
Removing parasitic elements from Quantum Optical Coherence Tomography
data with Convolutional Neural Networks

Krzysztof A. Maliszewski 1 Sylwia M. Kolenderska 2 Varvara Vetrova 1

Abstract
Quantum Optical Coherence Tomography (Q-
OCT) is a non-contact and non-invasive light-
based imaging method which is gaining attention
due to its increased image resolution and quality.
The biggest, yet unresolved, disadvantage of Q-
OCT is artefacts, additional elements cluttering
the images, and leading to a loss of the structu-
ral information in the obtained images. In our
work, Convolutional Neural Network (CNN) is
applied to remove artefacts from Quantum Opti-
cal Coherence Tomography (Q-OCT) images. In
our approach, we train our model with computer-
generated data instead of experimental images.
The preliminary results show that such an appro-
ach is successful in retrieving artefact-free struc-
tural information, even for multilayer objects, for
which this information is lost due to the number
of induced artefacts. The limitations and challen-
ges associated with our approach are identified
and discussed.

1. Introduction
Optical Coherence Tomography (OCT) is a non-contact
and non-invasive light-based technique providing images of
the inside of semi-transparent objects, such as eyes or skin
(De Boer et al., 2017). Quantum OCT (Q-OCT) (Kolender-
ska et al., 2020a) uses the quantum nature of light to pro-
vide many advantages over standard classical OCT imaging:
two-fold resolution increase and immunity to resolution-
degrading chromatic dispersion. Unfortunately, the same
quantum effects that are responsible for Q-OCT’s extraordi-
nary features give rise to its one huge drawback: parasitic
elements called artefacts. Artefacts are additional peaks

1Department of Mathematics and Statistics, University of Can-
terbury, Christchurch, New Zealand 2School of Physical and Che-
mical Sciences, University of Canterbury, Christchurch, New
Zealand. Correspondence to: Krzysztof Adrian Maliszewski
<kma338@uclive.ac.nz>.

Proceedings of the 39 th International Conference on Machine Le-
arning, Baltimore, Maryland, USA, PMLR 162, 2022. Copyright
2022 by the author(s).

on images that do not relate to the structure of the object
and effectively, lead to the scrambling of the image. There
are already both hardware (Graciano et al., 2019) and so-
ftware (Kolenderska & Szkulmowski, 2021) schemes to
reduce artefacts and, in some well-defined cases, suppress
them completely, but they pose some requirements on the
experimental system, which in the case of very thin-layered
objects are impossible to meet.

(Maliszewski & Kolenderska, 2021) showed for the first
time the possibility of removing Q-OCT artefacts with ma-
chine learning, even for objects with thin layers. They use
computer-generated data during training, and their models
return just 256-pixel-long outputs. Such results provide a
very limited application in experimental situations which
usually expect at least 1024-pixel-long outputs. Lastly, their
outputs contain idealised A-scans that are reflectivity values
at the object interfaces’ positions. This approach is not a
natural representation of the OCT data and, as suggested in
the paper, introduces problems with detecting interfaces in
the presence of noise.

We improve upon the approach and present a method with
longer outputs that, in principle, allow imaging of deeper lay-
ers inside samples and are preferred in experimental A-scans.
The ground truth signals better represent the experimental
signals, making them easily understandable to professionals
in the OCT field. This approach raises new challenges that
are identified and discussed in this paper.

2. FFT stacks and artefacts
The core of our approach is a signal called an FFT stack
whose elements exhibit behaviour that can be uniquely rela-
ted to the object structure.

FFT stack (Figure 1c) is a stack of A-scans which are gene-
rated by Fourier transforming the diagonals (Figure 1b) of a
joint spectrum (Figure 1a), (see (Kolenderska et al., 2020b)
for more detailed information on what a joint spectrum is).
The FFT stack contains two types of elements: vertical solid
lines representing the structural peaks and vertical intensity-
oscillating lines, which are artefacts. For a three-interface
object as presented in Figure 1, there are three solid lines
which correspond to the three interfaces of the object, and,

Removing parasitic elements from Quantum Optical Coherence Tomography data with Convolutional Neural Networks

in addition, there are six oscillating artefact elements. As a
rule, there are always two artefacts for every pair of inter-
faces in an FFT stack. This leads to complete scrambling
of the structural information, as shown in Figure 1d where
one A-scan from the FFT stack (in dotted grey) is plotted
together with its artefact-free equivalent (in blue).

Figure 1. (a) A Q-OCT joint spectrum of a three-interface object,
ω1 and ω2 are optical frequencies of photons in a photon pair
whose quantum interference in Q-OCT leads to the creation of a
joint spectrum. (b) A stack of diagonals is extracted symmetrically
from around the main diagonal of the joint spectrum. (c) An
FFT stack created by Fourier transforming each row of a stack of
diagonals; structural peaks are represented by solid lines (1, 2 and
3) and artefacts by oscillating lines. (d) One row from the FFT
stack shows an A-scan cluttered with artefacts (in gray); the true
structure of the object in the form of an artefact-free A-scan is
presented in blue.

In the case of simple object structures, it is generally easy
to determine where the structure and artefacts are because
all elements tend to be separated (Figure 2 a,c). However,
even for simple object structures, a situation may happen
where an artefact and an interface peak overlap (Figure 2
b,d) leading to their mutual interference. In structurally
complicated objects (Figure 2 e,f), artefacts overlap with
interfaces as well as with other artefacts making the A-scan
indecipherable.

Each FFT stack contains a pattern that is uniquely related
to an object with a specific internal structure. We cast this
problem as a supervised machine learning task, where the
goal is to predict A-scans based on FFT stacks.

3. Data preparation
Our dataset is entirely computer-generated according to the
algorithm introduced in (Kolenderska & Kolenderski, 2021).
Obtaining a huge number of Q-OCT images experimentally
is time-consuming and there are no publicly-available on-
line Q-OCT datasets. Using experimental images would
also present extreme challenges in determining the correct
geometrical distances inside an object and the object’s opti-

cal properties, which are crucial for training. Due to the
hardware limitation of our machine and the sheer size of
datasets, we generate our data on the fly during training.

Figure 2. (a,b,e) FFT stacks and (c,d,f) single rows from the FFT
stack (in gray) together with their artefact-free equivalents (in blue).
(a, c) A three-interface object for which there is a clear distinction
between artefacts and structural peaks. (b,d) A three-interface
object for which an artefact overlaps with the first interface and
causes an oscillation in place of the solid line. (e,f) Multi-interface
object for which the structural information about the object is lost
due to the high number of overlapping artefacts.

Our input FFT stacks have a dimension of 50 by 1024 and
single precision. We generate objects that consist of a ran-
dom number of interfaces, up to 12, located at random
positions up to the 512th pixel. We Fourier transform 50
diagonals of the joint spectrum and zero-pad them to be
2048-elements-long. We take only half of each of the obta-
ined Fourier transforms (for real-valued signals, the same
information is repeated twice in a Fourier transform) and
normalize them.

Our outputs are one-dimensional 1024-pixel-long sparse
vectors containing values in the range [0,1]. They are
artefact-free A-scans calculated by Fourier transforming
a computer-generated, resolution-doubled classical OCT
spectrum.

The generated data represents spectra with 840 nm central
wavelength, and with a total spectral bandwidth of 160 nm
and a Gaussian profile. We do not incorporate noise into our
datasets.

4. Dataset size
First, we optimised the amount of data needed for training
to obtain satisfactory results in a reasonable time. As the in-
itial architecture of our models, we used the VGG16 model
(Simonyan & Zisserman, 2014). VGG is good at extrac-

Removing parasitic elements from Quantum Optical Coherence Tomography data with Convolutional Neural Networks

ting low-level image features, such as textures, lines, and
points, whereas other modern architectures, such as Re-
sNet (He et al., 2016) or Xception (Chollet, 2017), provide
high-level features that are not relevant to our problem. We
modified the architecture according to (Maliszewski & Ko-
lenderska, 2021) proposal by adding batch normalization
(Ioffe & Szegedy, 2015) after each convolutional layer. We
further altered that model by changing the output shape to
1024 nodes. We trained models from scratch with learning
rate 0.0001, batch size 16, optimiser Adam (Kingma & Ba,
2014), with 16,000, 32,000, 64,000, 128,000, and 256,000
training examples. We measured the performance using the
mean squared error (MSE) metric. During training, we used
the V100 GPU with 12GB of memory.

Figure 3. Average training MSE as a function of time of training.
Five models were trained with datasets containing a different num-
ber of samples. All models were trained for around 24 hours.

Figure 4. Predictions, orange lines, and ground truths, blue lines,
for models trained with datasets with a different number of samples.
Each row presents a different dataset size. Each column shows a
different object to predict.

We trained models with each dataset for around 24 hours.
Within this time, the model trained with a dataset containing
16,000 samples completed 131 epochs, 32,000 - 80 epochs,
64,000 - 47 epochs, 128,000 - 29 epochs, and 256,000 - 14
epochs. fig:hrs presents how validation MSE changed du-

ring the trainings. In Figure 3, we observe loss fluctuations
especially visible for the 128,000 model. We address this
issue in following sections 5 and 6. In Figure 3a, we can
see that initially the networks trained on smaller datasets
were closely following models trained on the bigger data-
sets. However, at the end of the test, the validation loss of
the 16,000 and 32,000 models was twice that of the models
trained with the larger datasets. Additionally, we noticed
that relatively low validation MSE values for models trained
with smaller datasets do not necessarily translate into overall
good predictions. Figure 4 illustrates this phenomenon by
comparing the prediction results for two randomly selected
objects from the test dataset (marked with 1,2 placed after
the letters) using various sizes of the training sets. Each
dataset size is presented in a separate row (marked with a-e).
Figure 4 a,b,c show predictions, in orange, that poorly ap-
proximate the ground truth, in blue. In Figure 4d, we could
observe model’s results get closer to the expected values.
Model trained with the largest dataset, 256,000 samples,
provides us with the best predictions (Figure 4e). Models
trained on smaller datasets give worse predictions due to
the fact the datasets do not have enough data samples that
would represent a wide range of variability of the structural
information of objects to ensure that a model can “recognize“
more distinctive examples.

After taking all of it into account, we decided to train our
models with datasets containing around 256,000 training
samples. In addition to 256,000 training samples, we gene-
rate 15,000 validation samples and 5,000 test samples. All
datasets comprised of proportionally equal number of sam-
ples for the given number of interfaces within the objects.

5. Zero-convergence problem
Initially, we decided to look at our problem as a classifica-
tion problem. The models used to find the optimal dataset
size used Cosine Similarity as a loss function and sigmoid as
an activation function in the output layer. The combination
of these functions creates two major problems for a model
trained with our 1024-pixel-long outputs. Firstly, in many
cases, a model is unable to separate closely located structu-
ral interfaces, even for larger datasets, as shown in Figure 4
a2,b2. Secondly, the model’s loss converges very fast to
values close to zero, and its performance stops improving,
although predictions are far from the ground truths (Figure 5
a,b,c).

We modified our model and applied binary-crossentropy as
a loss function and sigmoid as an activation function in the
output layer. Such a combination is widely used in multi-
label and multi-classification problems. In contrast to the
classification problem where output values are either 0 or
1, our outputs contain continuous values in the range [0,1].
Due to that fact and because our outputs are 1024-pixel-long

Removing parasitic elements from Quantum Optical Coherence Tomography data with Convolutional Neural Networks

Figure 5. (a,b,c) Ground truth (blue line) and predictions (orange
lines) corresponding to each test data sample after the network was
trained for 30 epochs. Plots were trimmed from 1024 pixels to 200
pixels to zoom into the relevant part of the test data.

Figure 6. (a) Example of loss for the test data sample in the con-
secutive epochs during training. (b-k) Ground truth (blue) and
predictions (orange) of the test data sample in the consecutive
epochs.

sparse vectors, we observed a zero-convergence problem
which we show in Figure 6.

Figure 6a presents the loss value corresponding to the test
data sample in consecutive epochs. Figure 6b-k show pre-
dictions (in orange) of the test data sample in these epochs
together with the ground truth (in blue). At the beginning of

training, epochs 1-4, the model brings predictions closer to
the sparse ground truth as shown in Figure 6a by changing
its weights and consequently minimising its loss. In epoch
5, the prediction is very close to zero and very far from
the ground truth. The loss becomes much higher than in
the previous epochs and that causes the model to readjust
the weights and to come closer to the ground truth again in
epoch 6. In consecutive epochs, the process repeats.

Section 7 explains in detail why the zero-convergence pro-
blem occurs. To mitigate the zero-convergence problem, we
switched to solving a regression problem.

6. Model instability
We applied the mean absolute error (MAE) as a loss func-
tion and used a linear function as an activation function
in the output layer. Figure 7a presents MAE loss during
40-epoch-long training using a logarithmic scale. The red
dots in the plot represent the epochs for which the predic-
tions are shown in the graphs Figure 7b-j. The model loss
until epoch 13, Figure 7b, decreases. In epochs 14 and 15,
Figure 7c,d, the model becomes unstable, its predictions are
far from the ground truth, and the loss increases dramati-
cally. Then, training is carried out normally between epochs
16 and 33, Figure 7e,f. Epochs 34 and 36, Figure 7g,i, show
another instability, but the model returns to normal in the
following epoch 37, Figure 7j. Figure 7k shows the training
loss (green line) and the validation loss (red line) in further
training of the model. Despite the training loss gradually
decreasing, instabilities occasionally occurred up to epoch
200 after which the model got completely destabilised and
the validation loss shot up.

We partially solved the instability problem by adding a
normalization layer before the output layer. This solution
kept the values within the range [0,1].

7. Mean Absolute Error Thresholded and
Goodness-of-Fit Thresholded

As we can see from Figure 7c, the issue of zero-convergence
persists also in the regression problem. We posit that it exi-
sts because of the sparsity of ground-truth signals for the
reasons we described above in Section 5. Our problem is the
loss function, MAE. It does not account for the difference
between near-zero values and values well above zero and
divides absolute error by the length of the vector. That cau-
ses MAE to return much smaller errors than it should and
points a model in the wrong direction. To finally solve the
zero-convergence problem, we introduce a new loss func-
tion, which we call the Mean Absolute Error Thresholded
(MAET):

Removing parasitic elements from Quantum Optical Coherence Tomography data with Convolutional Neural Networks

Figure 7. (a) MAE loss of the test data sample during 40 epochs of
training. Y-axis is in the logarithmic scale. Green dots represent
the epochs for which we calculate prediction on plots b-j. (b-j)
Ground truth (blue line) and predictions of the test data sample
(orange line) for particular epochs. (k) Training loss (green line)
and validation loss (red line) of the model trained for 500 epochs.
Y-axis is in the logarithmic scale.

MAET =
α

N

N∑
i=1,yi>th

|yi − ŷi|+
β

M

M∑
i=1,yi<=th

|yi − ŷi|

where y and ŷ are ground truth and prediction vectors, N
and M are respectively, the number of pixels with a value
above the threshold and under or equal to the threshold, with
th being the threshold and α and β being coefficients that
need to be specified.

MAET separately calculates the mean absolute error of
ground-truth values above and under a given threshold th.
It then multiplies them by α and β coefficients respectively
and adds them to obtain a final loss value. We used Optuna
(Akiba et al., 2019) to find optimal values of α, β and
threshold hyperparameters. During the optimization process,
we used MAET as a loss function and MAE as a metric upon
which we decided the optimal values of hyperparameters.
The optimal values were α=1., β=0.66 and th=0.005.

We created complementary metrics to MAET to calculate
the goodness of fit of our predictions. We called them
Goodness-of-Fit Above Thresholded (GoFAT), Goodness-
of-Fit Under Thresholded (GoFUT) and Goodness-of-Fit
Thresholded. All metrics are presented in Algorithms 1-3.

GoFT calculates the percentage of the prediction values, ŷ,

that are within the maximum distance (distA and distU)
from the ground truth (y) for the ground-truth values above
and below the given threshold th. GoFAT calculates that
percentage only for values that are above the threshold,
and GoFUT only for the ones below the threshold. We
chose distA equal to 0.01 and distU equal to 0.005 as the
acceptable distances.

Algorithm 1 Goodness-of-Fit Thresholded (GoFT)
Input: ground truth vector Y with length N , prediction
vector Ŷ with length N , threshold thr=0.005, max de-
viation from Y above the threshold distA=0.01, max
distance from Y under the threshold distU=0.005
d = |Y - Ŷ|
for i← 1 to N do

withinDistAi =

{
1 if di < distA and yi > thr
0 otherwise

withinDistUi =

{
1 if di < distU and yi ≤ thr
0 otherwise

end for
GoFT = 1

N (
∑

withinDistA +
∑

withinDistU)

Algorithm 2 Goodness-of-Fit Above Thresholded (GoFAT)
Input: ground truth vector Y with length N , prediction
vector Ŷ with length N , threshold thr=0.005, max devia-
tion from Y above the threshold distA=0.01
d = |Y - Ŷ|
for i← 1 to N do

withinDistAi =

{
1 if di < distA and yi > thr
0 otherwise

end for
GoFAT = 1

N

∑
withinDistA

Algorithm 3 Goodness-of-Fit Under Thresholded (GoFUT)
Input: ground truth vector Y with length N , prediction
vector Ŷ with length N , threshold thr=0.005, max devia-
tion from Y under the threshold distU=0.01
d = |Y - Ŷ|
for i← 1 to N do

withinDistUi =

{
1 if di < distU and yi ≤ thr
0 otherwise

end for
GoFUT = 1

N

∑
withinDistU

8. Architecture
We used a modified VGG16 architecture as a base for our
model. Table 1 presents the set of hyper-parameters that
were tuned in our model with Optuna. The best performing
model contains batch normalisation layers after each co-
nvolutional layer, a max-pooling layer, and a single fully
connected layer with 14336 units and a dropout rate (Sri-
vastava et al., 2014) of 0.1. As discussed in Section 6, we
also add a layer normalization before the output. Figure 8
presents the final architecture of our model.

Removing parasitic elements from Quantum Optical Coherence Tomography data with Convolutional Neural Networks

Table 1. Hyper-parameters of the model architecture optimised with Optuna and their optimal values.
[A..B, C] - A and B are values of the limits of the range, and C is the step size.

Hyper-parameter Values Optimal

Batch normalization layer after a convolutional layer True, False True
Type of pooling max, avg max
Number of fully connected layers [1..4, 1] 1
Number of units in each fully connected layer [1024..16384, 1024] 14336
Dropout rates [0.1..0.5, 0.05] 0.1
Learning rate [1e-6, 1e-1] 2e-4
Optimizer [Adam, Nadam, SGD, RMSProp] Adam

64 64

conv1

128 128

conv2

256 256 256

conv3

512 512 512
conv4

512 512 512
conv5

14336
fc1 relu1

0.1
dr1

1024
fc4 LN

BatchNormalization MaxPooling Conv FullyConnected Dropouts Functional LayerNormalization

Figure 8. The architecture of the model used for the removal of artefacts from Q-OCT signals. The plot was created with PlotNeuralNet
software (Iqbal, 2018).

9. Training
We have created a model using Python. We used an open-
source software library TensorFlow (Abadi et al., 2016)
v2.5.0. The training parameters of the models were optimi-
sed using Optuna (optimizer Adam, learning rate 2e-4). As
presented in Section 7, we use MAET loss function with
parameters α = 1., β =0.66, th =0.005. We used default
values for the goodness-of-fit metrics. We set the batch size
to 16 and trained our model from scratch for 60 epochs.
Each epoch took about 1.5 hours where more than half of
that time is spent on on-fly data generation.

10. Results
10.1. Performance

Figure 9 shows GoF values during training (in blue) and
validation (in orange) together with the MAET loss values
during training (in green) and validation (in red). The per-
formance of the model gradually improves with each epoch.
Fluctuations visible in epochs 10, 22, 30 and 44 in vali-
dation loss and GoF are not the result of instabilities, the
zero-convergence problem as per Section 5 or overfitting,
and are completely natural course of training. The test data
predictions at these epochs do not deviate from the predic-
tions from other epochs.

After 60-epoch-long training, the network is capable of
removing artefacts and predicting actual structural infor-

Figure 9. Model performance evaluation.

mation of objects, as shown in Figure 10a. In some cases,
similarly to Figure 5, it treats some interfaces that are close
to each other as one interface (see Figure 10b around pi-
xels 120-140). The closer the interfaces are, the poorer the
predictions get (Figure 10c).

We show the performance of our model with the test dataset
in Table 2 and Table 3. We use the default goodness-of-fit
metrics parameters shown in Algorithms 1-3. We used opti-
mised parameters from Section 9, and default parameters
for the goodness of fit. Interestingly, there is not much diffe-
rence between GoFAT and GoFUT, but, notably, predictions
of values under the threshold are slightly better.

We observe better results for objects with a larger number of
interfaces. As presented in Table 2, in such examples values
of MAET are lower and GoF metrics are higher. When
GoF is considered, the model has the biggest problem with
predicting the structure of the simplest 2-interface objects
as seen in Table 3. Such objects have the highest numbers

Removing parasitic elements from Quantum Optical Coherence Tomography data with Convolutional Neural Networks

Table 2. Performance of the model for a test dataset. MAET (10−3), GoF, GoFAT and GoFUT values are shown separately for each
number of interfaces. The last column shows the mean value of the metrics. We present the mean MAET loss with its standard deviation
in brackets. The best results are marked in bold.

Interfaces 2 3 4 5 6 7 8 9 10 11 12 All
Metrics

MAET [10^-3] 9.7 (4.33) 8.66 (3.91) 8.56 (3.14) 8.14 (2.26) 7.98 (1.86) 7.81 (1.98) 7.71 (1.62) 7.4 (1.09) 7.36 (1.1) 7.37 (1.17) 7.11 (1.1) 7.99 (2.52)
GoF [%] 73.57 (6.05) 82.24 (5.03) 84.79 (4.29) 85.99 (3.44) 85.97 (3.34) 86.3 (3.54) 86.13 (2.98) 86.24 (2.73) 86.15 (2.8) 85.89 (2.76) 86.39 (2.85) 84.45 (5.32)
GoFAT [%] 76.92 (11.1) 80.5 (10.69) 80.29 (9.14) 81.82 (7.16) 82.25 (5.91) 83.31 (6.62) 83.38 (5.69) 84.92 (4.58) 85.55 (4.67) 85.99 (4.68) 87.4 (4.6) 82.88 (7.75)
GoFUT [%] 73.39 (6.24) 82.38 (5.0) 85.37 (4.24) 86.72 (3.35) 86.84 (3.38) 87.1 (3.45) 87.01 (2.85) 86.72 (2.98) 86.36 (3.0) 85.81 (3.01) 85.9 (3.09) 84.82 (5.52)

Table 3. The number of examples within the given GoF value range for a particular number of interfaces. Values inside the brackets
represent the percentage of all examples for the given number of interfaces within the GoF range. The total values on the right show the
number of all examples in the given GoF range and the percentage of all examples in the dataset. The total values at the bottom show how
many examples there are with the given number of layers.

Interfaces 2 3 4 5 6 7 8 9 10 11 12 Total
GoF range [%]

0 - 10 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
10 - 20 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
20 - 30 1 (0.21%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0.02%)
30 - 40 1 (0.21%) 1 (0.22%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (0.04%)
40 - 50 0 (0%) 1 (0.22%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0.02%)
50 - 60 12 (2.46%) 1 (0.22%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 13 (0.26%)
60 - 70 89 (18.28%) 5 (1.12%) 7 (1.79%) 1 (0.2%) 2 (0.4%) 0 (0%) 0 (0%) 0 (0%) 1 (0.24%) 0 (0%) 1 (0.23%) 106 (2.12%)
70 - 80 357 (73.31%) 104 (23.21%) 25 (6.38%) 26 (5.26%) 19 (3.82%) 23 (5.4%) 15 (3.11%) 8 (1.55%) 9 (2.14%) 15 (3.7%) 9 (2.08%) 610 (12.2%)
80 - 90 27 (5.54%) 335 (74.78%) 343 (87.5%) 425 (86.03%) 441 (88.73%) 352 (82.63%) 423 (87.76%) 482 (93.41%) 394 (93.81%) 372 (91.85%) 393 (90.76%) 3987 (79.74%)
90 - 100 0 (0%) 1 (0.22%) 17 (4.34%) 42 (8.5%) 35 (7.04%) 51 (11.97%) 44 (9.13%) 26 (5.04%) 16 (3.81%) 18 (4.44%) 30 (6.93%) 280 (5.6%)
Total 487 448 392 494 497 426 482 516 420 405 433 5000

of data samples within GoF below 80% and never reach the
range of 90-100%.

Results from Table 3 and Table 2 suggest that the examples
with a larger number of interfaces are easier to interpret
by the VGG16 models. It might be the consequence of
more distinct and complex patterns in FFT stacks in such
examples compared to simpler structures. It might seem that
removing examples with a low number of interfaces from the
training dataset will improve the prediction performance,
but doing so will lead to failing in recognizing simpler
structures since the network will not see their examples
during training.

Figure 10. Ground truth (blue line) and predictions (orange lines)
corresponding to each test data sample after the network was
trained for 60 epochs. Plots were trimmed from 1024 pixels to 200
pixels to zoom into the relevant part of the test data.

10.2. Testing on a synthetic object

Figure 11. Computer-generated object representing an onion with
noise. (a1) Image built from the middle row of FFT stacks (cor-
responding to the FFT of the main diagonals of the joint spectra).
(b1) Image built from the predictions provided by our model. (c1)
The ground truth image showing the actual structure of the onion.
Green and blue show areas of interest where predictions do not
match the ground truth are zoomed in in columns 2,3).

To demonstrate the performance of our model more qualita-
tively, we generated a small test dataset that contains 50 FFT
stacks. It simulates the cellular structure of an onion. Its
ideal noiseless image is presented in Figure 11 c1). In order
to better match the data coming from an experimental setup,
we incorporated noise at a level of 35dB into our input data.
The central row of each noisy FFT stack (corresponding to

Removing parasitic elements from Quantum Optical Coherence Tomography data with Convolutional Neural Networks

the main diagonal in a noisy joint spectrum) is stacked one
on top of another in Figure 11 a1) to generate an image. It
can be seen that artefacts and noise cause a complete loss of
the object’s structure.

The image obtained by using the predictions of our model is
presented in Figure 11 b1). Although the model was trained
on noiseless data, and we introduced a high level of noise
in the onion’s joint spectra, our model performed very well
in removing the artefacts and retrieving the structural infor-
mation of the onion. We selected and zoomed in two areas
of interest where our model struggled (Figure 11 columns
2,3). The loss of information in the blue area might be due
to a high number of interfaces there. In the case of the green
area (Figure 11a1), some information about the structure
is lost due to noise. All in all, this example shows that our
model provides, at least to some extent, immunity to noise
present in the input signals. This may be because noise is
random and does not generate patterns that the model is
trained to recognise.

11. Conclusions
In this study, we proposed to use machine learning for re-
moving artefacts from Q-OCT signals with 1024-by-1024-
pixel-long joint spectra.

We showed that VGG16 is very good at recognising arte-
facts in the images. We presented that models trained on
bigger datasets can perform better and provide better pre-
dictions than those trained on smaller ones, even when they
return higher training MSE losses after training for the same
amount of time. To mitigate the zero-convergence problem
for sparse outputs, we introduced a new loss function. In
addition, we created complementary goodness-of-fit metrics
to measure the performance of regression models. We de-
monstrated that our approach allows for good performance
even for data that incorporate noise, even though our model
is trained on noiseless data.

Our method is very promising, but needs additional work.
For example, it struggles with predicting the positions of
interfaces in very simple objects as well as objects with
multiple interfaces and small thicknesses. We consider seve-
ral future directions. Firstly, we must modify and improve
our loss function to be able to more closely detect interfa-
ces. Also, architectures other than VGG should be tested to
better differentiate the features in the inputs.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
{TensorFlow}: a system for {Large-Scale} machine le-
arning. In 12th USENIX symposium on operating sys-
tems design and implementation (OSDI 16), pp. 265–283,

2016.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data
mining, pp. 2623–2631, 2019.

Chollet, F. Xception: Deep learning with depthwise separa-
ble convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1251–
1258, 2017.

De Boer, J. F., Leitgeb, R., and Wojtkowski, M. Twenty-five
years of optical coherence tomography: the paradigm
shift in sensitivity and speed provided by fourier domain
oct. Biomedical optics express, 8(7):3248–3280, 2017.

Graciano, P. Y., Martínez, A. M. A., Lopez-Mago, D.,
Castro-Olvera, G., Rosete-Aguilar, M., Garduño-Mejía,
J., Alarcón, R. R., Ramírez, H. C., and U’Ren, A. B. Inter-
ference effects in quantum-optical coherence tomography
using spectrally engineered photon pairs. Scientific Re-
ports, 9(1):1–14, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual lear-
ning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. PMLR, 2015.

Iqbal, H. Harisiqbal88/plotneuralnet v1.0.0, Decem-
ber 2018. URL https://doi.org/10.5281/
zenodo.2526396.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kolenderska, S. M. and Kolenderski, P. Intensity correlation
oct – a true classical equivalent of quantum oct able to
achieve up to 2-fold resolution improvement in standard
oct images, 2021.

Kolenderska, S. M. and Szkulmowski, M. Artefact-removal
algorithms for fourier domain quantum optical coherence
tomography. Scientific reports, 11(1):1–8, 2021.

Kolenderska, S. M., Vanholsbeeck, F., and Kolenderski, P.
Fourier domain quantum optical coherence tomography.
Optics Express, 28(20):29576–29589, 2020a.

Kolenderska, S. M., Vanholsbeeck, F., and Kolenderski,
P. Quantum optical coherence tomography using two
photon joint spectrum detection (js-q-oct). arXiv preprint
arXiv:2005.13147, 2020b.

https://doi.org/10.5281/zenodo.2526396
https://doi.org/10.5281/zenodo.2526396

Removing parasitic elements from Quantum Optical Coherence Tomography data with Convolutional Neural Networks

Maliszewski, K. A. and Kolenderska, S. M. Artefact re-
moval for quantum optical coherence tomography using
machine learning. In Optical Coherence Tomography
and Coherence Domain Optical Methods in Biomedicine
XXV, volume 11630, pp. 1163012. International Society
for Optics and Photonics, 2021.

Simonyan, K. and Zisserman, A. Very deep convolutio-
nal networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

