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ABSTRACT

Embodied decision-making enables agents to translate high-level goals into exe-
cutable actions through continuous interactions within the physical world, forming
a cornerstone of general-purpose embodied intelligence. Large language models
(LLMs), with their general decision-making capabilities, offer a promising path
to realize this potential; however, LLMs trained solely on language lack expo-
sure to physical environments, limiting their true embodied understanding. To
bridge this gap, we propose the concept of a training ground: a comprehensive
infrastructure that provides task and scene simulation, embodied interaction, and
feedback signals, offering a one-stop solution for LLM acquire genuine embodied
decision-making skills. In this work, we present EmboMatrix, the first training
ground of its kind, providing massive and diverse tasks with efficient simulation
and precise rewards. EmboMatrix incorporates a series of novel techniques: a
multi-agent data engine for large-scale task and scene generation, a distributed
heterogeneous-hardware system for scalable simulation, and a multi-level reward
architecture for precise supervision. Leveraging EmboMatrix, we cultivate Embo-
Brain, an LLM whose embodied decision-making abilities emerge from extensive
embodied interactions. Experiments show that EmboBrain-7B surpasses the 671B
DeepSeek-R1 baseline by 9.5% on two challenging embodied decision-making
benchmarks, demonstrating the power of interactive, environment-grounded learn-
ing for building truly intelligent embodied agents. The code will be released upon
the paper’s acceptance.

1 INTRODUCTION

Embodied decision-making (L1 et al., [2024c|) enables agents to translate high-level goals into
executable actions through continuous interactions with the physical world, forming the cornerstone
of general-purpose embodied intelligence. Without it, agents can hardly generalize across diverse
tasks or operate effectively in complex, dynamic scenarios. Existing efforts largely follow two
paradigms. End-to-end Vision-Language-Action (VLA) |Kim et al.[(2025) models map raw sensory
inputs directly to low-level motor commands, implicitly performing embodied decision-making by
integrating perception and action to achieve high-level goals, but they require vast imitation data and
struggle with long-horizon planning. Hierarchical approaches Birr et al.| (2024)); L1 et al.| (2024b);
Driess et al.[(2023); Brohan et al.|(2023); [Mu et al.| (2023)); 'Wang et al.|(2023a); Wu et al.| (2023b);
Wang et al.| (2023c)) decouple high-level reasoning from low-level control: low-level models execute
primitive skills, while a high-level model orchestrates embodied decision-making by interpreting
instructions, reasoning about the world, and decomposing tasks into actionable sub-goals. This
structure simplifies long-horizon reasoning and allows integration of advanced models, such as large
language models, into the decision-making loop. In this work, we adopt the hierarchical paradigm and
focus on enhancing the high-level model’s embodied decision-making to enable robust, generalizable,
and adaptive behavior across diverse tasks.

Large language models (LLMs), with their advanced reasoning and general decision-making abilities,
offer a promising foundation for embodied decision-making. Early work (Li et al.| 2024c|) demon-
strated the zero-shot competence of LLMs on curated datasets. Some subsequent studies (Azzolini
et al.,2025; J1 et al., 2025) enhanced these abilities through fine-tuning on specialized datasets, such
as physically grounded question-answering pairs, injecting curated embodied knowledge. Although
convenient, such non-interactive fine-tuning resembles a “brain in a vat”: it promotes rote memoriza-
tion rather than true understanding of physical dynamics, and the resulting gains are often limited
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even with large amounts of training data. Achieving genuine mastery in embodied decision-making
requires interactive learning, which involves acting, perceiving feedback, and adapting. However,
direct training in the real world is costly, risky, and difficult to scale. This motivates the use of
high-fidelity simulation environments, which replicate physical dynamics, enable efficient and
large-scale interaction, and provide rich feedback, allowing agents to safely acquire and refine the
skills needed for robust, real-world decision-making.

To enable genuine embodied decision-making, we in- ) ) ,
. . EmboMatrix dramatically
troduce the concept of a training ground: a com- improve the embodicd e o0
. . . decision-making performance

prehensive infrastructure that provides task and scene

simulation, realistic embodied interaction, and feed-
back signals, allowing models to acquire embodied
decision-making skills through trial-and-error in phys-
ically grounded environments. Constructing such a
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support the high-throughput, large-scale interactions Figure 1: EmboMatrix substantially im-
necessary to train high-capacity LLMs effectively. At proves embodied decision-making, elevating
the algorithmic level, it demands the design of an in- a 7B base model’s performance by +58.8 per-
formative reward architecture tailored to embodied centage points on the embodied agent inter-
scenarios, providing dense supervision while avoiding face enchmark, significantly outperforming
the biases and limitations of manual reward engineer- both other domain-specialized models and
ing. Together, these technical challenges make the much larger LLMs.

construction of a high-level training ground a complex and demanding task.

1000

To this end, we introduce EmboMatrix, the first training ground designed for embodied decision-
making, enabling high-throughput interaction and efficient training with massive and diverse tasks and
scenes. EmboMatrix offers three key advantages: (i) Data diversity: a multi-agent driven automated
data factory generates large numbers of tasks, enabling models to acquire generalizable capabilities
across varied environments; (ii) System scalability: compatibility with distributed, heterogeneous
hardware, combined with semantic abstraction and pre-caching of low-level processes, substantially
improves simulation throughput; and (iii) Informative supervision: a hierarchical reward architecture
delivers richer learning signals for embodied decision-making. Compared with conventional robot
simulators, EmboMatrix provides a one-stop solution for embodied decision-making: it not only
supports simulation of richer and more diverse scenarios, but also automatically generates physically
grounded tasks and enables large-scale model training, resulting in substantially higher training
efficiency and broader generalization.

Leveraging EmboMatrix, we train EmboBrain, an LLM whose embodied decision-making abilities
emerge from extensive interaction within the training ground. This process effectively transforms
a purely language-trained model into a truly embodied agent capable of perceiving, acting, and
adapting in physical environments. Experiments show that EmboBrain-7B achieves substantial gains
on multiple challenging embodied decision-making benchmarks, surpassing the strong DeepSeek-R1
baseline by 9.5% on average. These results demonstrate that interactive, environment-grounded
learning, powered by a comprehensive training ground, is a transformative path toward building truly
intelligent embodied agents.

2 RELATED WORK

Embodied Decision Making. LLM are used to generate text based action sequences directly |Driess
et al.|(2023); Brohan et al.|(2023); Mu et al.| (2023)); |Wang et al.| (2023a); [Wu et al.| (2023b)); /Wang
et al.|(2023c)); translate instructions into executable code Liang et al.|(2022);|Singh et al.| (2022)); or
provide intermediate representations consumed by downstream modules Jiang et al.|(2022); Dalal
et al.| (2024). Knowledge-augmented variants improve grounding via dynamic memory [Ding et al.
(2023)); Hazra et al.| (2023)); L1 et al.| (2024d)); Chen et al.| (2024])). Reactive embodied agents combine
LLM reasoning with online adaptation Birr et al.| (2024); Tian et al.| (2024); [Liang et al.| (2024).
Additional work addresses anomaly detection, zero-shot knowledge extraction, and physics reasoning
Sinha et al.[(2024); |[Huang et al.[(2022);|Hao et al.| (2023)).
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Figure 2: Overview of the EmboMatrix training pipeline.

Simulator and Embodied Data Generation. Recent benchmarks have expanded simulation for
embodied agents, yet most—e.g., BehaviorlK|Li et al.| (2024a), VirtualHome |Puig et al.| (2018)),
ALFRED |Shridhar et al.| (2020), iGibsonXia et al.| (2020), Meta-World |Yu et al.|(2021)), RLBench
James et al.|(2019), Habitat|Szot et al.[(2022), BEHAVIOR [Srivastava et al.|(2021)), robosuite Zhu et al.
(2025), TDW Transport|Gan et al.| (2021), SAPIEN Xiang et al.|(2020), ManiSkill Mu et al.|(2021);
Gu et al.| (2023)), RFUniverse [Fu et al.| (2023)), SoftGym |Lin et al.[(2021)), EmbodiedBench Yang
et al.[(2025), and the unified platform RoboVerse |Geng et al.| (2025), focus on low-level manipulation.
Tools such as ProcTHOR Deitke et al.|(2022) broaden environments but remain rule-bound. Recent
LLM and diffusion-aided methods (HOLODECK |Yang et al.| (2024c), ARCHITECT Wang et al.
(2024), DiffuScene Tang et al.|(2024)), WorldCraft|Liu et al.|(2025b))) generate visually rich scenes
yet ignore task constraints or object interactions. Meanwhile, embodied world models (DayDreamer
Wu et al.|(2023a), UniSim |Yang et al.|(2024a)) and RoboGen |Wang et al.| (2023b) focus on learning
latent dynamics or simple layouts, often lacking explicit high-level semantic structures. A detailed
comparison is shown in Tab[] We address them with a multi-agent automated data factory that
produces diverse, task-aware scenarios at scale.

RL for Large Language Models. LLM alignment via RL encompasses safety-aware feedback Dai
et al.[(2024); Lee et al.|(2024)); |Chu et al.|(2023), analyses of RLHF’s effects on generalization and
diversity Rafailov et al.| (2023)); Kirk et al.| (2024), improved reward modeling via Nash learning
and uncertainty estimation Munos et al.|(2024), and more sample-efficient optimizers such as GPO
and GRPO [Zhao et al.| (2024); Liu et al.[(2025a). However, a systematic framework for training
embodied decision making with RL remains lacking, limiting progress toward grounded embodied
decision-making in complex environments. The work most closely related to ours is |Fei et al.
(2025)), which introduces RL post-training for embodied decision-making. In contrast, we concretely
instantiate a physics—based simulation system, provide substantially larger-scale data, and design a
more informative reward system tailored to embodied decision-making.

3  PROBLEM FORMULATION

Let By be a model for high-level embodied decision-making parameterized by learnable weights 6.
Given a high-level instruction / and the current embodied scene S as input, the action sequence a in
a physical space is then obtained as

a=By(S,I), wherea= (a1,...,ay)anda; € A, (D
where A is a predefined skill library. This process is defined as embodied decision-making.

Consider a training ground cultivates such a embodied decision-making model. Mathematically,
let Fp,,..m,=(-) be a training ground parameterized by a collection of embodied tasks Dy, an
interactive physical simulator M, and a reward architecture R. Here an embodied task set Dy,g =
{T;}Y | has N tasks, where T; = (S;, I;, G;) is the ith tasks with S;, the configuration that instantiates
the scene in the simulator, containing all task-relevant objects and their initial states, I;, the high-level
instruction of 7T; (e.g. heat sandwich) and G;, the target conditions by binding them to concrete assets
(e.g., sandwich inside microwave).

Let By, be an input base model. Then, the optimized embodied decision-making model is obtained as

By = Fp,.Mmr(Boy)- )
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Figure 3: Pipeline of Multi-Agent-Driven Automated Data Factory.

The optimization objective is to find the optimal parameters §* by maximizing the expected reward
across this task distribution:

0* = arg max Erp,, [R (M (T,Bo(S,1)))], (€)

In this work, our proposed system, EmboMatrix, is the concrete realization of the training ground
FDu,M,R(+), which will be described in Section

4 METHODS

The preceding section established that enhancing an agent’s embodied decision-making capability
requires a comprehensive training ground. In this chapter, we introduce EmboMatrix, which
operates as a system to continuously improve an agent’s capabilities of embodied decsion-making. As
shown in Figure[2] the entire training process is orchestrated by EmboMatrix. The cycle begins at the
Data Level, where our agents driven data factory procedurally generates a diverse tasks set. This task
is presented to the models, which produces a action sequence rollout. The action sequence is then
executed at the System Level by our Scalable Simulation Backend, which leverages a high-fidelity
physical engine to produce the final environments status for the action sequences. Finally, at the
Algorithm Level, our hierarchical reward architecture evaluates this final environments status. This
reward signal drives the parameter update for the EmboBrain, completing the learning loop. The
following sections will detail the design of each of these three synergistic components.

4.1 MULTI-AGENT—-DRIVEN AUTOMATED DATA FACTORY.

Multi-agent social simulation for instruction generation. Since generating one task amounts
to producing (S,Z,G), we bootstrap from BEHAVIOR’s pre-defined scenes (e.g., hotel rooms,
household interiors), yielding a base layout Sy with plausibly distributed asset states (Li et al., 2024a).
To synthesize diverse and scene-faithful tasks, as shown in Fig[3] we employ a multi-agent social
simulation module with role-playing (Tang et al.l 2025} |Li et al., [2023)). The module first extracts
information from &y, renders RGB images from egocentric and top-down views, and prompts a
VLM to distill a concise textual scene description. Socially simulated agents then generate relevant
characters (e.g., father, mother, child, home robot) and conduct multi-round dialogues in which
human agents articulate language-based needs for the embodied agent; the exchanges are iteratively
refined until concrete requirements emerge. Each scene can be repeatedly simulated to create a large
number of semantically diverse instructions Z. An LLM-based agent subsequently summarizes Z
into a BDDL format (Li et al.| [2022), which contains G, O, and ZC.

Multi-level scene generation. We further employ a multi-agent and multi-level scene generation
module to efficiently and faithfully transform Sy into an instantiated scene S. As shown in Fig[3] these
agents allocate O across different rooms, analyze the states of each room, and design a multi-scale
layout tree such that object placement not only satisfies ZC but also ensures spatial plausibility and
visual aesthetics. Beyond basic relations (e.g., under, inside), the tree refines specializations such as
ontop (Yang et al.,2024b)), while employing constraints like faceto and insideof to regulate object
placement on the same plane with higher precision and consistency. Finally, sampling agents place
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objects in the simulator according to the tree structure, resulting in an executable task 7 with a
realistic and well-structured scene.

With this multi-agent—driven data factory, we can randomize across scenes and social simulations,
generating realistic and diverse tasks and laying a solid data foundation for subsequent training.

4.2  SCALABLE SIMULATION BACKEND

To facilitate the massive scale of interaction required by our learning objective in equation [3] the
system architecture must overcome two fundamental hurdles: the computational cost of individual
physical interactions and the systemic overhead of massively parallel execution. We address these
through a principled approach of semantic abstraction and architectural decoupling.

Semantic Abstraction via a Pre-Cached Physics Interface. A primary performance bottleneck
is the granularity mismatch between the LLM’s high-level semantic commands and the simulator’s
computationally expensive, low-level micro-dynamics. To resolve this, our pre-cached language-
physics interface acts as a semantic abstraction layer. For common interactions, instead of simulating
the full physical process, we bypass the costly dynamics by directly instantiating a valid, physically
plausible outcome from a pre-computed set of post-conditions. This outcome-based simulation
approach dramatically accelerates throughput while preserving the semantic consequences crucial for
the learning signal. See more details in Appendix

Architectural Decoupling for Massively Parallel Rollouts. A second challenge arises from
the conflicting resource requirements of LLM training and large-scale physics simulation, which
renders a monolithic architecture inefficient and unscalable. We resolve this by employing an
architecturally decoupled, distributed simulation backend. This service-oriented design separates
the LLM trainer from a heterogeneous pool of simulation workers, allowing each component to run
on specialized, optimal hardware. However, this distributed architecture necessitates sophisticated
scheduling to manage communication and I/O overheads. We address this with two key components:
a Resource-Scheduler that predictively pre-loads future scenes onto idle workers to hide latency,
and a Task-Dispatcher that maps incoming action sequences to these pre-warmed simulators to
maximize utilization (details in Appendix [B). This design resolves systemic resource conflicts and
enables high-throughput rollouts at a scale unattainable by conventional approaches.

4.3 HIERARCHICAL REWARD ARCHITECTURE

A central challenge in applying RL to long-horizon embodied tasks is the severe credit assignment
problem. A sparse, binary reward for final task completion provides insufficient guidance for
meaningful exploration in a combinatorially large state-action space. To overcome this, we eschew
a single, static reward function and instead introduce a hierarchical reward architecture. This
architecture provides a dynamic, multi-stage curriculum of supervision signals designed to guide the
agents from basic format adherence to complex, goal-oriented semantic reasoning. The total reward
r; = 15 + 1 + 14 is composed of three tiers, each targeting a distinct stage of the learning process.

Format Adherence (r¢). The foundational stage of the curriculum focuses on teaching the agents
to generate well-formed outputs. The agents receives a binary format reward, r ¢, which provides
a simple, rule-based signal for whether its output conforms to the prescribed action schema. As
demonstrated in prior work (Wang et al., 2025} Shao et al.l [2024)), this initial phase of enforcing
syntactic correctness is crucial for stabilizing early training and ensuring a high rate of executable
rollouts.

Semantic Relevance (,.). Once the agent can generate valid syntax, the curriculum shifts to guiding
exploration. The relevance reward, r,., serves as a dense, intermediate signal that bridges the gap
between random exploration and goal-directed behavior. It is defined as:

Tr = B|Ogoal n Oa|a B >0,

where O, is the set of objects required to achieve the goal and O, is the set of unique objects the
agent’s action sequence interacts with. By rewarding the agent for interacting with goal-relevant
objects, 7, effectively shapes the agent’s behavior, encouraging it to focus its exploration on the
semantically pertinent subset of the vast interaction space.

Goal-Oriented Success (4). The final tier of the curriculum provides the ground-truth signal for
task completion. The goal reward, 7,4, is a sum over the individual goal predicates defined by the task:

rg = aZH[gk(sH)zl], a > 0.
gr€G
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Table 1: Comprehensive comparison of model success rates (%) on two benchmarks: our agent-
generated benchmark and the Embodied Agent Interface (EAI) benchmark. On our agent-generated
benchmark, our model, EmboBrain-7B, outperforms GPT-40 and DeepSeek-R1 by 18.2% and

14.8%, respectively. Models are grouped into three categories: cells with denote large-parameter
models, denote embodied-scene enhanced models, and denote EmboBrain-related models.

Model Size Our Agent-Generated Benchmark Embodied Agent Interface (EAI) Benchmark
Pick an Appliances Kitchen dmpoun: Pick an Appliances Kitchen mpoun
Overall glazed pSsi‘;gL « Opel;at?(m “ Tzfs(;(u ¢ Overall Iilac‘;ied plljsi‘;gL © Op;;at?on COTan)s(ku ‘
GPT-40-mini - 12.0 17.2 13.4 6.5 15.1 26.5 43.5 27.1 8.1 21.7
GPT-01-mini - 334 50.2 39.6 17.2 38.6 58.6 66.9 70.0 26.5 60.9
GPT-40 - 45.0 45.9 43.8 38.1 55.6 44.8 62.2 58.0 223 37.6
GPT-0ss-20b 20B 20.6 27.6 27.5 9.2 26.7 46.0 60.6 45.0 354 40.6
DeepSeek-V3 671B 40.1 59.3 38.6 19.7 56.0 49.4 52.0 62.8 29.5 50.5
DeepSeek-R1 671B 51.6 67.1 56.1 36.6 58.7 58.2 61.8 79.5 32.0 58.6
DeepSeek-V3.1 671B 41.0 48.6 442 27.2 53.1 554 63.9 64.7 42.4 51.8
Llama-4-Scout 17B 1.4 5.0 1.1 0.3 0.2 5.7 8.7 4.1 32 52
Kimi-K2 IT 48.5 52.1 47.2 41.7 56.8 56.6 62.2 68.4 34.6 57.0
Qwen2.5-Max 320B 11.7 16.7 16.7 3.6 16.3 55.3 63.5 69.4 33.0 535
RoboBrain2-7B 7B 20.9 26.0 222 18.5 19.1 11.5 12.6 17.3 6.7 10.8
Cosmos-Reason] 7B 59 7.9 7.8 4.0 5.7 21.1 21.7 25.9 14.4 21.7
1.5B Base 1.5B 38 4.8 2.8 0.9 8.4 0.2 0.1 0.1 0.0 0.3
EmboBrain-1.5B  1.5B 48.7 54.8 472 44.1 51.4 8.9 8.2 7.7 72 10.3
7B Base 7B 55 11.9 5.6 2.7 14.6 4.1 1.0 4.9 1.3 6.8
EmboBrain-7B 7B 65.8 73.2 62.7 60.1 70.3 62.9 75.6 70.0 37.7 61.4
Task: Heat chicken

GPT-40: score © DeepSeek-R1: score 0.5 EmboBrain 7B Model: score 1

move (" ") move (" ") move (" ")

pickup(" ") pickup(" ") pickup(" ")

move (" ") Forget open move (" B) Forget toggle_on|| move(" ") Correct

toggle_on(" w) microwave open(" ") microwave open(" ")

cook (" ", "heat") place(” ", “"inside") place(" ", "inside")

move("table") close(" ") close(" ")

place(" ", "ontop", "table") cook(" ", "heat") toggle_on(" @)

Figure 4: Qualitative comparison on the Heat Chicken task. GPT-40 omits opening the microwave
door; DeepSeek-R1 inserts the food but never toggles the appliance on; only our EmboBrain-7B
produces a complete, executable sequence and succeeds in simulation.

The multi-level reward system ensures that, on the one hand, informative guidance is provided during
the early stages of model training, while on the other hand, the goal achievement serves as the primary
driver, preventing the model from falling into inductive bias.

5 EXPERIMENTS

In this section, we present comprehensive experiments designed to validate the efficacy of the
EmboMatrix framework . Our evaluation is structured to answer three major questions, which
directly correspond to the data, system, and algorithmic challenges addressed in this work:

1. EmboMatrix Effectiveness: Does end-to-end training within the EmboMatrix substantially
improve the performance of different LLMs on long-horizon embodied decision-making tasks?

2. EmboMatrix Scalability: Do the data and system components of EmboMatrix deliver the requisite
diversity and throughput to support scalable, long-term training?

3. Algorithmic Efficiency: How effective is our hierarchical reward architecture at improving sample
efficiency and overall learning outcomes compared to simpler, baseline reward schemes?

5.1 OVERALL PERFORMANCE ON EMBODIED DECISION-MAKING

We begin by addressing our first question: to what extent does end-to-end training within the
EmboMatrix framework improve the performance of LLMs on complex embodied tasks? To this
end, we train our models and evaluate them on two challenging benchmarks.

Experimental Setup. We train two models, denoted EmboBrain-1.5B and EmboBrain-7B. These
models are initialized from the publicly available DeepSeek-R1 distilled Qwen-1.5B and 7B check-
points (referred to as “1.5B base and 7B base” in table[I)., respectively, and are subsequently trained
within our EmboMatrix framework using the GRPO algorithm. The input prompt provided to
the model at each decision step comprises four key components: a predefined task description, a
profile of the agent’s capabilities, a simulator-generated description of the current scene state, and a
formatting instruction for the output. LLM optimization ran on an 8 x A100 cluster, while parallel
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Figure 5: Social simulation significantly increases the diversity of tasks.

simulation was executed on a pool of 16 graphics GPU. The training dataset for our models is entirely
procedurally generated by our Multi-Agent—Driven Automated Task Factory. This process leverages
a base set of 45 diverse scenes from the Behavior-1K environment (Li et al., [2024a) to synthesize a
large-scale training corpus. For evaluation, we assess model performance on two distinct, held-out
benchmarks, each containing 100 challenging task-scene pairs: First, Internal-Verified: A manually
verified test set generated by our own pipeline to ensure high-quality and challenging scenarios.
Second, Embodied Agent Interface (EAI) Benchmark: a published benchmark for embodied
decision-making based on the BEHAVIOR dataset (Li et al.l 2024c). Specifically, we focus on
the Action Sequencing track. We adopt this setting because it necessitates dynamic environment
interaction and step-by-step grounding, thereby serving as the most direct metric for our core goal:
enhancing embodied decision-making through active world modeling, as opposed to static semantic
parsing tasks. All tasks are categorized into four types: (1) Pick and Place, involving basic object
manipulation and organization; (2) Appliance Usage, requiring the agent to change the state of
household devices; (3) Kitchen Operations, including food-related tasks such as heating or freezing;
and (4) Compound Tasks, which consist of multi-step instructions spanning multiple categories.

Results. We compare our models with representative proprietary and open-source LLMs with well-
accepted leading performance. To reduce sampling variance, each model is queried ten times per task,
and we report the average result for each pair. Table [I|summarizes the outcomes and highlights key
observations: (i) Physical interaction training with EmboMatrix significantly enhances the embodied
decision-making capabilities of general-purpose LLMs. Specifically, for 1.5B model, EmboMatrix
achieves performance improvements of 44.9% and 8.7% for the 7B model, and 60.3% and 58.8%,
respectively, across the two benchmarks. The 1.5B model exhibits relative limited performance on the
EAI benchmark constrained by the capabilities of base model. (ii) Post-training with EmboMatrix
enables a 7B model to outperform much larger models, including the proprietary GPT-40 and the
671B-parameter DeepSeek-R1 on both embodied decision-making tasks. (iii) The largest gains are
observed in the most challenging category, Kitchen Operation, indicating that physically grounded
learning is particularly beneficial for complex, multi-step reasoning.

Figure ] compares roll-outs for the Heat Chicken task. All three models GPT-40, DeepSeek-R1, and
our EmboBrain-7B produce seemingly reasonable action sequences, yet only our model completes the
task in simulation. GPT-40 omits opening the microwave door before place the chicken; DeepSeek-R1
places the food correctly but never toggle on. In contrast, EmboBrain-7B executes the full sequence:
open door, insert food, close door, power on—and therefore succeeds. This example illustrates that
action sequences appearing valid in text may still fail in physical environments, underscoring the
importance of interaction in physical environments.

5.2 SCALABILITY OF EMBOMATRIX.
5.2.1 DATA DIVERSITY AND QUALITY.

Experimental Setup. We conduct two ablation Table 2: Multi-level layout tree significantly im-

studies focusing on task diversity and scene qual-  proves the quality of scene generation.
ity. First, to assess task diversity, we compare

our social simulation-based approach againsta  Method Generation  Aesthetic  Verification
. . . etho Rate Score Pass Rate
direct generation baseline. For 45 scenes from
behavior-1k, we generate 10 tasks with each W/o Tree 49.29 7.30 47.83
method and use a GPT-4 to score the resulting ~ LayoutGPT 45.72 122 25.00
Our 71.43 8.11 98.00

diversity (details in Tab@). Second, to evaluate
scene quality, we compare our multi-level lay-
out tree against two baselines (behavior’s built-in functions and LayoutGPT |Feng et al.| (2023))) on
140 tasks. We measure performance across four metrics: generation success rate, time, verification
pass rate, and scene aesthetics, with the latter also scored by a GPT-4 evaluator (details in Tab.

Social Simulation Enhances Task Diversity. As shown in Fig. |5} incorporating social simulation
significantly increases task diversity, achieving an average score of 8.42, compared to 4.70 without
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(a) Multi-level layout tree (b) No multi-level layout tree (c) LayoutGPT

Figure 6: Multi-level layout tree significantly improves the aesthetics of scene generation.

social simulation. Examples are provided in Tab. [S| Multi-level Layout Tree Improves Scene
Generation Quality. Quantitative results in Tab. [2| show that the multi-level layout tree achieves
the highest scene generation rate (71.43%) and verification pass rate (98.00%). Failures result from
limited space or unmet task conditions. Without the layout tree, unstructured placements, such as
positioning a bag before the table, lead to misalignments, reducing the generation rate to 49.29%. The
absence of pre-checks for feasible robot positions also decreases the pass rate. LayoutGPT performs
worst due to limited spatial reasoning, causing cluttered room layouts. Scenes with the layout tree
also achieve the highest aesthetics score (8.11), while those generated by other methods often miss
key objects, place them incorrectly, or result in cluttered layouts, as shown in Fig. 5]

5.2.2 SIMULATION EFFICIENCY SUPPORT TRAINING PROCESS.

Table 3| presents an ablation study validating our  Table 3: Abalation of efficiency. Latency measures
system’s efficiency by measuring the average the average time to simulate a scenario. We re-
per-rollout simulation latency. By progressively duces this overhead by over 50x.

enabling three key optimizations—Pre-cached
Execution, a Resource Scheduler, and a Task
Dispatcher—our full system achieves a nearly
50-fold reduction in overhead. This significant 3.48

Pre-cached  Resource Task Latency
Execution  Scheduler Dispatcher (s)

improvement is critical, providing the massive v 0.85
simulation throughput required for our large- j 5 v 8(1)‘7‘

scale RL experiments.

5.3 HIERARCHICAL REWARD ARCHITECTURE IMPROVE TRAINING EFFICIENCY

To validate the effectiveness of our hierarchical re- Reward Curve Comparison during Training

ward architecture, we conduct an ablation study on 141 | s e Relevance Reward

the impact of the semantic relevance reward (r,.). As 2] — wio Semantic Relevance Reward /\A [\ /"
illustrated in Figure [7] the learning curves demon- & 10 N VY

strate a stark difference in training efficiency and final 3 &

performance. The agent trained without the semantic & 61

relevance reward makes minimal progress, stagnating @ 4

at a low goal-oriented success reward. This indicates § 2_

that without this intermediate guidance, the agent is

0 20 40 60 80 100

unable to solve the credit assignment problem and Training Step

discover a successful policy in a sparse-reward set-
ting. In contrast, the agent trained with the semantic
relevance reward exhibits a rapid and stable increase in performance, achieving a significantly higher
final reward. This result confirms that semantic relevance reward is a critical component of our
training ground’s design, enabling efficient learning by providing a dense and meaningful signal that
effectively guides the agent’s exploration towards goal-oriented behaviors.

6 CONCLUSION

Conclusion. In this work, we argue for a paradigm shift from learning language data to interactive
learning for embodied agents. We introduced EmboMatrix, the first scalable training ground
that makes this vision practical by addressing the challenges of data, system, and algorithm design.
Our framework successfully transforms general-purpose Large Language Models into powerful
EmboBrain models, with our EmboBrain-7B achieving a 14.2% performance gain over a strong
baseline. EmboMatrix provides a complete and validated solution for the continuous improvement of
embodied agents through direct, simulated experience.

Figure 7: Semantic relevance reward effect.
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A DETAILED EXPLAINTION OF OUR MULTI-AGENT DATA FACTORY

Our multi-agent-driven automated data factory is designed to generate a vast and diverse set of
realistic, long-horizon embodied Al tasks. The entire pipeline can be broken down into two primary
stages: first, we leverage multi-agent social simulation to generate semantically rich task instructions;
second, we employ a multi-level scene generation process to construct the corresponding physically
interactive 3D environments. This section provides a detailed walkthrough of each component.

A.1 STAGE 1: SOCIAL SIMULATION FOR TASK INSTRUCTION GENERATION

To avoid generating homogeneous and short-term tasks, we adopt a strategy inspired by MATRIX,
performing social simulations within pre-existing embodied scenes to generate meaningful instruc-
tions.

The process begins by preprocessing 45 diverse scenes from the Omnigibson simulation platform.
For each scene, we extract key information, including scene images and textual descriptions of room
types and unique environmental attributes. This information is fed into a Role Playing Agent, which
generates plausible character profiles tailored to the scene. For instance, in a house environment, it
might simulate a family, defining each member with attributes like name, age, job, relationships, and
hobbies.

Next, a Social Simulation Agent receives both the character profiles and detailed scene information
(e.g., room names and sizes). It then produces tasks that a robot might perform to assist the characters
within that social context. A typical generated task might be: “Bring the chess from the counter in
the living-room to the table in the garden for dad.”

Finally, to make these language-based instructions machine-executable, a Summarization Agent
maps the semantic task into the structured BDDL format. This format explicitly defines the goal
conditions for the task. During a post-processing phase, we match the objects involved in the task
with available 3D assets and use a combination of rule-based filters and a validation agent to eliminate
unsupported or duplicate tasks, ensuring the quality and feasibility of the generated data.

A.2 STAGE 2: MULTI-LEVEL SCENE GENERATION

Once a task is defined in BDDL, we need to generate a 3D scene where the initial conditions are met
and the task is physically executable. To automate the construction of diverse, multi-room scenes
for these long-horizon tasks, we designed an interpretable, multi-level generation framework. The
process unfolds across three hierarchical levels: scene, room, and planar.

Scene Level: Object Distribution. To mitigate the complexity of generating a full multi-room
scene, we first operate at the scene level. We designed a rule-based Scene-level Distribution Agent
that takes all objects and initial conditions specified by the task, along with the room layout of a
base scene (e.g., room names and sizes). This agent assigns each object and its corresponding state
conditions to an appropriate room. The distributor considers task requirements (e.g., if two objects
must start on the same table, they are assigned to the same room) while also balancing scene richness
and common sense. It prioritizes larger rooms but also considers room function to avoid unnatural
clustering or excessive dispersion of objects. After this stage, all objects are assigned to a room and
are ready for precise placement.

Room Level: Layout Tree. Within each room, we use a multi-level tree structure to represent the
object layout at a coarse granularity. This tree contains two node types: object nodes and relation
nodes. The relations are based on nine object state functions supported by Omnigibson (e.g., ontop,
under, inside). If two objects share a spatial relationship, they are connected via a relation node.
The tree is built sequentially, with the root node typically being the room’s floor. A Room-level
Organization Agent is responsible for creating this structure. It takes the list of objects assigned to
the room and a top-down view as input, then outputs a layout tree based on common sense, object
sizes, and their approximate positions. For example, it knows a small backpack is more likely to
be ontop of a table than on the floor. The agent prioritizes satisfying the task’s initial conditions
and iteratively refines the tree. If a generated layout proves invalid during placement, the incorrect
relation is fed back to the agent as historical context to prevent similar errors in subsequent attempts.
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Planar Level: Object constraints in the same plane. This level addresses the challenge of fine-
grained placement, particularly for the ontop relation. Placing multiple objects on a single surface
(like a floor or a large table) using random sampling often results in cluttered, aesthetically unpleasing
arrangements that can block a robot’s path.

To solve this, we employ a Planar-Level Placement Generator, inspired by recent work, which
operates at a finer granularity. For objects placed on the same base surface, this agent establishes
precise spatial constraints between them, such as faceto, nextto, or alignedwith. For example, it might
specify that a newly placed chair should be in front of the desk and face to the computer monitor. The
optimal position for a new object is found by discretizing the base surface into a grid and selecting
the grid cell that maximizes a score derived from these constraints.

Throughout this optimization, two hard constraints are strictly enforced: (1) the new object must not
collide with any existing objects, and (2) there must be a valid nearby position for the robot to be
spawned, ensuring the object is interactable.

Object Level: Object Placement Sampling. At this level, we use the APIs provided by the
Omnigibson system for various relations to sample object positions. This ensures that objects do not
collide with other items in the scene while satisfying the positional constraints specified at the Room
and Planar levels. The entire implementation is integrated into our Object-level Sampling Agent.

After processing all rooms, the complete embodied scene is saved. Finally, we perform a validation
step by loading the scene and verifying that a robot can successfully manipulate the task-relevant
objects, confirming the task’s executability.

B DETAILED EXPLAINTION OF OUR SCALABLE SIMULATION BACKEND

This appendix provides a detailed technical breakdown of the Scalable Simulation Backend, a core
component of EmboMatrix. As discussed in the main text, our approach is built on two fundamental
principles designed to address the primary bottlenecks in large-scale interactive learning: semantic
abstraction to accelerate individual physical interactions, and architectural decoupling to enable
massively parallel rollouts.

The principle of semantic abstraction is concretely implemented through our Pre-Cached Language-
Physics Interface (detailed in Sec.|B.I)). This component is responsible for grounding the LLM’s
high-level action sequences into low-latency physical state transitions.

Similarly, architectural decoupling is realized by the Distributed Simulation Backend (detailed
in Sec.[B.2)). This service-oriented system, composed of a central manager and a fleet of heteroge-
neous worker nodes, is engineered to manage parallel simulations efficiently and hide system-level
overheads.

The following subsections will detail the design and implementation of each of these core components.

B.1 SEMANTIC ABSTRACTION: THE PRE-CACHED LANGUAGE-PHYSICS INTERFACE

A primary performance bottleneck in high-fidelity simulation is the granularity mismatch between
the LLM’s high-level semantic commands (e.g., place (apple, table)) and the simulator’s
computationally expensive, low-level micro-dynamics (e.g., contact forces, friction). To resolve this,
we designed a structured interface that grounds the LLM’s language outputs into executable state
changes in the simulator.

Following a "language in, language out" paradigm, the agent generates a complete program m =
[a1,...,am], where each step a; is a structured token tuple, <skill, argi, ..., argg>,
drawn from a predefined skill library. This design retains the generality of token-level inference while
enabling physical grounding through symbolic decomposition. An execution engine interprets this
action sequence step-by-step, triggering corresponding low-level controllers.

Crucially, to accelerate this process, we introduce a pre-cached, outcome-based simulation mecha-
nism. For common interaction skills whose outcomes are quasi-static (e.g., placing an object), we
pre-compute a manifold of valid and physically plausible terminal poses during an offline scene
analysis phase. At runtime, once the skill’s preconditions are met (e.g., the robot holds the object

16



Under review as a conference paper at ICLR 2026

near the target), the system bypasses the costly continuous motion simulation and collision resolution
entirely. Instead, it directly instantiates a valid outcome from the pre-cached set. This approach
preserves the crucial semantic consequences required for the reward signal while accelerating individ-
ual skill execution by an estimated 5x to 100x, making large-scale, closed-loop training in complex
environments computationally feasible.

B.2 ARCHITECTURAL DECOUPLING: THE DISTRIBUTED SIMULATION SYSTEM

The second major challenge stems from the conflicting resource requirements of LLM training
(typically compute-bound) and large-scale physics simulation (often memory- and graphics-bound).
A monolithic architecture that co-locates these processes is inherently inefficient and unscalable.
We resolve this by employing an architecturally decoupled, distributed simulation backend, as
illustrated in Figure[§] This service-oriented design separates the LLM trainer from a heterogeneous
pool of simulation workers, allowing each component to run on its specialized, optimal hardware.

This distributed system is composed of three key parts that work in concert to hide latency and
maximize throughput.

Training Cluster Simulation Crowdsourcing Heterogeneous
Manger Simulation Cluster

O
Eati‘i . . |d2 } Resource | Workstation E (] Batchdata
oader 4<:-1"""" " _.-""| 2GPU, 24CPU ;
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Figure 8: The Architecture of the Distributed Simulation Backend. The LLM trainer generates
rollout action sequences and updates its policy via reinforcement learning. A central Simulation
Manager schedules these action sequences across a heterogeneous, crowdsourced fleet of simulators.
The system strategically overlaps scene loading with execution and streams the resulting experiences
(observations, rewards) back to the learner, maximizing hardware utilization.

Single plan reward

IssacSim
simulator

Heterogeneous Simulator Cluster. A central simulation manager coordinates a distributed pool of
worker nodes. These can be dedicated servers, workstations, cloud VMs, or even idle commodity
PCs. Each node runs a lightweight daemon that self-registers with the manager, reports its available
resources (GPU, VRAM, CPU), and fetches compressed simulation scenarios on demand. Because
the simulators operate as independent services requiring no inter-node communication, the system
can efficiently leverage globally distributed, commodity hardware, scaling rollout capacity without
needing expensive, high-speed interconnects.

Resource-Scheduler. To mitigate the significant latency caused by loading complex scenes, the
scheduler acts proactively. At any given training step ¢, the scheduler polls all worker nodes and
inspects the LLLM’s dataloader to predict the scenarios needed for future steps ¢t + 1,...,t + k. It
then pre-assigns these future scenarios to idle nodes, which begin pre-loading the required assets. By
the time a rollout is dispatched for execution, the corresponding simulation environment is already
initialized and "pre-warmed," nearly eliminating loading stalls from the critical path of the training
loop.

Task-Dispatcher. Once the agent produces a batch of action sequences, the dispatcher maps each
action sequence to its corresponding pre-warmed simulator slot on a worker node. It launches the
executions in parallel and streams the resulting experiences back to the learner. As soon as a simulation
slot becomes free, it is immediately reused for the next queued action sequence, ensuring that the
simulation hardware remains continuously saturated. This combination of proactive scheduling and
dynamic dispatching ensures that wall-clock training time is dominated by the necessary physics
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Table 4: Comparison of our work with previous works that can generate interactive 3D scenes and
train agents with embodied tasks in 6 aspects. Here, Fully Automated refers to the entire process,
from embodied task generation to scene generation and RL of the agent, being completed without
any human intervention. Tasks with MASS means the tasks are generated via multi-agent social
simulation frameworks. Scenes from tasks means the ability to generate executable embodied scenes
for any given task. Multi room means tasks executed in a multi-room embodied scene. Interpretable
means the scene generation process is interpretable. Self-Verifying means the generated scene will
be verified for completion feasibility.

Methods Fully Automated Tasks with MASS Scenes from tasks Multi-room Interpretable Self-Verifying

Behavior-1k v v
ProcTHOR v v
Holodeck v v
Architect v
RoboGen v v v
Ours v v v v v v

simulation itself, rather than by queueing or I/O bottlenecks. This design is what makes our large-
scale, physically-grounded LLM training practical, with system overhead accounting for only about
20% of the total training time.

C DETAILS OF LEARNING METHODS

We train the high-level embodied decision-making model with Group Relative Policy Optimization
(GRPO) DeepSeek-Al et al.| (2025). For every task—scene pair in a mini-batch we draw G complete
action sequences {;;}$~, from the current policy, execute them once, and record the episode-level
rewards r; ; defined in Section Group-Normalized Advantage. Within each group j we
compute the mean 7; and standard deviation o, then form the advantage A;; = TJG;FJ

J
GRPO Surrogate Objective. Let p;; = mg(7; i)/ mo,,(7;,:). The policy is updated by maximising

B G
1
LGRPO = @ Z Z min(ijAj’i, Clip(pj,i, 1-— g, 1 + E) Aj,i) — ﬂ DKL[TI'Q H Trref],

j=1i=1

where ¢ is the clipping parameter and S is the KL weight with respect to the reference model 7.

Rewards coefficients In our experiments, the agent receives a penalty of -1 if its output action
sequence cannot be parsed into a structured format. A base reward of 0.5 is granted for a successfully
parsed sequence. The Semantic Relevance reward is scaled by a coefficient 3 = 0.2 and is capped at
1. The primary component is the Goal-Oriented Success reward, where the total reward for a task is
30, and the scaling factor « is defined as 30/ Ny, with Ny, being the number of sub-tasks.

D TECHNIQUE APPENDICES

Table [§]enumerates the skill primitives that the agent can compose into high-level programs. Each
action takes a structured set of parameters, such as an object index, spatial relation, or target room,
allowing the execution engine to translate symbolic action sequences into concrete state transitions.
Together, these 13 primitives support navigation, object manipulation, state changes (e.g., open/close,
toggle), and basic cooking operations, providing sufficient expressiveness for the long-horizon tasks
used in our experiments.

E COMPARATION OF EMBODIED DATA GENERATION

We compare our Multi-Agent-Driven Automated Data Factory with other embodied scene generation
works, as shown in Tab @}
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Table 5: Examples of task generation with/without social simulation in Scene Beechwood_0_garden

With Social Simulation Without Social Simulation

Pick up the basketballs in gym_0 and place Please pick up the basketball from the storage
them in the equipment rack in locker_room_0. rack in the gym_0 and place it on the mat in
the gym_0.

Bring the yoga mats from locker_room_0to Pick up the water bottle from the bench in
gym_0 for Ms. Clara’s yoga class. locker_room_0 and place it inside the cabinet
in locker_room_O0.

Pick up the smoothie blender from corridor_0  Go to bathroom_0, toggle on the hand dryer,
and place it on the table in locker_room_0 for then toggle off the hand dryer after 20 sec-
Ms. Clara’s smoothie workshop. onds.

Gather sports bottles from corridor_1 and cor-  Pick up the volleyball from the storage box in
ridor_2 and place them in gym_0 for Coach locker_room_1 and place it on the counter in
Alex’s basketball practice. corridor_2.

Collect towels from locker_room_1 and dis- Open the locker in locker_room_1, pick up
tribute them in bathroom_0 for students touse  the towel inside, and place it on top of the
after practice. bench in locker_room_1.

Pick up cleaning supplies from bathroom_0 Pick up the gym bag from the bench in
and clean the floors in corridor_0 and corri- locker_room_0 and place it inside the stor-

dor_1. age cabinet in corridor_1.

Place the cones from corridor_2 in gym_0 for Go to gym_0, pick up the whistle from the

Coach Alex’s basketball drills. referee table, and place it on the counter in
corridor_0.

Toggle on the fans in gym_0 to ensure venti- Toggle on the light switch in corridor_2, then
lation during Coach Alex’s practice session.  toggle off the light switch after 10 minutes.

Put the foam rollers from locker_room_1 in- Pick up the cleaning spray from the shelf in
side locker_room_0 for Ms. Clara’s wellness  corridor_0 and place it on top of the counter
activities. in bathroom_0.

Close the windows in corridor_0 to maintain Pick up the shoes from the floor in
temperature during Ms. Clara’s fitness work- locker_room_1 and place them inside the
shop. shoe cabinet in locker_room_1.

Table 6: Prompt for the gptd4-based task diversity evaluator.

Please analyze the diversity of the following generated commands and provide a score out of 10
based on the following criteria:

1. Variety: Do the commands include a diverse range of actions, objects, and scenarios? Do
the commands cover different types of actions (e.g., picking up, placing, toggling) and involve
various objects and locations? However the robot can only take concrete actions, such as pick
up, move, toggle, place and so on, so don’t be too strict about the action diversity.

2. Inclusion of Specific Characters: Do the commands explicitly mention specific individuals
(their name or roles)? The characters number is limited to 2-4. Are the commands tailored to
these characters, and do they reflect their unique roles or characteristics? If the commands don’t
include specific characters, please give a low score.

You need to be careful, just focus on the given criteria. After analyzing the commands, give your
section scores and an overall score, provide a detailed explanation for the score.

Here are the commands: {commands }
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Table 7: Prompt for the gptd4-based scene aesthetic evaluator.

You are a professional scene arrangement evaluator, capable of providing objective assessments
of the reasonableness and aesthetics of each scene. Now, to complete a task, the user needs
to place some new objects in an initial room, and these objects must satisfy certain spatial
relationships, such as "A inside B" meaning B must be placed inside A, and so on. In the context
of this task, please act as an evaluator to assess how well the user has arranged these new objects.
We will provide you with an image, which is a top-down view of a room. The image will label
the names of some objects, which are either newly added objects or initial objects that have
spatial relationships with the newly added ones. Unlabeled objects are part of the room’s original
arrangement. Additionally, we will provide a JSON description of the new added objects that
must be placed in this room, along with their spatial relationships that must be satisfied.

Here are some rules you must follow:

Step 1: Start with a full score of 10.

then:

1. Check Label Correspondence (Deduct 0-2 points)

- Verify whether the bounding boxes in the image match the objects specified in the JSON file.

- If there are mismatches, omissions, or incorrect names, deduct points accordingly:

- Minor mismatches (1-2 objects incorrect): Deduct 1 point

- Major mismatches (multiple objects incorrect or serious relational errors): Deduct 2 points

2. Assess Room Clutter (Deduct 0—4 points)

- Observe whether the room looks cluttered, whether objects are overlapping, crowded, or
arranged chaotically.

- Deduct points as follows:

- Generally tidy, only slightly crowded: Deduct 1 point

- Noticeable crowding or some overlap: Deduct 2 points

- Multiple overlaps or moderate chaos but still recognizable: Deduct 3 points

- Extremely cluttered or unrecognizable: Deduct 4 points

3. Evaluate Aesthetics and Placement Reasonableness (Deduct 0—4 points)

- Consider whether objects are oriented naturally, placed reasonably, and visually harmonious.

- Deduct points as follows:

- Mostly reasonable with minor visual inconsistencies: Deduct 1 point

- Some objects have unnatural orientation or awkward positions: Deduct 2 points

- Several unreasonable placements or orientations: Deduct 3 points

- Most objects poorly placed or visually chaotic: Deduct 4 points

Object Placements and Relationships: {new_added_tree}

Please provide the score and a short explanation.

(a) Multi-level layout tree (b) No multi-level layout tree (c) LayoutGPT

Figure 9: Comparation of three methods when generating scene of Benevolence_2_int.
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(a) Multi-level layout tree (b) No multi-level layout tree (c) LayoutGPT

Figure 10: Comparation of three methods when generating scene of Merom_0_garden.

Table 8: List of available action primitives and their parameters

Action Parameters

move {object_index: n}

turn {yaw: y}

pick_up {object_index: n}

place {object_index: n, relation: 7}
move_forward {distance: z, yaw: y}

open {object_index: n}

close {object_index: n}

toggle_on {object_index: n}

toggle_off {object_index: n}
heat_object_with_source {object_index: n, source_index: m}
cook_object_with_tool {object_index: n, source_index: m}
froze_object_with_source | {object_index: n, source_index: m}
g0_to_room {room_name: s}

F EXPERIMENTS DETAILS

We design two LLM-based evaluator for evaluating the generated tasks’ diversity and the aesthetic
score of the generated scenes. The two evaluator’s prompts are shown in Tab. [6|and Tab. [7]

There are another two examples of three methods when generating scenes in Fig[9]and [T0} We can
see that the other two methods — layoutgpt and no layout tree give a messy and infeasible scene.

G LLM USAGE STATEMENT

Large Language Models (LLMs) were used only as auxiliary tools in this work. Specifically, we
employed GPT-based models to assist with grammar polishing, wording refinement, and summa-
rization of related works. All core research components—including research ideation, methodology
design, experiment execution, and result analysis—were conducted entirely by the authors. No LLM
contributed at a level that would merit authorship.
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