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Abstract

Foundation models like CLIP allow zero-shot transfer on various tasks without
additional training data. Yet, the zero-shot performance is less competitive than a
fully supervised one. Thus, to enhance the performance, fine-tuning and ensembling
are also commonly adopted to better fit the downstream tasks. However, we argue
that such prior work has overlooked the inherent biases in foundation models.
Due to the highly imbalanced Web-scale training set, these foundation models are
inevitably skewed toward frequent semantics, and thus the subsequent fine-tuning
or ensembling is still biased. In this study, we systematically examine the biases in
foundation models and demonstrate the efficacy of our proposed Generalized Logit
Adjustment (GLA) method. Note that bias estimation in foundation models is
challenging, as most pre-train data cannot be explicitly accessed like in traditional
long-tailed classification tasks. To this end, GLA has an optimization-based bias
estimation approach for debiasing foundation models. As our work resolves a
fundamental flaw in the pre-training, the proposed GLA demonstrates significant
improvements across a diverse range of tasks: it achieves 1.5 pp accuracy gains
on ImageNet, a large average improvement (1.4-4.6 pp) on 11 few-shot datasets,
2.4 pp gains on long-tailed classification. Codes are in https://github.com/
BeierZhu/GLA.

1 Introduction

Thanks to the Web-scale data and self-supervised strategies, foundation models like CLIP [40] em-
power zero-shot transfer to a wide variety of domains [7, 1, 52]. However, the zero-shot performance
is still weak on several domain-specific tasks such as differentiating models of cars, species of flowers,
and variants of aircraft [40, 7]. Therefore, it is a common practice to improve the downstream
performance via supervised fine-tuning on labeled data, e.g., linear probing, prompt tuning [54, 55],
and end-to-end fine-tuning.

However, fine-tuned models are easily biased: they are adept in exploiting spurious correlations
that only hold on the downstream distribution [40, 39, 48, 55]. To improve the robustness, several
studies [48, 55, 56] propose to combine fine-tuned models with zero-shot models. For example,
WiSE-FT [48] ensembles the fine-tuned and zero-shot models in weight space and ProGrad [55] uses
zero-shot predictions to regularize the fine-tuning gradient. The underlying assumption lies in that
the zero-shot models are robust to distribution shifts [40], and their predictions are complementary to
those of fine-tuned models [48].

Despite these methods exhibiting performance gains on both in-distribution and out-of-distribution
evaluations, they all overlook the inherent bias originating from the foundation models. Specifically,
the Web-scale data for pre-training foundation models exhibit a highly skewed distribution due to
Zipf’s law of nature [42]. The resulting foundation models develop a biased decision boundary that
leads to a poor zero-shot performance on rare classes. As evidenced in Figure 1(a) and (b), the purple
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Model Head Medium Tail All

Zero-Shot 78.0 69.8 57.2 68.3

Fine-Tuned 83.6 83.0 77.3 81.3

WiSE-FT 85.3 (+1.7) 83.7 (+0.7) 76.4 (-0.9) 81.8 (+0.5)

GLA (ours) 85.2 (+1.6) 84.3 (+1.3) 78.8 (+1.5) 82.8 (+1.5)

(b) Beak-down performance of different models on ImageNet(a) Per class accuracy of different models on ImageNet

Zoomed in results 

Estimated label distribution

Head Medium Tail 

Figure 1: (a) Per class accuracy of CLIP-ViT/B16 on ImageNet. Class index are sorted using the
estimated pre-training label prior. Curves are smoothed for better visualization. (b) Beak-down
performance of different models on ImageNet. We equally divide the ImageNet classes into three
subgroups, according to the class index. Existing ensemble methods like WiSE-FT [48] exhibits a
clear performance loss on tail classes, while our GLA stands out for all three subgroups.

line encounters a dramatic drop, and the zero-shot performance of tail classes is significantly lower
than that of head classes (57.2% vs. 78.0%). Existing ensemble methods like WiSE-FT [48] overlook
the label bias, resulting in an improvement in top-1 (+0.5%) and head accuracy (+1.7%) while a
noticeable degradation on the tail performances (−0.9%) in Figure 1(b). Another evidence is that the
orange line (WiSE-FT) is below the blue line (fine-tuned models) for rare classes in Figure 1(a).

We propose Generalized Logit Adjustment (GLA), a simple post-hoc method consisting of two steps:
1) removing the label bias of zero-shot model via estimating the label distribution in the pre-training
dataset; 2) ensembling the fine-tuned and debiased zero-shot models. As illustrated in Figure 1 (b), our
GLA achieves consistent improvement across all three subgroups, particularly showing a significant
gain on tail classes (+1.5%). Despite its simplicity, our GLA has a firm statistical grounding: it is the
Bayes optimal classifier given the fine-tuned and zero-shot models, thus consistent for minimizing the
error on a class-balanced target distribution (Section 4.2). It is worth noting that removing the bias
of foundation models is challenging since the label distribution is often inaccessible due to privacy
or copyright concerns. In this work, we only use the downstream labeled data and the zero-shot
model to estimate the foundation label bias. Specifically, we formulate the problem by adjusting the
margin of the zero-shot models such that the lowest error is achieved on the downstream dataset. This
grounding translates into strong empirical performance on real-world datasets, covering few-shot,
many-shot, and long-tail learning (Section 5).

The contributions and novelties of this work are summarized as follows:

• We point out the overlooked label bias in foundation models, which originates from the
skewness of pre-training distribution that affects the performance of downstream tasks.

• We formalize the estimation of the label bias as a constrained optimization problem (Sec-
tion 3.2) with theoretical justification (Section 4.3). The entire process does not require access
to the pre-training dataset, making it practical for fine-tuning scenarios. We present General-
ized Logit Adjustment (GLA) method, which ensembles the debiased zero-shot and fine-tuned
models, and demonstrate its superiority over conventional fine-tuning and ensembling by
proving it’s a Bayes optimal classifier (Section 4.2).

• We build a comprehensive benchmark for evaluation, which considers three real-world settings
and three fine-tuning paradigms. The settings are: 1) many-shot learning with abundant data
2) few-shot learning; and 3) long-tail classification, representing a more challenging scenario
that combines many-shot and few-shot data (Section 5). The three fine-tuning paradigms
include: 1) end-to-end fine-tuning; 2) linear probing; and 3) prompt tuning (Section 3.1).

• We demonstrate the efficacy of our proposed method GLA by conducting extensive experi-
ments across various settings and fine-tuning paradigms. We observe 1 to 1.5 pp accuracy
gains on ImageNet, large averaged improvement (1.4 to 4.6 pp) on 11 few-shot datasets and
2.4 pp averaged accuracy gains on long-tail datasets. (Section 5).
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2 Related Work

Image-text foundation models. Foundation models pre-trained by contrastive objectives have set
impressive milestones for image and text representation learning, with CLIP [40], ALIGN [23],
CoCa [52] and Flamingo [1] being the exemplars. Such models exhibit impressive prompt-based
zero-shot performance on various image recognition downstream tasks. Our method aims to reduce
foundation model biases to boost performance in downstream tasks. While [2] also addresses word
frequency bias, we differ in two key areas: Firstly, we debias zero-shot models using fixed prompts,
whereas [2] refines the prompting process. Secondly, our GLA doesn’t require access to a subset of
the pre-training data.

Ensembles. Ensemble methods aim to boost performances by combining multiple networks, which
can be either implemented by aggregating model outputs [12, 4, 28, 14, 27, 51], weight-space
ensembling [48, 22], or ensemble distillation [19, 29]. For the adaptation of foundation models,
several work propose to ensemble the fine-tuned and zero-shot models for better performance:
Wortsman et al. [48] ensembles them in weight space; ProGrad and ProReg [55, 56] propose to fuse
them via knowledge distillation. Our GLA is orthogonal to these approaches, as it concentrates on
mitigating the biases in foundation models that are detrimental to ensemble models.

Logit adjustment. Logit adjustment [35, 45, 24, 49, 20] is a post-hoc technique to adjust the biased
output of classification networks. Kang et al [24] proposes an element-wise scaling adjustment for
the classifier weight. Tang et al [45] removes the projection of features on a global biased direction.
Menon [35] derives the theoretically optimal adjustment from the training distribution. Unlike the
those approaches which rely on a transparent training data or class distribution, our GLA can eliminate
the class bias without accessing to the pre-training statistics.

3 Methods

3.1 Setup

Task. Consider a classification problem with instances x ∈ X and labels y ∈ Y = [K] = {1, ...,K}.
We have a zero-shot model fzs (given below), a downstream dataset Ds = {xi, yi}Ns

i=1 drawn from
source distribution Ps and a fine-tuned model fft (given below) trained on the dataset Ds. Give a
model f : X → RK that outputs prediction score, we define the risk of f on the target distribution Pt

as the mis-classification rate: Rt(f) = Ex,y∼Pt
[y ̸= argmaxi f(x)i]. Our goal is to learn a model

fgla that best leverages fzs and fft that minimizes the risk Rt.

Zero-shot models. We primarily explore CLIP [40] for zero-shot models. CLIP consists of a visual
encoder Φv(x) and a text encoder Φt(t), producing l2-normalized features from an image x and a text
t respectively. Zero-shot model fzs for K classes is enabled by matching image features v = Φv(x)
with classification weights wk = Φt(tk), where tk is obtained by extending the class name {ck} to a
pre-defined prompt, e.g., “a photo of a {ck}.”. Additional details are provided in Appendix B.2. The
probability of x being classified as y is defined as:

P (y|x) = softmax(fzs(x))y =
exp(vTwy)∑K
k=1 exp(v

Twk)
. (1)

Fine-tuned models. Standard fine-tuning initializes the model fft with the pre-trained parameters
and then solve fft = argminf Rs(f) to minimize the risk on downstream dataset. We consider three
common variants of fine-tuning: (1) end-to-end, where all parameters of Φv and wk are updated; (2)
linear probing, where only wk is modified while Φv is fixed; (3) prompt tuning, where the text input
tk is learned, while keeping Φv and Φt freezed. See Appendix B.3 for details on fine-tuning methods.

Notation. Let Pp(y), Ps(y) and Pt(y) be the marginal probability of class y ∈ [K] for pre-training,
source (training) and target (test) distribution, respectively. Let πp and πs denote the log probabilities
of class for pre-training and training distribution, i.e., πp(y) = logPp(y) and πs(y) = logPs(y).

3.2 Generalized Logit Adjustment Framework

Fine-tuned models often yield significant gains compared to zero-shot models, and ensembling them
can further improve performance. This leads to a natural question: How should we best leverage
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(b) Estimated label distribution q(a) Averaged outputs of zero-shot model (c) Averaged outputs of debiased zero-shot model

Figure 2: Illustration of debiasing process on ImageNet validation set. (a) The original distribution of
zero-shot outputs; (b) the estimated pre-train distribution q based on our algorithm; (c) the distribution
of debiased zero-shot outputs using estimated q.

the zero-shot and fine-tuned models for the prediction tasks? We attempt to answer by proposing
generalized logit adjustment in Definition 1.
Definition 1. (GLA) The Generalized Logit Adjustment (GLA) model fgla is defined as follows:

fgla(x) = fft(x) + fzs(x)− πs − πp. (2)

In Section 4.2, we prove that given the zero-shot and fine-tuned models, our GLA model is the Bayes
optimal classifier and no other combination of the two models can outperform it. Here remains one
important question: how could we obtain πp as we have no access to the pre-training statistics? We
provide the estimation process of πp in Eq (4) and postpone the justification in Section 4.3. The
entire GLA algorithm consists of two steps which is given as follows:

Step 1: Estimation of πp. Let q be an arbitrary probability simplex over K classes. Given the
validation data from Pt or the balanced training data, we can estimate the π̂p = logq∗ as the
constrained optimization problem (proof in Section 4.3):

q∗ = argmin
q

Rt(fzs − logq)

s.t. qi ≥ 0, for i ∈ [K],∑
i∈[K]

qi = 1. (3)

We constrain the sum of q to be 1 and ensure that each element is non-negative, guaranteeing that it
forms a valid probability distribution. We solve the following Lagrangian problem to find optimal q∗:

min
q

max
λi≥0,υ

Rt(fzs − logq)−
∑
i

λiqi + υ(1−
∑
i∈[K]

qi) (4)

Step 2: GLA ensembling. Given the estimated π̂p and the known downstream training πs, we
ensemble the zero-shot model fzs and the fine-tuned model fft to get our GLA model fgla via Eq. (2).
We can regard fzs − π̂p and fft − πs as the debiased zero-shot model (Figure 2(c)) and debiased
fine-tuned models, respectively. Our GLA is actually ensembling two debiased models. Note that,
different from [55, 48], we do not require a hyper-parameter to adjust the contribution of the two
models, the optimal solution is to combine them equally (see Section 4.2 for justification).

4 Theoretical Analysis

In this section, we explain why our GLA model best ensembles the zero-shot and fine-tuned models
(Section 4.2) and justify the estimation process of the pre-training label distribution πp (Section 4.3).
We start with some preliminaries on Bayes optimal classifier.

4.1 Preliminaries

Suppose we have a pair (X,Y ) ∼ P takes values in X × Y , where Y is the class label of input X .
Definition 2. The 0-1 error (risk) of a classifier ŷ : X → Y on distribution P is given by:

R(ŷ) = P (Y ̸= ŷ(X)) (5)
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However, the 0-1 error is non-smooth, one typically minimizes a surrogate loss ℓ, e.g., cross-
entropy: ℓ(f(x), y) = log[

∑
i∈[K] exp(f(x)i−f(x)y)] , where ŷ(x) = argmaxi f(x)i. It is known

that the cross-entropy loss is Bayes consistent [53], i.e., a nearly optimal minimizer of the cross-
entropy loss (Ex,y∼P [ℓ(f(x), y)] is also a nearly optimal optimizer of the mis-classification error
(Ex,y∼P [y ̸= ŷ(x)]).
Definition 3. The Bayes optimal classifier y∗ for P given input x is defined as:

y∗(x) = argmax
y∈Y

P (y|x) (6)

It is called Bayes optimal classifier because on the average no other classifier using the same
hypothesis and prior knowledge can outperform it.
Lemma 1. The Bayes optimal classifier y∗ for P has lower risk than all classifiers ŷ : X → Y .

R(y∗) ≤ R(ŷ) (7)

4.2 Generalized Logit Adjustment Leads to Better Ensembling

Zero-shot and fine-tuned models are complementary. We revisit an empirical phenomena observed
in [48] Section 5.1: After exploring a series of measures of diversity, covering predictions and features,
they find that zero-shot and fine-tuned models have diverse predictions, despite sharing the same
backbone. As the two data distribution Ps and Pp is known to be different, the resulting models
leverage different cues to predict: fine-tuned models risk exploiting spurious correlations and in-
domain patterns which only hold for downstream dataset [46, 3]; On the other hand, zero-shot CLIP
models capture stable correlations across diverse domains and exhibit much higher robustness [40].
For instance, zero-shot models rely on robust features for decisions that can achieve high performance
on sketch and adversarial samples, while the fine-tuned models that trained on real images typically
fail on these samples, as they rely on spurious correlations that only hold on real images. We formulate
the phenomena in the following assumption.
Assumption 1. Zero-shot and fine-tuned models have diverse predictions:

(fft(x) ⊥ fzs(x))|y. (8)

We derive the conditional probability Pt(y|fft(x), fzs(x)) w.r.t. the outputs of fzs(x) and fft(x):
Lemma 2. For a balanced target distribution1, where Pt(y) = 1/K for all y ∈ [K], we have:

Pt(y|fft(x), fzs(x)) = softmax(fft(x) + fzs(x)− πs − πp︸ ︷︷ ︸
fgla(x)

)(y) (9)

Intuitively, since the zero-shot and fine-tuned models provide diverse predictions, conditioned on the
two predictions is equivalent to adding the logits in log space. Additionally, as the target distribution
is class-balanced, we need to remove the class bias of two models by subtracting πs and πp. The
formal proof is given in Appendix A.1. Note that the RHS of Eq. (9) is exactly the softmax output of
our GLA model by Definition 1, which exhibits the following property:
Proposition 1. Let g : RK × RK → RK be an arbitrary function that ensemble the outputs of fzs
and fft. Our GLA classifier fgla has lower risk than any function fg(x) = g(fzs(x), fft(x)), i.e.

Rt(fgla) ≤ Rt(fg). (10)

Proof. From Lemma 2 and Definition 1, we have:

argmax
y∈Y

fgla(x)y = argmax
y∈Y

softmax(fft(x) + fzs(x)− πs − πp)y = argmax
y∈Y

Pt(y|fft(x), fzs(x)),

(11)
which means fgla is the Bayes optimal classifier (see Definition 3) given fft(x) and fzs(x). According
to Lemma 1, any other classifier g(fft(x), fzs(x)) must have higher risk, i.e., Rt(fgla) ≤ Rt(fg).

1This lemma can be easily extended to imbalanced target distributions (proof in Appendix A). Yet, as most
test sets are class-balanced, we focus on the balanced case for brevity.
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Proposition 1 demonstrates that our fgla model is the best model, as it has the lowest risk on target
distribution. Proposition 1 further explains the superiority of fgla over the fine-tuned model fft and
the naive ensemble fens(x) = fft(x) + fzs(x):
Corollary 1. fgla performs better than fine-tuned model fft and naive emsembling fens:

Rt(fgla) ≤ Rt(fft), Rt(fgla) ≤ Rt(fens) (12)

Discussion: when do the GLA models degenerate? Note that there are two equality signs in
Eq. (12), indicating that the performance of the GLA model can degenerate to be equivalent to that of
the fine-tuned model and naive ensembling in the following two cases.

Case 1: For the first equality, if zero-shot model fzs(x) provides no further information about y given
fft(x), i.e., (y ⊥ fzs(x))|fft(x), then Pt(y|fft(x), fzs(x)) degenerates to Pt(y|fft(x)) and the first
equality applies. However, in practice, as downstream model and zero-shot model provides diverse
predictions, we usually encounter strict inequality, i.e., Rt(fgla) < R(fft).

Case 2: The second equality applies when pre-training and downstream training distribution are both
class-balanced. In fact, the pre-training dataset for foundation models are known to be highly skewed.
Therefore, in most cases, we have Rt(fgla) < Rt(fens).

In summary, the above two equalities are usually unattainable, which means that theoretically, our
GLA model performs better than both the fine-tuned and the naive ensemble models.

4.3 Estimate the label bias of the pre-training dataset

However, πp is usually unknown as we have no access to pre-training dataset. In this work, we seek
to estimate πp using the zero-shot models and the downstream data. Similar to Proposition 1, we
have the following proposition says that fzs − πp has lower error on target distribution than any other
classifiers that use fzs, see Appendix A.2 for the full proof.
Proposition 2. Let h : RK → RK be an arbitrary function that predicts labels using the outputs of
the zero-shot model fzs(x). Let the derived classifier be denoted as fh(x) = h(fzs(x)). The classifier
fzs − πp is better than any fh(x): Rt(fzs − πp) ≤ Rt(fh(x)).

Let q be an arbitrary probability simplex over K classes, then we have Rt(fzs(x) − πp) ≤
Rt(fzs(x) − logq). Therefore, we choose to optimize a probability simplex q over K classes
such that the model fzs− logq achieves the minimal empirical risk, as formulated in Eq. (3) (the Step
1 of GLA algorithm). Once we obtain the estimated class prior π̂p = logq, we can easily implement
the GLA model by ensembling fgla(x) = fft(x) + fzs(x)− πs − π̂p (the Step 2 of GLA algorithm).
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Figure 3: Estimating label bias of
CIFAR-10-LT-IB-10.

Toy experiment. We conducted an experiment to show that the
estimated label distribution closely approximates the true one.
Specifically, we trained a model with a ResNet32 backbone on
the imbalanced CIFAR-10-LT [10] dataset with an imbalanced
ratio of 10. Subsequently, we used only the test set combined
with our proposed method to estimate the label distribution.
This procedure simulates scenarios where only downstream
data is available and the pre-training data is inaccessible.

Figure 3 reveals a strong alignment between the estimated
(orange line) and the actual distributions (blue line), which is
further emphasized by a small KL-divergence value of 0.00062.
The toy experiment validates the effectiveness of our debiasing
method.

Discussion. The logq we estimated is not the marginal log-probability of the entire pre-training
distribution but the label bias matches the downstream distribution. In the above toy experiment,
although training and test sets show different label distributions, their conditional distribution P (x|y)
remains invariant. In this case, our estimate will converge to the actual training label bias. For CLIP
models, with diverse pre-training data, some might not align with the downstream domain, potentially
compromising the accuracy of the estimation of the entire pre-training distribution.

However, we’d like to point out that removing the label bias of entire pre-training distribution may
not optimal for downstream tasks. As a thought experiment, consider a pre-training dataset "sketch"
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Method B/32 B/16

Zero-shot 63.2 68.3
LP 75.8 79.9
E2E 76.3 81.3
WiSE-FT 76.9 81.7
GLA 77.9 82.8

(a) ImageNet

Method B/32 B/16

Zero-shot 64.2 67.2
LP 80.5 83.1
E2E 89.4 91.0
WiSE-FT 90.0 91.3
GLA 90.7 91.9

(b) CIFAR100

Method B/32 B/16

Zero-shot 59.7 64.4
LP 77.1 83.1
E2E 83.7 90.2
WiSE-FT 84.5 90.7
GLA 85.0 91.1

(c) Stanford Cars

Method B/32 B/16

Zero-shot 62.2 64.8
LP 75.6 78.0
E2E 80.0 82.4
WiSE-FT 80.8 82.9
GLA 81.2 83.4

(d) SUN397

Table 1: Accuracy of various methods using CLIP ViT-B/32 and ViT-B/16. LP: linear probe; E2E:
end-to-end fine-tuning. Results were obtained using the official implementation from WiSE-FT [48].

and "photo" styles for "dog" and "cat" samples. Suppose the sample size of "dog” and "cat” is equal
but there are more "sketch dogs” than "sketch cats”. This means that even if the overall distribution
is balanced, each style isn’t, resulting in biased zero-shot predictions. if we aim to deploy models
for the "sketch dogs and cats” domain, adjusting the overall label bias is insufficient. Instead, the
optimal label bias should be estimated on the “sketch” distribution. We also provide experiments
using LAION-400M dataset in Appendix C.2, illustrating the situation when the downstream data
diverges from the pre-training set.

5 Experiments

We evaluate our GLA on three real-world scenarios: many-shot (Section 5.1), few-shot (Section 5.2)
and long-tail learning (Section 5.3). We show that our GLA boosts performance on all three settings.

5.1 Many-shot learning

Datasets. We use ImageNet [11] and CIFAR100 [26] for generic object classification, Stanford-
Cars [25] for fine-grained classification, and SUN397 [50] for scene recognition. See Appendix B.1
for details.

Baselines. We compare GLA against four methods: (1) Zero-shot model, (2) Linear Probing (LP),
(3) End-to-End fine-tuning (E2E), and (4) weight ensembling method WiSE-FT[48].

Implementation details. We consider two models: CLIP ViT-B/32 and ViT-B/16. For learning-based
models, we fine-tune with AdamW using a cosine annealing learning rate scheduler. We fine-tune for
10 epochs on ImageNet and 20 epochs on other datasets. See Appendix B.3 for further details.

Main results. Table 1 compares our GLA with various baselines. We observe that our GLA can
increase the performance of end-to-end fine-tuned models: it achieves 1.5% gains on ImageNet.
Compared to WiSE-FT, GLA gains 1.1% top-1 accuracy boost on ImageNet dataset,. Beyond generic
object recognition, our method also improves accuracy on the fine-grained dataset (Stanford Cars)
and the scene recognition dataset (SUN397), by 0.4% and 0.5%, respectively.

Breakdown performance analysis. To analyze the impact of pre-training label bias on fine-tuned
and ensemble models, we present the breakdown results on ImageNet using CLIP ViT-B/16, as
shown in Table 2. Specifically, we sort the class index using the estimated πp, and assign the top
third of the classes as the head classes, the last third as the tail classes, and the remaining classes as
the medium classes. Due to the label bias, the zero-shot tail performance is significantly lower than
the head one (57.2% vs. 78.0%). The resulting E2E models are also affected by the bias, with the
tail performance being 6.3% lower than the head. Existing ensemble WiSE-FT overlooks the bias,
exhibiting noticeable degradation on the tail performances (−0.9%) compared to E2E model, while
our GLA stands out for all three subgroups.

Estimated πp is transferable across different zero-shot models. The estimated πp should be
transferable across different zero-shot models if they are trained on the same pre-training dataset.
To verify this, we employed a CLIP ViT-B/32 based zero-shot model to estimate πp, which is
subsequently used to debias zero-shot models based on CLIP ViT-B/16 and ViT-L/14. As shown in
Table 3, our debiased models outperform the original zero-shot versions by a clear margin.
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Method Head Med. Tail All

Zero-shot 78.0 69.8 57.2 68.3
E2E 83.6 83.0 77.3 81.3
WiSE-FT 85.3 83.7 76.4 81.7
GLA 85.2 84.3 78.8 82.8

Table 2: Breakdown results on ImageNet.

Model Source Target

ViT-B/32 ViT-B/16 ViT-L/14

fzs(x) 63.4 68.8 75.6
fzs(x)− π̂p 65.4 69.3 76.3

Table 3: Estimated π̂p is transferable across different
backbones. π̂p is estimated using CLIP ViT-B/32.
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Figure 5: Accuracy (%) of few-shot learning on 11 datasets.
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Figure 4: Accuracy with
mixing coefficient α.

Ensembling with mixing coefficient. In Section 5.1, we prove the
optimal solution is to combine the debiased zero-shot and fine-tuned
models equally. We now examine the claim by introducing a mix-
ture coefficient α ∈ [0, 1]. The ensemble predictions are given by:
fgla(x, α) = (1 − α) · (fzs(x) − πp) + α · (fft(x) − πs). We com-
pare the GLA and the naive ensembling with mixture α in Figure 4,
where GLA meets its optimal performance at α = 0.5, which is in line
with our theoretical analysis. We also observe that the debiased zero-shot
model increases accuracy by 2.3% and our GLA consistently outperforms
naive ensembling with various α.

5.2 Few-shot learning

For few-shot scenarios, we primarily choose prompt tuning for fine-tuning, since it is empirically
more effective than end-to-end fine-tuning and linear probing [54, 55, 8].

Datasets. We follow CoOp[54] to use 15 datasets: ImageNet [11], Caltech101 [13], OxfordPets [37],
StanfordCars [25], Flowers102 [36], Food101 [6], FGVCAircraft [34], EuroSAT [16], UCF101 [44],
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Method Source Target

IN V2 S A R

CLIP 59.8 52.8 35.5 22.8 60.6
CoOp 61.9 54.3 32.5 21.8 54.2
PLOT 63.0 55.1 33.0 21.9 55.6
ProGrad 63.5 55.4 33.1 21.3 55.2
GLA 65.6 57.1 36.4 23.0 62.1

Table 4: Evaluation on robustness to distribution
shift at 16 training shots.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Absolute improvement (%) over the fine-tuned models

FGVCAircraft
UCF101

Caltech101
Flower102

SUN397
EuroSAT
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StanfordCars

Food101
OxfordPets

DTD

Naive Ensemble
GLA (ours) Ensemble

Figure 6: Comparison with naive ensembling.

Model IN. Caltech. Pets. Cars. Flowers. Food. Aircraft. SUN. DTD EuroSAT UCF. Avg.

fzs 59.8 87.1 85.8 55.6 65.3 77.9 17.1 60.3 42.3 37.5 61.5 59.1
fzs − π̂p 62.3 89.9 85.9 57.6 67.2 78.6 18.4 63.5 43.0 39.0 62.4 60.7
∆ +2.5 +2.7 +0.1 +2.0 +1.9 +0.7 +1.3 +3.2 +0.7 +1.4 +0.9 +1.6

Table 5: Comparision between zero-shot models (fzs) and debiased zero-shot models (fzs − π̂p).

DTD [9], SUN397 [50], ImageNet-{V2 [41], Sketch [47], A [18], R [17]}. We randomly select {1, 2,
4, 8, 16} shots for training and use the original test set for evaluation. See Appendix B.1 for details.

Baselines. We compare with three prompt tuning methods: (1) CoOp [54] optimizes prompts via
empirical risk minimization; (2) ProGrad [55] prevents forgetting the general knowledge using
zero-shot predictions; (3) PLOT [8] applies optimal transport to match the vision and text modalities.

Implementation details. We implement our proposed GLA method using CLIP-ResNet-50 as the
foundation model and adopt class-specific prompt tuning from CoOp. Results are averaged over three
seeds, with training configurations aligned with CoOp. See Appendix B.4 for further information.

Main results. Figure 5 summarizes the few-shot results on 11 datasets. The detailed accuracy and
standard deviation are in Appendix C.1. Overall, our GLA clearly outperforms the baselines on
average performance by a large margin, e.g., our GLA gains 4.6%, 4.8%, 3.1%, 2.6% and 1.6%
performance boost over CoOp at 1, 2, 4, 8, 16 shots. In particular, on ImageNet dataset, we observe
a large improvement, e.g., 3.9%, 2.9%, 1.9%, 2.0% and 2.2% over ProGrad at 1, 2, 4, 8, 16 shots.
Furthermore, on OxfordPerts, Food101 and SUN397 datasets, our method’s performance remains
stable and consistently improves with increasing sample sizes, while the one of the baseline methods
fluctuates significantly. In particular, on Food101, baseline models even underperform zero-shot
models by a large margin, while our GLA shows clearly better performance than zero-shot models.

Robustness to distribution shifts. Following CoOp, we used the ImageNet at 16 training shots
as the source domain and assess the robustness on ImageNet-{V2, Sketch, A, R} datasets. Table 4
summarizes the results, where the prompt tuning baselines perform worse on distribution shifted
datasets compared to the zero-shot model, as fine-tuning on limited data misleads the model to learn
in-distribution correlations. In comparison, our GLA approach makes the best of both fine-tuned and
zero-shot models, thus consistently outperforms other methods on both source and target domains.

GLA improves accuracy over naive ensemble. Figure 6 compares the results between our GLA
and naive ensembling. We rank the absolute improvements over fine-tuning baseline at 16 training
shots. In summary, our GLA demonstrates superior accuracy gains. It is worth noting that the
naive ensembling does not always lead to improvements, e.g., on EuroSAT, SUN, Caltech, UCF and
Aircraft, naive ensembling even underperforms fine-tuning baseline.

Debiased zero-shot models perform better. We estimate πp at 16 shots and compare the original
zero-shot models with the debiased zero-shot models in Table 5. It is clear that the debiasing leads to
improvement on all 11 datasets, showcasing an average accuracy gain of 1.6%.

5.3 Long-tail learning

Datasets and metrics. We evaluate our method on two standard benchmarks: Places365-LT and
ImageNet-LT [31]. In addition to top-1 accuracy, we report the accuracy on three test subsets
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Method Many Med Few All

L
P

ERM 64.4 39.8 20.1 46.6
LA 56.7 50.5 46.4 52.3
BS 57.7 50.5 43.9 52.4
GLA 65.5 60.8 57.7 62.2

PT

ERM 66.6 57.7 53.8 60.6
LA 67.9 60.0 58.7 62.9
BS 67.0 62.2 59.4 63.5
GLA 70.7 66.5 64.3 67.8

E
2E

ERM 75.5 56.0 36.2 60.8
LWS [24] 70.4 62.6 56.2 64.7
LA [35] 70.4 62.8 56.9 64.9
BS [43] 71.2 62.5 56.8 65.1
WiSE-FT [48] 70.7 65.0 61.1 66.7
BALLAD [33] 71.0 66.3 59.5 67.2
GLA 72.1 66.4 63.4 68.2

(a) ImageNet-LT

Method Many Med Few All

L
P

ERM 43.9 21.1 9.0 26.9
LA 39.2 33.7 29.5 34.9
BS 39.6 34.0 28.3 34.9
GLA 43.6 40.2 38.8 41.1

PT

ERM 47.7 32.6 24.9 36.5
LA 43.9 40.6 39.4 41.5
BS 43.4 42.5 42.3 42.8
GLA 47.0 47.1 47.8 47.2

E
2E

ERM 46.3 27.4 12.5 31.3
LWS [24] 41.2 39.0 32.8 38.6
LA [35] 42.2 39.3 34.0 39.3
BS [43] 46.7 44.4 39.5 44.3
WiSE-FT [48] 46.0 44.0 43.9 44.7
BALLAD [33] 48.7 44.7 42.2 45.7
GLA 47.3 45.4 45.3 46.1

(b) Places365-LT

Table 6: The performances on ImageNet-LT and Places365-LT.

according to the number of samples per class: many-shot (> 100 samples), medium-shot (20 ∼ 100
samples), and few-shot (< 20 samples). Detailed information is provided in Appendix B.1.

Fine-tuning and long-tail learning baselines. We compare our GLA with the combinations of
fine-tuning protocols and long-tailed recognition methods. We consider three fine-tuning protocols:
1) Linear Probe (LP) 2) End-to-End (E2E) fine-tuning; 3) Prompt Tuning (PT). The three fine-tuning
paradigms are introduced in Section 3.1 with details in Appendix B.3. We compare with 5 long-tail
learning methods: 1) standard Empirical Risk Minimization (ERM); 2) Learnable Weight Scaling
(LWS) [24]; 3) Logit Adjustment (LA) [35]; 4) Balanced Softmax (BS) [43], and 5) BALLAD [33],
which is designed for VLMs. See Appendix B.6 for more details on long-tail baselines.

Implementation Details. For all combinations of the fine-tuning and long-tail learning baselines,
visual backbones are initialized from CLIP-ResNet-50 and classifiers are initialized via zero-shot
prompting. We use SGD for 50 epochs with batch size of 512. See Appendix B.6 for further details.

Results. Table 6 shows that our GLA method consistently surpasses baselines across all long-tailed
datasets. Our approach outperforms PT-based models by 3.5% and 4.4% on ImageNet-LT and
Places365-LT, respectively. Against E2E approaches, GLA exceeds not just the WiSE-FT but also
the current SOTA method BALLAD, by a large margin, e.g., 1pp gains on ImageNet-LT.

6 Conclusion and Limitation

In this paper, we identify the label bias in foundation models and underscore its adverse effects on
downstream task performance. We propose the Generalized Logit Adjustment (GLA) framework for
fine-tuning foundation models, which boosts the performance by effectively eliminating label bias and
combining diverse predictions from zero-shot and fine-tuned models. We prove that when presented
with zero-shot and fine-tuned models, our GLA is the Bayes optimal classifier for downstream task.
Extensive experiments across a diverse range of tasks and fine-tuning framework demonstrate the
effectiveness of our approach. We believe that the proposed GLA may partially improve the fairness
and credibility of foundation models.

The first limitation is that we only focus on the label bias while other forms of model biases, e.g.,
representation bias [5], cannot be addressed by our algorithm yet. The second limitation is that
we primarily focus on enhancing the fine-tuning performance for discriminative models. However,
applying our GLA framework to generative models presents challenges. For instance, language
generation operates as a Markov process, meaning each output depends on previous ones. This
implies it’s not straightforward to estimate the biasedness of a sequence with our GLA, as we only
compute the bias in a pre-defined and independent label space.
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A Proofs

A.1 Proof of Lemma 2

Restated Lemma (Lemma 2). Let πt denote the log probability of the target label distribution
πt(y) = logPt(y), we have:

Pt(y|fft(x), fzs(x)) = softmax(fft(x) + fzs(x)− πs − πp + πt)(y). (13)

In class-balanced target distribution, Eq. (13) simplifies to:

Pt(y|fft(x), fzs(x)) = softmax(fft(x) + fzs(x)− πs − πp)(y). (14)

Proof. Denote the output e = fft(x) and z = fzs(x). We first use the Bayes Rule to decompose
Pt(y|e, z) into Pt(e, z|y), Pt(y) and Pt(e, z) in Eq. (15), then rewrite Pt(e, z|y) in Eq. (16) accord-
ing to Assumption 1. Focusing on label shift problem [35, 20, 30] where P (x|y) does not change,
we derive Eq. (17)

Pt(y|e, z) =
Pt(e, z|y)Pt(y)

Pt(e, z)
(15)

= Pt(e|y)Pt(z|y)
Pt(y)

Pt(e, z)
(16)

= Ps(e|y)Pp(z|y)
Pt(y)

Pt(e, z)
(17)

=
Ps(y|e)Ps(e)

Ps(y)

Pp(y|z)Pp(z)

Pp(y)

Pt(y)

Pt(e, z)
(18)

=
Ps(y|e)
Ps(y)

Pp(y|z)
Pp(y)

Ps(e)Pp(z)Pt(y)

Pt(e, z)
(19)

(20)

Since e, z are fixed, we can replace the terms that not rely on y with a constant C1 in Eq. (21).
We replace Ps(y) = exp(logPs(y)) = exp(πs(y)), Pp(y) = exp(logPp(y)) = exp(πp(y)) and
Pt(y) = exp(logPt(y)) = exp(πt(y)). Suppose the underlying class-probabilities Ps(y|e) ∝
exp(ey) and Pp(y|z) ∝ exp(zy) for y ∈ [K]. Denote the constants Cs and Cp for normalizing
exp(ey) and exp(zy) into probabilities, and merge all constants to C = C1

CsCp
, we get Eq. (23)

Pt(y|e, z) =
Ps(y|e)
Ps(y)

Pp(y|z)
Pp(y)

Pt(y)C1 (21)

= exp(e+ z− πs − πp + πt)(y)
C1

CsCp
(22)

= C · exp(e+ z− πs − πp + πt)(y) (23)

Because the summation of Pt(y|e, z) is 1, C = 1/
∑

i∈[K] exp(e+ z− πs − πp + πt)(i). Therefore,
we have:

Pt(y|fft(x), fzs(x)) = Pt(y|e, z) (24)

=
exp(e+ z− πs − πp)y∑

i∈[K] exp(e+ z− πs − πp + πt)i
(25)

= softmax(fft(x) + fzs(x)− πs − πp + πt)y (26)

In class-balanced target distribution case, πt = log 1
K is constant. Since the softmax function is

invariant to constant offsets, Eq. (26) simplifies to:

Pt(y|fft(x), fzs(x)) = softmax(fft(x) + fzs(x)− πs − πp)y (27)
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Dataset Classes Train size Test size Task

ImageNet 1,000 1.28M 50,000 Object-level
CIFAR100 100 50,000 10,000 Object-level
Caltech101 100 4,128 2,465 Object-level
DTD 47 2,820 1,692 Textures
EuroSAT 10 13,500 8,100 Satellite images
FGVCAircraft 100 3,334 3,333 Fine-grained aircraft
Flowers102 102 4,093 2,463 Fine-grained flowers
Food101 101 50,500 30,300 Fine-grained food
OxfordPets 37 2,944 3,669 Fine-grained pets
StanfordCars 196 6,509 8,041 Fine-grained car
SUN397 397 15,880 19,850 Scene-level
UCF101 101 7,639 3,783 Action

ImageNetV2 1,000 - 10,000 Robustness to collocation
ImageNet-Sketch 1000 - 50,889 Robustness to sketch domain
ImageNet-A 200 - 7,500 Robustness to adversarial attack
ImageNet-R 200 - 30,000 Robustness to multi-domains
Table 7: The detailed statistics of datasets for many-shot and few-shot learning.

A.2 Proof of Proposition 2

Restated Proposition (Proposition 2). Suppose that the target distribution Pp is class-balanced.
Let h : RK → RK be an arbitrary function that predicts labels using the outputs of the zero-shot
model fzs(x). Let the derived classifier be denoted as fh(x) = h(fzs(x)). The classifier fzs − πp is
better than any fh(x): Rt(fzs − πp) ≤ Rt(fh(x)).

Proof. Denote the output z = fzs(x). Similar to Eq. (15)-Eq. (26), we have

Pt(y|z) =
Pt(z|y)Pt(y)

Pt(z)
(28)

=
Pp(z|y)Pt(y)

Pt(z)
(29)

=
Pp(y|z)
Pp(y)

Pt(y)

Pt(z)
(30)

= exp(z− πp)(y)/
∑
i∈[K]

exp((z− πp)(i)) (31)

= softmax(z− πp) = softmax(fzs(x)− πp) (32)

Therefore, we have:

argmax
y∈Y

(fzs(x)− πp)y = argmax
y∈Y

softmax(fzs(x)− πp)y = argmax
y∈Y

Pt(y|fzs(x)) (33)

Again, using Lemma 1, any other classifier fh(x) has higher risk than fzs(x)−πp, i.e., Rt(fzs−πp) ≤
Rt(fh(x)).

B Experimental Details

B.1 Dataset details

Many-shot and few-shot datasets. For many-shot learning, we use ImageNet, CIFAR100, Stanford-
Cars and SUN397 datasets. For few-shot learning, we evaluate models on 15 datasets. The details of
each dataset are presented in Table 7.

Long-tail datasets. We use two standard long-tail benchmarks: Places365-LT and ImageNet-LT [31].
The skewness of a long-tailed training set is typically represented by imbalanced ratio, which is
defined as Nmax/Nmin. Nmax (Nmin) denotes the largest (smallest) number of instances per class. A
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Dataset Size of
all classes

Size of
many classes

Size of
medium classes

Size of
few classes

Size of
training samples

Imbalanced
ratio

Places365-LT 365 131 163 71 62.5K 996
ImageNet-LT 1000 385 479 136 186K 256

Table 8: Details of long-tailed datasets.

larger imbalanced ratio means a more imbalanced training set. The test sets are divided into three
splits: many-shot subset contains classes with > 100 images, medium-shot subset includes classes
with ≥ 20 & ≤ 100 images, and few-shot subset covers classes with < 20 images. Details are listed
in Table 8.

B.2 CLIP zero-shot

We use prompt ensembling of 80 prompts provided by CLIP [48] for ImageNet, CIFAR100, and Cal-
tech101 to improve performance, i.e., averaging the text embedding of many captions, e.g.., “a photo
of a {ck}.” and “an image of a {ck}.”. For OxfordPets, StanfordCars, Flowers102, Food101, FGV-
CAircraft, EuroSAT, UCF101, DTD and SUN397, we use the pre-defined prompt from CoOp [54].

B.3 Fine-tuned models

End-to-end and linear probe fine-tuning. We follow WiSE-FT [48] to implement fine-tuning.
We initialize the classifier with the zero-shot classifier and the output of the image encoder Φv is
normalized during fine-tuning. We fine-tune for a total of 10 epochs using AdamW [32] optimizer
with default hyper-parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8 and weight decay 0.1. We choose a
batch size of 512. We use the same data augmentation and cosine-annealing learning rate schedule
as [48].

B.4 Prompt tuning.

Prompt tuning like CoOp [54] automates prompt engineering by learning the prompt given few
samples from downstream tasks. CoOp provides two options of prompt design: unified prompt that is
shared among all classes and class-specific prompt that is different for each class. In this paper, we
adopt the class-specific prompt design as the fine-tuned model to implement GLA . In specific, given
the word embedding t0k initialized by zero-shot prompts, we aim to learn a collection of class-specific
word embedding R = {rk}Kk=1, such that the text input tk = t0k + rk minimizes the empirical risk:
R∗ = argminR Ex,y[y ̸= argmaxi f(x;R)i].

We adhere CoOp to use CLIP ResNet-50 as image encoder for few-shot classification. The word
embedding R is initialized from zeros. For the m few-shot classification setting (where m ∈
{1, 2, 4, 8, 16}), we randomly sample m training and m validation points from the respective full
datasets. For all few-shot datasets except ImageNet, the training epoch is set to 200 for 16/8 shots,
100 for 4/2 shots, and 50 for 1 shot. For ImageNet, the epoch is set to 50 for all shots. We fine-tune
the prompt with SGD optimizer decayed by the cosine annrealing rule. The base initial learning rate
and batch size are set to 10−4 and 32. When given an m-shot sample setting, we increase the learning
rate and batch size by m times simultaneously to accelerate the training speed.

B.5 Estimation of the class prior

To estimate the log-probability of the pre-training distribution π̂s = logq, we utilize the optimiza-
tion toolkit Cooper [15] from https://github.com/cooper-org/cooper. q is initialized as a
uniformed distribution, q(y) = 1

K for all y ∈ [K]. We use the standard SGD as the primal and dual
optimizers for 2000 steps.

B.6 Long-tail learning baselines and training details

We compared with 5 long-tailed classification methods:
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1. Standard ERM: We learn the model by standard empirical risk minimization on the long-tailed
data.

2. Learnable Weight Scaling (LWS) [24]: We first learn the model by standard ERM, then fix the
model and learn to re-scale the magnitude of the classifier using class-balanced sampling.

3. Logit Adjustment (LA) [35]: We first learn the model by standard ERM, then compensates
the long-tailed distribution by subtracting a class-dependent offset to the model outputs.

4. Balanced Softmax (BS) [43] modifies the Softmax cross-entropy loss which explicitly accom-
modate the label distribution shift during optimization.

5. BALLAD [33] first fine-tunes the vision-language models via contrastive loss on long-tailed
data, then freezes the backbone and finally employs an adapter to enhance the representations
of tail classes with re-sampling strategies.

For all combinations of the fine-tuning baselines and long-tailed learning methods, visual backbones
are initialized from CLIP-ResNet-50 and all classifiers are initialized by feeding prompt with class
names to the text encoder. We use SGD for all experiments with a momentum of 0.9 for 50 epochs
with batch size of 512. The initial learning rate is set to 1.6× 10−3 which is decayed by the cosine
annealing rule. To mitigate explosive gradients, we use the warmup learning rate equals to 10−5

during the first epoch. For the sake of fairness in comparison, all hyper-parameters of baselines are
carefully searched using grid search on the validation set.

C Additional Experiments

C.1 Few-shot learning accuracy

We provide mean and standard deviation in Table 9 in for {1, 2, 4, 8, 16} shots on all 11 few-shot
learning datasets.

Dataset 1 shot 2 shots 4 shots 8 shots 16 shots

ImageNet 61.65 ± 0.15 62.64 ± 0.01 63.32 ± 0.07 64.51 ± 0.09 65.61 ± 0.03
Caltech101 89.08 ± 0.09 90.25 ± 0.25 90.98 ± 0.43 91.90 ± 0.21 92.58 ± 0.42
OxfordPets 87.79 ± 0.15 87.86 ± 0.21 88.22 ± 0.21 88.09 ± 0.27 89.53 ± 0.16
StanfordCars 60.00 ± 0.14 63.10 ± 0.42 66.25 ± 0.19 69.87 ± 0.09 73.95 ± 0.11
Flowers102 73.45 ± 0.60 81.00 ± 0.46 88.31 ± 0.65 92.89 ± 0.46 95.41 ± 0.32
Food101 78.41 ± 0.07 78.62 ± 0.07 78.68 ± 0.06 78.85 ± 0.19 79.54 ± 0.47
FGVCAircraft 20.22 ± 0.59 22.09 ± 0.37 24.65 ± 0.85 28.23 ± 0.44 31.99 ± 0.50
SUN397 64.29 ± 0.19 66.32 ± 0.16 68.01 ± 0.08 69.99 ± 0.18 71.64 ± 0.21
DTD 47.38 ± 1.23 50.75 ± 1.46 56.90 ± 0.20 62.73 ± 0.80 65.78 ± 0.49
EuroSAT 56.50 ± 1.34 67.26 ± 3.58 72.40 ± 2.43 77.59 ± 1.84 84.93 ± 1.89
UCF101 65.32 ± 0.17 68.42 ± 0.81 70.88 ± 0.50 74.23 ± 0.24 76.07 ± 0.03

Table 9: GLA Accuracy (%) with standard deviation of few-shot learning on 11 datasets.

C.2 Experiments on LAION-400M

To support our thought experiment in the discussion of Section 4.3, we use the Open-CLIP ViT-
B/16 [21], the first 20k image in LAION-400M datasets and the bias estimation method proposed
by [2] to estimate the expected logits across 8 classes: “dog”, “cat”, “squirrel”, “tiger”, “elephant”,
“horse”, “pig” and “bird”. The bias estimation proposed by [2] provides a good estimation of
logP (x) over the labels under pre-training distribution. Our GLA estimates the label bias matches
the downstream domain, we consider two downstream domain styles, i.e., “photo” and “sketch” from
DomainNet [38] dataset. For each domain, we randomly sampled 50 images for each class.

Method dog cat squirrel tiger elephant horse pig bird

expected logits by [2] 0.059 0.039 0.043 0.053 0.043 0.062 0.061 0.028
πp by “photo” 0.059 0.041 0.047 0.055 0.048 0.062 0.060 0.033
πp by “sketch” 0.059 0.043 0.063 0.061 0.067 0.042 0.047 0.056
Table 10: Comparison among different bias estimation using Open-CLIP-ViT-B/16.

We present the expected logits estimated by [2], along with the one calculated from “photo” and
“sketch” downstream domain data in Table 10. Since the softmax is invariant to constant offsets, i.e.,
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Method Sketch Real Photo

Zero-shot Open-CLIP 92.25 97.00
Debiased by [2] 89.50 97.50
Debiased by GLA 93.00 97.75

Table 11: Performance on sketch and real photo domain.

softmax(x+ c) = softmax(x), we align the three label bias to yield the same logits on “dog” class
by subtracting constant values. We observe that the label bias estimated by the "photo" domain align
closely with [2] due to its close resemblance to the pre-trained domain. Conversely, the "sketch"
image style, which significantly differs from the pre-training domain, results in a more pronounced
deviation in the pre-trained label bias.

Additionally, we apply the three estimated label biases to debias the zero-shot model and evaluate the
classification performance. The results are shown in Table 11, where the superiority of our method
becomes evident on “sketch” domain (93.00% vs 92.25%). Applying the label bias from [2] on the
"sketch" domain degrades the model’s performance (from 92.25% to 89.50%). This is attributed to
the overall pre-training label bias does not adequately reflect the bias specific to the“sketch” domain.
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