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ABSTRACT

Long-term videos over minutes are ubiquitous in daily life while existing Refer-
ring Video Object Segmentation (RVOS) datasets are limited to short-term videos
with a duration of only 5-60 seconds. To unveil the dilemma of referring object
segmentation towards hour-level videos, we construct the first Hour-level Refer-
ring Video Object Segmentation (Hour-RVOS) dataset characterized by (1) any-
length videos from seconds to hours, (2) rich-semantic expressions with double
length, and (3) multi-round interactions according to target change. These unique
characteristics further bring tough challenges including (1) Sparse object distri-
bution: Segmenting target objects in sparse-distributed key-frames from massive
amounts of frames is like finding a needle in a haystack. (2) Long-range corre-
spondence: Intricate linguistic-visual associations are required to establish across
thousands of frames. To address these challenges, we propose a semi-online
hierarchical-memory-association RVOS method for building cross-modal long-
range correlations. Through interleaved propagation of hierarchical memory and
dynamic balance of linguistic-visual tokens, our method can adequately associate
multi-period representations of target objects in a real-time way. The benchmark
results show that existing offline methods have to struggle with hour-level videos
in multiple stages, whereas our proposed method without LLMs can achieve over
15% accuracy improvements compared to Sa2VA-8B when handling any-length
videos with multi-round and various-semantic expressions in one-stage.

1 INTRODUCTION

The task of Referring Video Object Segmentation (RVOS) aims at segmenting the target objects
specified by natural language expressions. Existing RVOS benchmarks (Seo et al., |2020; Ding
et al., [2023; [Liang et al.| 2025a} Khoreva et al.| 2019} (Gavrilyuk et al., 2018)) usually contain 5-60
seconds videos without switch of different scenes, and briefly object-describing expressions lacking
of diverse semantics. Meanwhile, due to short durations, each target object can be segmented by
pairing it with one expression as the initial reference, while the initial-expression cannot correspond
to constantly changing targets in longer videos.

To this end, we construct a Hour-level Referring Video Object Segmentation (Hour-RVOS) dataset
which contains 300 videos with 100.4h in total and 9114 expressions with 18.3 average words.
The main three characteristics of our Hour-RVOS dataset are as follows: (1) Any-Length Videos.
The duration of videos ranges from seconds to hours as shown in Fig. [I] (a), the average duration
achieves 1204.8 seconds which is far longer than the one of any-existing RVOS datasets. Besides,
these videos involve different scene/view switches which are not available in existing RVOS datasets.
(2) Rich-Semantic Expressions. The rich-semantic expressions cover descriptions of appearance,
motion and relationships as shown in Fig.[2] As the semantic complexity significantly increases, the
average words of expressions achieve 18.3 which is more than twice the ones in existing expressions
as illustrated in Fig.[T](c). (3) Multi-Round Interactions. There are multiple expressions at multiple
timestamps in each video to support multi-round human interactions as shown in Fig. [T (e).

These unique characteristics of our Hour-RVOS dataset further bring tough challenges to RVOS
field as follows: (1) Sparse object distribution. In our Hour-RVOS dataset, there are not only
densely-distributed objects like the main character in the movie who appears in most frames, but
also sparsely-distributed objects, for example, only appear in dozens of frames in videos with thou-
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Figure 1: Characteristics of our Hour-RVOS dataset: (a) Any-Length Videos, (b) Average Duration
Comparison, (c) Average Expression Length Comparison, (d) Description Type Distribution and (e)
Multi-Round Interaction.

sands of frames. We calculate the average ratio of the duration that target objects appear in videos to
the total video duration, and the result is as low as 13.7% in the videos over 30 minutes. Therefore,
for these target objects with sparse distribution in super-long videos, how to find the key frames
from massive video frames becomes the most severe challenge. (2) Long-range correspondence.
Hour-level videos consist of different clips containing essential and correlative object informations,
thereby associating language descriptions and video clips in long-range is vital to discern target
objects from other distractors. As shown in Fig. [2| (b), being picked up by a hand in the early
stage is indispensable for distinguishing different cans in the later stage. Unlike the direct appear-
ance/motion descriptions that correspond to each clip, the relationship descriptions can span multi-
ple clips. Therefore, it is undesirable to simplify the super-long video segmentation into multi-clip
segmentation. Simply processing different clips independently cannot establish long-range visual-
linguistic correspondence to enhance segmentation performance.

To address these challenges, we propose a semi-online Hierarchical-Memory-Association RVOS
method, termed as Memory-RVOS, to establish cross-modal long-range correlations. Specifically,
we design a Hierarchical Memory Interleaved Propagation module to retain core informations of
target objects when facing any-length videos. When handling videos in clip-by-clip mode (also
called semi-online mode), the construction of hierarchical memory enables our method to effectively
utilize the target information in the previous clips to enhance the segmentation effect of the current
clip. Meanwhile, to deal with the semantic imbalance between linguistic and visual tokens which
leads to the unsatisfactory association, we design a Linguistic-Visual Dynamic Balance module to
update crucial corresponding tokens between multi-modals. Through associating target objects with
language expressions in semi-online mode, our proposed Memory-RVOS method can segment the
target objects in a real-time way. We conduct extensive experiments to benchmark existing RVOS
methods (Yuan et al., 2024} He & Ding|, [2024; Wu et al.l 2023] [Liang et al., 2025b) and Multi-
modal Large Language Models (MLLM) (Yan et al., 2024a; |Gong et al., [2025; [Lin et al.l 2025;
Yuan et al., 2025) that can handle RVOS task on our proposed Hour-RVOS dataset. Benchmark
results sufficiently demonstrate the challenges are significantly difficult to be dealt with, whereas our
proposed Memory-RVOS method can make a breakthrough to effectively address these challenges.

2 HOUR-RVOS

2.1 DATASET CONSTRUCTION

To ensure the complexity and richness of our Hour-RVOS dataset, we carefully select 300 videos
with challenging objects from existing video object segmentation/tracking/video-language under-
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Figure 2: Examples from our proposed Hour-RVOS dataset including (a-b) clips from videos with
their expressions respectively, (c) multiple clips from the same video with multi-round expressions
in sequence. The brown, green and pink words in expressions denote the descriptions in terms of
appearance, motion and relationship respectively.

standing datasets (Hong et all, 2023} [2024; [Kristan et al., 2023} [Yang et al., [2022aib} [Tang et al,,
2023a;[Chandrasegaran et al., 2024; Hu et al.} 2023)). The selected videos are from different domains

(e.g., records of daily lives, sports, cookings, movies, cartoons, documentaries) and viewpoints (ego.
and exo.). The objects in these videos have significant changes at the aspects of appearance, motion
and relationship with environment/objects.

After identifying these videos and the target objects, we equip these target objects with high-quality
masks. Specifically, we first generate the bounding box of target objects with GoundingDINO
in each frame that objects appear, then utilize SAM2 to generate
initial masks based on the bounding boxes, finally hire annotators to manually correct these initial
masks to obtain the high-quality masks.

To generate complex semantic expressions for these target objects, we firstly divide the entire long
videos into clips based on scene with PySceneDetect [2025), then we generate object
descriptions in different aspects (appearance, motion and relationship) independently with Multi-
Modal Large Language Models (MLLMs) (Hurst et al., 2024} [Zhu et al.} 2025). Moreover, we adopt
LLM (Hurst et al. [2024) to merge descriptions of target objects in different aspects to generate
the expressions with complex semantics. Through manual corrections and final confirmations, we
generate high-quality expressions of target objects in these long videos, and construct the first Hour-
level RVOS dataset containing 9114 high-quality expressions with rich semantics for target objects
in 300 videos with duration from seconds to hours.

2.2 DATASET ANALYSIS AND STATISTICS

We comprehensively analyze the characteristics of our proposed Hour-RVOS dataset by comparing

with the existing representative Referring Video Object Segmentation datasets
[2018; [Khoreva et all 2019; [Seo et alll 2020; Ding et all 2023} [Liang et al.l 20254) in Tab. [I]

Video Statistics. As shown in Fig. |I| (a), there are 300 videos which duration range from second-
level to hour-level. The average duration of these videos achieves 1204.8s, which is much longer
than the average duration of existing RVOS datasets, for example, the mean duration is only 60.3s
in Long-RVOS dataset (Liang et al/, [2025a). As shown in Tab.[T] in terms of total duration, mean
duration, mean frame, max frame and masks, our proposed Hour-RVOS dataset far exceeds the
ones in existing RVOS datasets. Moreover, we calculate the ratio of the duration target objects
appear in videos to the total duration as shown in Fig. 3] (a). As the duration of videos increases,
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Figure 3: Statistics of our proposed Hour-RVOS dataset. (a) The ratio of objects appearing in videos
of different lengths, (b) the distribution of target-object attributes (the definition of these attributes
are listed in Appendix ), (c) the distribution of video categories.

Table 1: Statistical comparison between our proposed Hour-RVOS and existing RVOS datasets. *
denotes estimating statistics on the publicly datasets, and Expn. is the abbreviation of expression.

o o Total Mean Mean  Max S . . Object Avg. Multiple
Dataset Videos  Expn. Duration Duration Frame Frame Masks  Objects Classes Words ~ Round
A2D-Sentence (Gavrilyuk et al.|2018) 3782 6656 4.2h 4.9s 32 84 58k 4825 6 6.98 X
JHMDB-Sentence (Gavrilyuk et al.[[2018) 928 928 0.3h 1.3s 34 40 32k 928 1 6.16 X
Ref-DAVIS;7 (Khoreva et al.||2019) 90 1544 0.1h 2.9s 69 104 14k 205 78 6.43 X
Ref-YouTube-VOS (Seo et al.{[2020) 3978 15009 5.0h 4.5s 27 36 131k 7451 94 9.7 X
MeViS (Ding et al.|2023} 2006 28570 7.3h 13.2s 79 - 443k 8171 36 7.2% X
Long-RVOS (Liang et al.}[2025a) 2193 24689 36.7h 60.3s 362 - 2.1IM 6703 163 8" X
Hour-RVOS (Ours) 300 9114  100.4h  1204.8s 7229 23937 24M 3873 97 18.3 v

the ratio gradually decreases to only 13.7% in the videos over 30 minutes. We count the attribute
distributions defined in (Hong et al., 2024) (The complete definitions are listed in Appendix
as shown in Fig. [3](b). Among these attributes, our videos contain the most Out-of-View (OV) and
Long-term Reappearance (LRA) attributes with exceeding 250 videos corresponding to them. The
comprehensive distribution of attributes indicate the complexity and challenges in our Hour-RVOS
dataset. We further count the proportion of video categories as shown in Fig. [3| (c), our 300 videos
cover records of daily lives, movies, cartoons, sports, cookings and documentaries.

Expression Statistics. The 9114 expressions in our Hour-RVOS dataset contain rich semantics
including the descriptions of appearance, motion, relationships with environments/other objects.
Therefore, the average words of our expressions achieve 18.3 which is more than twice the number
of average words of expressions in the existing RVOS datasets as shown in Tab. [I] Meanwhile, our
Hour-RVOS dataset is no longer limited to one video corresponding to one initial expression. As the
scene in videos changes, the expression assigned to the target objects is also adjusted, thus achieving
accurate linguistic-visual correspondence. As our dataset requires RVOS methods to consider the
impact of multiple expressions in one video, the RVOS method trained with our dataset can support
multi-round human interactions where users can change the expression at any time.

3 MEMORY-RVOS

3.1 TASK DEFINITION

Given a video V' = {I,}1_; as a sequence of T frames, a sequence of IV, interactive prompts P =

{(E;, Tj)};-vz"l where F; denotes the j-th natural language expression referring to IV target objects,
7; € {1,...,T} denotes the timestamp at which expression E; is provided. The goal of RVOS
method F is continuously output a set of segmentation masks M = {{my, ¢}, }7_; denoting the
sequence of binary masks for each target object across all frames which can be formulated as:

F(V,P) = {Mp}ren- )]

3.2 TOWARDS ANY-LENGTH VIDEOS WITH MULTI-ROUND EXPRESSIONS

In semi-online mode, we first divide the video with T frames into K clips evenly, where the size of
eachclipis |[T/K |. As shown in Fig.(a), each input consists of a clip C; and an expression E; with
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Figure 4: (a) Overview of our proposed semi-online Memory-RVOS method. (b) our Hierarchical
Memory Interleaved Propagation module.

L; words. After encoding the expression with the linguistic encoder, we integrate linguistic features

~ T
Z; € RZ3*4 and object queries Q € RNe*? with cross-attention as Q) = Q + softmax(%)Z ,

where N, is the number of queries. We send integrated queries Q and frames in clip C; into the
Mask2Former (Cheng et al.,|2022) to extract potential object tokens and frame-level mask features.
Then we associate visual-linguistic tokens in our proposed Hierarchical Memory Interleaved Prop-
agation module. Finally, we use these target-object tokens to produce object mask by aggregating
with frame-level mask features, and update our permanent-long-short hierarchical memory.

When a new expression arrives, we input the encoded features Z;, Z;, 1 of the new and previous
expressions I/;, E; 1 into our proposed Linguistic-Visual Dynamic Balance module. Through cal-
culating with visual tokens in hierarchical memory, we adjust the attention weights of linguistic
features and remove outdated visual tokens. With the construction of hierarchical memory, the
queries for the current clip can adequately integrate historical informations of target objects, which
is essential for associating the current expression with target objects over a long-time span.

3.3 HIERARCHICAL MEMORY INTERLEAVED PROPAGATION

Design Principles. In our memory design, short-term memory ensures object queries can be asso-
ciated with the latest state of target objects, long-term memory ensures object queries can correlate
complex descriptions and visual informations over a wider range of time scales, permanent memory
ensures that when target objects disappear for a long time, so long that long-term memory does
not contain valid target-object tokens, the stored target-object tokens in permanent memory are still
available to match the target objects when they reappear in the video.

Hierarchical Memory Update. As shown in Fig. [5 (a), for the current input clip C;, we update
short-term memory with the generated target-object tokens O;_; when handling C;_; to memorize
the latest target-related features. Meanwhile, we update long-term memory with the target-object
tokens of past W clips including {O;_, ..., O;_1_w, } where W denotes the window size of long-
term memory. To extract permanent memory, we first calculate the similarity between the current
linguistic features and stored tokens in long-term memory, then select the tokens O;_j, which are
most relevant and store them into the permanent memory where window size is set to W,.

Query Encoding. As target objects could disappear for a while in long-term videos, the tokens
in short-term memory may not correspond to objects that re-appear in the current input clip, thus
we first concatenate short-term tokens and compressed permanent tokens to ensure valid tokens as
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Figure 5: Illustrations of (a) Hierarchical Memory Update and (b) Linguistic-Visual Dynamic Bal-
ance processes in our Memory-RVOS.

shown in Fig.[4](b). We compress permanent tokens with bipartite soft strategy method (Bolya et al.|
2022)). After splitting n tokens into two non-overlap sets A with r tokens and B with n—r tokens, we
calculate cosine similarity between tokens in two sets and select Top-r token pairs with the highest
similarity to merge, producing n — r compressed permanent tokens. Then we send the concatenated
tokens into L, cascaded blocks where each block consists of self-attention, referring cross-attention
and FFN layers. Balanced linguistic features act as key-value in referring cross-attention.

Object Encoding and Decoding. After matching the current object tokens with Hungarian match-
ing algorithm (Kuhn, |1955), we send generated object trajectories into L, cascaded blocks where
each block consists of self-attention, memory cross-attention, referring cross-attention and FFN lay-
ers. The tokens in long-term memory act as key-value in memory cross-attention and the balanced
linguistic features act as key-value in referring cross-attention. Finally, we send the outputs of object
and query encoding process into object decoder to act as key-value and query respectively. The ob-
ject decoder consists of regular self-attention, cross-attention and FFN layers and generate the final
target-object tokens to filter out target-object masks.

Compared to propagating hierarchical memory in temporal sequence, in our proposed hierarchical
memory interleaved propagation module, we place different memory tokens into different encoding
process to adequately match visual-linguistic tokens in different temporal scale.

3.4 LINGUISTIC-VISUAL DYNAMIC BALANCE

Imbalance Issue. In memory-based method, the number of visual tokens stored in memory far
exceeds the number of linguistic tokens. Among visual tokens, there are tokens irrelevant to the
current expression which act as noise to affect current queries. To balance the quantity of tokens,
we design a Linguistic-Visual Dynamic Balance module to prune as much noise visual tokens as
possible from memory and reweight linguistic features to highlight valuable visual tokens.

Expression Correlation Partition. When a new expression F/;; arrives at 7,11 timestamp, we
firstly calculate the cosine similarity on the encoded linguistic features Z;, Z; 1 between the pre-
vious expression I; and the new expression E; ;. Based on the similarity score, we divide the
linguistic features Z;, Z;; into three types including outdated, reserved, new-arrived as shown in
Fig.[5| We regard the similar parts of Z;, Z;, as reserved parts by setting a hyper-parameter simi-
larity threshold. Excluding the reserved parts, the remaining parts in Z; are considered as outdated
parts, and the remaining parts in Z; are considered as new-arrived parts. After clarifying different
parts, we use the outdated linguistic features to prune the noise permanent tokens which are irrele-
vant with the new expression. Meanwhile, we use the new-arrived linguistic features to highlight the
visual tokens store in long-term and short-term memory which are effective to capture the changed
target objects based on the new-arrived descriptions.

Prune Noise-tokens. Supposed there are n tokens stored in permanent memory, we prune top-k
noise tokens based on the similarity between permanent tokens and the outdated linguistic features.
When the storage exceeds the window size of permanent memory before new expression arrives,
stored tokens are eliminated according to First-In-First-Out strategy.

Reweight Linguistic-tokens. We reweight the linguistic features of the new expression by firstly
calculating the cosine similarity denoted as s between original and new linguistic features. Then
we multiply 1 — s with the new linguistic features as Zj+1 = (1 —s) - Z;41. Finally, we send the
balanced the linguistic features Z j+1 into the query and object encoding process.
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Table 2: Benchmark of existing SOTA RVOS methods and our method on our proposed Hour-RVOS
test set including three subsets divided by duration.

Test (0-10 mins) Test (10-30 mins) Test (over 30 mins)

Method Type Backbone FPS TCF T F TCF T F TCF T v
Multi-Stage (Referring Segmentation + Video Propagation with SAM2 (Ravi et al.[[2024))
SOC (Luo et al.[[2023) Offline Video-Swin-B - 146 9.7 195 1.6 9.1 14.1 9.4 58 13.0
LMPM (Ding et al.|[2023) Offline Video-Swin-B - 142 93 19.1 114 85 143 93 6.1 125
DsHMP (He & Ding!|2024) Offline Video-Swin-B - 16.0 11.2 20.8 131 94 1638 11.5 86 144
MUTR (Yan et al.[|2024b) Offline Video-Swin-B - 189 135 243 150 11.3 18.7 129 102 16.6
ReferDINO (Liang et al.|[2025b) Offline Video-Swin-B - 19.8 14.1 255 16.6 12.7 20.5 134 10.8 16.0
One-Stage

VISA (Yan et al.|[2024a) Offline Chat-UniVi-7B 9 22.8 21.2 244 17.4 13.0 21.8 151 117 185
VRS-HQ (Gong et al.[[2025) Offline Chat-UniVi-7B. 5  24.6 224 26.8 19.2 147 237 155 138 172
GLUS (Lin et al.[[2025) Offline LLaVA-7B 7 234 213 255 189 143 235 159 140 178
Sa2VA (Yuan et al.[[2025) Offline InternVL2.5-8B 8 258 222 294 214 175 253 163 14.1 185
OnlineRefer (Wu et al.[[2023) Semi-Online  Video-Swin-B 26 203 16.1 24.5 189 151 227 156 11.3 199
Memory-RVOS (Ours) Semi-Online  Video-Swin-B 31  42.6 37.9 47.3 343 30.1 38.5 27.5 249 30.1

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

We divide our proposed Hour-RVOS dataset containing 300 videos into train, validation and test
sets which contain 180, 30 and 90 videos respectively. To ensure the fair distribution of each set,
we make sure the class distributions of target objects in each set are consistent, and the duration of
videos in each set are ranging from seconds to hours. We adopt the evaluation metrics including
region similarity 7, contour accuracy JF and their average J&F following the same evaluation
settings (Khoreva et al.|,2019;[Seo et al.| 2020; Ding et al.l|2023). To clearly illustrate the impact of
videos with different durations on segmentation results, we divide the test sets into 3 subsets based
on the duration including 0-10, 10-30, over 30 minutes, each subset contains 30 videos.

Existing offline methods (Liang et al., 2025b; Ding et al., [2023; He & Ding, 2024} Luo et al.,
2023; [Yan et al., [2024b) and MLLMs (Yan et al., [2024a; Lin et al., 2025; (Gong et al., [2025}
Yuan et al., 2025) cannot directly handle long-term videos due to their huge GPU memory us-
age, and address multiple-expressions for one video limited by the setting that one expression
corresponds to an entire video. Therefore, we first divide the videos into clips based on different
timestamps at which expressions arrive. For clips that can be dealt with at one time, we evaluate
these methods according to original settings. For clips with so many frames that offline methods
cannot process at once, we perform evaluation in two settings: (1) Multi-Stage. For these offline
RVOS methods (Yan et al.l 2024bj |Ding et al.l 2023; [Luo et al., 2023} |[He & Ding| [2024} |Liang
et al.} |2025b)), we first uniform-sample frames from these clips for referring segmentation, then we
propagate masks of sampled frames to the entire clip. (2) One-Stage. For these MLLMs (Yan et al.,
2024a};|Gong et al.| 2025} [Lin et al.| 2025; [Yuan et al.,[2025) which contains mask propagation pro-
cess, we follow their original keyframe selection strategies (We adjust the initial five-frame selection
strategy of Sa2VA to uniform-sample strategy). We keep the same number of selected keyframes
and uniform-sampled frames for fair comparison. In contrast, our Memory-RVOS can process
any-length videos and multi-round expressions under one stage in real-time way.

Evaluation results of our proposed Memory-RVOS method on existing RVOS benchmark
including Ref-DAVIS17 (Khoreva et al., 2019), Ref-YouTube-VOS (Seo et al., 2020) and
MeViS (Ding et al.,2023), training and inference details are shown in Appendix[A.2and [A.3}

4.2 HOUR-RVOS BENCHMARK RESULTS

As shown in Tab. [2| existing RVOS and MLLM methods (Wu et al., 2023} [Yan et al.| [2024b; |Luo
et al., 2023; |[He & Dingl [2024; |[Liang et al., [2025b; [Yan et al., 2024a; |Gong et al., 2025} [Lin et al.,
2025; [Yuan et al.,[2025)) achieve unsatisfactory performance ranging from 9.3% to 25.8% in terms of
J & F when evaluated on our proposed Hour-RVOS dataset, whereas these methods can achieve over
65% accuracy on Ref-YouTube-VOS (Seo et al., 2020). When testing the methods’ performance on
videos of different durations in a more fine-grained temporal dimension, the performance trend is
that as the video duration increases, the segmentation accuracy significantly decreases.
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For these RVOS methods (Wu et al., 2023} |Luo et al., 2023} |Yan et al.,|2024b; [He & Ding, 2024;
Liang et al.,|2025b)), when the temporal span corresponding to the expressions increases significantly
as the video length increases, these methods cannot deal with the object segmentation of long videos
due to the lack of effective linguistic-visual correspondence across spatial and temporal dimension.
Especially for these offline RVOS methods, they only consider the case of inputting all frames of
the video at the same time when designing. During mutli-stage inference, the segmentation of target
objects in most frames depends on the mask propagation with SAM2 (Ravi et al. 2024) which
cannot establish the association across clips.

For these MLLM methods (Yan et al.| 2024a;|Gong et al., 2025; Lin et al.,2025; | Yuan et al., |2025)),
although their ability of video understanding on short videos is competitive, as video length in-
creases, the coverage of sampled frames decreases, which leads to missing the key information dur-
ing video understanding, resulting in significant accuracy drops. The benchmark results adequately
demonstrate the significant challenges posed by our Hour-RVOS dataset.

Compared to these RVOS and MLLM methods, our proposed semi-online Memory-RVOS method
achieves the best performance. Hierarchical memory can reduce the forgetting of target-object infor-
mations, and linguistic-visual dynamic balance enables our method to adjust the focus of segmenta-
tion according to the new-arrived expression, thereby improving the performance of referring object
segmentation when handling any-length videos. We further visualize failure cases in Appendix [A.4]
to intuitively show complexity of challenges.

Under the same condition that the number of input frames fills the GPU memory, our Memory-RVOS
method can achieve real-time segmentation speed at 31 FPS benefit from the effective compression
and filtering of target-object tokens stored in hierarchical memory. In contrast, these offline RVOS
methods and MLLMs with large-scale parameters achieve unsatisfactory efficiency.

4.3 ABLATION STUDIES

Table 3: Ablation studies on the hierarchical
memory. SM, LM and PM denote Short-term,
Long-term and Permanent Memory respectively.

We conduct ablation studies on the validation
set which is divided into two subsets based on
the duration including 0-10, over 10 minutes,
containing 15, 15 videos respectively. More ab-

X . N A A X Val (0-10 mins) Val (over 10 mins)
lation studies on settings of clip size and win- M M PM —77 J&F T F
; i i 7 363 3301 395 208 164 252

dow size are shown in Appendix [A.5] v B o O e
. . v V421 376 466 284 250 318
Hierarchical Memory Interleaved Propaga- °, , ' .55 400 507 312 275 349

tion. Under semi-online mode, at least the ob-
ject tokens of the previous clip are needed as
the query for the next clip (Heo et al., 2023), thus we keep short-term memory in ablation stud-
ies as shown in Tab. 3] The accuracy continues to improve with the introduction of long-term and
permanent memory. Permanent memory achieves larger improvements on long-term videos.

Linguistic-Visual Dynamic Balance. We test
the performance of our method under four set-
tings: lack of balance, only pruning noise vi-

Table 4: Ablation studies on the linguistic-visual
dynamic balance.

sual tokens based on outdat(?d l%ngmstlc fea- St Val (0-10 mins) Val (over 10 mins)
tures (prune-only), only reweighting the atten- ¢ TTF T ¥ JF T F
tion of linguistic features (reweight-only) and ~ Wobalance 416 36.1 47.1 253 217 289
. prune-only 447  39.8 49.6 27.1 229 313
the full balance. As shown in Tab. E], both prun- reweight-only 444 393 495 283 241 325
ing noise and reweighting linguistic features are w/balance 458  40.9 50.7 312 275 349

effective for performance improvements.

5 DISCUSSIONS

How irrelevant frames affect the segmentation of long videos? To further explore the affects of
these irrelevant frames, we remove irrelevant clips of videos over 10 minutes in validation set (all
frames in these clips do not contain target objects) at a ratio of 50% and 90%, then test methods on
these clip-removed videos and the results are shown in Tab.[5] As the proportion of removed-clips
gradually increases, the segmentation accuracy of these method (Liang et al., 2025b; |Yuan et al.
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Table 5: The impact of irrelevant clips and simplified expressions in long videos.

Method Val (over 10 mins) Val (50%-remove) Val (90%-remove) Val (simplified)
JE&F T F JE&F T F JE&F T F JE&F T F
ReferDINO (Liang et al./[2025b)
+ SAM? (Ravi ot al. 12024} 199 151 247 213 172 254 243 20.5 28.1 16.3 12.1 205
Sa2VA (Yuan et al.||2025) 284 236 332 306 263 349 357 331 383 264 219 309
Ours 312 275 349 337 301 373 36.1  33.6 38.6 306 277 335

2025) are also gradually increasing, especially for Sa2VA (Yuan et al., |2025) with stronger video
understanding capabilities, the accuracy improvement is the most significant. Therefore, capturing
target-object informations and filtering interference informations with hierarchical memory become
essential, which is the key reason of hierarchical memory design in our Memory-RVOS method.

How does our method perform when faced with simpler descriptions? In realistic interactions,
users may only provide simpler descriptions of target objects, thus we stimulate this situation to test
the robustness of these methods. We adopt LLM (Hurst et al., |2024) to simplify the expressions
in validation set from appearance/motion/relationship perspectives under the premise of expression
correctness, and use the simplified expressions to test RVOS and MLLM methods (Liang et al.,
2025b; [Yuan et al.l 2025). As shown in Tab. E], the accuracy of all methods decreases as these
methods are prone to segment similar distractors due to less information in simplified expressions,
whereas our Memory-RVOS method has minimal drop in accuracy compared to other methods.
Therefore, our proposed Memory-RVOS performs more robustly when facing simpler expressions.

6 RELATED WORKS

6.1 REFERRING VIDEO OBJECT SEGMENTATION DATASETS

In the past few years, A2D-Sentences and JHMDB-Sentences datasets (Gavrilyuk et al.| 2018)) are
proposed to segment actors and their actions based on natural language sentences. Moreover, Ref-
DAVIS17 (Khoreva et al.,2019) and Ref-YouTube-VOS (Seo et al.,[2020) datasets are constructed
based on existing video object segmentation datasets. Recently, MeViS (Ding et al.| [2023), fo-
cusing more on the motion of objects, is constructed to highlight the object motion informations.
Meanwhile, Long-RVOS (Liang et al.l 2025a)) is proposed, featuring long-term videos in which the
average duration achieves 60 seconds. Compared to existing RVOS datasets, we explore the perfor-
mance when facing any-length videos, rich-semantic expressions and multi-round interactions.

6.2 REFERRING VIDEO OBJECT SEGMENTATION METHODS

Representative RVOS methods including MTTR (Botach et al., 2022), ReferFormer (Wu et al.,
2022)), HTML (Han et al.} [2023)), TempCD (Tang et al., 2023b)), SOC (Luo et al.,2023), SgMg (Miao
et al., 2023), R2VOS (Li et al., [2023)), LoSh (Yuan et al.| [2024)), SSA (Pan et al., |2025) and Refer-
DINO (Liang et al.l [2025b) introduce unique designs respectively into the transformer architecture
for better object understanding and segmentation. Moreover, LMPM (Ding et al.,[2023)), DsHmp (He
& Ding| 2024) and DMVS (Fang et al} [2025) focuses on object motions to promote performance.
OnlineRefer (Wu et al., 2023), as a semi-online method, segments each frame or clip with cross-
frame query propagation. In this work, we propose a semi-online hierarchical-memory-association
method, which can build long-term associations in different clips of long-term videos.

7 CONCLUSIONS

In this work, we propose the first Hour-level Referring Video Object Segmentation dataset, and an in-
novative semi-online Hierarchical-Memory-Association RVOS method to address tough and unique
challenges. We conduct comprehensive experiments to benchmark existing RVOS and MLLM meth-
ods on our Hour-RVOS datasets, and our Memory-RVOS method achieves significant performance
improvement in a real-time way. The construction of Hour-RVOS dataset and Memory-RVOS
method brings more inspiration and exploration space for the development of RVOS field.
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A APPENDIX

A.1 THE USE OF LLMs

We use Large Language Models (LLMs) to aid or polish writing.

A.2 TRAINING AND INFERENCE DETAILS

The main architecture of our proposed Memory-RVOS method adopts ViTA (Heo et al.| 2022) fol-
lowing LMPM (Ding et al., |2023), DsHMP (He & Ding| 2024) and DMVS (Fang et al., [2025). We
use Video-Swin (Liu et al.l 2022) to encode the input ¢-th clip, and RoBERTa (Liu} 2019) as lin-
guistic encoder to encode the input language expression. Following ViTA (Heo et al.| [2022), and
GenVIS (Heo et al.,2023)), we use the frame-level loss L ¢ to compute between the final frame-level

12
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“The white cup in the middle swapped with the cup on the right by a person's hand, then back.”

S\ X ~ * ,
ERCSS A

“The vehicle being driven on the sand, kicking up sand, buried in the sand.”

Figure Al: Failure cases when evaluating our method on our proposed Hour-RVOS datasets.

output and the groud-truth mask, the video-level loss L, and the matching loss L,, to associate the
object across clips, thus the total loss L = L + AL, + j1L,,. The hyperparameters A, y in training
loss are set to 1 and 1 during training, the hyperparameter similarity threshold in the process of
expression correlation partition is set to 0.8.

During benchmark, we re-train representative RVOS methods including OnlineRefer (Wu et al.,

[2023), LoSh (Yuan et al. 2024), DsHMP (He & Ding| [2024), ReferDINO 2025b)
only on the combining the train sets of our Hour-RVOS and MeViS (Ding et al., 2023) datasets at a
ratio of 1 : 3. For these MLLMs including VISA 20244), VRS-HQ (Gong et al. [2025),
GLUS 2025) and Sa2VA 2025), we additionally train their open-sourced

models with our Hour-RVOS train set. During training of our Memory-RVOS, we set 16 frames in
one clip and train it in 60000 iterations with the AdamW optimizer (Loshchilov & Hutter, [2017)
with a initial learning rate set at Se-5.

A.3 EXISTING BENCHMARK RESULTS

Table Al: Quantitative comparison compared to SOTA RVOS methods on Ref-YouTube-VOS

@, Ref-DAVIS17 (Khoreva et al.} 2019) and MeViS (Ding et al.| @) datasets.

Ref-YouTube-VOS Ref-DAVIS17 MeViS

Method Backbone TEF T - TEF T - TEF T -
MTTR (Botach et al.[[2022 Video-Swin-T 553 540 56.6 - - - 300 288 312
ReferFormer (Wu et al. 2 Video-Swin-B 629 613 64.6 61.1 58.1 64.1 31.0 298 322
OnlineRefer (Wu et al. Video-Swin-B 629 61.0 64.7 624 59.1 65.6 - - -
SgMg (IMiao et al.||2023) Video-Swin-B 657 639 674 63.3  60.6 66.0 - - -
HTML (Han et al.|[2023) Video-Swin-B 634 615 652 62.1 592 65.1 - - -
SOC (Luo et al./]2 Video-Swin-B 66.0 64.1 679 642 610 674 - - -

LoSh (Y Video-Swin-B 672 654 69.0 643 618 66.8 - - -

DsHMP g Video-Swin-B 67.1 650 69.1 649 61.7 68.1 46.4 430 4938
SSA (Pan et al.| 20 CLIP 643 622 664 673 640 70.7 48.6 440 532
ReferDINO (! m 2025b} GoundingDINO  69.3  67.0 71.5 689 651 729 493 447 539
Ours Video-Swin-B 67.5 652 69.8 658 69.5 62.1 470 444 496

To verify the effectiveness of our proposed Memory-RVOS method on existing RVOS datasets con-

taining short-term videos, we conduct experiments on Ref-YouTube-VOS (Seo et al., 2020), Ref-

DAVIS17 (Khoreva et al] [2019) and MeViS (Ding et al} [2023). As shown in Tab. [AT] compared
with RVOS methods using the same backbone (Video-Swin-B [2022)), our Memory-

RVOS achieves the best performance when evaluating on these datasets with short-term videos.

A.4 FAILURE CASES

The failure cases when evaluating our proposed method on our Hour-RVOS dataset are shown in
Fig.[AT](b). When it comes to extreme complex object interactions like “swapped with the cup on
the right” in the failure case (a), our method cannot identify the correct cup after swapping cups.
When objects undergo significant occlusions across long-temporal span in the failure case (b), our
method cannot follow the unobstructed part of the vehicle. These failure cases sufficiently illustrate
the tough challenges posed by our dataset including objects with dynamic changes over long-time,
complex language expressions and their intricate correspondences. As shown in Tab.[A2] we also list
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Table A2: The definition of attributes counted in Fig. |3|(b).

Attribute  Definition

BC Background Clutter. The appearances of background and target object are similar.
DEF Deformation. Target appearance deform complexly.
MB Motion Blur. Boundaries of target object is blurred because of camera or object fast motion.
M Fast Motion. The per-frame motion of target is larger than 20 pixels, computed as the centroids Euclidean distance.
LR Low Resolution. The average ratio between target box area and image area is smaller than 0.1.
occ Occlusion. The target is partially or fully occluded in the video.
ov Out-of-view The target leaves the video frame completely.
N Scale Variation The ratio of any pair of bounding-box is outside of range [0.5,2.0].
DB Dynamic Background Background regions undergos deformation.
SC Shape Complexity Boundaries of target object is complex.
AC Appearance Change Significant appearance change, due to rotations and illumination changes.
LRA Long-term Reappearance Target object reappears after disappearing for at least 100 frames.
CTC Cross-temporal Confusion There are multiple different objects that are similar to targect object but do not appear at the same time.

the definition of challenging attributes following (Hong et al.,|2023) which are common in long-term

videos and counted in Fig.[3]

A.5 MORE ABLATION STUDIES

Clip Division. The key to processing any-
length videos is to divide the entire videos into
multiple clips. Therefore, we further explore
the impact of clip size on the segmentation per-
formance and efficiency. Specifically, we set
the clip size to 4, 8, 16 due to the GPU mem-
ory limitation. As shown in Tab. [A3] a larger
clip size means more frames can be processed

in parallel at one time and more informations can be associated

Table A3: Ablation studies on the clip size.
Lo Val (0-10 mins) Val (over 10 mins)
Clip size FPS TEF T F TCF T 3
! 22 384 306 462 239 195 283
8 28 421 387 455 286 244 328
16 31 458 409 507 312 275 349

the segmentation efficiency and accuracy also increase.

Window Size. We conduct experiments to ex-
plore the segmentation efficiency and accuracy
under different window size settings. We set
Wi to 2,4, and W, to 4,8 respectively due
to memory limitation as shown in Tab. [A4]
When W, is set to 2 and W), is set to 4, 8, our
method achieves higher efficiency but lower ac-
curacy. When W;, W, is set to 4, 8, our method

. Therefore, as the clip size increases,

Table A4: Ablation studies on the window size of
long-term (W;) and permanent (1¥/,,) memory.

Val (0-10 mins)

Val (over 10 mins)

Wi W, B —mr g F - Tg%r g F
2 4 36 41.1 36.8 454 26.7 232 302
2 8 35 435 394 476 294 267 32.1
4 8 31 458 409 50.7 31.2 275 349

achieves the balanced accuracy and efficiency. In the final test settings, we set the window size of

long-term and permanent memory as 4 and 8 respectively.

14



	Introduction
	Hour-RVOS
	Dataset Construction
	Dataset Analysis and Statistics

	Memory-RVOS
	Task Definition
	Towards any-length videos with multi-round expressions
	Hierarchical Memory Interleaved Propagation
	Linguistic-Visual Dynamic Balance

	Experiments
	Experiment Settings
	Hour-RVOS Benchmark Results
	Ablation Studies

	Discussions
	Related Works
	Referring Video Object Segmentation Datasets
	Referring Video Object Segmentation Methods

	Conclusions
	Appendix
	The Use of LLMs
	Training and inference details
	Existing benchmark results
	Failure cases
	More ablation studies


