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Abstract

In this paper, we study touch modality data collected by RHex robots in White
Sands National Monument, New Mexico, United States. Inspired by the recent ad-
vances of partial information decomposition (PID), we make analysis of Interaction
Information (II), and propose two new feature selection algorithms, namely Mutual
Information and Interaction Information (M I®) criterion and Mutual Information
Difference (MID) criterion. We applied our M I and MID algorithms to feature se-
lection of the robots sensing data, and reduced 12 features to 7 features. Simulation
results show that the selected 7 feature data could be successfully used for terrain
classification using random forest classifier. Our M I® and MID feature selection
algorithms perform better than the Mutual Information Maximization (MIM), Joint
Mutual Information (JMI), and SVD-QR algorithms in terrain classification.

1 Introduction

Touch is an important sensor modality for robots, and touch sensing has become more prevalent in
robotic systems. Robots are often used to explore areas where humans are not able to access, for
example, areas with explosive or harmful materials such as nuclear plant, planets without oxygen such
as Mars. In this paper, we are interested in studying terrain classification based on touch modality
from robotic sensing. Machine learning has been widely applied to terrain classification. In [13]],
support vector machine (SVM) classifiers were applied to terrain classification for legged robots with
passively compliant components, and a hexapod robot was operated in the surf zones of beaches. In
[43]], a deep learning approach was used for landslides classification based on hyperspectral images,
which used a deep belief network and a logistic regression classifier. In [31], wavelet transform
was applied to data fusion between LiDAR and QuickBird imagery, and landslide locations were
differentiated using object-oriented classification method. In [27]], three Indian geographical regions
were studied based on Landsat7 satellite images using support vector machine and artificial neural
network. In [[1], a convolutional autoencoder was applied to PoISAR terrain classification using
texture feature fusion.

The contributions of this paper include the following.

1. We propose two feature selection algorithms, Mutual Information and Interaction Informa-
tion (M I®) criterion and Mutual Information Difference (MID) criterion.

2. We apply the two criteria to robotic sensing data with touch modality for terrain classification.

NeurIPS 2024 Workshop on Touch Processing: From Data to Knowledge.



2 Touch Modality Data from Robotic Sensing

We used the touch modality data from robots reported in [34]. The robotic sensing data were collected
in White Sands (WS) National Monument, New Mexico, United States. The RHex robot was used
to sense and collect data in different terrains, for example, dry and loose gypsum sand at a barchan
dune, or thick-crusted soil surface in the parabolic area. The datasets are located in [33[][32], which
consists of 27 files, of which 15 files have category barchan in a data directory WS-barchan [33]] and
12 files have category parabolics in a data directory WS-parabolics [32].

Each data file was named based on the date and time collected. For example, Test_03101430.txt in
WS-barchan directory stands for a file of barchan terrain collected at 14:30 on March 10 in White
Sands. If we open this file, it contains 2882 rows and 14 columns which means it has 2882 data
samples and each data sample is represented by 14 variables. Each robot sensed data file has 14
columns, but has different number of rows which demonstrates the number of data samples of each
file is different. The number of collected data samples for each individual barchan file is: {2882
2957 2940 2948 2957 2962 2911 3005 2910 2874 2902 2894 3001 2993 2854 }; and the number of
collected data samples for each individual parabolics file is: {2999 2862 2931 2894 2794 2841 2903
2833 2901 2894 2996 2978}. Observe that they are not equal. The total number of data samples for
barchan is 43,990, and that for parabolics is 34826.

The 14 columns in each robot sensed data file include the following values,

* 1: elapsed time (on PC)

 2: elapsed time (on robot)

* 3-6: desired toe position (polar — r, alpha; cartesian — x, y)
* 7-10: actual toe position (polar — r, alpha; cartesian — x, y)

* 11-14: force (polar — radial, tangential; cartesian — I, )

Columns 11-14 are touch modality data.

We don’t consider the first two columns (elapsed time) since they are not related to the terrain. We
are interested in selecting features from columns 3-14 as predictors space, and subsequently apply
the selected features to terrain classification using machine learning. In Fig. [T] we illustrate different
terrains in White Sands presented in [34].
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Figure 1: Different terrains in White Sands [34]. (a) Four examples of barchan terrain; (b) four
examples of parabolic terrain.

Given the 12 columns of robotic sensing data, We are interested in studying feature selection and
subsequently applying the selected columns to terrain classification.

3 Proposed Feature Selection Algorithms

Our criteria for feature selection incorporates mutual information and interaction information which
can be represented as

J(S) =  max GZS I(X:Y) + J; II(X;, X;3Y) ()
(3 1 T, 2



where S and Ss are subsets selected for mutual information and interaction information, respectively.
If we use |S] to stand for the number of features in the selected subset S, then |S1| + |S2| > |S|
because there may be some overlaps between the two subsets S; and So. The mutual information
reflects the correlation between a predictor X; and the target variable Y'; the interaction information
measures the correlation between two predictors (X;, X;) and Y. We call this criterion as Mutual
Information and Interaction Information (M I3) criterion. The details are in the Appendix.

Based on (TJ), our criteria for feature selection could be simplified further as

J(S) = max_ | > I(X;Y)- > I(X; X)) 2)
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We call this criterion as Mutual Information Difference (MID) criterion. The result in (Z)) shows
that redundancy I(X;; X;) should be removed. This justifies why some existing criteria tried to
minimize redundancy, for example, minimal-redundancy-maximal-relevance criterion [30], and
MRIDFS method [46]. The details are in the Appendix.

4 Simulation and Performance Analysis

We applied our M I3 and MID to feature selection in binary terrain classification using Random
Forest Classifier. For binary terrain classification, we assign the target variable Y = 0 for barchan
terrain, and Y = 1 for parabolic terrain. For the 27 files of barchan and parabolic terrains, there
are totally 78816 tuples, of which 70% tuples (55171 tuples) are used for training, and 30% tuples
(23645 tuples) are used for test. We used train_test_split from sklearn in Python, so the training and
test datasets are randomly selected.

For our M I3 algorithm in , we need the mutual information 7(X;;Y") and interaction information
I1(X;,X;;Y). In Fig. 2hb, we summarize I(X;;Y) and I1(X;, X;;Y) respectively. Since we
have 12 features, so II(X;, X;;Y) has (122) = 66 values. Observe that I1(X;, X;;Y) goes down
slowly, and I(X;;Y") drops quickly after the 4th value. We choose the top 6 values of 1(X;;Y") and
I1(X,,X;;Y), of which 4 values are from I(X;;Y"), and 2 values are from I1(X;, X;;Y). For Sy,
the selected features (corresponding to the top 4 I(X;;Y") are {14, 11,13, 6}. For Ss, the selected
feature pairs (corresponding to the top 2 I1(X;, X;;Y)) are {(3,9), (7,9)}, so the effective features
are {3,9, 7} for Sy. Take the union of §; and Sz, S = §; U S, = {14,11, 13,6, 3,9, 7}. For our
MID algorithm in (2), we need to have I(X;;Y) and —I(X;; X;). In Fig. 2k, we summarize the
sorted —I(X;; X;). Similar to M I3, we select the top 4 features from /(X;;Y) and top 3 features
from —I(X,;; X;), and obtain the selected features, {14,11,13,6, 5,9, 10}.
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Figure 2: (a) I(X;;Y), (b) II(X;, X;;Y), (¢) —I(X;; X;); (d) I(X;, X;;Y) and T1(X;, X;;Y).

We compare our approaches with Joint Mutual Information (JMI) [41][26[][4] in feature selec-
tion. In Fig. [2d, we plot the joint mutual information I(X;, X;;Y") and interaction information
I1(X,,X;;Y). Observe that I(X;, X;;Y") is very smooth, and doesn’t have much difference. The
interaction information I7(X;, X;;Y") drops quickly, which means it is a good indicator for feature
selection. We select the top 7 values of JMI I(X;, X;;Y"), which results in the selected features
{13,14,6,11,7,3,10}. We also compare with Mutual Information Maximization (MIM) [10][17] in
feature selection. The mutual information values I(X;;Y") are plotted in Fig. . Based on the top 7
values of I(X;;Y), we obtain the selected features {14, 11, 13,6, 12, 4, 8} for MIM.

Further, we compare our approaches with an unsupervised feature selection approach, SVD-
QR [12][21]. Based on the training data, we construct a matrix X where each column is from



all sensed data of one feature. We apply SVD to find the maximal singular values of X, and QR to
identify the corresponding columns [20]. Based on SVD-QR, we selected important features from
the robot sensed information, and the selected features are {8, 13, 14,11, 4,12, 9}.

In Fig. [3| we plot the confusion matrix for random forest classifiers with different feature selections.
Observe that M I performs the best, and it achieves almost the same performance as the case when
all 12 features are kept.
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Figure 3: The confusion matrix for random forest classifiers with different feature selections. (a)
M1I3, (b) MID, (c) IMI, (d) MIM, (e) SVD-QR, () with all 12 features.

In Table[T] we summarize the feature selection results and performance for the six classifiers.

Table 1: The selected features and performance of Random Forest Classifier (RFC) in binary terrain
classification.

Selected Features RFC Errors
MI3 {14,11,13,6,3,9,7} 402
MID {14,11,13,6,5,9,10} 421
IMI {13,14,6,11,7, 3,10} 447
MIM {14,11,13,6,12, 4,8} 541
SVD-QR {8,13,14,11,4, 12,9} 1411
All Features All 12 features 401

5 Conclusions

In this paper, we have presented two feature selection algorithms, M I3 and MID. The MI? is
originated from the PID, which consists of four parts, synergetic information, redundant information,
and two unique information. Our M I® is based on interaction information which is the difference
between synergetic information and redundant information. We further simplify the A/ I and obtain
its lower bound. Our MID algorithm is based on the lower bound of M I?® and is obtained when the
synergetic information is zero. We apply M I and MID to terrain classification based on robotic
sensing data with touch modality collected in White Sands National Monument, New Mexico, United
States. The data has 12 features, and we have reduced it to 7 features using M I3 and MID algorithms.
In terrain classification using random forest classifier, M [ 3 could achieve similar performance as the
ideal case when all 12 features were kept for classification. They performed much better than the
existing approaches, JMI, MIM, and SVD-QR for binary terrain classification.
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A Related Work

Feature selection is a process that identifies a subset of features to act as predictor variables for
machine learning classifiers. Reducing the feature set can simplify classifier design, leading to less
computational demand and a simpler model structure. This approach is beneficial for data analytics
as it conserves memory and storage.

Feature selection methods are broadly classified into supervised and unsupervised techniques. Su-
pervised methods make use of the target category in selecting features, while unsupervised methods
operate solely on the feature data, independent of target categories. The majority of feature selection
techniques are supervised. In [44], redundancy in features was defined, and explicit redundancy
analysis was introduced for feature selection, employing a correlation-based method to analyze
relevance and redundancy. In [5]], a neural network approach for feature selection was enhanced with
two constraints, resulting in a sparse selection layer. Information-theoretic approaches have also
been widely used in feature selection, with methods like Mutual Information Maximization (MIM)
[L7], which relies on mutual information between each predictor and a target variable, and Mutual
Information Feature Selection (MIFS) [2], a generalization of MIM. Joint Mutual Information (JMI)
was employed in feature selection in [41]] and [26]]. In [38]], conditional mutual information and
entropy formed the basis of a supervised similarity measure for feature selection, while a minimal-
redundancy-maximal-relevance criterion was developed in [30] to simplify the implementation of
the maximal dependency condition. Conditional mutual information-based clustering methods were
proposed in [36] to aid in feature selection, and conditional probability was used in [4] to formulate
feature selection as a heuristic for mutual information criteria. A multivariate mutual information
criterion with a pruning strategy was proposed by Doquire and Verleysen [9] for improved feature
selection. Zhou and Wen [46] developed the Dynamic Feature Selection Method with Minimum
Redundancy Information (MRIDFS) by using conditional mutual information to evaluate redundancy
among features. All these approaches depend on the target category for analysis.

Unsupervised feature selection methods, in contrast, do not require the target category. An algorithm
using ant colony optimization was proposed for unsupervised feature selection in [8]. A nonnegative
tensor CP (CANDECOMP/PARAFAC) decomposition-based model for feature selection was pre-
sented in [6]]. An unsupervised method employing sparse PCA with Ly and p-norm regularization
was introduced in [[18]]. In [235]], partial label learning was studied to address data with ambiguous or
absent labels. Two novel feature selection methodologies, SMOCS and CSSMO, which combine
Cuckoo Search (CS) with Spider Monkey Optimization (SMO), were introduced in [16]. The Marine
Predator Chaotic Algorithm was proposed in [35] for feature selection tasks in COVID-19 data analy-
sis. Metaheuristic Hybrid Cuckoo Search and Harris Hawks Optimization were applied to cancer
classification in [42]. Singular Value Decomposition (SVD) and QR methods were employed in
principal component analysis in [21] for feature selection. In this approach, SVD identifies the highest
singular values of X, while QR selects the corresponding columns, making SVD-QR an unsupervised
approach. Recently, unsupervised federated feature selection was explored in horizontal federated
learning for IoT networks [45]]. This paper also introduces Partial Information Decomposition (PID)
in feature selection, presenting two new supervised feature selection algorithms that utilize target
category information for training.

PID has been proposed to assess the mutual information between a fixed target variable and mul-
tiple predictor variables [39][3]. PID decomposes mutual information into unique, redundant, and
synergistic components [39]. Griffith and Koch described synergistic information as the difference
between the total information and the combined contributions of its parts [14]]. A mutual information
decomposition for two sources and one target variable was proposed in [28]], but it applied only to
variables with exponential distributions. PID was used to analyze information transfer in Markov
chains in [29]. Causal discovery using PID in IoT contexts was proposed in [19]. PID was further
employed in [[11]] to assess the contribution of each feature to observed disparities, such as university
admission decisions. These PID methods largely emphasize theoretical analysis or simple scenarios
like logical operations and admissions decisions. PID was also applied to multimodal transformers
as a loss function in [24]. Recently, PID was used in feature selection [40] to maximize relevance
and minimize redundancy via conditional mutual information. This paper advances PID analysis,
introducing interaction information and deriving a theoretical lower bound to make PID applicable in
complex tasks. With this approach, we propose the Mutual Information and Interaction Information



(M I3) criterion, and by using its lower bound, we introduce the Mutual Information Difference
(MID) criterion.

B Partial Information Decomposition: An Introduction

The mutual information between two variables X and Y is defined as [22]][7]],

1Y) =3 pla,y)log pP@;vy) 3)

o= St (z)p(y)

It is well known that I(X;Y") is always nonnegative.

In recent years, PID was introduced to evaluate the mutual information between multiple vari-
ables [39][28][11]. PID can decompose mutual information to redundant information, synergetic
information, and unique information. For variables (X, X;) and variable Y, their mutual information
can be decomposed as [39]

I(X3, X;;Y) = R(Xi, X;;Y)+S(Xi, X;5Y)
+U(Xi; Y|X;5) +U(X;; YX;) )

where R(X;,X;;Y) denotes the redundant information of Y present in both X, and Xj;
S(X;,X;;Y) is the synergetic information of Y that is not present in X; or X; individually, but
present in (X;, X;) jointly; U(X;; Y| X;) denotes the unique information of ¥ present only in X
and not in X;; and U(X;;Y|X;) denotes the unique information of ¥ present only in X, and
not in X;. In Fig. @ we illustrate the relations of these four parts [39][24]. The whole region
is I(X;, X;;Y); the red region is redundant information R(X;; X;); the blue region is synergetic
information S(X;, X;;Y"); the orange and green regions are the unique information U (X;; Y| X)
and U (X; Y|X;). Mathematically, they can be represented as [39]

R(X:, X;;Y) = I(X;X;) %)
S(X:, X;3Y) = I(Xi, Xj5Y) - I(Xi;YX;)
—I(X;;Y[X) = I(X35 X5) (6)
UXi;YX) = I(Xi;Y]X)) @)
UX;Y[Xy) = I(X;Y]X) ®)
1(Xy, X5 Y)

S(XL X5 Y)

U(X;Y|X) = I1(X; Y1X)
U5 Y1X) = 1(X5 Y 1X))
R, X;Y) = [(Xi; X))

Note: I1(X;, X;;Y) = S(Xu, X;; Y) — R(X., X;; V)

Figure 4: A diagram of PID which consists of redundancy information I(X;; X ), synergetic infor-
mation S(X;, X;;Y), and unique information I(X;; Y |X;) and I(X;; Y|X;) [39]. The Interaction
Information I1(X;, X;;Y") is denoted.



C Proposed Feature Selection Algorithms

C.1 Mutual Information and Interaction Information Criterion

Interaction Information (II) is from PID and is defined as [39][37],

][(Xi,Xj;Y) = I(Xi;Y|Xj)—I(Xi;Y) ©)]
= S(X;, X;;Y) = I(X3; X5) (10)
S(Xi,Xj;Y) —R(Xi,Xj;Y) (11

The Interaction Information 17(X;, X;;Y") is denoted in Fig. 4 The expression in demonstrates
that IT(X,;, X;;Y) is the difference between Synergetic Information and Redundant Information. It
could have the following two cases [39]:

1. II(X;,X;;Y) > 0, which means the joint knowledge of X; and X; enhances the correla-
tion of X;, X;, and Y, so X; and X; have synergetic information, which means X; and X;
should be included into the predictors.

2. II(X;,X;;Y) < 0, which means the joint knowledge of X; and X; reduces the correlation
of X;, X;,and Y, so X; or X is redundant, and X; or X; should not be included into the
predictors.

We use these two properties to perform feature selection.

Our criteria for feature selection incorporates mutual information and interaction information which
can be represented as

J(S) =  max Z I(X;Y) + Z I1(X;, X;;Y) (12)
1€S 1,jESy

where S; and S, are subsets selected for mutual information and interaction information, respectively.

If we use |S] to stand for the number of features in the selected subset S, then |S1| + |S2| > |S|

because there may be some overlaps between the two subsets S; and Ss. The mutual information

reflects the correlation between a predictor X; and the target variable Y'; the interaction information

measures the correlation between two predictors (X;, X;) and Y. We call this criterion as Mutual

Information and Interaction Information (M I3) criterion.

The procedure to obtain the subset S based on M I can be summarized as follows.

1. Compute the mutual information 7(X;;Y") and the interaction information I1(X;, X;;Y")
for all features.

2. Sort all mutual information and interaction information in descending order.

3. Choose the top M values of all sorted mutual information and interaction information. A
selected mutual information is associated with one feature for S; , and a selected interaction
information is associated with two features for S,.

4. Take the union of subsets S; and So, and we can get S = S§; U S,. Then S is the subset
with the selected features.

The above procedure is a hybrid approach which combines mutual information and interaction
information. The mutual information involves each individual feature, and the interaction information
explores the interaction between features. Selecting features based on their interaction information
can lead to better-performing models. By focusing on features that provide better feature interactions
can avoid overfitting and improve generalization to new data. This makes M I is very promising to
perform better.

C.2 Mutual Information Difference Criterion

We can simplify the interaction information further to obtain a lower bound based on the following
theorem.
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Theorem 1. The interaction information, I1(X;, X;;Y') has a lower bound,

TI(X:, X;33Y) =2 —1(X3; X5) (13)

The proof of this Theorem is in [23]]. This theorem is easy to understand because when the synergetic
information satisfies the following condition,

S(Xi, X5Y) =0 (14)
the interaction information in has minimum value —I(X;; X;).

Based on this theorem, our criteria for feature selection could be simplified as

J(S) = max_ | Y I(X;Y)— > I(X; X)) (15)

S=51USz | : “
1€ST 1,jESa

We call this criterion as Mutual Information Difference (MID) criterion. The result in shows
that redundancy I(X;; X;) should be removed. This justifies why some existing criteria tried to
minimize redundancy, for example, minimal-redundancy-maximal-relevance criterion [30], and
MRIDFS method [46].

Observe H max [f Dijes, (X Xj)] is equivalent to min [ZZ jes, 1(Xi; Xj)} . The procedure
to obtain the subset S based on MID can be summarized as the following.

1. Compute the mutual information I(X;;Y") and the mutual information I(X;, X;) for all
features.

2. Sort all mutual information I(X;;Y") in descending order, and sort all I(X;; X,) in ascend-
ing order.

3. Choose the maximum NN, features for S; based on the sorted mutual information I(X;;Y),
and each selected X is associated with one feature; choose the minimum N> features for
&> based on the sorted mutual information I (X;; X;), and a selected mutual information is
associated with two features.

4. Take the union of subsets S; and Ss, and we can get S = S; U S,. Then S is the subset
with the selected features.

D More Experiment Results

In Fig. [3] we display the confusion matrices for random forest classifiers using various feature
selection techniques. Notably, M I3 demonstrates the highest performance, achieving results nearly
identical to those obtained when all 12 features are included. Out of the 23,645 test samples, only
157 + 245 = 402 errors occur with M I3, while the scenario with no feature reduction results in
158 + 243 = 401 misclassifications.

For other methods, MID results in 160 + 261 = 421 errors; JMI shows 164 + 283 = 447 errors; and
MIM has 194 4 347 = 541 errors. As an unsupervised method, SVD-QR produces 560+ 851 = 1411

misclassifications. Compared to JMI, M I 3 reduces errors by %‘?02 = 10%, and against MIM,

it shows a reduction of % = 26%. The confusion matrix breaks down the results into True
Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN), which are useful
for calculating metrics like accuracy, precision, recall, and F1 score [[15].

In Fig. Eh, the FP is 245 and FN is 157, indicating 245 cases where Parabolic terrain was misclassified
as Barchan, and 157 cases where Barchan terrain was predicted as Parabolic. This error analysis can
help identify shared characteristics among misclassified instances, providing insights into potential
model improvements.

Additionally, Fig. E] illustrates the ROC (Receiver Operating Characteristic) curves for random forest
classifiers under different feature selection methods. The ROC curve shows the relationship between
the true positive rate (TPR) and false positive rate (FPR) [15]. Ideally, a classifier achieves a TPR of
100% with no false positives. It is observed that, for training data, all ROC curves resemble an ideal
classifier, and for test data, the M I3 and MID methods closely approximate this ideal performance.
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Fig. [5|provides AUC (Area Under Curve) values for each ROC test curve. AUC serves as a single
metric summarizing model performance across all classification thresholds by measuring the area
beneath the ROC curve. This metric considers both the True Positive Rate and False Positive Rate,
making it a reliable measure even for imbalanced classes. A model with AUC = 1 represents perfect
sensitivity and specificity. Among the five classifiers with feature selection, M I exhibits the highest
AUC for the ROC test curve, indicating superior performance.

ROC curve ROC curve ROC curve

— Roc for Training — Foc for Traiin — Roc far Trainin
0 — ROC for Test 00 — ROC for Test 00 — ROC for Test

00 02 04 06 08 10 00 02 04 0% 08 10 ) 02 04 06 08 10
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00 — ROCfor Test 00 — ROC forTest 00 — ROC for Test
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False Positive Rate False Positive Rate False Positive Rate

(d) (e) ()

Figure 5: The ROC curve for random forest classifiers with different feature selections. (a) M I? with
AUC=0.9824, (b) MID with AUC=0.9816, (c) JMI with AUC=0.9804, (d) MIM with AUC=0.9762,
(e) SVD-QR with AUC=0.9385, (f) All 12 features with AUC=0.9825.
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