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Abstract

While tactile sensing is widely accepted as an important and useful sensing modal-
ity, its use pales in comparison to other sensory modalities like vision and proprio-
ception. AnySkin addresses the critical challenges that impede the use of tactile
sensing – versatility, replaceability, and data reusability. Building on the simple
design of ReSkin, and decoupling the sensing electronics from the sensing inter-
face, AnySkin makes integration as straightforward as putting on a phone case and
connecting a charger. Furthermore, AnySkin is the first uncalibrated tactile-sensor
to report cross-instance generalizability of learned manipulation policies. To sum-
marize, this work makes three key contributions: first, we introduce a streamlined
fabrication process and a design tool for creating an adhesive-free, durable and
easily replaceable magnetic tactile sensor; second, we characterize slip detection
and policy learning with the AnySkin sensor; third, we demonstrate zero-shot
generalization of models trained on one instance of AnySkin to new instances, and
compare it with popular existing tactile solutions like DIGIT and ReSkin. Videos
and more details can be found on our https://any-skin.github.io/.

1 Introduction
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Figure 1: We present AnySkin, a skin sensor made for robotic touch that is easy to assemble,
compatible with different robot end-effectors and generalizes to new skin instances.

Touch sensing is widely recognized as a crucial modality for biological movement and control [1, 2].
Unlike vision, sound, or proprioception, touch provides sensing at the point of contact, allowing
agents to reason about forces. However, a closer examination of robotics literature reveals a different
narrative. Prominent works and current state-of-the-art in robot learning primarily utilize vision with
proprioception to train manipulation skills [3, 4, 5, 6], often ignoring touch. If touch is so vital from
a biological perspective, why does it remain a second-class citizen in sensorimotor control?
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In this work we present AnySkin, a new touch sensor that is cheap, convenient to use and has
consistent response across different sensor instances. AnySkin builds on ReSkin [7], a magnetic-
field based touch sensor, by improving its fabrication, separating the sensing mechanism from the
interaction surface, and developing a new self-adhering, self-aligning attachment mechanism. This
allows AnySkin to (a) have stronger magnetic fields, which significantly improves its sensor response,
(b) be easy to fabricate for arbitrary surface shapes, which allows easy use on different end-effectors,
(c) be easy to replace the sensor without adversely affecting the data collection process or the efficacy
of models trained on previous sensors (Fig. 1).

We run a suite of experiments to understand the efficacy of AnySkin vis-a-viz other prominent touch
sensors. Our main findings can be summarized below:

1. AnySkin can readily be used on a variety of robots (See Section 3).
2. AnySkin affords ML techniques for slip detection and precise policy learning (See Section 4).
3. AnySkin takes an average of 12 seconds to replace (See Section 4.3).
4. Models trained on one AnySkin transfer zero-shot to a different AnySkin with only a 13%

reduction in performance on a plug insertion task compared to a 43% drop with ReSkin [7].

AnySkin will be fully open-sourced. Videos of fabrication, attachment, and robot policies are best
viewed on our project website: https://any-skin.github.io/.

2 Related Work

Existing literature on tactile sensing explores a wide range of modalities, each with their advantages
and limitations [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Magnetic tactile sensors [19, 20, 21] largely
overcome the limitations of resistive, capacitative, optical and MEMS sensors due to three salient
advantages: (a) separation of the sensing electronics from the sensing interface to improve robustness
(b) compatibility with different form factors, and (c) an ability to capture shear forces [7]. In this
work, we build on ReSkin sensors due to their lower cost and ease of fabrication. In Section 4, we
also quantitatively demonstrate the improved consistency of AnySkin signal over ReSkin, and present
a direct replaceability comparison with DIGIT [17] and ReSkin through policy learning experiments.

3 AnySkin: Components

AnySkin builds on ReSkin [7], a tactile skin composed of a soft magnetized skin coupled with
magnetometer-based sensing circuitry. By detecting distortions in magnetic fields, ReSkin measures
deformations caused by normal and shear forces [19, 7]. AnySkin uses the same circuitry as
ReSkin, while introducing key design and fabrication changes to improve durability, repeatability, and
replaceability: (1) Magnetizing skins post-curing using a pulse magnetizer, (2) introducing physical
separation between magnetic elastomer and magnetometer circuit, (3) utilizing finer magnetic particles
to achieve a more uniform particle distribution, (4) implementing a self-aligning design for fixed
relative positioning of elastomers and circuitry. While some of these have been used in isolation in
prior work [22, 23, 24], in this work, we quantitatively compare sensor response in Section 4.1.
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Figure 2: (a) AnySkin is made by mixing DragonSkin 10 Slow and MQFP-15-7(25µm) magnetic
particles in a 1:1:2 ratio, and curing it in the two-part molds shown above. Cured skins are magnetized
using a pulse magnetizer. (b) Particle concentrations in skins made with MQP-15-7 and MQFP-15-7.
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4 Experiments and Results

4.1 Comparison between ReSkin and AnySkin signal

To quantitatively demonstrate the effect of each of the fabrication changes listed in Section 3 towards
improving the consistency of AnySkin, we present a set of experiments analyzing the raw signal
from the four different skins shown in Table 1, tracking the progression from ReSkin to AnySkin. All
statistics presented are computed over five instances of each type.

Table 1: AnySkin shows lower variability across instances. Statistics computed over 5 samples of
each type (PM: Pulse magnetizer, FP: finer particles, SA: self-aligning – AnySkin).

Experiment ReSkin +PM +FP +SA
Bxy Bz Bxy Bz Bxy Bz Bxy Bz

Average strength, in µT 1062 302 1818 5212 1602 5784 283 1265
Normalized σ (instances) 0.54 0.87 0.34 0.12 0.21 0.15 0.12 0.10
Normalized σ (1mm displaced) 1.38 1.43 0.25 0.11 0.18 0.07 Self-aligning

We first see a significant increase in the raw magnetic field by using the pulse magnetizer for
magnetization. Next, finer particles results in both a lower variability across instances as well as
durability due to reduced leakage of particles resulting from stress concentration on the surface as
shown in Fig. 2b. Finally, the self-aligning design of AnySkin removes the possibility of misalignment
between skin and circuitry which introduced significant variability in the signal. This design also adds
a physical separation between the electronics and the sensing interface which improves durability
while maintaining the signal strength of ReSkin.

4.2 Slip Detection

We quantify AnySkin’s ability to detect slip through a controlled experiment. Our setup consists
of a Kinova Jaco arm and an Onrobot RG-2 gripper with integrated AnySkin. An object held by a
human operator is grasped and lifted up slowly for 1 second. We use a set of 40 daily objects – 30 for
training and 10 evaluation – with varying shapes, weights and materials. We collect 6 trajectories for
each object by changing the grasping force, width and location. After the data collection is complete,
a human annotator labels the sequence as slip or no-slip from the corresponding videos. Objects
used, along with the data collection setup can be found on our website. The data collection frequency
for tactile data is 100 Hz. We subsample the signal by 15 along the temporal axis and take the first
difference. We use an LSTM [25] to train our slip prediction models purely from tactile data. Our
model is able to detect slip on unseen objects with 92% accuracy.

4.3 Ease of replaceability

We compare the replacement time of AnySkin against other skins like DIGIT and ReSkin through
a user study with 10 non-expert users. We find that ReSkin takes 236 ± 64 seconds, DIGIT takes
58± 22 seconds, while AnySkin takes a mere 12± 5 seconds to replace.

However, the most important consequence of the signal consistency and replaceability of AnySkin
is its ability to enable policy generalization across different instances of the skin. We demonstrate
cross-instance generalizability of AnySkin across three precise manipulation tasks shown in Fig. 3
and compare the cross-instance generalizability of policies trained on DIGIT, ReSkin and AnySkin on
the plug insertion task. Our setup consists of a UFactory xArm 7DOF robot and four cameras – three
fixed to the frame and one egocentric camera attached to the robot’s wrist, with AnySkin sensor on
the gripper tip. A Meta Quest 3 and the accompanying joystick controller are used to teleoperate the
robot using Open-Teach [26], an open-source teleoperation framework, and collect 96 demonstrations
per task. For each task, learned policies are evaluated on locations of the target object unseen in
training data.
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Figure 3: We evaluate the replaceability of AnySkin on a set of contact-rich, precision tasks.

The BAKU [27] architecture is used as the policy architecture. BAKU tokenizes each input using a
modality-specific encoder: image inputs from cameras and DIGITs use ResNet-18 [28] encoders,
while AnySkin and ReSkin inputs use MLP encoders. The policy uses a deterministic action head
and action chunking [29] with exponential temporal averaging.

4.3.1 Evaluating cross-instance generalizability of trained policies

To investigate replaceability, we evaluate behavior cloning policies trained using a single instance of
AnySkin on a new instance. We use different training and test skins for each of the presented tasks
to avoid over-indexing on specific skin instances. Table 2 compares how well the policy performs
with both the original and swapped skins for each of the precise, contact-rich tasks outlined above.
Additionally, we train and evaluate a policy that only takes camera images as input to serve as a control
experiment and verify that the policies rely on tactile data. We find that across tasks, performance
drops by an average of just 15.6% and visuotactile policies with swapped skins continue to do
significantly better than purely visual policies. This result demonstrates the strength and uniqueness
of AnySkin as a tactile sensor for contact-rich manipulation.

Table 2: Success rates (out of 10) for policies when swapping out skins (averaged over 3 seeds)
Task Cameras only Cameras + Skin

Original skin Swapped skin

Cross-instance generalization
Plug Insertion 1.7± 0.6 6.7± 1.5 5.3± 2.5
Card Swiping 2.0± 1.0 7.0± 1.7 6.3± 0.6
USB Insertion 1.7± 1.2 5.7± 1.5 3.0± 1.0

Comparison across sensors – Plug Insertion
AnySkin 1.7± 0.6 6.7± 1.5 5.3± 2.5
ReSkin 1.7± 1.2 6.0± 1.7 1.7± 1.2
DIGIT 1.7± 1.5 2.3± 0.6 1.3± 0.6

Additionally, we find that visuotactile policies trained with ReSkin and AnySkin have similar
performance on solving the plug insertion task. However, when the skin is replaced, the performance
of the ReSkin policy falls 43% to the same level as the camera-only policy, while the performance
of AnySkin policies only drops by 13%. The difference is even more stark with DIGIT sensors
where visuotactile policies perform significantly worse than those trained with ReSkin/AnySkin,
and swapping skins results in poorer performance than vision-only policies. This demonstrates the
uniqueness of AnySkin for learning generalizable visuotactile policies for precise manipulation.

5 Conclusions

In this paper, we present AnySkin, a new magnetic tactile sensor. AnySkin is versatile, self-adhering
and improves on the repeatability of sensor response across different instances of the skin. Further-
more, to the best of our knowledge, AnySkin is the first sensor to demonstrate zero-shot generalization
of visuotactile policies to new instances of the tactile skin. This opens the door to exciting scaling
efforts like training large tactile models and real world deployment of models trained in the laboratory.
Future work could also investigate simple calibration schemes or conditional learning frameworks to
completely close the gap between training and swapped skin instances.
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