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Abstract

Unsupervised Anomaly Detection (UAD) is an inexpensive and effective method to bring
value to the clinical workflow for pathology detection, especially in the emergency room set-
ting, where quick prioritization of Computed Tomography (CT) scans is necessary. While
there are numerous works dealing with UAD for medical images, most of them focus on
Magnetic Resonance Imaging (MRI) and 2D slices of the brain. This work’s aim is to build
a comparison between two commonly used baselines for UAD of volumetric CT scans. In
addition to this, we borrowed two recent contributions to the field of Computer Vision in
order to improve the reconstruction quality of our networks. These contributions effectively
increased the AUROC for anomaly detection from 0.74 to 0.90 for one of our baselines. In
order to guarantee that the anomaly detection algorithm is effective for all pathologies,
including fractures, we tested our models both on skull-stripped scans and full-head scans.
Leaving the skull in the CT volumes allowed the algorithm to efficiently classify fractures.
To the best of our knowledge, this is the first work to show a comparison regarding the
usage of skull-stripping. To facilitate further research in UAD for Head CT, we publish
supplementary labels for the publicly available CQ500 dataset. The code for this study can
be found in a GitHub repository at https://github.com/pederismo/CTFSH

Keywords: Unsupervised Anomaly Detection, One Class Classification, Out of Distribu-
tion Detection

1. Introduction

In the past years, there has been a 43% increase in the number of radiographical scans of
various modalities (Taschetta-Millane and Fornell, 2021). It is estimated that 10-15% of
the scans may be delayed, missed, or incorrectly diagnosed (Bruno et al., 2015), and due
to this increased workload, the error rates are expected to grow. The use of Deep Learning
based algorithms can help in reducing some of these errors.
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Unsupervised Learning for Head CT

Figure 1: The same patient was analyzed by two versions of one of our baselines. The
skull-stripped version correctly classifies the patient as unhealthy. We overlay
the heatmaps from the models on top of the skulls. (a) shows the heatmap from
the model trained on the full head; (b) zooms-in on the fracture and heatmap
from the full head model; (c) shows the heatmap from the model trained on skull-
stripped brains; (d) zooms-in on the fracture and heatmap from the skull-stripped
model.

These algorithms usually require large-scale fully-annotated datasets. Annotations in
the medical domain are performed by highly specialized experts, who have developed their
skills through years of practice. Nevertheless, the quality of the annotations may not be
optimal due to inter/intra-observer variability (Sampat et al., 2006). Supervised algorithms
also require the training and testing distributions to be identical: when presented with
a new testing class they haven’t seen before, they tend to fail silently by giving a high-
confidence prediction (Hendrycks and Gimpel, 2017). Unsupervised Anomaly Detection
(UAD) is the best strategy to combat all these learning problems as well as provide useful
support to medical professionals to do faster and accurate diagnoses (Bruno et al., 2015;
Taschetta-Millane and Fornell, 2021).

So far most studies on AI-assisted diagnosis for the head have been dealing exclusively
with MRI scans (Baur et al., 2021) for their high level of detail when visualizing soft
tissues. Nevertheless, non-contrast head CT scans are the most commonly used tool in
the emergency room for patients with head injury (Chilamkurthy et al., 2018) and some
clinical conditions require fast evaluation and treatment (e.g. Intracerebral Hemorrhages
(ICH) (Elliott and Smith, 2010), strokes or changes in intracranial pressure (Chilamkurthy
et al., 2018)). Therefore, diagnosis of head CT scans is critical and time-sensitive. This calls
for a fast and efficient AI tool adapted to CTs that could be integrated into the healthcare
workflow.

A common strategy adopted by the research is to work on skull-stripped scans instead
of full head scans (Woods et al., 1998). This process may prevent the algorithms from
successfully detecting anomalies that may be present in the skull, which is crucial for trauma
patients. As seen in Figure 1, models trained on skull-stripped scans can miss detecting
fractures. Therefore, it is important to do a full head analysis of the CT scans.
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Contributions The main contributions of the paper are that it provides: 1) an efficient
methodology for training and evaluating an end-to-end deep learning-based UAD algorithm
for the 3D volumetric CT scans of the human brain; 2) the inclusion of two Computer Vision
contributions, namely the MS-SSIM (Wang et al., 2003) and ACAI (Berthelot et al., 2019),
to the baseline architectures involved in the study, to improve the reconstruction quality
of our baselines and to provide smoothness to the underlying manifold; 3) analysis on the
impact of skull stripping vs. full head towards anomaly detection in the 3D volumetric
CT scans; 4) an extension of the labels of the CQ500 dataset (Chilamkurthy et al., 2018)
towards benchmarking of anomaly detection models.

2. Related Works

Most Deep Learning-based approaches for UAD are based on generative models, like the
Autoencoder (AE) (Hinton and Salakhutdinov, 2006). The dimensionality reduction pro-
vided by the bottleneck of such networks enables generalization across newly, unseen inputs.
After successful training of the neural network on normal inputs, the model will fail to re-
construct anomalies during inference. The difference between reconstruction and input will
highlight said anomalies (Baur et al., 2021).

VAE While the original AE is good at reconstructing inputs, its simplicity can fail at gen-
eralization. Improvements like the Variational Autoencoder (VAE) (Kingma and Welling,
2014) have been made, which uses the KL divergence to enforce similarity between the input
distribution and the normal. For anomaly detection, Guo et al. (2021) adopt a cascade-like
architecture of VAEs to combine latent representation at multiple scales to achieve better
reconstruction quality. Pinaya et al. (2021) instead uses a VQ-VAE and then an atten-
tion mechanism with transformers to learn the probability density function of the latent
representation of data.

GAN Generative Adversarial Networks (Goodfellow et al., 2014) are another type of
generative model that has been adopted for UAD. GANs have been chosen for anomaly
detection thanks to their high-quality reconstructions: in clinical optical coherence tomog-
raphy analysis, Schlegl et al. (2019) first proposed AnoGAN, with a newly designed anomaly
score that uses information from the image space and the latent space, and then improved
on this work by substituting the Deep Convolutional GAN architecture with a Wasserstein
GAN (Arjovsky et al., 2017), and also changed the slow iterative mapping from image to
feature space with an encoder. Simarro Viana et al. (2021) adapted this last method to
Computed Tomography and 3D for anomaly detection.

MS-SSIM and ACAI The L1 or Mean Absolute Error (MAE) loss is the simplest choice
of loss for the training of the AE. Although easy to implement, an AE trained exclusively
with the MAE tends to produce blurry reconstructions and does not generalize well. To
improve reconstruction quality, Zhao et al. (2017) introduced a combination of the L1-loss
and the Multi-Scale Structural Similarity Index (MS-SSIM) (Wang et al., 2003). The MS-
SSIM as a loss function is sensitive to changes in local structures, while being differentiable,
and therefore appropriate for backpropagation.

The MS-SSIM has already been investigated for Unsupervised Defect Segmentation
(Bergmann. et al., 2019), but so far nobody has used it for medical imaging. Although the
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Figure 2: The AE model after the addition of MS-SSIM and ACAI at training. Two in-
coming volumes are encoded and then interpolated. After the decoder has re-
constructed the latent interpolation, the critic is trained to regress the α used to
interpolate. Training of the AE happens thanks to the MAE and MS-SSIM loss.

MS-SSIM helps achieve visually pleasing reconstructions, it does not ensure the quality of
the latent manifold. Berthelot et al. (2019) proposed an Adversarially Constrained Autoen-
coder Interpolation (ACAI) that improves generalization and quality of the latent space by
enabling the AE to interpolate better between two points in the manifold (see Fig. 2). The
ability to create high quality interpolations that smoothly transition from point z1 to point
z2, demonstrates that the network has gained knowledge of the manifold’s structure.

Anomaly Score Once the model is trained, it is tested on unseen data, both healthy
and anomalous, to see if it can correctly classify the input volumes. Calculating a single
score to discriminate between healthy and unhealthy samples is not an easy task. Most
studies that rely on generative models have adopted the L1 or L2 norm between input
and reconstruction as a score, similarly to the loss function used in training (Schlegl et al.,
2019; Simarro Viana et al., 2021). Pinaya et al. (2021), on the other hand, relies on the
likelihood scores generated by the transformer and averages them. Ruff et al. (2018) and
Chen et al. (2021) proposed a way of calculating anomaly scores from the latent space
codes, by computing how distant they are from a hypersphere center or from a Gaussian
distribution, respectively.

3. Methodology

Given a dataset D = H∪A, which is the union of healthy set H and anomalous set A, such
that H ∩A = ∅, we train a generative model composed of an encoder fφ(·) and a decoder

gθ(·) on H = {xi}|H|i=1, where xi ∈ RH×W×C , and each xi represents the ith 3D healthy brain
volume of spatial resolution (H ×W ) and C slices. The implementations for the encoder
and the decoder are described in Appendix D.
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The generative models studied are two: an AE where x̂ = gθ(fφ(x)) and a VAE where
µV AE , σV AE = fφ(x), z ∼ N (µV AE , σV AE , x̂ = gθ(z). Two distinct samples are drawn
from the dataset H, x1, x2 ∼ H. The encoder fφ(·) is used to extract the latent codes
z1 = fφ(x1) and z2 = fφ(x2), where z1, z2 ∈ Rd. By linear interpolation of z1 and z2, a new
code zα = α · z1 + (1−α) · z2, with α ∼ U[0,0.5] is obtained, as it can be seen from Figure 2.
The decoder gθ(·) now takes the latent codes z1 and zα as input and reconstructs the full
3D healthy scans x̂1, x̂α ∈ RH×W×C , such that x̂1 = gθ(z1) and x̂α = gθ(ẑα). A regressor
cψ(·) tries to predict the α used for the interpolation, α̂ = cψ(x̂α), with α̂ ∈ R. The action
of the regressor helps to get a smooth manifold, where the latent representation zi ∈ Rd
of each healthy brain resides. The training step for the encoder and decoder is done by
minimizing the following loss borrowed from Zhao et al. (2017):

`r(x, x̂) = ρ · `MAE(x, x̂) + (1− ρ) · `MS-SSIM (x, x̂), (1)

where ρ = 0.15. The regressor, on the other hand, is trained on the `2-norm between the
sampled α and the predicted one:

`d(α, α̂) = ‖α− α̂‖22 . (2)

During inference, the trained encoder fφ(·) transforms an unhealthy sample x′1 ∼ A to
the nearest healthy latent code, z1 = fφ(x′1). The reconstruction x̂1 = gθ(z1) is therefore a
healthy reconstruction of the unhealthy input x′1, and this difference shows when calculating
`r(x

′
1, x̂1). On the other hand, for a healthy sample x1 ∼ H, the reconstruction x̂1 =

gθ(fφ(x1)) will be closer to x1, thus producing a lower `r(x1, x̂1). Therefore we adopted
Equation 1 both as the training loss and as anomaly score, which we call I score.

Each method was also designed to generate a prediction based on the latent codes.
This F score, inspired by the work of Chen et al. (2021), was used at inference to measure
the distance between the testing latent codes and a Gaussian distribution built upon the
manifold of the training healthy samples:

Fi = 1− exp(−
‖fφ(xi)− µ‖22

σ2
), (3)

with µ = 1
|H|

∑|H|
i=1 fφ(xi) ∈ Rd and σ2 = 1

|H|
∑|H|

i=1 ‖fφ(xi)− µ‖22 ∈ R calculated on the
healthy samples.

4. Experiments and Results

Dataset The CQ500 dataset (Chilamkurthy et al., 2018) is used for training and valida-
tion. It contains 491 CT scans of the human brain collected at different radiology centers in
New Delhi, using different scanners. It was originally designed to be a validation dataset for
the detection of ICH, midline shift, mass effect or calvarial fractures. In order to be used for
the development of a more comprehensive detection algorithm, the dataset was relabeled
with the addition of pathologies like fractures, ischemia and atrophies. The new extra labels
were obtained following a majority vote by three expert radiologists. The details on the
anomalous samples can be found in Appendix A.
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Experimental Setup The healthy subset H of the dataset was split in three parts for
training (80%), validation (10%), and testing (10%) of our methods. The preprocessing
pipeline and the implementation details are reported in Appendix B and D. The unhealthy
subset A was further divided into each pathology subset, such that A = AATY ∪AFRAC ∪
AICH ∪ AISCH ∪ AMASS ∪ AOTHER. For each unhealthy subset Ai of A, the model was
tested against the testing healthy dataset (n = 12) and Ai. For each scan the models
computed two predictions, the I score, defined in Equation 1, and the F score, defined in
Equation 3. Both scores were then used independently to compute the Area Under the
Receiver Operating Characteristics curve (AUROC(I) and AUROC(F)).

Table 1: The comparison of AUROC scores between the AE and the VAE on different
pathologies.

Pathology
(n. scans)

Method
L1 L1 + MS-SSIM L1 + MS-SSIM + ACAI

AUROC(I) AUROC(F) AUROC(I) AUROC(F) AUROC(I) AUROC(F)

Atrophy
(15)

AE 0.739 0.361 0.894 0.372 0.900 0.439
VAE 0.722 0.517 0.883 0.483 0.894 0.458

Fracture
(26)

AE 0.744 0.410 0.724 0.321 0.689 0.522
VAE 0.734 0.465 0.712 0.365 0.596 0.479

ICH
(155)

AE 0.708 0.386 0.779 0.370 0.784 0.496
VAE 0.670 0.441 0.768 0.427 0.731 0.509

Ischemia
(59)

AE 0.812 0.461 0.857 0.446 0.881 0.576
VAE 0.778 0.533 0.843 0.533 0.822 0.511

Mass
(10)

AE 0.492 0.450 0.575 0.558 0.542 0.633
VAE 0.500 0.458 0.592 0.558 0.525 0.513

Other
(30)

AE 0.639 0.403 0.642 0.397 0.642 0.522
VAE 0.622 0.450 0.650 0.456 0.628 0.476

TOTAL
AE 0.703 0.399 0.765 0.389 0.771 0.515

VAE 0.673 0.461 0.756 0.451 0.724 0.506

4.1. Effects of MS-SSIM and ACAI

By adding the MS-SSIM and ACAI the results consistently improve on the I scores for all
pathologies except Fracture (see Tables 1, 2, 3. In Figure 3 we can look at the reconstruction
quality for three methods compared (complete comparison can be found in Appendix E).
It can be seen how the MS-SSIM delivers on its purpose of generating visually pleasing
reconstructions that improve the I scores. Additional motivation behind the choice of
including MS-SSIM is brought by Figure 4, where it can be seen how the I scores, after
addition of MS-SSIM, allow for easier discrimination between healthy and unhealthy data
by increasing the gap between the mean of healthy I scores, and the mean of all other
classes.

4.2. AE vs VAE

Table 1 shows that for unstripped test data the AE consistently outperforms the VAE all
pathologies except Mass Effect (L1 and L1+MS-SSIM) and Other (L1+MS-SSIM). This
can be attributed to improper balancing between the reconstruction error and the KL
divergence. Reconstruction quality can be improved by finding the best weight between
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Figure 3: Comparison for reconstruction quality on: a) a patient with ICH; b) an healthy
patient. Brightness has been increased on the residual maps to better visualize
the differences. Pointed is an example of how the VAE fails to reconstruct the
occipital horns of the lateral ventricles. Below are reported the L1 values for each
reconstruction.

Figure 4: A boxplot and a kernel density estimation for the I scores of two AE versions.
For each testing class we saved the predictions and plotted them. For Atrophy
and Ischemia the gap that separates them from Healthy is bigger.

these loss components (Dai and Wipf, 2018; Asperti and Trentin). In addition to that, all
models struggle to detect anomalies of the Mass Effect category (e.g. tumors, cavernoma).
A reason could be that tumors are hypodense anomalies where the voxel value is darker
than its surrounding, resulting in a reduced contrast in the residual error. Further study
on how to correctly detect such anomalies on CT scans has to be carried out.

4.3. Effects of Skull Stripping

Looking at Table 2, as expected, the performance on Fracture detection increases when we
train and test our baselines on full-head data. To visualize this result, we took the same
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scan, both full-head and skull-stripped, and used the AE and the StripAE respectively to
generate two heatmaps. These were overlaid on top of the full-head scan. From Figure 1.b
it can be seen how the full-head model highlights anomalies related to the fracture, whereas
the skull-stripped one does not (1.d). However, the full-head model still shows improvement
in the AUROC scores for pathologies other than Fractures, like Mass Effect and Intracranial
Hemorrhages, as seen in Table 2.

Table 2: The comparison of AUROC scores between an AE and the same AE trained on
skull-stripped data for different pathologies.

Pathology
(n. scans)

Method
L1 L1+MS-SSIM L1+MS-SSIM+ACAI

AUROC(I) AUROC(F) AUROC(I) AUROC(F) AUROC(I) AUROC(F)

Atrophy
(15)

AE 0.739 0.361 0.894 0.372 0.900 0.439
StripAE 0.844 0.556 0.944 0.683 0.944 0.750

Fracture
(26)

AE 0.744 0.410 0.724 0.321 0.689 0.522
StripAE 0.484 0.381 0.561 0.391 0.522 0.436

ICH
(155)

AE 0.708 0.386 0.779 0.370 0.784 0.496
StripAE 0.638 0.398 0.774 0.391 0.751 0.465

Ischemia
(59)

AE 0.812 0.461 0.857 0.446 0.881 0.576
StripAE 0.809 0.551 0.883 0.622 0.886 0.679

Mass
(10)

AE 0.492 0.450 0.575 0.558 0.542 0.633
StripAE 0.542 0.558 0.617 0.500 0.542 0.533

Other
(30)

AE 0.639 0.403 0.642 0.397 0.642 0.522
StripAE 0.583 0.511 0.656 0.589 0.625 0.642

TOTAL
AE 0.703 0.399 0.765 0.389 0.771 0.515

StripAE 0.662 0.449 0.774 0.465 0.756 0.529

4.4. Detection based on Latent Codes

From Tables 1 and 2 the I scores outperform the F except for Mass Effect. However, if
we train a VAE, or an AE with ACAI, we have consistent improvements in the F scores
performance with respect to the vanilla AE. This observation highlights that the detection
based on latent space improves if the method is trained on a loss component that focuses on
latent representations. Future works should include a new loss function designed on latent
representations, in order to harness the full capability of the F score.

5. Conclusion

This work aims to identify and explain the behaviour of AutoEncoders and their variations
for Unsupervised Anomaly Detection. We tackled full head volumetric CT scans, and gave
insights on the effect of skull-stripping. We demonstrated how a model trained of full head
scans can outperform the same architecture trained on the skull-stripped scans for anomaly
detection of fractures. We showed how simple modifications to the anomaly score estimation
and the training losses can affect the detection performance, especially how the MS-SSIM
can improve the reconstruction quality and help discriminate better between healthy and
unhealthy scans. In the hope of enabling future studies in anomaly detection on the CQ500
dataset, we publish a finer set of labels for the already available public dataset.
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Appendix A. Extended Annotation of CQ500

The new labels of the CQ500 dataset can be found in .csv format in the paper’s repository at
https://github.com/pederismo/CTFSH. The main focus of the relabeling were pathologies
like Atrophy, Bleeding, Fracture, Ischemia and Mass Effect. Another category called Others
is added to include patients with anomalies that are not covered by the aforementioned
pathologies. Some patients may have more than one conditions and have therefore been
included in multiple categories. None of the healthy samples belong to any of the previously
mentioned classes.

Appendix B. Preprocessing

Figure 5: The full preprocessing pipeline adopted for each scan. a) The DICOM file was
offline converted to NIfTI, before being registered, resampled and stripped (if nec-
essary); b) before being fed to the network, each scan was additionally windowed
and resized, to fit the memory requirements.

The CQ500 scans required a few preprocessing steps to allow for the method to work.
The first half of preprocessing was done offline (see Figure 5.a). First of all, the DICOM
files were converted to NIfTI. Once this operation is done, the scan was first isotropically
resampled to 1 mm voxels, and then registered using a non-linear registration algorithm.
Before saving the scans into NIfTI files, each one was either stripped of the skull or left
unstripped. The stripping was performed with MATLAB using the method provided by
(Najm et al., 2019). The second half of preprocessing steps is done online, while training
or testing the algorithms (Figure 5.b). Each scan, whether left with the skull or stripped
of it, is windowed using level c = 50 and width w = 100, before voxel values are normalized
between 0 and 1. To enable training in a 3D setting, the input scans had to be resized to
satisfy the memory requirements. The size chosen was 128 × 128 × 128, which still allows
for good detail quality.
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Appendix C. Interpolations

The interpolation between two distinct latent codes shows that there is a smooth manifold
onto which the codes are mapped to. We observed no significant difference in the manifold
interpolation between the AE with and without the addition of the ACAI, as seen in Figure
6. This could be because AEs may already show signs of interpolation according to Berthelot
et al. (2019). Therefore the effect of the ACAI is negligible. In further studies, a new
distance metrics in the image space should be defined to make sure the interpolations only
happens between input that are close together in the manifold.

Figure 6: The effect of interpolation on the latent codes. (a) shows different degrees of
interpolation between the latent vectors of two different images; (b) zooms-in
on regions of the reconstructions that are more visually pleasant thanks to the
contribution from MS-SSIM and ACAI.

Appendix D. Implementation Details

All convolution and upsampling operations are adapted to deal with 3D inputs. The en-
coder is made of five convolution operations with kernel size ke = (4, 4, 4), stride se = 2,
dilation de = 2 and respectively (32, 64, 128, 256, 512) channels. For an input size of
1 × 128 × 128 × 128, the encoder therefore ends up generating a 512 × 4 × 4 × 4 latent
representation which then gets flattened before being fed to a last fully connected layer
that reduces the latent size to l = 512. For the decoder, parameters were chosen accord-
ingly in order to reduce checkerboard artifacts in the reconstructions (Odena et al., 2016).
Each transposed convolution was divided into an initial upsampling operation followed by
a regular convolution with activation function. Nearest neighbors and a scale factor of 2
was chosen for each upsampling operation. Convolutions have a kernel size kd = 3, stride
sd = 1 and dilation dd = 1. The channels mirror the encoder ones. For both sides of the
architecture we adopted Leaky ReLU as activation function, and Instance Normalization.
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Figure 7: The architecture chosen for all the methods involved in the work. Convolution
and upsample operations are for 3D input data.

Each method was trained for 200 epochs on a NVIDIA GeForce RTX 2070 with a learning
rate lr = 0.0001. For the methods that included the MS-SSIM, the weight used in Equation
1 between the two loss components was ρ = 0.15. For the ACAI components, λ = 1. was
chosen for the AE regularizer and ζ = 0.2 for the critic’s one.

Appendix E. Full Reconstruction Quality Comparison

Appendix F. Additional Tables
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Figure 8: Comparison on the reconstruction quality for all methods compared and imple-
mented.

Table 3: The comparison of AUROC scores between a VAE and the same VAE trained on
skull-stripped data for different pathologies.

Pathology
(n. scans)

Method
L1 L1+MS-SSIM L1+MS-SSIM+ACAI

AUROC(I) AUROC(F) AUROC(I) AUROC(F) AUROC(I) AUROC(F)

Atrophy
(15)

VAE 0.722 0.517 0.883 0.483 0.894 0.458
StripVAE 0.767 0.389 0.950 0.694 0.967 0.783

Fracture
(26)

VAE 0.734 0.465 0.712 0.365 0.596 0.479
StripVAE 0.401 0.497 0.564 0.397 0.641 0.346

ICH
(155)

VAE 0.670 0.441 0.768 0.427 0.731 0.509
StripVAE 0.597 0.424 0.773 0.410 0.789 0.383

Ischemia
(59)

VAE 0.778 0.533 0.843 0.533 0.822 0.511
StripVAE 0.759 0.411 0.897 0.620 0.880 0.682

Mass
(10)

VAE 0.500 0.458 0.592 0.558 0.525 0.513
StripVAE 0.542 0.517 0.625 0.492 0.758 0.517

Other
(30)

VAE 0.622 0.450 0.650 0.456 0.628 0.476
StripVAE 0.589 0.478 0.667 0.606 0.700 0.600

TOTAL
VAE 0.673 0.461 0.756 0.451 0.724 0.506

StripVAE 0.623 0.434 0.777 0.475 0.790 0.469
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