number of trajectories, #H of
forecast timesteps, and #n the state-space dimension.

GP (MTGP): GP(ψ̂(x, t), kψ((x, t), (x
′, t′)) as a baseline

model (Bonilla et al., 2007). All covariances are modeled
with Gaussian radial basis functions with automatic
relevance determination (ARD). The spectral distribution
of KEGP is modeled as a parametrized uniform distribution
and jointly optimized with the generative parameters. To
compute (8), we sample D = 128 eigenvalues

5.1 The benefits of equivariance

We illustrate the benefits of our modeling approach com-
pared to MTGP. To this end, we use the predator-prey model:

ẋ1 = r1x1 + ciγ1x1x1, ẋ2 = r2x2 + ciγ2x1x2. (9)

First, we display how KEGP modeling manifests in the
covariance functions in Figure 2. We compare initial and
marginal log-likelihood optimized covariances for KEGP
and MTGP. The spatial covariance corresponds to that of
a trajectory xtraj. The temporal covariance [t0, Tf ] is sep-
arately displayed for the same trajectory. Notably, while
the learned covariances for KEGP and MTGP are of sim-
ilar shape, the initial spatial covariance of KEGP is less
local than that of MTGP, already encoding the trajectory
structure before optimization. Further, the KEGP temporal
covariance is spectrally rich, as it is the superposition of
multiple one-dimensional LTI factors, as opposed to a single
nonlinear covariance. Notably, since the spectral distribu-
tion is a parametrized uniform distribution, KEGP has only
seven parameters, whereas MTGP has 100. To illustrate
how the non-local covariance affects the model’s predictive
distribution, Figure 3 shows a predicted (test) trajectory with
KEGP and MTGP. It can be observed that the mean and
confidence intervals are “smoother” for KEGP, resembling
the smoothness in trajectories of the predator-prey model.

5.2 Quantitative study

To investigate the advantages of KEGPs on realistic data, we
perform quantitative study on a range of benchmark exam-
ples of varying complexity. From the robotics domain, we
consider expert demonstrations from D4RL (Fu et al., 2020)
from the halfcheetah environment and forecast the first state
and action. We take temperature data from the Monash TSF
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KEGP Space Time

Initial Learned Initial Learned

MTGP Space Time

Initial Learned Initial Learned

Figure 2: Visualization of the GP covariances in space and time. The spatial, KEGP prior already strongly indicates the
shape of the optimized covariance.

Figure 3: Multi-step mean and variance from noisy data
of the predator population (9). Top: Koopman-equivariant
GPs. Bottom: Multi-task GPs.

benchmark (Godahewa et al., 2021) as a sample for highly
complex weather dynamics. Since these datasets provide
a single long trajectory, we split off the last chunk as test
data and partition the trajectory into #N input-task pairs to
comply with our model : [Tp, t0] → [t0, Tf ]. Since exact
inference in GPs is costly for larger datasets, we use an ap-
proximate model based on stochastic sparse variational infer-
ence (Hensman et al., 2015). We evaluate the performance
in RMSE and MSLL (Rasmussen & Williams, 2006) as dis-
played in Table 2. We observe that KEGP can perform on
all tasks, while MTGP frequently has zero MSLL, indicat-
ing convergence to the trivial model – resembling the mean
and variance of the data. We attribute this difference to the
dynamics-informed prior of our KEGPs facilitating the opti-

mization procedure, which is crucial for complex problems.

6 Conclusion
We have presented a novel approach to incorporate a generic
dynamical system structure as a prior through the holistic
use of LTI dynamical factors and Koopman-equivariance.
We realize this by defining a model using a GP with lin-
ear latent dynamics we call Koopman-equivariant Gaussian
process (KEGP). Though a scalar-valued model, it allows
multi-step error minimization and compression of trajec-
tory information through a Koopman-equivariant hypothe-
sis space. We demonstrate the versatility of regression with
KEGP both qualitatively and quantitatively, demonstrating
superior performance to vanilla multi-task GPs. Neverthe-
less, the main caveat remains the computational complexity
of the proposed covariance function. Future work should in-
vestigate efficient computations w.r.t. input-sequence length,
possibly drawing from recent ideas in neural sequence-to-
sequence models (Guo et al., 2023). Also, work towards a
sharp analysis of the proposed method is of great interest.
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