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ABSTRACT

Humans can systematically generalize to novel compositions of existing concepts.
There have been extensive conjectures into the extent to which neural networks
can do the same. Recent arguments supported by evidence on the SCAN dataset
claim that neural networks are inherently ineffective in such cognitive capacity.
In this paper, we revisit systematic generalization from the perspective of mean-
ingful learning, an exceptional capability of humans to learn new concepts by
connecting them with other previously known knowledge. We propose to reassess
models’ compositional skills conditioned on the semantic connections between
new and old concepts. In experiments, following the meaningful learning prin-
ciple, we augment a training dataset in either an inductive or deductive manner
to exposure such semantic links to models. Our observations on SCAN, as well
as two real-world datasets on semantic parsing, suggest that modern sequence-
to-sequence models, including RNNs, CNNs, and Transformers, can successfully
one-shot generalize to novel concepts and compositions through semantic linking.
We further demonstrate that both prior knowledge and semantic linking play a
key role in achieving systematic generalization and that inductive learning gener-
ally works better than deductive learning. Lastly, we provide an explanation for
data augmentation techniques by concluding them into either inductive-based or
deductive-based meaningful learning. We hope our findings will encourage ex-
cavating existing neural networks’ potential in systematic generalization through
more advanced learning schemes.

1 INTRODUCTION

As a crucial characteristic of human cognition, systematic generalization reflects people’s ability to
learn infinite combinations of finite concepts (Chomsky, 1957; Montague et al., 1970). However,
weak systematic compositionality has been considered as a primary obstacle to the expression of
language and thought in connectionist networks for a long time (Fodor & Pylyshyn, 1988; Hadley,
1994; Marcus, 1998; Fodor & Lepore, 2002; Frank et al., 2009; Brakel & Frank, 2009; Marcus,
2018). Whether models can generalize systematically is still an appealing research topic until now.
Recent works state that modern neural networks have not mastered these language-based generaliza-
tion challenges in multiple explicitly proposed datasets (Lake & Baroni, 2017; Bastings et al., 2018;
Keysers et al., 2019; Hupkes et al., 2020; Kim & Linzen, 2020). These studies conclude that models
lack such cognitive capacity, which calls for a more systematic study. Apart from the proposal of
benchmarks, existing research mainly focuses on novel architectural designs (Chen et al., 2020) data
augmentation (Andreas, 2020; Akyürek et al., 2021) and meta-learning (Lake, 2019; Conklin et al.,
2021) to enable systematic generalization.

In this work, however, we question that whether neural networks are indeed deficient or just con-
ventional learning protocols unable to exploit their full potential (Csordás et al., 2021). Inspired by
meaningful learning from the field of educational psychology (Mayer, 2002), we revisit systematic
generalization to see whether neural networks still fail after semantic linking. To exposure semantic
links between new concepts and existing ones, we augment prior knowledge through either inductive
learning or deductive learning as what humans do in meaningful verbal learning (Ausubel, 1963).
To be specific, inductive learning is a bottom-up approach from the more specific to the mode gen-
eral. By introducing new concepts sharing the same context with existing ones in specific samples,
we hope the model can capture the underlying semantic connections and thus generalize to novel
compositions of new concepts. On the contrary, deductive learning is a top-down approach from
the more general to the more specific. By involving a rule-like concept dictionary without specific
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Figure 1: An illustration of the semantic linking injection pipeline in SCAN. The two middleboxes
show the augmented dataset used for semantic linking through deductive learning (upper) and in-
ductive learning (lower). In practice, the prior knowledge (left) and the augmented dataset (middle)
are for training, and the new compositions of variants (right) are for testing. Models are expected to
generalize to new compositions given prior knowledge and semantic linking.

context information, we hope the model can utilize the general cross-lingual supervised signals as
anchor points so as to launch the semantic linking. In experiments, inductive and deductive learning
stand for training models on extra samples with or without context, respectively, as two standard
data augmentation techniques (Arthur et al., 2016; Wei & Zou, 2019; Nag et al., 2020). We mainly
focus on three semantic relationships, namely, lexical variant, co-hyponym, and synonym. Starting
from SCAN, our experiments confirm that, with semantic linking, even canonical neural networks
can generalize systematically to new concepts and compositions. Moreover, this holds consistent
across two more semantic parsing datasets. As an ablation study, we further examine such one-shot
compositional generalization and find that both prior knowledge and semantic linking take essential
parts. Lastly, we extend from toy sets to real data and explain how models’ meaningful learning
capability benefits them in solving real problems such as machine translation and semantic parsing
with the assistance of data augmentation techniques.

Overall, our contributions are as follows: (1) We formally revisit systematic generalization by in-
troducing semantic linking from a meaningful learning perspective. (2) We show how to conduct
semantic linking by two common data augmentation approaches, either inductively or deductively.
(3) We observe that modern neural networks can achieve systematic generalization with semantic
linking, and both prior knowledge and semantic linking play a key role, which is in line with mean-
ingful learning theory. (4) We extend from SCAN to real data and demonstrate that many recent
data augmentation techniques belong to either inductive or deductive learning.

2 MEANINGFUL LEARNING

Learning new concepts by relating them to the existing ones is defined as a process of meaningful
learning in educational psychology (Ausubel, 1963; Mayer, 2002). The utilization of meaningful
learning can encourage learners to understand information continuously built on concepts the learn-
ers already understand (Okebukola & Jegede, 1988). Following the same idea, we intend to examine
models’ systematic compositionality by exploring semantic linking that establishes semantic rela-
tions between primitives P (old concepts) and their variants V := {Vp | ∀p ∈ P} (new concepts).
To spoon-feed semantic knowledge to models for semantic linking, we augment the training data by
either inductive learning or deductive learning (Hammerly, 1975; Shaffer, 1989; Thornbury, 1999)
as humans learning vocabulary. In this section, we discuss the process of semantic linking and take
“jump” from SCAN as an example primitive to illustrate the learning scheme in Figure 1.

2.1 SEMANTIC LINKS

We aim to revisit systematic generalization by exposing semantic links such as lexical variants, co-
hyponyms, and synonyms. Lexical Variant refers to an alternative expression form for the same con-
cept. Co-hyponym is a linguistic term to designate a semantic relation between two group members
belonging to the same broader class, where each member is a hyponym and the class is a hypernym
(Lyons & John, 1995). Synonym stands for a word, morpheme, or phrase that shares exactly or
nearly the same semantics with another one. We provide an example and a detailed description in
Appendix.
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2.2 INDUCTIVE LEARNING

Inductive learning is a bottom-up approach from the more specific to the more general. In grammar
teaching, inductive learning is a rule-discovery approach that starts with the presentation of specific
examples from which a general rule can be inferred (Thornbury, 1999). Inspired by that, we propose
to conduct semantic linking by introducing variant samples sharing the same context with their
primitives during training. The assumption is that models can observe the interchange of primitives
and their variants surrounded by the same context in the hope of coming up with a general hypothesis
that there is a semantic linking between primitives and their variants (Harris, 1954). Formally, we
describe inductive learning as follows. For a sequence-to-sequence task T : X → Y , we have
a source sequence x ∈ X and its target sequence y ∈ Y . We prepare prompts set Z := {z =
fprompt(x) | x ∈X}, where fprompt(·) replaces the primitive in x with a slot mark [zp].1 Then, we
generate XIL := {xIL = ffill(z, v) | z ∈ Z, v ∈ V} by filling [zp] with variants in Vp. There is
no change from the target side, so we get Y IL by copying y as yIL for each xIL correspondingly.
Finally, we train models on (

[
X

XIL

]
,
[

Y
Y IL

]
) to operate semantic linking inductively. In practice,

as shown in Figure 1, we first get a prompt “[Zjump] twice” given a primitive sample “jump twice”.
After that, we generate variant samples by replacing the slot mask “[Zjump]” with variants such as
“jump 0”. Finally, training models on generated variant samples like “jump 0 twice” combined with
prior knowledge, we aim to establish the semantic relationships between primitives and their variants
inductively. This process can be also treated as a kind of replacement augmentation (Wei & Zou,
2019).

2.3 DEDUCTIVE LEARNING

Deductive Learning, on the opposite of inductive learning, is a top-down approach from the more
general to the more specific. As a rule-driven approach, teaching in a deductive manner often begins
with presenting a general rule and is followed by specific examples in practice where the rule is ap-
plied (Thornbury, 1999). To align with this definition, we intend to do semantic linking deductively
by combining a bilingual dictionary that maps primitives and their variants to the same in the target
domain. This additional dictionary, hence, mixes the original training task with word translation
(Mikolov et al., 2013b). Without any specific context, we hope the model can utilize the general
cross-lingual supervised signals as anchor points so as to launch the semantic linking. Formally, we
describe deductive learning as follows. We first treat P as the source dataset XDL

P directly and then
prepare the corresponding target dataset Y DL

P by either decomposing samples from Y manually or
feeding XDL

P to a trained external model. Similarly, we can consider V as another source dataset
XDL

V and prepare its target dataset Y DL
V by copying the corresponding yDL

P as yDL
V for all xDL

V as

variants of each xDL
P . After all, we get XDL as

[XDL
P

XDL
V

]
and Y DL as

[ Y DL
P

Y DL
V

]
. The mapping from

XDL to Y DL is a dictionary to translate primitives and their variants to the same targets without
any specific context information. We name (xDL,yDL) as a concept rule, (xDL

P ,yDL
P ) as a primi-

tive rule, and (xDL
V ,yDL

V ) as a variant rule since they are more rule-like without contexts. We train
models on (

[
X

XDL

]
,
[

Y
Y DL

]
) to operate semantic linking deductively. In practice, as presented in

Figure 1, we directly make use of primitive “jump” and its variants such as “jump 0” as the source
sequences with action “JUMP” as their same target sequences. By exposing both the primitive rule
“jump”→ “JUMP” and variants rules like “jump 0”→ “JUMP” during training, we intend to build
the semantic connections between primitives and their variants deductively. This manner is similar
to the bilingual dictionary augmentation (Arthur et al., 2016; Nag et al., 2020).

3 SYSTEMATIC GENERALIZATION

Although previous studies argue that neural networks fail to match humans in systematic gener-
alization (Lake & Baroni, 2017; Keysers et al., 2019), we revisit such algebraic compositionality
conditioned on the semantic linking to see whether the conclusion will change. The following sec-
tion moves on to specify the process and outcome of experiments. We first intend to make use of
SCAN as the initial testbed to observe the presence of systematic generalization with the assistance
of semantic relations. Then, we verify neural networks’ potential to achieve the systematic general-
ization activated by semantic linking on SCAN, as well as two real-world tasks of semantic parsing.
Following ablation studies further examine models’ compositional capability.

1For each primitive, we pick only one prompt to fill in all its variants with Z specified for various datasets
in Appendix.
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Figure 2: Experiments on SCAN with a decreasing number of training samples per variant from the
complete set (100%) to a single sample (1). The solid line represents the change of overall training
size, and the dashed line stands for that of test sequence accuracy. There is hardly a performance
dip when training samples are deleted until only one remained.

3.1 DATASETS

There is evidence suggesting that SCAN may be far from enough to fully capture the kind of gen-
eralization, where even a simple model can behave as if it owns comparable skills (Bastings et al.,
2018; Keysers et al., 2019). Thus, starting from SCAN, we introduce GEO and ADV generated re-
spectively from real semantic parsing datasets: Geography and Advising.2 Modification on datasets
is specified in each experiment for the goal of examining machines’ systematic generalization across
various conditions.

SCAN is one of the benchmarks to investigate neural networks’ compositional generalization (Lake
& Baroni, 2017). It includes 20910 pairs of commands in English to their instructed action sequences
3. We define PSCAN := {“jump”, “look”, “run”, “walk”} to be in line with previous works. We
focus on lexical variants and create VSCAN by adding a suffix that consists of an underline and a
unique number for each primitive. We control |VSCAN | by setting the upper limit of this number.
An example variant of “jump” is “jump 0” and both mean the same action “JUMP”.

Geography is a common semantic parsing dataset (Zelle & Mooney, 1996; Srinivasan et al., 2017).
It is also named as geo880 since it contains 880 examples of queries about US geography in natural
language paired with corresponding query expressions. It is later formatted to SQL language with
variables in the target sequences (Finegan-Dollak et al., 2018). GEO is the dataset generated based
on Geography, where we regard 4 of 9 annotated variables as hypernyms and keep them as they are
in SQL sequences. The other variables are restored by entities from the source sequence accord-
ingly. As a result, the overall data size is 618 after processing and we can make use of the “is-a”
hypernymy relations between entities and variables for semantic linking. To be specific, we define
PGEO := {“new york city”, “mississippi rivier”, “dc”, “dover”} with VGEO consisting of entities
as co-hyponyms sharing the same variable group with primitives.4 An example variant of “new york
city” is “houston city” and both are in the same variable group “CITY NAME”.

Advising, as our second semantic parsing dataset, includes 4570 questions about course information
in natural language paired with queries in SQL (Finegan-Dollak et al., 2018). Similar to GEO,
ADV is generated on the basis of Advising with 4 of 26 variables as hypernyms. Precisely, we
define PADV := {“a history of american film”, “aaron magid”, “aaptis”, “100”} and VADV as co-
hyponyms of primitives sharing the same variables. For instance, “advanced at ai techniques” is a
co-hyponym of “a history of american film” sharing the same variable “TOPIC”.

3.2 MODELS AND EXPERIMENTAL SETUP

What follows is an account of network configurations and experimental settings. Without specific
instruction, they are shared throughout experiments.

Models. After testing a range of their adapted versions, we employ three dominant model candidates
with an encoder-decoder framework (Sutskever et al., 2014), that is, RNN, CNN, and TFM. In terms

2https://github.com/jkkummerfeld/text2sql-data
3https://github.com/brendenlake/SCAN
4We select 4 primitives for both GEO and ADV to be align with SCAN.
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of RNN, we reproduce bi-directional recurrent networks (Schuster & Paliwal, 1997) with long short-
term memory units (Hochreiter & Schmidhuber, 1997) and an attention mechanism (Bahdanau et al.,
2015). We follow the convolutional seq2seq architecture presented by Gehring et al. (2017) with
regard to CNN and the attention-based structure proposed by Vaswani et al. (2017) in the case of
TFM. More details are provided in Appendix.

Training. We apply the mini-batch strategy to sample 128 sequence pairs for each training step.
We use Adam optimizer (Kingma & Ba, 2015) with an `2 gradient clipping of 5.0 (Pascanu et al.,
2013) and a learning rate of 1e−4 to minimize a cross-entropy loss. We freeze the maximum training
epoch at 320 for CNN and 640 for RNN and TFM. In contrast to early stopping (Prechelt, 1998),
we prefer a fixed training regime sufficient enough for models to fully converge in practice with
a focus on the systematic generalization observation instead of superior structure exploration. To
prevent uncontrolled interference, we train all models from scratch instead of fine-tuning (Devlin
et al., 2019).

Evaluation. Token accuracy and sequence accuracy serve as two primary metrics in the following
experiments. The former is a soft metric that allows partial errors in a sequence, while the latter is
tricky and strictly does not. The reported results, along with standard deviation, are the mean of five
runs.
3.3 EXPERIMENT: MEANINGFUL LEARNING

This experiment probes the models’ compositional generalization via meaningful learning in SCAN.
We compare performances across various conditions starting from the conventional training pipeline
as a baseline. Usually, new concepts appear as out-of-vocabulary (OOV). A typical training pipeline
often involves replacement (Wei & Zou, 2019) to handle new concepts, especially for those sharing
same or close semantic with existing concepts. Thanks to their incredible algebraic compositionality,
humans can effectively capture the underlying semantic connections between new concepts and old
ones and generalize the prior knowledge to novel combinations by meaningful learning, given only a
few demonstrations. To investigate the extent to which models can do the same, we gradually reduce
the number of training samples generated by replacement augmentation until there is only one for
each variant. Although the final one-shot learning (Vinyals et al., 2016) is challenging, we hope to
observe the presence of models’ meaningful learning by measuring the performance loss due to a
decreasing number of training samples per variant.

Experimental setup. Following replacement augmentation, we assign placeholders at the positions
of primitives in source sequences and later put back their 10 variants but keep the identical target se-
quences. Consequently, we have a total of 329,190 samples when |VSCAN | is 40 and randomly split
them into a training set (80%) and a test set (20%). The training set is further processed to remove
samples having multiple variants. Thus, we ensure that the number of variants’ occurrences is 1
while training at the one-shot condition. Eventually, the training dataset contains 235,002 samples.
Models directly trained on this full dataset serve as baselines. Then, to format a gradual transition
from baselines to meaningful learning, we train the same models on various datasets conditioned
on a decreasing number of augmented samples for each variant until the one-shot learning setting.
Besides, we use the variant rule “jump 0”→ “JUMP” as the only training sample for “jump 0” as a
case of our deductive learning and consider the rest as our inductive learning.

Results. Surprisingly, as elaborated in Figure 2, RNN has no significant performance drop when the
training size is reduced from 235,002 (100%) to 16736 (1). It still achieves 99.92% test sequence
accuracy when there is only one training sample for each variant. The same happens for CNN and
TFM. Despite a slight fluctuation, they keep the results almost consistent regardless of whether the
number of training variant samples is full or 1. The single sample works as a whole augmented
dataset and enables models to generalize to novel compositions of learned variants. We want to un-
derline that the sample can be either just a variant rule or a variant sample derived from a primitive
prompt. As we defined, developing semantic linking through the former is deductive learning, and
that through the latter is inductive learning. By utilizing such semantic relations between primi-
tives and their variants, models show they can perform one-shot generalization systematically via
meaningful learning after semantic linking.

3.4 SEMANTIC LINKING INJECTION

Having observed the success after semantic linking, one question that needs to be asked, however, is
how it works. Therefore, the following two experiments evaluate models’ systematic generalization,
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Table 1: Dataset statistics in Section3.4. Test size is often dozens of times the training size due to
replacement augmentation. Additional details are offered in Appendix.

SCAN GEO ADV

Data Exp. IL Exp. DL Exp. IL Exp. DL Exp. IL Exp. DL

Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif.

Train Size 20946 20942 20928 20950 20946 724 720 711 728 724 6038 6034 5969 6040 6036
Test Size 308240 308240 308240 308240 308240 21350 21350 21350 21350 21350 107614 107614 107614 107614 107614

particularly for prior knowledge and semantic linking. A sliding scale of difficulty is carefully
designed by weakening these two factors according to the policy that the greater the difficulty, the
more compositional skills are required. We further validate our findings on GEO and ADV. We use
the same evaluation protocol across different datasets in this section.

Given dataset (X,Y ) as prior knowledge regarding primitives, we generate the test set by replace-
ment augmentation. Specifically, we replace the primitives in source sequences with their variants
to generate novel compositions. So far, variants exist as OOV since they are not in the training set.
Then, we incorporate additional either (XIL,Y IL) or (XDL,Y DL) to the base training set (X,Y )
so as to introduce variants in training and establish semantic linking inductively or deductively. As
in the previous experiment, we ensure that each variant only has a single sample and appears only
once. After training on (

[
X

XIL

]
,
[

Y
Y IL

]
) or (

[
X

XDL

]
,
[

Y
Y DL

]
), models are evaluated on the same

test set prepared before by replacement augmentation. For convenience, we keep the same settings
as in the previous experiment, where |VSCAN | is 40 and 10 variants for each primitive. We use the
full variants set for GEO, for example, 39 variants for “new york city”, while we randomly sample 5
variants for each primitive in ADV so that we cover all the variants with an appropriate test size.

3.4.1 EXPERIMENT: SEMANTIC LINKING INJECTION VIA INDUCTIVE LEARNING

Experimental setup. We increase the difficulty of compositional learning by excluding primitive
samples from the training set. We want to stress that, with a higher level of difficulty, models have
to generalize not only to new concepts but also to their new compositions.
• Standard: Models are trained on (

[
X

XIL

]
,
[

Y
Y IL

]
) without any adjustments.

• Difficult: We remove primitive samples sharing the same context with their variant samples. For
example, we remove “jump twice” due to “jump 0 twice”, and thus models have to generalize to
“jump 0 twice” without seeing “jump twice”.

• Challenging: We also exclude primitive training samples of the same length as their variant sam-
ples. For instance, models have to reproduce the same generalization to “jump 0 twice” without
seeing primitive samples of length 2, including “jump twice”, “jump right”, “jump left”, “jump
thrice”, and many others.5

Results. In SCAN, what stands out in Table 2 is an excellent one-shot generalization for all three
networks. The participation of (XIL,Y IL) induces a near-perfect generalization. Even the worst
results obtained by TFM in Challenging are around 98.76% and 96.38% in terms of token accuracy
and sequence accuracy separately. The outcomes confirm that networks can inductively learn the
semantic relation from context after semantic linking. After that, models of different architectures
can successfully achieve systematic generalization to novel compositions of variants during the test.
What is noticeable is a slight drop in both metrics as the difficulty upgrades. The disappearance of
the training samples in Difficult and Challenging settings can lead to a performance drop. This is
well in line with the widely accepted belief in meaningful learning theory, as well as our expectation,
that prior knowledge is one of the keys related to humans’ remarkable generalization. Therefore,
we conclude that both semantic linking and background knowledge exert powerful effects upon the
potential of models to generalize systematically. The trends above on SCAN can also be found
on GEO and ADV, while more apparent changes in metrics again verify our findings that prior
knowledge is essential. Either excluding primitive samples containing the same context or those
of the same sequence length as their variant samples can produce a steep fall in the generalization,
which is not so sharp on SCAN. On GEO, CNN can lose an absolute sequence accuracy of almost
18.26% from Standard to Difficult, and that for TFM drops 7.66%. This upholds our argument that
generalization via meaningful learning is inseparable from sufficient prior knowledge. The overall

5We only remove samples that will not lead to unknown tokens.
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Table 2: Evaluation results over RNN, CNN, and TFM on SCAN, GEO, and ADV in Section 3.4.1
conditioned on Standard, Difficult and Challenging settings.

Data Model Token Acc.% Seq. Acc.%

Standard Difficult Challenging Standard Difficult Challenging

RNN 99.99± 0.03 99.89± 0.19 99.96± 0.02 99.95± 0.08 99.85± 0.08 99.80± 0.31
SCAN CNN 99.96± 0.08 99.76± 0.54 98.89± 2.44 99.85± 0.34 99.52± 1.07 97.57± 5.24

TFM 98.91± 0.78 98.90± 1.10 98.76± 0.85 97.35± 1.62 96.86± 2.64 96.38± 2.81

RNN 75.71± 8.42 75.69± 6.12 73.46± 3.05 44.95± 14.69 43.27± 13.47 36.77± 5.60
GEO CNN 87.99± 2.67 79.51± 6.03 77.40± 2.48 69.46± 5.78 51.20± 8.64 48.58± 3.40

TFM 75.37± 7.84 75.11± 4.88 68.41± 4.76 45.93± 12.42 44.59± 9.76 36.93± 7.47

RNN 58.61± 6.18 59.74± 5.67 58.11± 5.82 36.18± 5.75 35.69± 6.05 35.45± 6.69
ADV CNN 57.83± 7.55 54.05± 5.74 53.66± 2.57 45.08± 9.32 42.14± 6.90 41.37± 4.04

TFM 53.43± 2.80 51.51± 4.50 49.17± 2.58 42.59± 3.65 41.28± 4.35 38.88± 2.68

decline in performance can be attributed to the switch from toy sets to actual datasets since both
GEO and ADV own a much more complex encoding and decoding space than SCAN.

3.4.2 EXPERIMENT: SEMANTIC LINKING INJECTION VIA DEDUCTIVE LEARNING

Experimental setup. We increase the difficulty of compositional learning by excluding primitive
rules from the training set as follows:
• Standard: Models are trained on (

[
X

XDL

]
,
[

Y
Y DL

]
) without any adjustments.

• Difficult: We remove primitive rules from the training set, and train models on (
[ X
XDL

V

]
,
[ Y
Y DL

V

]
).

Results. In SCAN, incorporating deductive semantic linking, all three networks are able to attain
satisfying compositional generalization as shown in Table 3. CNN achieves the highest 99.96% in
Standard, while TFM takes the lowest 91.26% in Difficult with regard to sequence accuracy. How-
ever, even the lowest one is impressive as there is only one variant rule to introduce each variant
during training. We can see a consistent decline in accuracy across three different models if we un-
dermine the semantic linking by removing primitive rules in Difficult. The most significant sequence
accuracy drop of 3.3% came from CNN when the difficulty upgrades. We further validate our find-
ings on GEO and ADV, and find a similar trend. There is a persistent performance loss because of
the absence of primitive rules from the training set across models. Concretely in GEO, the grade of
CNN declines from 32.33% in Standard to 23.58% in Difficult in terms of sequence accuracy. The
causal role of semantic linking is also demonstrated by varying the difficulty. Overall, the joining
of concept rules assists in developing semantic links between primitives and variants during train-
ing, by which models can behave compositionally during the test. Moreover, the different outcomes
between Standard and Difficult indicate that either concept rules or just variant rules can connect
primitives with their variants semantically, though the former is better than the latter. Again, the
overall performance fall is the result of the more complicated task. Another noteworthy finding is
that neural networks can realize systematic generalization in either an inductive or a deductive way
but perform better in the former setting. By comparing such preference in Table 2 and Table 3, we
find that current black-box neural nets are more capable of exploring rules and patterns from specific
samples with context information rather than understanding knowledge from general concept rules
in our experiments. This sheds light on why current machine learning is still highly data-driven and
can hardly break through the bottleneck to realize advanced logic reasoning as human beings. How
to improve models’ generalization in deductive learning is an interesting future direction that we
will work on.

3.5 ABLATION STUDIES AND ANALYSIS

To explore other factors that may impact deductive learning, we conduct ablation studies with a
varying |PSCAN | from {1,2,3,4} and |VSCAN |from {1,5,10,15,20} over RNN on SCAN. The ex-
perimental setup is borrowed from Standard in Section 3.4.2.

Impact of |PSCAN |. What attractive in Figure 3 (a) is that when the number of primitives grows,
the generalization performance improves simultaneously in terms of both accuracy boosting and
variance reduction. It is counter-intuitive to see such improvement as we expect that primitive
rules should work independently, and the number of primitives should not impact the systematic
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Table 3: Evaluation results over RNN, CNN, and TFM on SCAN, GEO, and ADV in Section 3.4.2
conditioned on Standard and Difficult settings.

Data Model Token Acc.% Seq. Acc.%

Standard Difficult Standard Difficult

RNN 99.48± 0.71 98.70± 0.92 98.27± 2.38 95.39± 2.72
SCAN CNN 99.99± 0.01 98.59± 3.10 99.96± 0.03 96.66± 7.27

TFM 96.90± 1.78 96.68± 2.21 91.94± 4.04 91.26± 5.80

RNN 54.44± 7.15 39.71± 18.38 13.61± 7.08 7.76± 5.34
GEO CNN 41.86± 3.38 41.07± 7.48 4.85± 4.66 4.04± 2.18

TFM 67.02± 6.91 65.97± 5.17 36.38± 10.08 31.57± 7.42

RNN 36.50± 7.66 36.42± 7.39 12.84± 4.31 12.66± 5.19
ADV CNN 43.51± 11.31 35.34± 14.68 32.33± 12.93 23.58± 16.04

TFM 56.82± 3.79 53.33± 3.85 47.43± 3.71 43.24± 5.14

Figure 3: Experiments over RNN on SCAN with varying |PSCAN | (a) and |VSCAN | (b).

generalization a lot. A potential reason is that semantic linking built by various “independent”
primitive rules can profit each other to trigger a more robust and stable systematic generalization. For
example, “jump”→ “JUMP” and “look”→ “LOOK” separate them from the samples with context
information, such as “jump right” and “look right”. Thus, we can regard “right” as a compositional
rules shared among primitive samples and finally encourage models to generalize effectively.

Impact of |VSCAN |. As presented in Figure 3 (b), RNN generalizes consistently well when the
number of variants goes up. Therefore, we report that the generalization among variants of the same
primitive has a certain degree of independence within a reasonable range (e.g., ≤ 20).

4 FROM SCAN TO REAL DATA

Thus far, we have argued the feasibility of systematic generalization activated by semantic linking,
as well as other factors such as prior knowledge. We move on now to discuss how such generaliza-
tion already benefit the eventual performance of machines in solving real problems. Many recent
papers propose to improve generalization on SCAN by data augmentation methods. Meta-learning is
reported to solve compositional problems by equipping models with memory loading (Lake, 2019).
The success is reasonable due to augmented data for the application of meta-learning. By consider-
ing concepts as pointers in the memory, models are designed to make connections between new and
old concepts as semantic linking. Andreas (2020) suggests replacing fragments in real training sam-
ples with others that sharing similar contexts, which can also be supported by our inductive learning.
As in our findings, similar context information can help establish the semantic links between new
concepts and old ones, thus enable models to generalize to novel combinations. Besides, we have
proved how replacement augmentation (Wei & Zou, 2019) works in Section 3.3. We would like
to stress that the utility of similar unsupervised techniques (Xie et al., 2019) in both compositional
generalization and real tasks can be attributed to inductive learning as well since there is a need for
systematic generalization in practice.

In addition to inductive-based ones, we notice many works incorporating bilingual dictionaries
(Arthur et al., 2016; Nag et al., 2020), or called concept rules by us, in low-resource machine trans-
lation can fall in the field of deductive-based methods. As a proof-of-concept, we reproduce the
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Table 4: BLEU and SacreBLEU scores on IWSLT’14 English-German (En-De) and German-
English (De-En), IWSLT’15 English-French (En-Fr) and French-English (Fr-En) translation tasks.
We mark the addition of concept rules as Vocabulary Augmentation.

IWSLT’14 IWSLT’15
Model En-De De-En En-Fr Fr-En

BLEU SacreBLEU BLEU SacreBLEU BLEU SacreBLEU BLEU SacreBLEU
Baselines
LSTM (Luong et al., 2015) 24.98 24.88 30.18 32.62 38.06 42.93 37.34 39.36
Transformer (Vaswani et al., 2017) 28.95 28.85 35.24 37.60 41.82 46.41 40.45 42.61
Dynamic Conv. (Wu et al., 2019) 27.39 27.28 33.33 35.54 40.41 45.32 39.61 41.42

+Vocabulary Augmentation
LSTM (Luong et al., 2015) 25.35↑0.37 25.38↑0.50 30.99↑0.81 33.63↑1.01 38.32↑0.26 43.30↑0.37 37.77↑0.43 39.83↑0.47
Transformer (Vaswani et al., 2017) 29.40↑0.45 29.29↑0.44 35.72↑0.48 38.07↑0.47 42.19↑0.37 46.68↑0.27 41.04↑0.59 43.15↑0.54
Dynamic Conv. (Wu et al., 2019) 27.60↑0.21 27.50↑0.22 33.62↑0.29 36.00↑0.46 40.87↑0.46 45.95↑0.63 39.95↑0.34 41.86↑0.44

Table 5: Token and sequence accuracy on Geography and Advising. We mark the addition of concept
rules as Entity Augmentation.

Geography Advising
Model Train Test Train Test

Token Acc.% Seq. Acc.% Token Acc.% Seq. Acc.% Token Acc.% Seq. Acc.% Token Acc.% Seq. Acc.%
Baselines
RNN 89.05 17.39 69.81 9.68 92.22 3.64 60.41 6.11
CNN 98.45 70.74 78.44 55.91 99.74 81.62 81.74 51.13
TFM 99.45 84.95 80.24 49.82 99.68 76.90 78.51 29.67

+Entity Augmentation
RNN 87.47 29.96 72.39↑2.58 15.05↑5.37 88.82 30.97 71.17↑10.76 16.06↑9.95
CNN 97.54 76.03 80.32↑1.88 60.93↑5.02 99.65 87.01 84.50↑2.76 56.02↑4.89
TFM 99.30 85.73 81.09↑0.85 54.84↑5.02 99.57 86.94 84.26↑5.75 35.08↑5.41

word-to-word augmentation, or called deductive learning, by training models on not only the base
training set but also concept rules. Intuitively, we wonder to which extent deductive semantic linking
can promote models’ performance in common machine translation (IWSLT’14 and IWSLT’150) and
semantic parsing (Geography and Advising). In machine translation, we construct bilingual dictio-
naries by feeding vocabulary to the Google Translation API.6 The word translation can be regarded
as concept rules if we consider synonyms of a primitive as their variants and such synonymous
relationships as semantic links. Consequently, we get 144,874 word samples as a training supple-
mentary for En-De and De-En, and 110,099 for En-Fr and Fr-En. In semantic parsing, we construct
entity dictionaries by collecting entities (e.g., “new york city”). They are translated to themselves
since they do not change from the source natural language to the target SQL. The entity mapping can
be treated as concept rules in the view of semantic linking. After that, we have a map of 103 entity
translations for Geography and 1846 for Advising. A detailed experimental setup can be found in
Appendix. We report the evaluation results in Table 4 and Table 5, where the same models with
deductive semantic linking can consistently obtain performance gains.

5 CONCLUSION

Overall, we revisit systematic generalization from a meaningful learning perspective and introduce
semantic linking to exposure semantic relations between new and old concepts to models during
training. To establish such semantic networks, we take advantage of two common data augmentation
methods and name them as inductive and deductive learning to align with the meaningful learning
theory. The observed one-shot generalization on SCAN supports that neural networks as a class
of modern machine learning methods can behave systematically after semantic linking. Extensive
empirical results on SCAN, GEO, and ADV illustrate that prior knowledge and semantic linking are
two essential factors in such generalization, in line with what humans do in meaningful learning.
Given such findings, we further group recent data augmentation methods in either the inductive-
based or deductive-based category, followed by a proof-of-concept to highlight how semantic linking
already benefits models in solving real tasks such as machine translation and semantic parsing. We
hope this paper can encourage future works to excavate neural networks’ potential in systematic
generalization through more advanced learning schemes.

6https://cloud.google.com/translate
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A APPENDIX

In the following pages, we discuss our work in detail. Our code and data can be found in the attached
supplementary materials.

B SEMANTIC LINKS

Lexical Variant refers to an alternative expression form for the same concept, where the various
forms may derive from foreign languages, abbreviations, and even mistakes. A basic assumption is
that all languages change over time due to non-linguistic factors. Since the rise of sociolinguistics in
the 1960s, studies on linguistic variability, a characteristic of language, are central to the language
use and motivations for speakers to vary the pronunciation, word choice, or morphology of existing
concepts (Labov, 1963). Taking “United States of America” as an example, people have generally
accepted the semantic connections among its lexical variants in history, including “America” and
“United States”, as well as the initialisms “U.S.” and “U.S.A”. Many efforts have been devoted on
lexical variants representation (Nguyen & Grieve, 2020), detection (Barteld, 2017), normalization
(Baldwin et al., 2015) to keep machines up with the trend of the times.

Co-hyponym is a linguistic term to designate a semantic relation between two group members
belonging to the same broader class, where each member is a hyponym, also called subtype or
subordinate, and the class is a hypernym (Lyons & John, 1995). The “is-a” hypernymy relation
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between a generic hypernym and its specific hyponyms builds semantic connections among co-
hyponyms. An example of such a hierarchical structure can be “Mississippi” and “Massachusetts”
in the domain of “state”. Specifically, “Mississippi” and “Massachusetts” are two hyponyms, and
“state” is a hypernym. Thus, “Mississippi” and “Massachusetts” are semantically connected to be
co-hyponyms for each other. Harvesting hypernymy relations (Wang & He, 2020) plays an essential
role for downstream knowledge graph construction (Ji et al., 2021), out-vocabulary generalization
(Dash et al., 2020), taxonomy expansion (Yu et al., 2020b), etc.

Synonym stands for a word, morpheme, or phrase that shares exactly or nearly the same semantics
with another one. Many tend to assume synonyms are utterances that occur in most contexts in com-
mon, so they are semantically closely related enough to be synonyms for each other (Rubenstein &
Goodenough, 1965; Harris, 1954). The existence of the association to contexts is a basic assumption
supporting the advance of recent masked language modeling (Devlin et al., 2019). Given that, one of
the definitions of a synonymous relation is a semantic link between two expressions if substitution
of one for the other never hurts the true value of the context (Stanojević et al., 2009). For instance,
the substitution of “heavily populated” for “populous” will seldom alter the truth of the sentence
in Figure 4. Such semantic similarity can be observed in continuous vector space from a trained
representation as well (Mikolov et al., 2013a). Synonym discovery (Yu et al., 2020a) has been a
fundamental job to construct knowledge base and thus benefits substantial researches.

Figure 4: A concrete example of semantic linking. The bidirectional arrows denote symmetric
relations. Mississippi and Massachusetts are two specific states, thus both hyponyms of state. In
turn, state is a hypernym of them. Due to a common hypernym, Mississippi and Massachusetts
become a co-hyponym for each other. {heavily populated, congested, populus}, {area, region}
are two groups of synonyms for sharing same or similar semantics. Finally, U.S., as a kind of
abbreviation, is a lexical variant of United States.

C DATA

IWSLT involves IWSLT’14 (Cettolo et al., 2014) English-German (En-De) and German-English
(De-En), IWSLT’15 (Cettolo et al., 2015) English-French (En-Fr) and French-English (Fr-En) trans-
lation tasks. The goal is to translate a sentence from one language to the other. The IWSLT’14
En-De and De-EN have 160,239 sequence pairs for training and 7,283 for validation. We make use
of IWSLT14.TED.dev{2010, 2012} and IWSLT14.TED.tst{2010, 2011, 2012} to measure trans-
lation performance, resulting in a total of 6,750 test samples. In terms of IWSLT’15 En-Fr and
Fr-En, there are 205,572 sequence pairs for training. We employ IWSLT15.TED.dev2010 and
IWSLT15.TED.tst{2010, 2011, 2012, 2013} as the validation set and IWSLT15.tst{2014, 2015}
as the test set. As a consequence, there are 5,519 samples for validation and 2,385 for evaluation.
For all four translation tasks, we apply BPE with 10K tokens to share.

D MODELS

All models are developed with the encoder-decoder framework (Sutskever et al., 2014). We repro-
duce RNN, CNN, and TFM by ourselves to have fewer parameters than original versions for the
convenience of verifying systematic generalization. The dropout rate is 0.5 for RNN, CNN, and
TFM (Srivastava et al., 2014). We implement LSTM, Transformer, and Dynamic Conv. under the
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Table 6: Example source and target sequences from SCAN, GEO, ADV, Geography, and Advising.
Data Sequence

SCAN Source jump twice
Target JUMP JUMP

GEO Source how many people in new york city
Target SELECT CITY alias0 . POPULATION FROM CITY AS CITY alias0 WHERE CITY alias0 . CITY NAME = CITY NAME ;

ADV Source Which department includes a history of american film ?
Target SELECT DISTINCT COURSE alias0 . DEPARTMENT FROM COURSE AS COURSE alias0 WHERE COURSE alias0 . NAME LIKE TOPIC ;

Geography Source how many people live in new york
Target SELECT STATE alias0 . POPULATION FROM STATE AS STATE alias0 WHERE STATE alias0 . STATE NAME = ” new york ” ;

Advising

Source I would like to see A History of American Film courses of 2 credits .

Target
SELECT DISTINCT COURSE alias0 . DEPARTMENT , COURSE alias0 . NAME , COURSE alias0 . NUMBER FROM
COURSE AS COURSE alias0 WHERE ( COURSE alias0 . DESCRIPTION LIKE ”% A History of American Film %”
OR COURSE alias0 . NAME LIKE ”% A History of American Film %” ) AND COURSE alias0 . CREDITS = 2 ;

framework fairseq.7 (Ott et al., 2019) and inherit its default model structures.8 Without notes in
tasks, hyperparameters are shared throughout the work. We train all of our models on a single
Nvidia Tesla V100.

RNN denotes bi-directional recurrent network (Schuster & Paliwal, 1997; Hochreiter & Schmidhu-
ber, 1997) with long short-term memory units and an attention mechanism (Bahdanau et al., 2015).
Its encoder consists of two layers with a hidden size of 256 in each direction, and its decoder has
one layer with a hidden size of 512. The embedding size is 512 for both encoder and decoder. There
are a total of 5.29M trainable parameters. Teacher forcing with a rate of 0.5 serves to spur up the
training process (Williams & Zipser, 1989).

CNN denotes the fully convolutional seq2seq network (Gehring et al., 2017). The size of the position
embedding layer is 128 for encoding and 256 for decoding, while that of the token embedding layer
is 512 for both encoding and decoding. There are 10 convolutional layers with 512 as the hidden
size and 3 as the kernel size in both encoder and decoder to generate a total of 33.55M trainable
parameters.

TFM denotes transformers, an attention-based network (Vaswani et al., 2017). As a tiny version,
TFM has 2 layers for each encoder and decoder with 8 attention heads and a dimension of 512.
The size of the feedforward layer is 2048. We utilize the cyclic nature of sin and cos functions to
represent token positions. There are a total of 15.02M trainable parameters.

LSTM is adapted from the recurrent network used by Luong et al. (2015) for statistical machine
translation. The size of the embedding layer is 1000. There are 4 layers in both encoder and decoder
with a hidden size of 512 and a dropout rate of 0.2.

Transformer, the same as TFM, is adapted from the base version of transformers in the work of
Vaswani et al. (2017), while TFM is a tiny version to test systematic generalization. The dimension
is 512 for the embedding layer, 1024 for the feedforward layer, and 512 for the attention layer.
There are 6 attention blocks in both encoder and decoder with 4 attention heads and 0.3 dropout
probability.

Dynamic Conv. is adapted from the seq2seq convolutional network proposed by Wu et al. (2019),
where the hidden size of the embedding layer, encoder layer, and decoder layer is 512. The number
of attention heads is 4, and the dimension of the feedforward layer is 1024 for both encoder and
encoder. There are 6 layers in the encoder and 7 layers in the decoder. The dropout rate is 0.1 for
both attention and weight units.

E EXPERIMENTS

SEMANTIC LINKING INJECTION VIA INDUCTIVE LEARNING

Semantic linking can be operated via inductive learning, where we replace the concept in the prompt
with primitives and their variants. The learning rate to train CNN in GEO is changed to 5e−4.

7https://github.com/pytorch/fairseq
8LSTM is adapted from lstm luong wmt en de; Transformer is adapted from transformer iwslt de en; Dy-

namic Conv. is adapted from lightconv iwslt de en.
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Table 7: Data statistics and training time per epoch in seconds. The batch size of each epoch for
GEO and Geography is 32, and that for the others is 128.

SCAN GEO ADV Geography Advising

Data Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2 Bas. Aug. Bas. Aug.
Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif. Sta. Dif. Cha. Sta. Dif.

Train Size 20946 20942 20928 20950 20946 724 720 711 728 724 6038 6034 5969 6040 6036 598 701 3814 5660
Test Size 308240 308240 308240 308240 308240 21350 21350 21350 21350 21350 107614 107614 107614 107614 107614 279 279 573 573

Time
RNN 21 5 19 4 5 27 35
CNN 17 1.2 11 1 1.2 12 19
TFM 7 0.5 5 0.4 0.5 6 8

Table 8: Prompts with example primitives and sampled variants. In SCAN, primitives share the
same prompt and the number of variants can be changed. In ADV, we randomly sample 5 variants
for each source sequence so that we cover all the variants with a test set of an appropriate size.

Data Primitive Variant #Variants Template
SCAN jump jump 0 10 [concept] twice

GEO

new york city houston city 39 how many people in [concept]
mississippi rivier red rivier 9 how long is [concept]

dc kansas 49 where is [concept]
dover salem 8 what states capital is [concept]

ADV

a history of american film advanced ai techniques 5/424 who teaches [concept] ?
aaron magid cargo 5/492 does [concept] give upper-level courses ?

aaptis survmeth 5/1720 name core courses for [concept] .
100 171 5/1895 can undergrads take [concept] ?

Prompts used in SCAN, GEO, and ADV are expressed in Table 8. Detailed experimental results
with respect to three levels can be found in Table 9, Table 10, and Table 11.

Table 9: Results of Standard inductive learning.

Data Model Train Test
Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%

RNN 0.00± 0.00 100.00± 0.00 99.99± 0.02 0.00± 0.00 99.99± 0.03 99.95± 0.08
SCAN CNN 0.00± 0.00 99.81± 0.09 98.78± 0.55 0.00± 0.00 99.96± 0.08 99.85± 0.34

TFM 0.00± 0.00 99.82± 0.02 98.83± 0.12 0.06± 0.03 98.91± 0.78 97.35± 1.62

RNN 0.15± 0.02 97.73± 0.42 80.25± 2.81 1.36± 0.48 75.71± 8.42 44.95± 14.69
GEO CNN 0.07± 0.01 98.23± 0.39 76.80± 2.25 9.01± 4.26 87.99± 2.67 69.46± 5.78

TFM 0.02± 0.00 99.63± 0.07 91.60± 1.41 4.55± 1.39 75.37± 7.84 45.93± 12.42

RNN 0.03± 0.01 99.40± 0.13 82.74± 2.78 6.04± 0.95 58.61± 6.18 36.18± 5.75
ADV CNN 0.01± 0.01 99.59± 0.07 85.13± 1.95 23.56± 4.95 57.83± 7.55 45.08± 9.32

TFM 0.00± 0.00 99.92± 0.01 96.14± 0.28 15.12± 1.00 53.43± 2.80 42.59± 3.65

Table 10: Results of Difficult inductive learning.

Data Model Train Test
Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%

RNN 0.00± 0.00 100.00± 0.00 99.99± 0.01 0.00± 0.00 99.96± 0.02 99.85± 0.08
SCAN CNN 0.00± 0.00 99.77± 0.19 98.62± 1.13 0.03± 0.06 99.76± 0.54 99.52± 1.07

TFM 0.00± 0.00 99.79± 0.03 98.59± 0.12 0.06± 0.03 98.90± 1.10 96.86± 2.64

RNN 0.16± 0.03 97.39± 0.67 78.33± 4.31 1.29± 0.27 75.69± 6.12 43.27± 13.47
GEO CNN 0.07± 0.01 98.25± 0.13 76.53± 1.68 13.87± 3.19 79.51± 6.03 51.20± 8.64

TFM 0.00± 0.11 99.60± 0.11 91.33± 1.46 4.50± 0.80 75.11± 4.88 44.59± 9.76

RNN 0.03± 0.01 99.26± 0.21 79.57± 4.12 5.80± 0.92 59.74± 5.67 35.69± 6.05
ADV CNN 0.02± 0.00 99.56± 0.05 84.06± 1.57 24.58± 3.40 54.05± 5.74 42.14± 6.90

TFM 0.00± 0.00 99.91± 0.01 95.88± 0.23 15.84± 1.51 51.51± 4.50 41.28± 4.35
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Table 11: Results of Challenging inductive learning.

Data Model Train Test
Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%

RNN 0.00± 0.00 100.00± 0.00 99.99± 0.02 0.20± 0.45 99.95± 0.08 99.80± 0.31
SCAN CNN 0.00± 0.00 99.85± 0.05 99.00± 0.30 0.14± 0.31 98.89± 2.44 97.57± 5.24

TFM 0.00± 0.00 99.82± 0.05 98.85± 0.27 0.07± 0.05 98.76± 0.85 96.38± 2.81

RNN 0.15± 0.04 97.76± 0.74 79.77± 4.19 1.52± 0.29 73.46± 3.05 36.77± 5.60
GEO CNN 0.07± 0.01 98.23± 0.17 75.98± 1.46 15.83± 4.56 77.40± 2.48 48.53± 3.40

TFM 0.02± 0.00 99.60± 0.06 91.00± 1.20 6.01± 1.03 68.41± 4.76 36.93± 7.47

RNN 0.03± 0.01 99.23± 0.13 79.90± 1.85 5.95± 0.90 58.11± 5.82 35.45± 6.69
ADV CNN 0.01± 0.01 99.68± 0.15 87.90± 5.05 23.08± 6.34 53.66± 2.57 41.37± 4.04

TFM 0.00± 0.00 99.93± 0.01 96.41± 0.24 16.59± 0.98 49.17± 2.58 38.88± 2.68

Table 12: Concept rules with primitives and their example variants.
Data Primitive Semantic Links Variant Concept Rule

Primitive Rule Variant Rule

SCAN

jump

Lexical Variant

jump 0 jump→ JUMP jump 0→ JUMP
look look 0 look→ LOOK look 0→ LOOK
run run 0 run→ RUN run 0→ RUN

walk walk 0 walk→WALK walk 0→WALK

GEO

new york city

Co-hyponym

houston city new york city→ CITY NAME houston city→ CITY NAME
mississippi rivier red rivier mississippi rivier→ RIVER NAME red rivier→ RIVER NAME

dc kansas dc→ STATE NAME kansas→ STATE NAME
dover salem dover→ CAPITAL NAME salem→ CAPITAL NAME

ADV

a history of american film

Co-hyponym

advanced ai techniques a history of american film→ TOPIC advanced ai techniques→ TOPIC
aaron magid cargo aaron magid→ INSTRUCTOR cargo→ INSTRUCTOR

aaptis survmeth aaptis→ DEPARTMENT survmeth→ DEPARTMENT
100 171 100→ NUMBER 171→ NUMBER

SEMANTIC LINKING INJECTION VIA DEDUCTIVE LEARNING

Semantic linking can be established via deductive learning, where we put concept rules without
context information in the training set instead of specific sequence samples. Example concept rules
for SCAN, GEO, and ADV are presented in Table 12. Detailed experimental results with respect to
two levels can be found in Table 13 and Table 14.

Table 13: Results of Standard deductive learning.

Data Model Train Test
Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%

RNN 0.00± 0.00 99.99± 0.03 99.90± 0.23 0.05± 0.06 99.48± 0.71 98.27± 2.38
SCAN CNN 0.00± 0.00 99.79± 0.14 98.78± 0.79 0.00± 0.00 99.99± 0.01 99.96± 0.03

TFM 0.00± 0.00 99.82± 0.03 98.78± 0.17 0.27± 0.22 96.90± 1.78 91.94± 4.04

RNN 0.17± 0.03 97.50± 0.30 78.54± 2.16 2.83± 0.69 54.44± 7.15 13.61± 7.08
GEO CNN 0.08± 0.01 97.97± 0.24 77.03± 1.42 51.08± 25.97 41.86± 3.38 4.85± 4.66

TFM 0.02± 0.00 99.54± 0.31 91.82± 2.27 6.03± 1.56 67.02± 6.91 36.38± 10.08

RNN 0.08± 0.02 98.64± 0.31 68.84± 4.57 7.95± 1.13 36.50± 7.66 12.84± 4.31
ADV CNN 0.02± 0.00 99.53± 0.07 84.64± 1.20 31.12± 4.76 43.51± 11.31 32.33± 12.93

TFM 0.00± 0.00 99.91± 0.02 96.33± 0.37 13.72± 1.41 56.82± 3.79 47.43± 3.71

MACHINE TRANSLATION

We show how semantic linking already benefits models’ performance in machine translation. The
semantic links between primitives and their variants in machine translation is built upon the synony-
mous relations between tokens such as “heavily populated” and “populous”. Given that synonymous
connection is reversible as shown in Figure 4, a primitive can also be the other primitives’ variant.
Specifically, we collect a dictionary of tokens for the source language and feed the token to the
Google Translation API to obtain a token map from the source language to the target one. The
same operation can be repeated from the target language to the source one. Two dictionaries are
combined into one with duplicates removed. Consequently, we get 144,874 token-level samples as a
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Table 14: Results of Difficult deductive learning.

Data Model Train Test
Loss Token Acc.% Seq. Acc.% Loss Token Acc.% Seq. Acc.%

RNN 0.00± 0.00 99.99± 0.01 99.95± 0.07 0.08± 0.08 98.70± 0.92 95.39± 2.72
SCAN CNN 0.00± 0.00 99.62± 0.34 98.82± 1.09 0.13± 0.29 98.59± 3.10 96.66± 7.27

TFM 0.00± 0.00 99.82± 0.03 98.78± 0.12 0.21± 0.20 96.68± 2.21 91.26± 5.80

RNN 0.20± 0.03 96.93± 0.71 75.35± 3.57 4.40± 2.50 39.71± 18.38 7.67± 5.34
GEO CNN 0.08± 0.01 97.77± 0.76 76.41± 2.80 32.94± 4.26 41.07± 7.48 4.04± 2.18

TFM 0.02± 0.00 99.56± 0.11 91.08± 1.56 5.97± 1.05 65.97± 5.17 31.57± 7.42

RNN 0.08± 0.02 98.54± 0.28 67.10± 3.45 7.87± 1.01 36.42± 7.39 12.66± 5.19
ADV CNN 0.04± 0.05 98.78± 1.91 77.14± 23.28 32.44± 6.07 35.34± 14.68 23.58± 16.04

TFM 0.00± 0.00 99.92± 0.02 96.41± 0.26 14.92± 1.31 53.33± 3.85 43.24± 5.14

training supplementary for IWSLT’14 En-De and De-En, and 110,099 for IWSLT’15 En-Fr and Fr-
En, which leads to a total of 305,113 training samples for IWSLT’14 En-De and De-En and 315,671
for IWSLT’15 En-Fr and Fr-En after such vocabulary augmentation.

Experimental Setup. We evaluate our approach on IWSLT’14 Cettolo et al. (2014) English-German
(En-De) and German-English (De-En), IWSLT’15 Cettolo et al. (2015) English-French (En-Fr) and
French-English (Fr-En) translation tasks. We follow the standard evaluation protocol Ott et al.
(2019) that keeps the original training set and validation set but combines multiple previous test
sets for final evaluation9. We apply BPE with 10K tokens for all tasks and report both BLEU Pa-
pineni et al. (2002) and SacreBLEU Post (2018) scores for three baselines: LSTM Luong et al.
(2015), Transformer Vaswani et al. (2017), and Dynamic Conv. Wu et al. (2019) in comparsion with
same structures augmented by our method.

Results. From Table 4, we observe a consistent improvement in both BLEU and SacreBLEU over
all baselines when performed vocabulary augmentation, particularly up to 1 in SacreBlEU. The ad-
ditional synonym pairs not only construct the semantic linking between tokens in two languages
explicitly, but also create a complicated semantic linking network implicitly because of synonyms
within the single language and the transitivity nature of synonym relation. Our experiments prove
that semantic linking, which allows models to generalize systematically, is also beneficial for im-
proving machine translation performance.

SEMANTIC PARSING

We consider a variable as a hypernym for its values and entities belonging to the same variable
as co-hyponyms in semantic parsing. Thus, we can treat all the entity values for all variables as
primitives and the translations from primitives to their variables as primitive rules that later joins the
base training set. For a fair comparison, a token from this extra dataset will be marked as a unique
unknown mark, “¡unk¿”, if it does not exist in the original base training set. After that, we have
a map of 103 entity translations for Geography and 1846 for Advising, resulting in a training size
change from 701 to 804 for Geography and from 3814 to 5660 for Advising.

Experimental Setup. We evaluate our method on two semantic parsing benchmarks, Geography,
and Advising. We train the same models as we analyzed before without more hyperparameter tuning,
including RNN, CNN, and TFM. There are some changes for CNN, where the learning rate is 5e−4

in Geography, and the maximum sequence length for the decoder position embedding is 312 in
Advising. We split 10% training samples as the validation set to find the converged epoch and then
add it back to the training set for the final report.

Results. As elaborated in Table 5, all three networks can achieve better performance in terms of
both accuracy and variance. Specifically, a 10.76% token accuracy and 9.95% sequence accuracy
boosting are observed from RNN on Advising after such entity augmentation. The results suggest
that models can learn semantic linking or be more familiar with similar contexts from those primi-
tive rules in a deductive way to enhance model systematic generalization and finally lead to better
outcomes.

9The final test set of IWSLT’14 consists of IWSLT14.TED.dev{2010, 2012} and IWSLT14.TED.tst{2010,
2011, 2012} ; and IWSLT’15 includes IWSLT15.TED.tst{2014, 2015} Ott et al. (2019).
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