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ABSTRACT

Open-vocabulary multiple object tracking aims to generalize trackers to unseen
categories during training, enabling their application across a variety of real-world
scenarios. However, the existing open-vocabulary tracker, which relies on off-the-
shelf open-vocabulary detector, perceives categories and locations independently
in each frame, causing instability and making it vulnerable to similar appearances
and irregular motion in diverse scenes. In this paper, we propose OVTR (End-
to-End Open-Vocabulary Multiple Object Tracking with TRansformer), the first
end-to-end open-vocabulary tracker that models motion, appearance, and category
simultaneously. To achieve stable classification and continuous tracking, we de-
signed the CIP (Category Information Propagation) strategy, which establishes
multiple high-level category information priors for subsequent frames. Addition-
ally, we introduce a dual-branch structure for generalization capability and deep
multimodal interaction, and incorporate protective strategies in the decoder to en-
hance performance. Notably, our method does not require proposals that contain
novel categories, yet still achieves strong results on the open-vocabulary MOT
benchmark. Moreover, experiment transferring the model to other dataset demon-
strates its effective adaptability.

1 INTRODUCTION

Critical to video perception, multi-object tracking (MOT) can currently be applied to various down-
stream tasks such as autonomous driving and video analysis (Bashar et al., 2022). Dominant MOT
methods are primarily trained to track closed-vocabulary categories, limiting their ability to gener-
alize to a broader range of scenarios and unseen categories. Clearly, such approaches do not offer
the ultimate solution for human-like video perception intelligence, as humans can perceive and track
unseen dynamic objects in an open-world context. Therefore, the open-vocabulary multiple object
tracking task (Li et al., 2023) was proposed, where models are expected to identify and track novel
categories in a zero-shot manner, aligning better with real-world demands, such as more compre-
hensive video understanding, smart city management, and autonomous driving.

Recently, as numerous open-vocabulary detection (OVD) (Gu et al., 2021; Du et al., 2022; Lin et al.,
2022; Wu et al., 2023b; Zang et al., 2022) methods have emerged, researchers (Li et al., 2023)
have extended OVD into the tracking domain by integrating open-vocabulary detectors with purely
appearance-based associations, as illustrated in Fig. 1. This approach leverages the performance
of OVD and uses data augmentation to enhance appearance-based association learning. However,
it treats the classification of objects independently in each frame, leading to potential instability in
category perception and preventing the reuse of previously predicted results in subsequent frames.
Moreover, in complex scenarios, such as the diverse environments encountered in open-vocabulary
MOT tasks, similar appearances, appearance changes, and unpredictable motion patterns often un-
dermine the effectiveness of existing strategies that rely heavily on appearance features.

Furthermore, such tracking-by-detection frameworks inevitably rely on post-processing and anchor
generation, which necessitate hand-designed operations based on scene-specific prior knowledge,
making them difficult to adapt in an open-world context. In contrast, existing closed-set end-to-end
transformer-based tracking methods (Zeng et al., 2022; Zhang et al., 2023; Gao & Wang, 2023;
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Figure 1: Comparison between a Tracking-by-Open-Vocabulary-Detection (OVD) and our method.
The Tracking-by-OVD method predicts each frame independently, making classification and asso-
ciation susceptible to changes in appearance. In contrast, our method, OVTR, propagates location,
appearance, and category information from the current frame to subsequent frames, creating a sta-
ble, continuously updated information flow. This flow serves as a prior, aiding in capturing the
corresponding target in future frames.

Yu et al., 2023b) focus on achieving sustained tracking in complex scenarios. Featuring an elegant
framework, these methods eliminate the need for complex post-processing and explicit tracking
associations, demonstrating potential for cross-temporal modeling of targets in specific scenarios.

To address the aforementioned issues, we propose OVTR (End-to-End Open-Vocabulary Multiple
Object Tracking with TRansformer), the first end-to-end open-vocabulary tracker that integrates mo-
tion, appearance, and category modeling to move beyond reliance on single-frame category percep-
tion and appearance-based matching. We design a category information propagation (CIP) strategy
that leverages the iterative nature of query-based trackers, converting predicted category informa-
tion into priors for subsequent tracking. This approach establishes a higher-level flow of category
information, aiding in the continuous capture of corresponding targets, thereby not only reinforc-
ing and reusing category information but also addressing the limitations of purely appearance-based
matching and non-end-to-end frameworks.

To support this strategy, we optimized our model in two key aspects. First, we proposed a dual-
branch structure to deeply fuse multimodal information, enabling the model to possess open-
vocabulary perception capabilities. Second, we designed attention protection strategies for the de-
coders, allowing the model to better integrate classification and tracking while ensuring they work
collaboratively. Regarding the structural design, we divide it into two aspects: one is to provide
effective information for the CIP strategy, and the other is to achieve generalization and modal in-
teraction capabilities. We designed a dual-branch model, comprising the object feature alignment
(OFA) branch and the category text interaction (CTI) branch, leveraging the visual language model
CLIP (Radford et al., 2021) to empower our model. We leverage CLIP to align the representations
output by the OFA branch and to generate text representations as inputs for the CTI branch. The
OFA branch guides the model to obtain visual generalization capabilities for novel categories, en-
suring queries are aligned and producing object-level category representations as input for the CIP
strategy. Meanwhile, the CTI branch facilitates interaction between these aligned queries and cat-
egory text features via cross-attention. Notably, the alignment performed by OFA does not require
pre-prepared proposals that contain novel categories.

In parallel, regarding attention protection strategies, it is crucial to minimize interference caused by
discrepancies in content between queries, enabling classification and tracking to work in synergy. To
achieve this, we introduce two strategies that modulate self-attention: the category isolation strategy
and the content isolation strategy. These two approaches respectively protect the decoder from
potential confusion stemming from discrepancies in category information and the interplay between
tracking and detection queries.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

By the combined effect of the aforementioned method, along with multi-frame joint optimization
during training, our model enables a comprehensive flow of category information that supports both
tracking and stable classification across multiple frames, and eliminates the need for explicit track as-
sociations or complex post-processing. Experimental results on the TAO(Dave et al., 2020) datasets
demonstrate that OVTR surpasses state-of-the-art methods on the novel category TETA(Li et al.,
2022b) metric. Specifically, in the validation set, the novel TETA surpasses OVTrack by 12.9%,
while in the test set, the novel TETA exceeds OVTrack by 12.4%. Furthermore, in transfer experi-
ments on the KITTI dataset, OVTR outperforms OVTrack by 2.9% on the MOTA metric.

To summarize, our main contributions are listed as below:

• We propose pioneering Transformer-based end-to-end framework for open-vocabulary
tracking, simultaneously modeling motion, appearance, and category.

• We establish a higher-level category information flow that guides the model in continuously
recognizing categories and capturing their locations.

• We propose a dual-branch structure for open-vocabulary perception, eliminating the need
for proposals containing novel categories. Two protective strategies are introduced for the
decoder to ensure a more harmonious operation of the model.

2 RELATED WORK

Open-Vocabulary MOT. MOT has been scaled up to handle a broader range of categories, enabling
it to operate in more diverse environments. Dave et al. (2020) introduced the TAO benchmark, which
includes more than 800 categories and emphasizes MOT performance on the long-tail distribution
of a large number of categories. TETA (Li et al., 2022b) decomposes tracking evaluation into three
sub-factors: localization, association, and classification, allowing for comprehensive benchmarking
of tracking performance even under inaccurate classification, with TETer (Li et al., 2022b) achieving
strong results on this evaluation. OVTrack (Li et al., 2023) leverages the open-vocabulary detector
ViLD (Gu et al., 2021), combining appearance-based association for open-vocabulary tracking, and
uses diffusion models to generate LVIS (Gupta et al., 2019) image pairs for training associations. In
contrast, our approach jointly models localization, appearance, and classification, enabling tracking
and classification to mutually benefit from each other.

Transformer-based MOT. Association-based trackers have not yet fully realized end-to-end track-
ing, as they still depend on post-processing and explicit matching strategies. In contrast, the Trans-
former model holds advantages as a framework for implementing end-to-end MOT. TransTrack (Sun
et al., 2020) adopts a decoupled network and IoU matching to achieve query-based detection
and tracking. TrackFormer (Meinhardt et al., 2022) and MOTR (Zeng et al., 2022) reformu-
late tracking as a sequence prediction task, where each trajectory is represented by a track query.
MOTRv2 (Zhang et al., 2023) incorporates an additional object detector to generate proposals serv-
ing as anchors, providing detections for MOTR. MOTRv3 (Yu et al., 2023b) refines the label as-
signment process by employing a release-fetch supervision method. Additionally, the attention
mechanism of the Transformer has already been proven effective in handling multi-modal infor-
mation (Nguyen et al., 2024; Zhou et al., 2023; Yu et al., 2023a; Wu et al., 2023a). In this work,
we are the first to introduce an end-to-end Transformer-based tracker that achieves open-vocabulary
multi-object tracking, leveraging the iterative nature of query-based tracking methods to propagate
category information across multiple frames.

3 METHOD

3.1 OVERVIEW

Revisiting MOTR. The overall pipeline is illustrated in Fig. 2. We follow the general structure and
basic tracking mechanism of MOTR(Zeng et al., 2022), treating MOT as an iterative sequence pre-
diction problem. In MOTR, each trajectory is represented by a track query. Following a DETR-like
structure (Carion et al., 2020), detect queries Qt=1

det for the first frame ft=1 are fed into the Trans-
former decoder, where they interact with the image features Et=1

img extracted by the Transformer

3
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Figure 2: Overview of OVTR. OVTR integrates modality fusion based on a DETR-like architecture.
The decoder features a dual-branch structure: the OFA branch and the CTI branch. Predictions from
the OFA branch are updated and reintroduced as track queries for the next frame.

encoder. This process yields updated detect queries Q′ t=1
det that contain object information. Detec-

tion predictions, including bounding boxes Bt=1
det and object representations Ot=1

det , are subsequently
extracted from Q′ t=1

det . In contrast to DETR, for the query-based iterative tracker, Qt=1
det are only

needed to detect newly appeared objects in the current frame. Consequently, one-to-one assign-
ment is performed through bipartite matching exclusively between Q′ t=1

det and the ground truth of
the newly appeared objects, rather than matching with the ground truth of all objects.

The matched Q′ t=1
det will be used to update and generate the track queries Qt=2

tr , which, for the
second frame ft=2, are fed once again into the Transformer decoder and interact with the image
features Et=2

img to extract the representations and locations of the objects matched with Qt=2
tr , thereby

enabling tracking predictions. Subsequently, the Qt=2
tr maintain their object associations and are

updated to generate the Qt=3
tr for the third frame ft=3. Parallel to Qt=2

tr , and similar to the process
for ft=1, Qt=2

det are fed into the decoder to detect newly appeared objects. After binary matching,
the matched Q′ t=2

det are transformed into new track queries and added to Qt=3
tr for ft=3. The entire

tracking process can be extended to subsequent frames. Regarding optimization, MOTR(Zeng et al.,
2022) employs multi-frame optimization, where the loss is computed by considering both ground
truths and matching results. The matching results for each frame include both the maintained track
associations and the binary matching results between Q′

det and newly appeared objects.

Tracking Mechanism During Inference. Similar to MOTR, the network forward process during
inference in OVTR follows the same procedure as during training. The key difference lies in the
conversion of track queries. In detection predictions, if the category confidence score exceeds τdet,
the corresponding updated detect query is transformed into a new track query, initiating a new track.
Conversely, if a tracked object is lost in the current frame (confidence ≤ τtr), it is marked as an
inactive track. If an inactive track is lost for Tmiss consecutive frames, it is completely removed.

Empowering Open Vocabulary Tracking. Leveraging the iterative nature of the query-based
framework, OVTR transfers information about tracked objects across frames, aggregating category
information throughout continuous image sequences to achieve robust classification performance,
rather than performing independent localization and classification in each frame.

In the encoder, preliminary image features from the backbone and text embeddings from the CLIP
model (Radford et al., 2021) are processed through pre-fusion to generate fused image features Eimg
and text features Etxt. We propose a dual-branch decoder comprising the OFA branch and the CTI
branch. Upon input of Q = [Qdet, Qtr], the two branches respectively guide Q to derive visual gen-
eralization representations and perform deep modality interaction with Etxt, outputting Oimg, Otxt.
Oimg serve as the input for the category information propagation (CIP) strategy, injecting category
information into the category information flow. This process is an extension of the aforementioned
mechanism where Q′ t

det generates Qt+1
tr . Meanwhile, Otxt are utilized for computing category logits

and for contrastive learning.

3.2 LEVERAGING ALIGNED QUERIES FOR SEARCH IN CROSS-ATTENTION

The perception part of OVTR builds on Zhang et al. (2022), incorporating visual-language modality
fusion in both the encoder and decoder. To efficiently conduct multimodal interaction and learn
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Figure 3: Architectures of the Dual-Branch Decoder and the Encoder. After modality fusion in
the encoder, the resulting image and text features are separately fed into the decoder’s Image Cross-
Attention and Text Cross-Attention for interactions. Aligned queries are processed by the OFA and
CTI branches to generate bounding boxes B, alignment features Falign, and Otxt for classification.

generalization ability, the decoder adopts a dual-branch structure, consisting of the object feature
alignment (OFA) branch and the category text interaction (CTI) branch.

Generating Image and Text Embeddings. To obtain the text information for modality interaction,
we feed the text and prompts into the CLIP (Radford et al., 2021) text encoder to generate text
embeddings. Simultaneously, we use ground truth boxes to generate image embeddings via the
CLIP image encoder and combine embeddings of the same category into a single representation.

Unlike methods that generate numerous image embeddings using proposals that partially contain
novel categories detected by an additional RPN-based detector(Gu et al., 2021; Du et al., 2022),
our preprocessing is simpler, and we do not utilize image embeddings with implicit novel category
information. Both the text and image embeddings generated by CLIP are prepared offline.

Feature Pre-fusion and Enhancement. In the encoder, inspired by multi-modal detectors such as
GLIP(Li et al., 2022a) and Grounding DINO(Liu et al., 2023), we integrated image-to-text and text-
to-image cross-attention modules for feature fusion, which enhance image and text representations,
preparing them for interaction in the decoder. Since the encoder outputs preliminary content features
that may introduce misguidance for the decoder, we follow approach of DINO-DETR(Zhang et al.,
2022) by generating the content part of our queries through learnable initialization, while the posi-
tion part is derived from the reference points produced by Eimg, the output of the encoder, through
sin-cos positional encoding.

Dual-Branch Structure. As shown in Fig. 3, in the dual-branch structure, the OFA branch consists
of a feed-forward network followed by a box head and an alignment head, while the category text
interaction (CTI) branch comprises text cross-attention followed by a feedforward network.

To enable the model to achieve zero-shot capabilities, we utilize the OFA branch for alignment,
guiding the queries produced from the image cross-attention layer, which we refer to as aligned
queries. Since the CLIP image embeddings are aligned with the CLIP text embeddings, we endow
the aligned queries with visual generalization capabilities derived from the CLIP image embeddings,
to allow them to effectively focus on the corresponding category information conveyed in the text
features Etxt in the text cross-attention. This is because Etxt originates from CLIP text embeddings.
Intuitively, aligned queries with the same category information as the text features Etxt are implicitly
aligned with them, even when novel category targets are introduced.

Specifically, We distill knowledge from the CLIP image encoder by aligning the output Falign ∈
Rn×d from the alignment head with CLIP image embeddings Vgt ∈ Rn×d. Falign corresponds to the
matching results mentioned in Sec.3.1. Each feature is a d-dimensional vector, where n represents
the number of ground truth objects. Alignment loss Lalign can be formulated as follows:

Lalign =
1

n · d

n∑
i=1

d∑
j=1

(Fi,j,align − Vi,j,gt)
2, (1)

Additionally, the dual-branch structure also aims to prevent category text information from affecting
the localization ability.
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3.3 ATTENTION ISOLATION FOR DECODER PROTECTION

For the decoder, interference may arise from both multiple category information and the content of
the track queries. Specifically, interactions between queries in the self-attention layers can entangle
category information, negatively affecting classification performance. Moreover, as a tracking-by-
query framework, the decoder processes both track and detect queries in parallel. Track queries
contain content about tracked objects, creating a content gap between them and the initial detect
queries. This gap may cause conflicts within the decoder layers due to the interactions in self-
attention. To address this, we propose attention isolation strategies for decoder protection.

Category Isolation Strategy. The output features of the CTI branch Otxt, undergo dot products
with the text features, followed by a softmax operation to produce the category score matrix S ∈
RN×M , where N denotes the number of detect queries, and M represents the number of selected
categories. We calculate the KL (Kullback-Leibler) divergence(Kullback, 1951) of the category
score distribution between each two predictions to form a matrix, called the difference matrix D ∈
RN×N . The specific formula is as follows:

Di,j = DKL(Si,:∥Sj,:) +DKL(Sj,:∥Si,:) =

M∑
k=1

Si,k ln

(
Si,k

Sj,k

)
+

M∑
k=1

Sj,k ln

(
Sj,k

Si,k

)
, (2)

where Di,j is the sum of the forward and the reverse KL divergences between the category score
vectors in S corresponding respectively to the i-th and j-th queries. DKL represents the calculation
of KL divergence.

We compute the difference matrix D based on S of the current decoder layer to generate the category
isolation mask (I ∈ RN×N ), which is then added to the attention weights of self-attention layer of
the next decoder layer. The category isolation mask I is generated as follows:

Ii,j =

{
True, if Di,j > τisol

False, if Di,j ≤ τisol
, (3)

where τisol is the threshold for the difference matrix D.

When Ii,j is ”True”, it indicates that the category information carried by these two queries is substan-
tially different. During the self-attention process, this difference may lead to interference between
the queries. Notably, interactions among track queries will be maintained to ensure that tracking
queries, which carry specific object information, can remain coherent and free from conflict.

Content Isolation Strategy. To mitigate the impact of the object content gap between track and
detect queries as they jointly enter the decoder, we introduced a content isolation mask. Due to
the content gap between track and detect queries, the content distribution of input queries differs
between the first frame detection and subsequent tracking. Thus, using a vanilla decoder for both
processes could lead to conflicts. Specifically, the content gap between track and detect queries
disrupts the content regularity of the output queries, which may result in contradictions in the subse-
quent decoder layers when subsequent tracking. This increases the disparity between the first frame
detection and subsequent tracking.

To ensure consistent decoder operations across the two processes, we propose the content isolation
mask to prevent track queries from interfering with the content of detect queries. Specifically, this
mask is added to the attention weights of self-attention in the first decoder layer, with the mask
positions for detect queries and track queries that attend to each other set to True to suppress their
interaction. For further details on these two strategies, please refer to appendix A.4.

3.4 TRACKING WITH CATEGORY INFORMATION PROPAGATION ACROSS FRAMES

To enable continuous category perception and localization, we leverage the iterative nature of the
query-based method and propose the category information propagation (CIP) strategy to aggregate
tracked object information, thereby reinforcing category priors throughout multi-frame predictions.

Inspired by MOTR(Zeng et al., 2022), we use the a modified Transformer decoder layer for the
CIP strategy. We use the output of the OFA branch corresponding to the matched updated queries
Q′ t

∗ = [P ′ t
∗ , Ct

∗] for the t-th frame ft, denoted as O∗ t
img, to update Q′ t

∗ into the track queries Qt+1
tr =

6
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[P t+1
tr , Ct+1

tr ] for the frame ft+1. Ct+1
tr is the content part of Qt+1

tr , which is the core of propagating
category information between frames. It can be formulated as:

Osa = MHA(O∗ t
img + P ′ t

∗ , O∗ t
img + P ′ t

∗ , O∗ t
img),

Or = LayerNorm(O∗ t
img + Dropout(Osa)),

Ct+1
tr = FFN(FFN(Or, O

∗ t
img), C

t
∗),

(4)

where P ′ t
∗ and Ct

∗ respectively represent the updated position parts and the content parts of Q′ t
∗ ,

MHA and FFN denote multi-head attention and feed-forward network, and Osa and Or are the inter-
mediate attention outputs and residual outputs. We use the sum of O∗ t

img and P ′ t
∗ as the queries and

keys, while using O∗ t
img alone as the values for the MHA.

This network aggregates the category information from O∗ t
img with historical content, providing cat-

egory priors in Ct+1
tr for the next frame predictions. In this way, category information is propagated

to the next frame, enabling multi-frame propagation during the iteration of track queries. Mean-
while, the bounding boxes Bt

∗ corresponding to Q′ t
∗ are transformed via sin-cos positional encoding

into P t+1
tr of Qt+1

tr . We exclusively use the output representations from the OFA branch, instead of
the CTI branch, as the OFA branch contains less direct textual information. This approach aims to
reduce the content gap between detect and track queries. Additionally, since O∗ t

img itself is derived
from the image cross-attention layer, it may be more readily aligned with similar information within
that layer when re-entering.

3.5 OPTIMIZATION

When an image sequence of N frames is input, the multi-frame predictions are denoted as ŷ =
{ŷi}Ni=1, and the corresponding ground truth as y = {yi}Ni=1. We compute the loss across multiple
frames, including both tracking loss and detection loss Lseq, which share the same components. The
difference is that tracking loss focuses on localizing previously recognized targets, while detection
loss handles newly detected ones. Lseq can be formulated as follows:

Lseq =

∑N
n=1(L(ŷ

i
tr |Qtr , y

i
tr) + L(ŷidet |Qdet , y

i
det))∑N

n=1(Ti)
, (5)

where ŷitr |Qtr , y
i
tr, ŷ

i
det |Qdet , y

i
det denote the association predictions, association labels, detection

predictions, and non-association labels, respectively. Ti represents the total number of the targets in
the i-th frame.

The loss function L includes not only the conventional classification loss and bounding box loss but
also the alignment loss Lalign for the OFA branch, which was mentioned in Sec.3.2. Regarding the
classification loss Lcls, we perform a dot product between each query and the text features to predict
logits, followed by calculating the focal loss. The single-frame loss L can be formulated as:

L = λclsLcls + λL1LL1 + λgiouLgiou + λalignLalign, (6)

where LL1 denotes the L1 loss, and Lgiou is the generalized IoU loss, while λcls, λL1, λgiou and λalign
are the weighting parameters.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Datasets. To thoroughly evaluate the open-vocabulary tracking performance and generalization
abilities of various trackers, we conducted comparative experiments on the TAO and KITTI datasets.
The TAO dataset is a diverse video tracking benchmark with 833 categories spanning various scenar-
ios. We utilized the Open-Vocabulary MOT benchmark, based on TAO, to assess open-vocabulary
tracking performance. This benchmark adopts the category division setup from prior work, treating
rare classes in LVIS as novel categories and frequent/common classes as base categories. It evaluates
a tracker’s ability to handle novel categories unseen during training, simulating real-world scenarios

7
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Table 1: Open-vocabulary MOT performance comparison on TAO dataset. All methods use
ResNet50(He et al., 2016) as the backbone. OVTrack(Li et al., 2023) uses DDPM to generate the
same amount of images as LVIS for training association. Proposalsnovel indicates the use of image
embedding generated from proposals that partially contain novel categories for distillation.

Method Elements Novel Base

Validation set Data Embeds Proposalsnovel TETA↑ LocA↑ AssocA↑ ClsA↑ TETA↑ LocA↑ AssocA↑ ClsA↑

DeepSORT (ViLD)(Wojke et al., 2017) LVIS,TAO 99.4M ✓ 21.1 46.4 14.7 2.3 26.9 47.1 15.8 17.7
Tracktor++ (ViLD)(Bergmann et al., 2019) LVIS,TAO 99.4M ✓ 22.7 46.7 19.3 2.2 28.3 47.4 20.5 17.0
OVTrack(Li et al., 2023) G-LVIS,LVIS 99.4M ✓ 27.8 48.8 33.6 1.5 35.5 49.3 36.9 20.2
OVTR LVIS 1,732 31.4 54.4 34.5 5.4 36.6 52.2 37.6 20.1

Test set Data Embeds Proposalsnovel TETA↑ LocA↑ AssocA↑ ClsA↑ TETA↑ LocA↑ AssocA↑ ClsA↑

DeepSORT (ViLD)(Wojke et al., 2017) LVIS,TAO 99.4M ✓ 17.2 38.4 11.6 1.7 24.5 43.8 14.6 15.2
Tracktor++ (ViLD)(Bergmann et al., 2019) LVIS,TAO 99.4M ✓ 18.0 39.0 13.4 1.7 26.0 44.1 19.0 14.8
OVTrack(Li et al., 2023) G-LVIS,LVIS 99.4M ✓ 24.1 41.8 28.7 1.8 32.6 45.6 35.4 16.9
OVTR LVIS 1,732 27.1 47.1 32.1 2.1 34.5 51.1 37.5 14.9

of identifying and tracking rare objects. This makes it an effective tool for assessing performance
in zero-shot tracking and classification tasks. The KITTI dataset, comprising 21 training and 29 test
sequences, focuses on autonomous driving scenarios with diverse objects, reflecting realistic driving
conditions. It serves as a benchmark for evaluating trackers’ generalization across datasets. For
training, we leveraged the LVIS dataset, which includes 1,203 categories, offering a rich diversity
of objects for open-vocabulary learning. Under the open-vocabulary setting, these categories are
divided into 866 base and 337 novel categories, enabling comprehensive model training for rare and
unseen object tracking.

Evaluation metrics. We use TETA as the metric for evaluating open-vocabulary performance.
TETA separates classification from localization and association, providing an effective measure of
a model’s classification ability in an open-vocabulary setting. The key metrics include localiza-
tion accuracy (LocA), association accuracy (AssocA), and classification accuracy (ClsA), offering a
comprehensive evaluation of localization, association, and classification performance. For general-
ization experiments on the KITTI dataset, we use the CLEAR-MOT metrics, such as multiple object
tracking accuracy (MOTA), ID F1 score (IDF1), mostly tracked rate (MT), mostly lost rate (ML),
and identity switches (IDs). Among these, MOTA and IDF1 serve as the primary metrics.

4.2 IMPLEMENTATION DETAILS

We use image data from LVIS(Gupta et al., 2019) for training and augment it to create image se-
quences. To better train this query-based tracker, we go beyond basic strategies like random flipping
and cropping, incorporating advanced techniques such as random occlusion and dynamic mosaic
augmentation. (see appendix C for details)

To accelerate convergence, we build OVTR with a ResNet50(He et al., 2016) backbone and apply
a weight-freezing strategy. Training begins with the detection module, using a batch size of 2 for
24 epochs, a learning rate of 2e-4, and decay by a factor of 10 every 10 epochs. Next, the dual-
branch decoders (along with the updater) are trained with a batch size of 1 for 15 epochs, starting
with a learning rate of 4e-5, which decays at epochs 10 and 13. Multi-frame training is employed,
progressively increasing the number of frames from 2 to 3, 4, and 5 at the 4th, 7th, and 14th epochs,
respectively. For hyperparameters, the threshold τisol for the difference matrix D is set to 3.5 times
its mean value due to its variability. Training is conducted on 4 NVIDIA GeForce RTX 3090 GPUs.

4.3 PERFORMANCE COMPARISON ON TAO DATASET

We compare OVTR with state-of-the-art methods on both the TAO validation and test sets. We
evaluate OVTrackLi et al. (2023), along with existing methods like DeepSORTWojke et al. (2017)
and Tracktor++(Bergmann et al., 2019) using off-the-shelf OVDs, against our model. All methods
are trained are trained solely on base categories, with ResNet50(He et al., 2016) as the backbone for
consistency. Notably, while all methods except ours utilize image embeddings containing implicit
novel categories. Additionally, OVTrack leverages DDPM(Ho et al., 2020) for data generation.

According to the results in Tab. 1, OVTR outperforms OVTrack on TETA of both novel and base
categories across the validation and test sets. Specifically, on novel ClsA, OVTR is more than three
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Table 2: Zero-shot Domain Transfer to KITTI Dataset. We compare OVTR with OVTrack and
CenterTrack. Our method and OVTrack are both trained using only images and undergo a zero-shot
cross-domain transfer evaluation, whereas CenterTrack is trained with in-domain videos.

Method Data MOTA↑ IDF1↑ MT↑ ML↓ IDs↓ Frag↓

Zero-shot:
OVTrack(Li et al., 2023) G-LVIS,LVIS 69.8 75.6 62.9% 5.8% 594 307
OVTR LVIS 71.8 78.3 64.3% 5.4% 378 169

Supervised:
CenterTrack(Zhou et al., 2020) KITTI 88.7 85.5 90.3% 2.2% 403 68

times that of OVTrack. On the test set, OVTR outperforms OVTrack by 11.8% on AssocA for novel
categories. This demonstrates OVTR has better generalization in novel category classification and
tracking. Furthermore, OVTR significantly surpasses OVTrack on LocA across both the validation
and test sets. These results, achieved without the use of proposals containing novel category infor-
mation and with less data, confirm the effectiveness of our approach. They validate the contributions
of the CIP strategy and the dual-branch structure in improving open-vocabulary tracking.

4.4 ZERO-SHOT DOMAIN TRANSFER TO KITTI DATASET

We evaluated our method and the state-of-the-art OVTrack on the KITTI validation set, as divided
by CenterTrack(Zhou et al., 2020), in the zero-shot domain transfer scenario. As KITTI only eval-
uates the Car and Pedestrian categories, we set the inference category range to include these two
categories along with nine randomly selected additional categories to increase the challenge of cat-
egory diversity. Tab. 2 shows that OVTR demonstrates better results in the Car category, surpassing
OVTrack by 2.9% on MOTA and 3.6% on IDF1, while reducing IDs by 36.3%. This indicates that
our model generalizes well when transferred to other datasets, further validating OVTR’s adaptabil-
ity to diverse autonomous driving scenarios. Due to the inconsistency between the categorization
of pedestrians in the KITTI dataset and the open-vocabulary task, we present additional comparison
methods for the pedestrian category in the supplementary materials.

4.5 ABLATION STUDY

In this subsection, we verify the effectiveness of the model architecture and strategies through abla-
tion studies. All models are trained on the LVIS dataset, undergoing 24 epochs of detection training
followed by 15 epochs of tracking training. Due to resource constraints, the ablation studies are
conducted on a subset of 40,000 images. For evaluation, we use the TAO validation dataset and
designate certain base categories that were not learned during training as novel categories. We use
ClsAb and ClsAn to represent ClsA of base and novel categories respectively.

Components of the Dual-Branch Decoder. In this part, we verify the effectiveness of the vari-
ous components of the dual-branch decoder. The alignment head was originally part of the OFA
branch, but we decoupled it for analysis, leaving only the box head in the output section of the OFA
branch. The CTI branch is necessary for the completeness of the open vocabulary model and is
not analyzed separately. As reported in Tab. 3, the model with the complete dual-branch structure
(row 4) outperforms the model with only the CTI branch (row 1) by 6.4% on TETA, and improves
by 20.6% on ClsAb. In detail, each component contributes to the performance improvement. The
OFA branch (row 2) improves the model slightly on AssocA, while having an effective improvement
of 10.3% on ClsAb. When the alignment head and alignment loss are incorporated with the OFA
branch, the model shows significant improvement over the structure with only the CTI branch. This
issue suggests that the alignment-enabled OFA branch effectively distills knowledge from the CLIP
image encoder for the aligned queries, thereby enabling a more thorough interaction with category
information in the CTI branch. In addition, when alignment is used for the CTI branch (row 3), the
model achieves a significant improvement on AssocA, but the classification performance remains
inferior to that of the model with a complete dual-branch structure (row 4). For row 3, we analyze
that aligning with image embeddings introduces conflicts in the text cross-attention, which weakens
the classification performance. Therefore, it is essential to utilize both the dual-branch structure and
the alignment strategy simultaneously.

Decoder protection Strategies. As shown in Tab. 4, when the category isolation strategy was ap-
plied alone (row 2), it primarily enhanced classification performance, indicating that it effectively
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Table 3: Ablation study on decoder compo-
nents. Align: the alignment head and alignment
loss, CTI: the category-text interaction branch,
OFA: the object feature alignment branch.

CTI OFA Align TETA AssocA ClsAb ClsAn

1 ✓ ✗ ✗ 31.2 31.8 12.6 1.9
2 ✓ ✓ ✗ 31.9 32.0 13.9 2.1
3 ✓ ✗ ✓ 32.5 33.9 13.8 2.0
4 ✓ ✓ ✓ 33.2 34.5 15.2 2.7

Table 4: Ablation study on the protection strate-
gies for the decoders. Category: the category
isolation strategy, Content: the content isolation
strategy.

Category Content TETA AssocA ClsAb ClsAn

1 ✗ ✗ 32.1 32.8 14.6 2.3
2 ✓ ✗ 32.2 33.0 15.6 2.5
3 ✗ ✓ 32.4 33.6 14.3 2.5
4 ✓ ✓ 33.2 34.5 15.2 2.7

Table 5: Ablation study on alignment methods.
We evaluate three methods: using text embed-
dings, image embeddings, and the average of
both embeddings for alignment.

Alignment TETA AssocA ClsAb ClsAn

Text 31.6 32.6 14.0 2.0
Image 33.2 34.5 15.2 2.7
Avg 32.3 33.2 14.1 3.2

Table 6: Ablation study on inputs for CIP ICIP.
Otxt denotes output of the category text interac-
tion branch, while Oimg represents output of the
object feature alignment branch.

ICIP TETA AssocA ClsAb ClsAn

Otxt 32.5 33.8 14.7 1.9
Oimg 33.2 34.5 15.2 2.7

prevents interference between different category information. The content isolation strategy applied
alone (row 3) resulted in an improvement on AssocA. When both strategies were applied together
(row 4), they produced a synergistic effect, resulting in a 3.4% improvement on TETA and a 5.2%
increase on AssocA compared to the model without either strategy, although the classification per-
formance was slightly suppressed compared to using only the category isolation strategy (row 2).

Modality-Specific Embeddings for Alignment. To explore whether aligning with image embed-
dings yields optimal results, we conducted an ablation comparison with three settings: alignment
with text embeddings, alignment with image embeddings, and alignment with the average of both
embeddings. As shown in Tab. 5, aligning with image embeddings outperformed alignment with
text embeddings by 5.1% on TETA. This suggests that aligning with image embeddings aids the
dual-branch decoder in generalizing and interacting with category information, and promotes the
propagation of category information. It is evident that aligning with the average of text and image
embeddings leads to improved ClsAn. We believe this is because the average embeddings retain the
generalization ability provided by image embeddings and enable more direct interactions due to the
inclusion of text embeddings. However, using average embeddings leads to suboptimal association
performance, indirectly resulting in a lower ClsAb.

Inputs for Category Information Propagation. In this part, we aim to compare the performance
of the model when using the output of OFA Oimg versus the output from CTI, Otxt, as input for
the CIP strategy. As shown in Tab. 6, using Oimg demonstrates better open-vocabulary tracking
performance compared to Otxt. This suggests that Oimg, aligned with CLIP image embeddings,
facilitates improved target capture and continuous classification when integrated into the category
information flow.

5 CONCLUSION

In this paper, we propose OVTR, the first end-to-end open-vocabulary multi-object tracker that
jointly models motion, appearance, and category. Leveraging the category information propagation
strategy, we establish a higher-level category information flow, enabling the model to classify and
track in a stable and continuous manner. By introducing a dual-branch structure for deep modality
interaction and incorporating protective strategies in the decoder, our method enhances the model’s
generalization capability and allows for harmonious operation of classification and tracking. This
approach eliminates the need for explicit track associations and complex post-processing. Despite
being RPN-free and not relying on proposals containing novel categories, our model demonstrates
strong generalization capabilities, achieving robust open-vocabulary tracking. OVTR emphasizes
multimodal fusion, ensuring tracking and classification work synergistically rather than functioning
as separate blocks. We hope this end-to-end model offers a more promising solution for open-
vocabulary tracking in dynamic environments.
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APPENDIX

A MORE IMPLEMENTATION DETAILS

A.1 CATEGORY SELECTION BASED ON DISTRIBUTION.

During training, for each frame input, we randomly sample 250 categories based on the dataset’s
class distribution, including the ground truth categories of the current frame. These categories are
represented as text embeddings, defining the scope of classes for classification learning in the current
frame. Specifically, in addition to the ground truth of the current frame, the probability of selecting
a certain category as a negative class is positively correlated with the 0.65th power of the number of
objects in that category. This approach helps mitigate the impact of the long-tailed distribution in
the dataset.

A.2 GENERATION OF IMAGE EMBEDDINGS

We use the CLIP(Radford et al., 2021) model to generate image and text embeddings. For the
generation of image embeddings, specifically, rather than using a large number of proposals detected
by an additional RPN-based detector, which may include novel categories, we simply extract a
specific number of cropped images for each base category from the dataset. Using the ground truth
bounding boxes, we crop the images with a factor of 1.2 to create these cropped images. The cropped
images for each category are then fed into the CLIP image encoder. The resulting representations
are normalized and averaged to generate the image embedding for that category.

A.3 LEARNABLE SCALING PARAMETERS

After computing the category score matrix through dot products at each layer, we apply learnable
scaling parameters, with each layer having independent scaling parameters to preserve computa-
tional independence across decoder layers.

Difference Matrix Category Isolation Mask
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D I

  corresponding query

“dog”

“person”

“car”

“skateboard”

KLD

Category Score MatrixS

...
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trQ

0.1 0.3 0.5 0.1 0.2 0.1

0.1 0.3 0.2 0.2 0.1 0.1
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0.1 0.1 0.1 0.1 0.2 0.1
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KL divergence value

largesmall valid mask  (True)
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trQdetQ
trQdetQ
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Figure 4: Attention isolation mask. In the difference matrix, The darker areas indicate a smaller
KL divergence, meaning the category prediction distributions of the corresponding queries in the
current layer are more similar. This suggests that the category information of the corresponding
input queries passed to the next layer is similar. The darker areas of the masks represent masked
positions, while the red dashed box shows that interactions among track queries will be maintained.

A.4 DETAILS OF ATTENTION ISOLATION STRATEGIES

The specific masks of the category isolation strategy and the content isolation strategy are illustrated
in Fig. 4. As mentioned in Sec.3.3, the output Otxt of the current decoder layer predicts the Category
Score Matrix S, which is used to compute the KL divergence between category predictions for each
query, resulting in the Difference Matrix D. D captures the similarity of category information
among queries. A threshold τisol is then applied to D to generate an isolation mask I , which sets
the positions with excessively large KL divergence values to True, thereby masking these positions.
This mask I is subsequently utilized in the self-attention layer of the next decoder layer. Since
queries are updated and propagated between decoder layers, the updated queries ([P ′, Otxt]) output
by the current layer serve as the input queries for the next layer. Therefore, the similarity captured
in D from the current layer are well-suited for application to the input queries of the next layer.
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Table 7: Verifying the Effectiveness of Com-
ponents in OVTR. Isol: isolation (protection)
strategies, Dual: dual-branch structure.

CIP Isol Dual TETA AssocA ClsAb ClsAn

1 ✗ ✗ ✗ 28.9 29.1 10.7 1.7
2 ✓ ✗ ✗ 30.3 30.2 12.1 1.8
3 ✓ ✓ ✗ 31.2 31.8 12.6 1.9
4 ✓ ✗ ✓ 32.1 32.8 14.6 2.3
5 ✓ ✓ ✓ 33.2 34.5 15.2 2.7

Table 8: Different image sequence lengths for
multi-frame optimization. The maximum image
sequence lengths set for the four experiments
are 2, 3, 4 and 5 respectively.

Length TETA AssocA ClsAb ClsAn

2 27.9 24.9 13.5 2.2
3 30.5 32.2 14.5 2.5
4 31.6 33.8 14.7 2.4
5 33.2 34.5 15.2 2.7

Specifically, I is added to the attention weights obtained from the batch matrix multiplication be-
tween q and k (where both q and k are input queries) during the self-attention in decoder layers 2
to 6. Because the coordinates (i, j) of I corresponding to queries i and j with significant category
information differences are set to True (in practice, the value is set to −∞), the attention weight at
this position becomes 0 after the softmax operation. This enforces attention isolation, preventing
category information from interfering with each other. It is worth noting that this mask is not used
in the first decoder layer, as the content part C of the queries fed into the self-attention in the first
decoder layer is initialized through learnable parameters and does not contain category information.

The implementation of the content isolation mask is straightforward, as it simply sets the positions
for detect queries and track queries that attend to each other to True. This mask is applied solely to
the self-attention layer of the first decoder layer for two reasons: first, the content gap between Qdet
and Qtr diminishes after the first decoder layer interaction, as detection queries carry enough object
semantic content; and second, to ensure that track queries can capture global information. Apart
from being applied in different decoder layers, the content isolation mask performs the same oper-
ation in self-attention as the previously mentioned category isolation mask, applied to the attention
weights to restrict the interaction between queries.

B ADDITIONAL EXPERIMENTS

B.1 VERIFYING THE EFFECTIVENESS OF COMPONENTS IN OVTR

In this part, we verify the effectiveness of three core components in OVTR: the category information
propagation (CIP) strategy, the dual-branch structure, and the decoder isolation protection strategies.
The row 1 represents the baseline model we constructed, which does not incorporate category infor-
mation when iterating track queries, essentially lacking a category information flow. Specifically,
in the single-branch structure (CTI only), we designed an auxiliary network structure identical to
the standard MOTR(Zeng et al., 2022) decoder, but it operates entirely independently of the CTI
branch. As a result, the queries passed through this structure lack category information. When using
its output as input to CIP, the category information flow lacks direct category information.

The results are reported in Tab. 7. According to the results, all the components have boosted the
open-vocabulary tracking performance effectively. OVTR(row 5) achieves a 14.9% improvement
on TETA compared to the constructed baseline(row 1). The adoption of the CIP strategy increases
AssocA by 3.8% and ClsAb by 13.1%, significantly improving both association and classification.
This suggests that the inclusion of CIP enables better collaboration between classification and track-
ing. Specifically, with the addition of the CIP strategy, the dual-branch structure (row 4) provides
the greatest performance gain. Compared to using CIP alone (row 2), TETA increases by 5.9%,
and both AssocA and ClsA see significant improvements, particularly with ClsAb increasing by
20.7%. This suggests that the designed dual-branch structure enhances generalization performance
and modality interaction, leading to a powerful open vocabulary capability. This also demonstrates
that the dual-branch structure strengthens tracking effectively by feeding the aligned representations
into the category information flow, helping capture objects and enhance tracking. In contrast, the
isolation strategies provide a smaller gain compared to the dual-branch structure, but still improve
AssocA by 5.3% compared to using CIP alone. This indicates that the protection provided to the
decoder is effective, helping maintain continuity between the initial frame detection and subsequent
tracking, thus improving tracking performance.
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Table 9: Open-vocabulary MOT inference speed test on TAO dataset. OVTR-Lite excludes the
category isolation strategy and tensor KL divergence computation.

Method Speed Novel Base

Validation set FPS TETA↑ LocA↑ AssocA↑ ClsA↑ TETA↑ LocA↑ AssocA↑ ClsA↑

OVTrack(Li et al., 2023) 3.1 27.8 48.8 33.6 1.5 35.5 49.3 36.9 20.2
OVTR 3.4 31.4 54.4 34.5 5.4 36.6 52.2 37.6 20.1
OVTR-Lite 12.4 30.1 52.7 34.4 3.1 35.6 51.3 37.0 18.6

B.2 ANALYSIS OF IMAGE SEQUENCES LENGTH FOR OPTIMIZATION

To investigate whether multi-frame optimization helps the model learn more stable category infor-
mation transfer and tracking, we set the maximum number of optimization frames in the ablation
experiments to 2, 3, 4 and 5. The first experiment maintains a frame count of 2 throughout. In the
second experiment, we start with 2 frames and increase the number of frames by 1 at the 4th epoch.
The third experiment starts with 2 frames and increases the frame count by 1 at both the 4th and 7th
epochs. The fourth experiment also starts with 2 frames but increases the frame count by 1 at the 4th,
7th, and 14th epochs. As shown in Tab. 8, when the length of the video clip gradually increases from
2 to 5, the TETA, AssocA, and ClsAb metrics improve by 19.0%, 38.6%, and 12.6%, respectively.
This indicates that multi-frame joint optimization contributes to improved tracking performance and
classification stability.

B.3 INFERENCE SPEED EVALUATION

We evaluated the inference speed of OVTrack and OVTR on a single NVIDIA GeForce RTX 3090
GPU. The results reported in Tab.9, indicate that OVTR achieves faster inference compared to OV-
Track. Additionally, we tested a lightweight version, OVTR-Lite, which excludes the category
isolation strategy and tensor KL divergence computation. Despite some performance trade-offs,
OVTR-Lite still outperforms OVTrack in overall performance. It achieves 4 times faster inference
speed compared to OVTrack, while keeping memory usage below 4GB during inference. The speed
test is conducted on the TAO validation set.

B.4 EVALUATION OF PEDESTRIAN CATEGORY ON THE KITTI DATASET

Since KITTI differentiates between Pedestrian and Cyclist, which the open-vocabulary task does
not, this differentiation results in a higher false positive rate when evaluating the Pedestrian category,
making MOTA metrics less indicative of actual performance for pedestrian tracking. To provide a
more accurate assessment of pedestrian tracking, we selected IDR, FN, and MOTP to compare the
model’s performance on pedestrians. Although there may be numerous false positives for cyclists,
comparing the recall rate for pedestrians is reasonable. The results in Tab. 10 indicate that our
method significantly outperforms OVTrack in capturing and tracking pedestrian targets when trans-
ferred to the KITTI dataset. This finding is consistent with our tests on TAO, where OVTrack often
fails to identify pedestrians. In addition to the model’s design and performance, this may also be
related to the fact that OVTrack includes pedestrians in the classification learning scope during every
frame of training, while the annotations for pedestrians in LVIS are not fully comprehensive.

Table 10: Zero-Shot Domain Transfer to KITTI Dataset (Pedestrian Category).

Method Data MOTA↑ IDF1↑ IDs↓ MOTP↑ IDR↑ FN↓

OVTrack G-LVIS,LVIS 4.5262 11.155 113 67.917 6.243 91.0%
OVTR LVIS 40.513 56.11 176 74.127 56.054 29.7%

C STATIC IMAGE AUGMENTATIONS FOR QUERY-BASED TRACKING

Our multi-frame training data augmentations are summarized in Fig. 5. As a MOTR-like query-
based tracker, OVTR requires a different approach to data augmentation and has higher demands for
training data. Our data augmentation includes conventional techniques, such as applying random
resizing, horizontal flipping, color jittering, and random affine transformations to single images to
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Figure 5: OVTR data augmentations. Unlike OVTrack, which is based on appearance matching,
our method does not utilize diffusion models for data augmentation. Instead, we propose Dynamic
Mosaic and Random Occlusion data augmentation to simulate object appearance and disappearance,
tracking continuity after occlusion, and maintaining correct associations when relative motion oc-
curs between tracked objects and others.

create distinguishable multi-frame data. This part aligns with OVTrack(Li et al., 2023). Addition-
ally, we propose Dynamic Mosaic and Random Occlusion augmentations, specifically designed for
MOTR-like trackers.

Unlike appearance-matching-based methods, our approach does not rely on diffusion models for ad-
ditional data augmentation. Instead, it focuses on enhancing the motion realism of static images dur-
ing data augmentation, making them more representative of the physical world. Specifically, while
query-based trackers excel at maintaining associations over extended periods, they place higher de-
mands on the realism of object motion patterns in training data. For OVTR, track queries must not
only learn to capture the same object as it moves to a new position in the next frame, but also han-
dle scenarios such as object appearance and disappearance, tracking continuity after occlusion, and
maintaining correct associations when relative motion occurs between tracked objects and others .

To address these challenges, we propose Dynamic Mosaic augmentation, an improvement over the
Mosaic augmentation in OVTrack. In addition to stitching four different images into a single com-
posite, Dynamic Mosaic generates images with varying relative spatial relationships among objects
across different training frames. This simulates scenarios such as objects approaching or reced-
ing from each other, crossing paths, and exhibiting relative size changes. The Random Occlusion
augmentation is employed to simulate situations where objects disappear due to occlusion and then
reappear or suddenly emerge in the scene.

Here, we detail the specific operations during training. Dynamic Mosaic is not applied to every sam-
pled image. To avoid neglecting learning for simple scenes or larger targets, we set the probability
of applying Dynamic Mosaic augmentation to a sampled training image at 0.5. In contrast, Random
Occlusion is applied to every sampled image. For Dynamic Mosaic augmentation, four sampled im-
ages are processed with relative size adjustments, vertical or horizontal translations, random swaps
of positions between two images, and possible horizontal flipping of one or more images. Random
Occlusion requires a simple preprocessing step, where a script is used to mark targets that rarely
overlap with others, based on the ground truth bounding boxes in the annotations. During Random
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(a) Without Mosaic (b) With Dynamic Mosaic
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Figure 6: OVTR data augmentations visualization. From the images, it can be observed that Dy-
namic Mosaic augmentation introduces relative motion and relative size changes between targets,
while the positional swapping of images simulates target crossing paths. Additionally, the bottom-
center image illustrates a random occlusion applied to a giraffe.

Occlusion augmentation, only these marked targets are randomly processed, preventing unintended
occlusion of other targets and avoiding negative impacts on model learning. The output images after
data augmentation used for training OVTR, including cases with and without Dynamic Mosaic, are
shown in Fig. 6.

D MODEL AND TRAINING HYPERPARAMETERS

Tab. 11 and Tab. 12 present the hyperparameters used in the detection training phase and the tracking
training phase, respectively. The hyperparameters not mentioned in Tab. 12 are the same as those in
Tab. 11. Our model follows the standard 6-encoder, 6-decoder structure in DETRs. For the update
and propagation of queries between decoder layers, we specifically use the updated position part
P ′ as the input position part of the queries for the next decoder layer, while the representation Otxt
output by the CTI branch is used as the content part for the next decoder layer. This is because
the CTI branch includes an extra cross-attention layer compared to the OFA branch, allowing Otxt
to contain more refined category information, leading to more accurate priors for classification in
subsequent layers. The shuffle ratio, dislocation ratio, single ratio range, and occlusion ratio range
are hyperparameters in the Dynamic Mosaic and Random Occlusion augmentations used to control
the extent of augmentation. Sampler lengths specifies the number of frames for multi-frame train-
ing during each of the four phases. Sampler steps indicates the epochs where these transitions to
different multi-frame training lengths occur.

E VISUALIZATION

As shown in the figures, the results on the left represent the tracking outcomes of OVTR, while the
results on the right depict those of OVTrack. Overall, it can be observed from the four sets of images
that our method experiences fewer ID switches and results in fewer false positives.

In Fig.7, it can be seen that our tracker, OVTR (on the left), maintains stable tracking of the three
sheep without any ID switches, whereas OVTrack (on the right) experiences ID switches and loses
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Table 11: Hyper-parameters used in the detection training phase.

Item Value

optimizer AdamW
lr 2e-4
lr of backbone 2e-5
weight decay 1e-4
clip max norm 0.1
number of encoder layers 6
number of decoder layers 6
dim feedforward 2048
hidden dim 256
dropout 0.0
nheads 8
number of queries 900
set cost class 3.0
set cost bbox 5.0
set cost giou 2.0
ce loss coef 2.0
bbox loss coef 5.0
giou loss coef 2.0
alignment loss coef 2.0

Table 12: Additional hyper-parameters used in the tracking training phase.

Item Value

lr 4e-5
lr of backbone 4e-6
sampler steps 4, 7, 14
sampler lengths 2, 3, 4, 5
shuffle ratio 0.1
dislocation ratio 0.25
single ratio range 0.7, 1.2
occlusion ratio range 0.1, 0.13

many previously detected targets. In Fig.8, OVTrack (on the right) generates a significantly higher
number of false positives compared to our method. In Fig.9, on the left, our OVTR tracks both
the person and the components of their clothing and skateboard, where the person (ID 5) and the
jacket (ID 2) remain consistently tracked over 15 frames (after sampling every 30 frames) in a high-
speed scenario. The tracking remains stable, and the correct categories are preserved, demonstrating
the effectiveness of our dual-branch structure and CIP strategy. In contrast, OVTrack reaches ID
110 at Frame 17, indicating a large number of ID switches, suggesting some challenges in tracking
stability. In Fig.10, in the second frame, the squirrel on the left partially occludes the squirrel on the
right. After the occlusion ends in the third frame, our tracker (on the left) maintains the same ID for
the squirrel as in the first frame, while OVTrack (on the right) experiences another ID switch and a
significant number of classification errors.

Overall, from the tracking results, it is evident that tracking diverse targets in scenes with a variety
of categories presents challenges. However, our method, combining the CIP strategy with a dual-
branch structure and decoder protection strategy, achieves relatively robust tracking. The results
demonstrated by OVTR suggest that it holds potential for effective tracking in such scenarios.
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Figure 7: Left: Our OVTR. Right: OVTrack.

Figure 8: Left: Our OVTR. Right: OVTrack.
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Frame 3
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Figure 9: Left: Our OVTR. Right: OVTrack.

Frame 3
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Frame 3

Frame 16

Frame 17

Figure 10: Left: Our OVTR. Right: OVTrack.
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