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Abstract

Personalized large language models (LLMs)001
aim to tailor their outputs to user preferences.002
Recent advances in parameter-efficient fine-003
tuning (PEFT) methods have highlighted the ef-004
fectiveness of adapting population-level LLMs005
to personalized LLMs by fine-tuning user-006
specific parameters with user history. However,007
user data is typically sparse, making it chal-008
lenging to adapt LLMs to specific user patterns.009
To address this challenge, we propose PRO-010
gressive PERsonalization (PROPER), a novel011
progressive learning framework inspired by012
meso-level theory in social science. PROPER013
bridges population-level and user-level mod-014
els by grouping users based on preferences015
and adapting LLMs in stages. It combines a016
Mixture-of-Experts (MoE) structure with Low017
Ranked Adaptation (LoRA), using a user-aware018
router to assign users to appropriate groups au-019
tomatically. Additionally, a LoRA-aware router020
is proposed to facilitate the integration of indi-021
vidual user LoRAs with the group-level LoRA.022
Experimental results show that PROPER signif-023
icantly outperforms SOTA models across mul-024
tiple tasks, demonstrating the effectiveness of025
our approach. 1026

1 Introduction027

Though large language models (LLMs) have028

demonstrated superior performance across various029

tasks (Zhao et al., 2023; Chen et al., 2024), they030

primarily offer a “one-size-fits-all” service, which031

falls short of adapting to individual user prefer-032

ences. Personalized LLMs, aimed at tailoring their033

outputs to user-specific preferences, have therefore034

become a hot research topic (Salemi et al., 2024;035

Mysore et al., 2024; Tan et al., 2024b).036

Early efforts to personalizing LLMs focused037

on incorporating user history into prompts using038

in-context learning (Dai et al., 2023), retrieval-039

augmented generation (Mysore et al., 2024), and040

1Our code is available at https://anonymous.4open.
science/r/PROPER-63E5/.
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Figure 1: The comparison between different paradigms
of LLM personalization, the solid line represents the
current paradigms, which adapt the population-level
LLM directly to the user-level LLM, while the dashed
line illustrates the proposed paradigms, which adapt
progressively through a group-level LLM using meso-
level data as a bridge.

profile-augmented generation (Richardson et al., 041

2023). However, these prompt-based methods 042

struggle with ensuring user data privacy and 043

have limited generalization capabilities (Tan et al., 044

2024b). Recent research has shifted towards fine- 045

tuning personalized LLMs, where the base LLMs 046

are fine-tuned on user history to better capture indi- 047

vidual preferences. Tan et al. (2024b) first pro- 048

posed to store user-specific preferences and be- 049

havior patterns in personalized Parameter-Efficient 050

Fine-Tuning (PEFT) parameters (e.g., LoRA (Hu 051

et al., 2022)) to enable computationally efficient 052

adaptation from population-level LLMs to user- 053

specific models. Further research has explored 054

training LoRAs based on representative users and 055

integrating them into ensembles for target users, en- 056

hancing both time and space efficiency (Tan et al., 057

2024a). 058
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However, due to the difficulty in collecting user059

data, data scarcity remains a significant issue. For060

instance, in the LaMP benchmark (Salemi et al.,061

2024), the average number of task-adaptation data062

tokens exceeds 1,000k, while the average number063

of tokens per user is only 48k, resulting in extreme064

data sparsity. Additionally, user data distribution065

follows the Pareto principle (Backhaus, 1980), with066

the top 10% of users contributing 85% of the data,067

further exacerbating this sparsity. This sparsity068

makes it difficult for fine-tuning-based methods to069

learn complex user behavior patterns effectively.070

Social science research suggests that the meso071

level, bridging macro-level (population-level) and072

micro-level (user-level) analysis, is crucial for un-073

derstanding the interplay between these two lev-074

els (McConnell et al., 2002; Fine, 2012; Faist,075

2021). Inspired by this, as shown in Figure 1,076

we propose using group-level LLMs as an inter-077

mediary (meso-level) layer between macro- and078

micro-level LLMs. Users with similar preferences079

and backgrounds can be grouped together (Wood,080

1989), allowing group-level LLMs to capture com-081

mon patterns from a richer dataset. Data-sparse082

users can then benefit from group-level knowledge,083

enhancing their personalized models.084

In this paper, we propose PROPER (PROgres-085

sive PERsonalization), a novel personalized LLM086

framework that incorporates a group-level LLM087

and gradually adapts to users via progressive learn-088

ing (Fayek et al., 2020). Our framework is also089

inspired by residual learning, where group-level090

preferences are modeled as a residual shift from091

population-level preferences, while user-level pref-092

erences are further captured by individual resid-093

uals beyond the group-level model. Rather than094

learning user preferences directly from individual095

user data, we treat personalization as a hierarchical096

refinement process. In this framework, the base097

model learned from population-level adaptation098

remains fixed, while subsequent group-level adap-099

tation captures only the residual preferences that100

the population-level model fails to encode, and101

similarly for user-level adaptation. PROPER thus102

decomposes LLM personalization into three stages:103

population-level adaptation, group-level adaptation,104

and user-level adaptation. All adaptation stages105

employ LoRA to improve computational efficiency.106

To construct the group-level LLM, we employ a107

Mixture-of-Experts (MoE) structure (Dou et al.,108

2024), where each expert represents a user group,109

and users are automatically assigned to appropriate110

experts by a user-aware router. During user-level111

adaptation, we further introduce a LoRA-aware 112

router that integrates group-level and user-level 113

LoRAs by selecting the most relevant group-level 114

LoRA based on user-level LoRA knowledge. Ex- 115

perimental results on the LaMP benchmark show 116

that PROPER significantly outperforms all prior 117

fine-tuning-based baselines. 118

In conclusion, our contributions are three-fold: 119

• New Framework: We are the first to propose 120

a personalized LLM method that introduces 121

a group-level LLM between population-level 122

and user-level LLMs and integrates it into a 123

progressive learning framework. 124

• Group-level LLM Construction: we enable 125

automatic user grouping via LoRAMoE and 126

user-aware routers, while effectively integrat- 127

ing user and group-level knowledge through a 128

LoRA-aware router. 129

• Empirical Performance: Our method 130

achieves state-of-the-art results, outperform- 131

ing all existing fine-tuning-based baselines 132

across all tasks in the LaMP benchmark. 133

2 Method 134

Task Formulation Following previous stud- 135

ies (Tan et al., 2024b,a), we define the task ob- 136

jective of personalized LLM as generating a user- 137

specific response ru for a given user u at time t, 138

based on the user query qu and the user history Hu: 139

ru = LLM(qu|Hu), where Hu = {hu} and each 140

history entry can take one of two forms: either a 141

task-specific query-response pair hu = (qu, ru) or 142

plain text hu = tu. For fine-tuning-based personal- 143

ized LLMs, the goal is to capture user preferences 144

through user-specific parameter Θu, refining the 145

model’s response generation as follows: 146

ru = LLM(qu|Θu). (1) 147

Overall Framework As shown in Figure 2, 148

PROPER is based on progressive learning that con- 149

sists of three stages: 150

• Stage 1 (Population-Level Adaptation): The 151

model learns population-level preference for 152

specific tasks using standard LoRA. 153

• Stage 2 (Group-Level Adaptation): The 154

population-level LoRA from Stage 1 is 155

kept fixed, while group-level preferences are 156

learned using a combination of LoRA and 157

MoE. 158

• Stage 3 (User-Level Adaptation): The Lo- 159

RAs from the previous two stages remain un- 160

changed, and user-specific LoRA is trained to 161

capture individual user preferences. 162
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Figure 2: Overview of the training process of PROPER, which consists of three steps: (1) Population-level
adaptation, where task information is learned via regular LoRA training; (2) Group-level adaptation, where
group-level preferences are learned by LoRAMoE; (3) User-level adaptation, where user preference is learned into
user-specific LoRA. The LoRAs are applied to the FFN layers while other components of the Transformer blocks
are omitted for simplicity.

2.1 Population-Level Adaptation163

Though LLMs are trained on large-scale data, they164

are not inherently optimized for personalized tasks.165

Following the methods of LaMP (Salemi et al.,166

2024), we first fine-tune the backbone LLM using167

task-specific query-answer pairs to align it with168

population-level task preference.169

To improve the computational efficiency, we170

employ Low-rank Adaptation (LoRA) (Hu et al.,171

2022) across all LLM adaptation stages. LoRA172

assumes that the weight updates during fine-tuning173

have a low intrinsic rank, allowing them to be de-174

composed into two smaller matrices. Formally, the175

update process of the feed-forward network (FFN)176

block in a Transformer can be expressed as:177

o = Wx = Wb +∆Wx, (2)178

where o denotes the output hidden states, x de-179

notes the input hidden states, Wb is the parameters180

of the backbone LLM, ∆W denotes the updated181

parameter during training. LoRA approximates182

∆W ∈ Rdin×dout using two low ranked matri-183

ces A ∈ Rr×dout and B ∈ Rdin×r: ∆W ≈ BA,184

where the rank r is much smaller than din and dout.185

Thus, in the population-level adaptation stage,186

parameter updates are formulated as:187

o = Wbx+
α

r
B(p)A(p)x, (3)188

where Ωp = {B(p), A(p)} denotes the population-189

level LoRA parameters, r is the rank of LoRA190

components. To control the learning rate of LoRA191

components, α is introduced as a scaling factor,192

which is applied consistently across all adaptation 193

stages. 194

The population-level LoRA is trained via fine- 195

tuning using the cross-entropy loss: 196

Lp =
∑
i

CE{LLM(qi|Ωp), ri}, (4) 197

where ri is ground-truth response, and r̂i = 198

LLM(qi|Ωp) is model-generated output. The opti- 199

mal LoRA parameters are obtained by: 200

B̂(p), Â(p) = argmin
Ωp

Lp. (5) 201

Finally, the learned parameters (B̂(p), Â(p)) are 202

merged into the backbone parameters for the next 203

training stage. 204

Wp = Wb + B̂(p)Â(p), (6) 205

where Wp is the updated weights of the population- 206

level LLM. 207

2.2 Group-Level Adaptation 208

Group-level adaptation aims to group users based 209

on shared preferences and learn distinct parame- 210

ters for each group. To achieve this, we employ 211

LoRAMoE (Dou et al., 2024), where each group is 212

represented by an expert, which can be represented 213

as: 214

o = Wpx+

k∑
i=1

ωiB
(g)
i A

(g)
i x, (7) 215

where {B(g)
i A

(g)
i }ki=1 are the group-level LoRA pa- 216

rameters, k is the number of experts, and ωi is the 217

3



weight assigned to the i-th expert by the routing218

mechanism. Since manually defining user groups219

is impractical, we propose to assign users to groups220

dynamically through a routing mechanism. Specif-221

ically, we introduce a user-aware router for group-222

level adaptation by merging the regular router that223

takes the text embedding x as input with another224

router that takes the user embedding u as input:225

ω(x) = softmax(h),
h = softmax(xMg) + softmax(uMu),

(8)226

where u ∈ Rd represents user embeddings that are227

randomly initialized and updated during training,228

and Mg and Mu are learnable weight matrices for229

text router and user router respectively.230

MoE training often suffers from unbalanced ex-231

pert weights, where the model overly relies on a232

few active experts while neglecting the others. To233

mitigate this, an auxiliary loss is typically applied234

to balance expert selection (Dou et al., 2024; Luo235

et al., 2024; Liu et al., 2024). In our case, however,236

enforcing uniform expert selection would lead to237

redundant group preferences, reducing the effec-238

tiveness of user-group differentiation. Inspired by239

P-tailor (Dan et al., 2024), we introduce a con-240

straint loss that encourages the router to assign241

distinct expert weights to different users. Sup-242

pose the router weight for user ui with input x243

is ωui(x) = [ω1, ..., ωk], then the constraint loss is244

defined as:245

s(i,j) = ωT
ui
ωuj ,

Lc =
∑
i ̸=j

|s(i,j)|, (9)246

where s(i,j) measures the cosine similarity between247

the router weights of ui and uj , encouraging diver-248

sity in group assignments.249

Following Stage 1, the group-level adaptation pa-250

rameters, Ωg = {B(g)
i A

(g)
i }ki=1∪{u}∪{Wg,Wu},251

are updated and merged into the existing parame-252

ters:253

Lg =
∑
i

CE{LLM(qi|Ωg), ri},

B̂
(g)
j , Â

(g)
j = argmin

Ωg

Lg,

Wg = Wp +
a

r

k∑
j=1

ωjB
(g)
j A

(g)
j ,

(10)254

where B̂
(g)
j , Â

(g)
j are the optimized group-level255

LoRA parameters. Here we adopt the idea of resid-256

ual learning, where group-level preferences can be257

regarded as a shift from population-level prefer- 258

ences. Thus, Wp (from population-level adapta- 259

tion) remains fixed, ensuring that group-level adap- 260

tation only captures residual preferences that the 261

population-level adaptation did not model. 262

2.3 User-Level Adaptation 263

With population- and group-level preferences 264

learned, user-specific adaptations are now regarded 265

as fine-grained modifications to these broader pref- 266

erences, learned from limited personal data. In this 267

stage, following (Tan et al., 2024b), we assign a 268

unique LoRA to each user. 269

o = Wux+B
(u)
j A

(u)
j x, (11) 270

where {B(u)
j , A

(u)
j } are user-specific LoRA for 271

user j. 272

While the user-aware router in Stage 2 captures 273

user embeddings, its primary function is to guide 274

the group-level experts for user allocation. That 275

is, the router in Stage 2 is not directly optimized 276

for individual users. To address this, we propose 277

a new LoRA-aware router that dynamically inte- 278

grates group-level LoRAs and user-level LoRAs. 279

βu(x) = softmax(Wlhu),

hu = LoRAu(x),
(12) 280

where LoRAu represents the learned user-specific 281

LoRA, hu is the hidden state that passes x though 282

LoRAu. With such implementation, the LoRA- 283

aware router captures both the user-specific LoRA 284

information and the input information. The final 285

parameters for user-level adaptation for user uj are 286

trained as follows: 287

L(j)
p =

∑
i

CE{LLM(q
(j)
i |Ω(j)

p ), r
(j)
i },

B̂
(u)
j , Â

(u)
j = argmin

Ω
(j)
p

L(j)
p ,

W (j)
u = Wg +B

(u)
j A

(u)
j +

k∑
m=1

βmB(g)
m A(g)

m ,

(13)

288

where {q(j)i , r
(j)
i } are user-spefic data for user uj , 289

and W
(j)
u is the merged user-specific parameters 290

for uj . Combined with other parameters in the 291

Transformer blocks, the final personalized LLM 292

for user j is: 293

ru = LLM(qu|Θuj ). (14) 294

295
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Task Metric
Prompt-based Fine-tuning-based

ICL RAG PAG OPPU PERPRO
kv mlp Stage 1 Stage 2 Stage 3

LAMP-1: PERSONALIZED Acc ↑ .650 .659 .756 .683 .658 .674 .663 .691
CITATION IDENTIFICATION F1 ↑ .647 .657 .755 .682 .651 .669 .667 .687

LAMP-2M: PERSONALIZED Acc ↑ .499 .587 .534 .600 .613 .593 .701 .747
MOVIE TAGGING F1 ↑ .441 .512 .476 .493 .528 .552 .611 .666

LAMP-3: PERSONALIZED MAE ↓ .259 .214 .321 .179 .223 .250 .196 .178
PRODUCT RATING RMSE ↓ .590 .535 .582 .443 .490 .517 .500 .422

LAMP-4: PERSONALIZED R-1 ↑ .187 .191 .187 .191 .197 .193 .197 .214
NEWS HEADLINE GEN. R-L ↑ .168 .172 .168 .171 .179 .174 .180 .192

LAMP-5: PERSONALIZED R-1 ↑ .478 .505 .486 .519 .464 .491 .490 .488
SCHOLARLY TITLE GEN. R-L ↑ .418 .445 .429 .442 .419 .438 .440 .445

LAMP-7: PERSONALIZED R-1 ↑ .524 .568 .542 .539 .513 .528 .533 .543
TWEET PARAPHRASING R-L ↑ .474 .521 .501 .483 .467 .481 .487 .504

Table 1: The comparison results of PROPER against baselines on LaMP benchmark. ↑ indicates the higher values
are better, ↓ indicates the lower values are better. The best results under fine-tuning-based setting are in Bold.

3 Experimental Setup296

Datasets Following the previous work (Tan et al.,297

2024b,a; Zhuang et al., 2024), we conduct exper-298

iments using the Large Language Model Person-299

alization (LaMP) benchmark (Salemi et al., 2024).300

LaMP evaluates LLM personalization across seven301

tasks, including three classification tasks (person-302

alized citation identification, movie tagging, and303

producing rating) and four generation tasks (per-304

sonalized news headline generation, scholarly title305

generation, Email subject generation, and tweet306

paraphrasing)2. To make a fair comparison with307

OPPU (Tan et al., 2024b), we adopt the same 100308

test users selected by OPPU in user-level adapta-309

tion, while all other users for population-level and310

group-level adaptation. Additional task details can311

be found in Appendix A.1.312

Baselines We compare PROPER with both non-313

personalized and personalized baselines including314

the prompt-based methods and fine-tuning-based315

methods. For the backbone LLM used in PROPER316

and all baselines, we employ Llama-2-7B to make317

a fair comparison with prior work. Further details318

on the baseline can be found in Appendix A.2. Im-319

plementation details and hyperparameters settings320

can be found in Appendix A.3 and Appendix A.4.321

Evaluation Metrics In line with LaMP (Salemi322

et al., 2024), we use accuracy and F1-score for323

classification tasks (LaMP-1 and LaMP-2M), Mean324

Absolute Error (MAE) and Root Mean Squared325

2We exclude the LaMP-6: Email subject generation task
due to restricted access to private data.

Error (RMSE) for LaMP-3, and adopt ROUGE-1 326

and ROUGE-L for text generation tasks (LaMP-4, 327

LaMP-5, LaMP-7). Higher values indicate better 328

performance for all metrics, except for MAE and 329

RMSE (where lower values are better). 330

4 Experimental Results 331

In this section, we present comprehensive experi- 332

ments conducted on LaMP. Through an in-depth 333

analysis of the results, we aim to address the fol- 334

lowing Research Questions (RQs): 335

• RQ1: How does PROPER perform compared 336

to baseline models in a standard setting? 337

• RQ2: How effectively does PROPER handle 338

data sparsity? 339

• RQ3: What impact do different architectural 340

structures and components have on model per- 341

formance? 342

• RQ4: What is the trade-off between personal- 343

ization quality and computational cost? 344

• RQ5: How effectively do group experts cap- 345

ture group-level preferences? 346

• RQ6: How does PROPER perform in qualita- 347

tive evaluations? 348

4.1 Main Results 349

To answer RQ1, we compare the performance of 350

PROPER with other baseline models in the regular 351

setting. The results, shown in Table 1, demonstrate 352

that PROPER consistently outperforms the base- 353

line methods, highlighting its strong capability in 354

personalization. We observe the following: 355
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PROPER delivers universal improvements.356

Compared to OPPU, PROPER achieves significant357

improvements across all six tasks, with minimal ad-358

ditional computation and storage overhead. Specif-359

ically, for the LaMP 2M: Personalized Movie Tag-360

ging task, PROPER yields relative improvements361

of 24.5% in accuracy and 35.1% in F1-score com-362

pared to OPPU. For the other tasks, PROPER also363

demonstrates consistent improvements, with an av-364

erage relative improvement of 5.47%. We do not365

include PER-PCS (Tan et al., 2024a) for compar-366

ison, as it focuses primarily on time and space367

efficiency and ties with OPPU in performance.368

Progressive learning results in consistent im-369

provements across stages. To investigate the370

improvements at each stage, we present the de-371

tailed performance from Stage 1 (population-level372

adaptation) to Stage 3 (full model). The results373

show consistent improvements from one stage to374

the next, demonstrating the effectiveness of pro-375

gressive training. From Stage 1 to Stage 2, the aver-376

age relative improvement is 4.69%, and from Stage377

2 to Stage 3, the average relative improvement is378

5.02%. These results highlight the importance of379

both stages.380

Performance depends on the task and user his-381

tory format. As shown in the results, the per-382

formance of prompt-based and fine-tuning-based383

methods varies depending on the task. For classi-384

fication tasks (LaMP-1, LaMP-2M, and LaMP-3),385

fine-tuning-based methods generally perform bet-386

ter, with PROPER outperforming the prompt-based387

baselines by significant margins in LaMP-2M and388

LaMP-3. For generation tasks, fine-tuning-based389

and prompt-based methods perform similarly, with390

PROPER being outperformed by the RAG base-391

line in LaMP-7 and the PAG baseline in LaMP-1.392

We hypothesize that for classification tasks, LLMs393

struggle to learn the mapping between input texts394

and output labels using limited examples through395

in-context learning. In contrast, fine-tuning-based396

methods can learn the mapping more effectively397

through supervised learning. For generation tasks,398

LLMs can easily learn the style and background399

from the examples and tailor the input query to user400

preferences.401

4.2 Low-Resource Results402

To answer the RQ2, we compare the performance403

of PROPER with other baseline models in an ex-404

tremely low-resource setting, where we select the405

top 100 inactive users for personalization. The406

Settings LaMP-3 LaMP-5
MAE ↓ RMSE ↓ R-1 ↑ R-L ↑

OPPU .327 .644 .472 .439
PROPER .303 .582 .522 .483

Table 2: Performances comparison between PROPER
and OPPU under an extremely low-resource setting on
LaMP-3 and LaMP-5. The best results are in Bold.

Settings LaMP-2M LaMP-7

Acc↑ F1↑ R-1↑ R-L↑

Stage 2 (group-level adaptation) .701 .611 .527 .481
w/ regular router .659 .564 .513 .515
w/o constraint loss .686 .602 .564 .472

Stage 3 (user-level adaptation) .747 .666 .542 .504
w/o LoRA-aware router .726 .645 .534 .483
End-to-end training .723 .644 .528 .477

Table 3: Ablation Studies for PROPER on LaMP 2M
and LaMP 7 tasks. The best results in the corresponding
stage are in Bold.

results are shown in Table 2. It can be observed 407

that PROPER outperforms OPPU on all metrics, 408

demonstrating the effectiveness of the model in 409

data sparsity. The results are consistent with the 410

main results where PROPER outperforms other 411

baselines by the largest margin on LaMP-2M, 412

which is the most data-sparse task in the LaMP 413

benchmark with an average user history length of 414

55.6. 415

4.3 Ablation Studies 416

To answer RQ3, we evaluate PROPER under differ- 417

ent settings on LaMP 2M (personalized movie tag- 418

ging) and LaMP 7 (personalized tweet paraphras- 419

ing). For Stage 2 (group-level adaptation), we ex- 420

amine the effectiveness of the user-aware router by 421

replacing it with a regular router based solely on the 422

input state x, and assess the impact of removing the 423

constraint loss. Note that we do not compare these 424

versions under full-stage training (including Stage 425

3), as PROPER uses progressive learning. In this 426

framework, earlier trained stages are fixed, so any 427

underperformance in Stage 2 would likely carry 428

over into Stage 3. For Stage 3 (user-level adapta- 429

tion), we evaluate the effectiveness of the LoRA- 430

aware router by removing it and investigate the 431

impact of replacing progressive training with end- 432

to-end training. In the end-to-end setup, we jointly 433

train the group-level experts with the user-specific 434

LoRAs, using the user-aware router and constraint 435

loss. As shown in Table 3, removing or replacing 436

components in PROPER leads to a significant drop 437

in performance on both tasks, demonstrating the 438

effectiveness of the designed components. 439
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Paraphrase the following tweet without any explanation before or after it: 
@xxx: "It's unfortunate what he said, but there may be some truth to it. 
Personally, I think Beyoncé is curvy, but not necessarily 'big'."

@xxx  Hey girl, its sad about what he said but its kinda true, about 
Bey uhm I def think Bey is a THICk girl but big no 

@xxx I wish he didn't say that but he might be right  I think Beyonce is 
curvy but not big

@xxx "I'm sorry he said that, but there may be some truth to it. I think 
Beyoncé is curvy, but not 'big'." 

@xxx: Aww man, that's sad. But he might be kinda right, uhm I 
think Beyoncé is curvy, but 'big’ no

Stage 3  

Stage 2  

Stage 1  

Output

Input

Figure 3: The case study on LaMP-7: Personalized Tweet Paraphrasing task. The figure on the left shows the
visualization of text embeddings for user #21. The green legends represent the test example and the model output, •
represent the training examples for user #21, while • represent the training examples for other users.
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Figure 4: Comparison of training time and training
parameters between OPPU and different stages of
PROPER, the training time is calculated for 100 test
users per batch, and all results are produced with a sin-
gle NVIDIA A100 GPU (80GB).

4.4 Efficency Analysis440

To answer RQ4, we compare OPPU and different441

stages of PROPER in terms of trainable parame-442

ters and training time. As shown in Figure 6, the443

main computational and storage load in personal-444

ized LLMs is in the user-level adaptation stage,445

which scales with the number of users. Both OPPU446

and PROPER introduce 552M parameters for 100447

users. Regarding training time, PROPER takes448

slightly longer (180 min per batch) than OPPU449

(146 min) for 100 users. PROPER also introduces450

two additional components: the group-level adap-451

tation and the LoRA-aware router. These compo-452

nents are one-time processes that do not scale with453

user growth, adding minimal computation (146 min454

for group-level adaptation and 150 min for LoRA-455

aware router) and storage overhead (91M and 4M,456

respectively). Despite these additions, PROPER457

remains efficient overall due to its improvements.458
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Figure 5: The Visualization of expert weights and user
embeddings learned in the group-level adaptation. The
upper left: density plot of expert weights with the user-
aware router and constraint loss; The bottom left: den-
sity plot of expert weights with regular LoRAMoE; The
right: Scatter plot of user embeddings after detention
reduction, colored by the clusters.

4.5 Visualization 459

To answer RQ5, we visualize the user embeddings 460

learned in Stage 2 and the expert weights for the 461

group experts. For the expert weights, we aver- 462

age the weights for each user and compare the 463

density plots of expert weights learned with the 464

user-aware router and constraint loss versus those 465

learned with regular LoRAMoE. For the user em- 466

beddings, we average the embeddings across layers 467

for each user and apply t-SNE (Van der Maaten 468

and Hinton, 2008) to map them into a 2D space. 469

We then cluster the users into 5 groups based on 470

their averaged expert weights and color the user 471

embeddings according to their cluster. As shown 472

in Figure 5, the density plot of expert weights with 473

the user-aware router and constraint loss shows 474

five distinct peaks with minimal overlap, indicating 475
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that the experts learn distinct group preferences.476

In contrast, the expert weights from regular Lo-477

RAMoE are highly overlapping, suggesting that478

the experts are learning redundant information. In479

the user embedding visualization, we observe that480

the clustering of user embeddings aligns with the481

expert weight patterns, demonstrating a clear cor-482

relation between the behavior of user embeddings483

and expert weight distribution.484

4.6 Case Study485

To answer RQ6, we conduct a case study on the486

LaMP-7: Personalized Tweet Paraphrasing task for487

user #21 (user_id: 13002361) in the test set. To488

demonstrate the effectiveness of progressive learn-489

ing, we visualize the training and test samples for490

user #21, as well as a subset of training samples for491

other users. For text visualization, we use a BERT492

encoder (Reimers and Gurevych, 2019) to generate493

text embeddings and apply T-SNE for dimensional-494

ity reduction. By comparing the embeddings (left495

side of Figure 3) with the corresponding texts (right496

side), we observe that the input tweet to be para-497

phrased has a formal tone, while the user’s tweet498

(i.e., the target output) is more casual with many499

non-standard expressions. During the population-500

level adaptation stage, the model’s output (Stage501

1 output in Figure 3) retains a formal tone, and its502

embedding ■ stays close to the input tweet (green503

cross). However, as progressive learning advances,504

the output becomes more casual, incorporating ex-505

pressions like "kinda" (Stage 3 output) and the506

embeddings ▲ move closer to the target output507

• . By Stage 3, the model output closely align508

with user #21’s historical data and other relevant509

training samples, illustrating the effectiveness of510

progressive learning in personalization.511

5 Related Work512

Personalized LLMs Personalized LLMs can be513

broadly categorized into two types: prompting-514

based and fine-tuning-based. Prompting-based515

methods augment the LLM’s input prompt with516

user history while keeping the LLM itself un-517

changed wiht in context learning (Dai et al., 2023;518

Kang et al., 2023). Following the idea of Retrieval-519

Augmented Generation (RAG), subsequent ap-520

proaches refine this paradigm by retrieving relevant521

user history for each query (Salemi et al., 2024;522

Mysore et al., 2024). Another variant summarizes523

a user profile from user history and then augments524

the user prompt with the inferred profile (Richard-525

son et al., 2023). Fine-tuning-based methods inject 526

user information directly into the LLM’s parame- 527

ters via fine-tuning. Tan et al. (2024b) introduced 528

OPPU, which assigns each user a specific LoRA 529

module for personalization, while PER-PCS (Tan 530

et al., 2024a) improves efficiency by assembling 531

user-specific LoRA from relevant pieces trained on 532

representative users. Beyond adapting the LLM 533

itself, Zhuang et al. (2024) proposed to fine-tune 534

both rerankers and adapters within a retrieval-based 535

framework to align with black-box LLMs. 536

Mixture of Experts The Mixture-of-Experts 537

(MoE) replaces feed-forward layers with sparsely 538

activated experts, enabling dynamic expert selec- 539

tion per input, which expands capacity without 540

significantly increasing computational cost (Jacobs 541

et al., 1991). Previously, the token-level MoE ar- 542

chitectures are widely used in pre-trained language 543

models and vision models (Shazeer et al., 2017; 544

Lepikhin et al., 2021; Riquelme et al., 2021; Du 545

et al., 2022). Currently, with the fast development 546

of LLMs, the need for efficient tuning of a model 547

has become more and more important, therefore, 548

many works try to combine MoE with PEFT meth- 549

ods such as LoRA (Hu et al., 2022). The most 550

straightforward way is to combine LoRA and MoE 551

for multi-task learning (Dou et al., 2024; Luo et al., 552

2024; Liu et al., 2024). P-Tailor (Dan et al., 2024) 553

proposed a MoE-based role-playing LLM that mod- 554

els the Big Five Personality Traits using specialized 555

LoRA experts and adapts personality traits across 556

topics. 557

6 Conclusion 558

In this paper, we present PROPER, a novel progres- 559

sive learning framework for personalized LLMs 560

that addresses the challenge of data sparsity by in- 561

troducing a group-level adaptation process. By 562

leveraging a Mixture-of-Experts structure and 563

LoRA-based routers, PROPER enables efficient 564

adaptation through population-level, group-level, 565

and user-level stages, bridging the gap between 566

broad and personalized models. Our extensive ex- 567

periments demonstrate that PROPER significantly 568

outperforms existing state-of-the-art approaches, 569

offering a promising solution for more efficient and 570

effective LLM personalization in diverse applica- 571

tions. Future work will focus on further optimizing 572

group-level adaptations and exploring additional 573

techniques to enhance model scalability and gener- 574

alizability. 575
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Limitations576

We identify three key limitations in PROPER.577

First, due to dataset constraints, PROPER eval-578

uates LLM personalization on separate tasks. In579

real-world applications, it would be more practi-580

cal and beneficial to consider LLM personalization581

within a multi-task learning framework, where user582

preferences learned from one task can enhance per-583

formance in other tasks. Despite this, PROPER can584

be adapted to multi-task learning, as its LoRAMoE585

module is inherently suited for such integration.586

Second, PROPER assumes user preferences are587

static, but in reality, user preferences may evolve588

over time. Future research could focus on dynami-589

cally modeling these preferences or developing a590

framework capable of continually learning from591

streaming data.592

Third, the three-stage process of PROPER in-593

troduces additional training parameters and longer594

training times. Although these extra parameters595

and training processes are manageable and a one-596

time cost, future work should aim to improve the597

training and inference efficiency of the progressive598

learning-based framework.599

Ethical Impact600

Personalized large language models (LLMs), such601

as the PROPER framework, rely on user-specific602

data, raising privacy concerns regarding the po-603

tential inadvertent disclosure of sensitive informa-604

tion. Strong privacy safeguards, including data605

anonymization and encryption, must be imple-606

mented to protect personal data. Additionally, bi-607

ases in user data can lead to unfair or prejudiced608

model outputs, emphasizing the need for diverse,609

balanced data and debiasing techniques to ensure610

fairness. Transparency in decision-making pro-611

cesses is essential, allowing users to understand612

how their data influences personalized outputs613

and ensuring accountability. Accessibility is an-614

other concern, as the computational demands of615

advanced LLMs may limit adoption among smaller616

entities and researchers, exacerbating the digital617

divide. To address this, efforts to make person-618

alized LLMs more accessible, such as resource-619

efficient models, are crucial. Finally, user auton-620

omy should be respected by allowing individuals to621

control their data and the level of personalization,622

ensuring ethical use and avoiding over-dependence623

on AI-generated content. Addressing these ethical624

considerations will promote the responsible devel-625

opment and deployment of personalized LLMs, pri-626

oritizing privacy, fairness, and accessibility while 627

mitigating potential risks. 628
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A Appendix811

A.1 Task Details812

LaMP (Salemi et al., 2024) provided seven sepa-813

rate tasks to benchmark LLM personalization, fol-814

lowing (Tan et al., 2024b,a), we describe the task815

details as follows to help readers gain a better un-816

derstanding of the task format.817

• LaMP-1: Personalized Citation Identifica-818

tion: is a binary text classification task. The819

input query x is a paper title written by user820

u, along with two candidate paper titles, the821

output y is the number of the candidate paper822

that u will cite in x. The user history contains823

titles and abstracts of the publications of user824

u.825

• LaMP-2M: Personalized Movie Tagging: is826

a 15-way text classification task. The labels827

are pre-defined movie types. The input query828

x is the movie description, and the output y829

is the tag that user u will give based on x.830

The user history contains the user’s historical831

movie-tag pairs (x, y).832

• LaMP-3: Personalized Product Rating: is a833

5-way text classification task. The input query834

x is the review text written by user u, and the835

output y is the corresponding score that user836

u will given based on x. The user history is837

the previous rating pairs (x, y) of user u.838

• LaMP-4: Personalized News Headline Gen-839

eration: is a text generation task to test the840

model’s ability to capture the stylistic patterns841

in personal data. The input query x is the con-842

tent of a news from the author u, and the out-843

put y is the news headline generated by user u.844

The user history is the historical article-title845

pairs (x, y) from author u.846

• LaMP-5:Personalized Scholarly Title Gen-847

eration: similar to LaMP-4, it is a text gener-848

ation task to test personalized text generation849

tasks in different domains. The input query x850

is the abstract of a paper, and the output y is851

the title generated by user u. The user history852

is the historical abstract-title pairs (x, y) from853

author u.854

• LaMP-7:Personalized Tweet Paraphrasing855

is also a text generation task that tests the856

model’s capabilities in capturing the stylistic857

patterns of authors. The input query x is a858

normalized tweet, and the output y is the orig-859

inal tweet from user u. The user history is the860

historical tweets from author u.861

A.2 Baseline Details 862

We present the task details as follows to help read- 863

ers gain a better understanding of the task format. 864

• ICL (In-Context Learning) (Dai et al., 2023): 865

This method randomly selects user historical 866

records to augment the input query for LLM. 867

In this paper, we take the results reported from 868

(Tan et al., 2024b). 869

• RAG (Retrieval Augmentation Genera- 870

tion) (Salemi et al., 2024): Following the 871

retrieval-augmented personalization method 872

presented in LaMP, the user’s query is 873

augmented with top k retrieved items from the 874

corresponding user’s history corpus. In the 875

paper, we take the results that the number of 876

retrieval items k=1 from (Tan et al., 2024b). 877

• PAG (Profile Augmentation Genera- 878

tion) (Richardson et al., 2023): In the 879

PAG-based method, the user’s input sequence 880

would concatenate the user’s profile sum- 881

marizing the user’s preference and behavior 882

patterns. In the implementation by (Tan 883

et al., 2024b), The vicuna-7B model is 884

employed for user profile generation and the 885

model is further enhanced with the retrieval 886

augmentation. In the paper, we take the 887

results that the number of retrieval items k=1 888

from (Tan et al., 2024b). 889

• OPPU (kv) Tan et al. (2024b): The original im- 890

plementation of OPPU, where the LoRA com- 891

ponents are placed on the KV-Cahce in the 892

transformer blocks. We do not include the hy- 893

brid integration of the prompt-based method 894

and fine-tuning-based method posted in (Tan 895

et al., 2024b) because the integration of the 896

prompt-based method violates the principle of 897

privacy of the fine-tuning-based method. 898

• OPPU (mlp): We implement another version 899

of OPPU by changing the placement of LoRA 900

components from the KV-Cahce in the trans- 901

former blocks to the mlp projection layers. 902

A.3 Implementaion Details 903

Following (Tan et al., 2024a), we incorporate train- 904

able low-rank adapters into the Wq, Wk, Wv, Wo , 905

setting the rank r=8. Additionally, we set the factor 906

of α to 16, using a learning rate of 3e-4 and adapt 907

batch size of 2 at stage 1 population adaptation for 908

all tasks. 909

For the subsequent stages, We maintain the orig- 910

inal weights of the backbone which merged LoRA 911

from stage 1 unchanged and integrate low-rank 912

12



2 5 8
Number of Experts

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800
F1

 / 
Ac

cu
ra

cy
F1
Acc

70

75

80

85

90

95

100

105

110

# 
Pa

ra
m

et
er

s

# Parameters

Figure 6: Compartion of the different number of experts
on LaMP-2M.

adapters (Hu et al., 2022; Zhang et al., 2024) into913

the Feed-Forward Network(FFN) components of914

all layers. Specifically, in the LLaMA2 model (Tou-915

vron et al., 2023), the FFN layer utilizes the916

SwiGLU structure (Shazeer, 2020), which consists917

of three components: down projection, up projec-918

tion, and gate.919

The number of experts is set to be 5 for all tasks920

based on the primary experiments. These low-rank921

adapters are configured with a rank of 4 and a922

factor of α set to 8, alongside a dropout rate of923

0.05 to mitigate overfitting. The model parame-924

ters are optimized by AdamW (Loshchilov and925

Hutter, 2018). We use a batch size of 1 to facili-926

tate the identification of specific users and a learn-927

ing rate of 2e-4 for all tasks. Our implementation928

leverages the PyTorch3 framework, HuggingFace929

Transformers4 (Wolf et al., 2020) and PEFT5 li-930

brary. All experiments are carried out with an931

NVIDIA A100 80GB GPU.932

A.4 HyperParameter Analysis933

As the number of experts k serves as a very impor-934

tant hyperparameter in PROPER, we perform an935

analysis on the number of experts 2, 5, and 8 on the936

LaMP-2M task. As shown in Figure 6, with an in-937

crease of experts number, the performance increase938

then decrease, suggesting a peak around 5. This939

can be explained that with fewer experts, the group-940

level pattern can not be fully distinguished and941

some experts learn the overlapped pattern, while942

with many experts, the experts are redundant and943

the group-level patterns are overfitted. As it is944

costly to perform a fine-grained hyperparameter945

search for all tasks, we set the number of experts946

as 5 for all the tasks.947

3https://github.com/pytorch/pytorch
4https://github.com/huggingface/transformers
5https://github.com/huggingface/peft
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