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ABSTRACT

Class-incremental semantic segmentation aims to progressively learn new classes
while preserving previously acquired knowledge. This task becomes particularly
challenging when prior training samples are unavailable due to data privacy or
storage restrictions, resulting in catastrophic forgetting. To address this issue,
knowledge distillation is widely adopted as a constraint by maximizing the sim-
ilarity of representations between the current model (learning new classes) and
the previous model (retaining old ones). However, knowledge distillation inher-
ently preserves the old-knowledge distribution with minimal modification. This
constraint limits the parameters available for learning new classes when substantial
information from old classes is retained. Furthermore, the acquired old knowledge
is often ignored to facilitate the learning of new knowledge, resulting in a waste
of previously learned procedures. The above two problems result in the risk of
class confusion and deviating from the performance of joint learning. Based on
such analysis, we propose Distribution-based Knowledge Distillation (DKD) via a
minimization—-maximization distribution strategy. On the one hand, to alleviate the
parameter competition between old and new knowledge, we minimize the distribu-
tion of old knowledge after releasing low-sensitivity parameters to old classes. On
the other hand, to effectively utilize the valuable knowledge previously acquired,
we maximize shared-knowledge distribution between the old and new knowledge
after approximating the new knowledge distribution via Laplacian-based projection
estimation. The proposed method achieves an excellent balance between stability
and plasticity in nine diverse settings on Pascal VOC and ADE20K. Notably, its
average performance approaches that of joint learning (upper bound) while effec-
tively reducing class confusion. The source code is provided in the supplementary
material and will be made publicly available upon acceptance.

1 INTRODUCTION

Recently, supervised semantic segmentation |Xie et al. (2021); Jain et al| (2023); Liao & Kong
(2025) has made significant progress, which typically requires closed-set datasets where all classes
are obtained at once for manual annotation. However, in real-world applications, new classes
continuously emerge and models trained on old data struggle to adapt to new class data. A naive
approach is to retrain the model on a combined dataset of old and new classes, known as joint training,
but this is time-consuming and the old data is often partially inaccessible due to privacy or storage
restrictions Yang et al.[(2023); Zhao et al.| (2023);|L1 & Hoiem|(2017); Baek et al.|(2022)). Therefore,
class-incremental semantic segmentation (CISS)|Cha et al.|(2021b)); Maracani et al.|(2021);|Zhang
et al. (2022b) emerged with the goal of continuously learning new classes while mitigating forgetting
old ones, even when old classes are unavailable. This task is essential in real-world scenarios such as
autonomous driving, medical image analysis, and environmental monitoring.

In recent years, CISS methods have focused on catastrophic forgetting|Cha et al.| (2021b); Douillard
et al.[(2021b); |Yuan & Zhao|(2024) and background shift|Cermelli et al.|(2020)); Park et al.| (2024);
Qiu et al.[(2023), enabling models to retain previously learned knowledge while adapting to new data.
To alleviate the aforementioned issues, some methods |Yoon et al.[(2017);|Qin et al.[(2021)) attempt to
dynamically expand the modules, but this strategy introduces an additional inference burden due to
the extra parameters. Hence, most CISS methods Cha et al.|(2021b)); Douillard et al.| (2021b); Baek
et al.[(2022); |Shang et al.|(2023);|Wang et al.|(2024) rely on static architectures, meaning the capacity
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Figure 1: Problems and Analysis. KD, a widely adopted strategy, inherently preserves the old
knowledge distribution with minimal change. However, as the number of new classes grows, this
strategy aggravates parameter competition and causes the capacity for new-class distributions to
become crowded. In addition, acquired old knowledge remains unused for step-wise guidance,
neglecting its valuable role in supporting the learning of new knowledge.

of the overall parameter-fitting knowledge space is fixed. Pseudo-label based cross-entropy (CE)|Cha
et al.| (2021b)); |Cermelli et al.| (2020) and knowledge distillation (KD) [Zhao et al.| (2023)); [Wang
et al.| (2024); |Yang et al.| (2022); |[Shang et al.| (2023); |[Baek et al.| (2022); [Cong et al.| (2023) are
typical strategies in CISS. Mainstream KD approaches used in static architectures can be broadly
categorized into two types. The first performs multi-level feature-based knowledge distillation (MKD)
by enforcing similarity between the frozen old model and the new model|Zhao et al.| (2023)); Wang
et al.|(2024). The second, to alleviate guidance from potentially incorrect pixel-level information in
the frozen old model, employs confidence map-based knowledge distillation (CKD), which retains
high-confidence pixel information for feature distillation [Yang et al.| (2022); Shang et al.| (2023]).
These mainstream KD approaches under a static parameter-fitting space hide a parameter competition:
excessive parameter fitting for old knowledge hinders the learning of new classes, while overfitting to
new knowledge leads to forgetting of old classes. When using KD to construct the similarity of the old
representations during different steps, the fitting capacity for new knowledge becomes increasingly
crowded as more classes are learned. This leads to a crowded distribution of new knowledge, as
illustrated in the light-blue region of Fig.[I] Moreover, this constraint causes the valuable knowledge
previously acquired to remain unused when learning new classes, as shown in the light-yellow region
of Fig.[I] Consequently, the model struggles to balance stability and plasticity and becomes prone to
class confusion, as illustrated in the right half of Fig.[I] This raises a critical question: Can we release
parameters and simultaneously reuse the acquired knowledge when learning new knowledge
without introducing an additional inference burden?

To address the above issue, we propose a Distribution-based Knowledge Distillation (DKD) via the
minimization—-maximization strategy. DKD releases previously occupied low-sensitivity parameters
to alleviate competition between old and new knowledge. Additionally, Laplacian-based projection
estimation produces two attention maps that identify reusable knowledge to guide the learning
of new knowledge: (1) A position map that represents the spatial regions in which all categories
coexist harmoniously, and (2) a confidence map that indicates the necessity of spatial reuse of old
category information within the distribution of the new model. Subsequently, we maximize the
shared knowledge distribution between old and new knowledge. As shown in Fig. 2(a-c), unlike
prior KD methods, DKD emphasizes parameter release and knowledge reuse for the learning of
new knowledge to mitigate parameter competition and reduce wasted knowledge. Experiments
demonstrate that dynamic parameter release facilitates greater parameter differences between the
incremental and initial steps (Fig.[2d)). Furthermore, knowledge reuse in DKD not only mitigates
catastrophic forgetting (as seen in the slower performance drop across incremental steps in the green
curve of Fig. 2Je)), but also significantly enhances new class learning, achieving higher pixel-level
classification accuracy with increasing incremental steps (Fig. 2[f)). Experiments on Pascal VOC
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Figure 2: Comparison with existing KD methods. Unlike previous approaches that freeze the
old model, our method dynamically adjusts knowledge distribution through parameter release and
knowledge reuse (as shown in a—c). This enables dynamic parameter adjustment (as shown in d),
mitigates catastrophic forgetting (as shown in e), and enhances new class learning (as shown in f).

2012 and ADE20K datasets demonstrate the effectiveness of our approach. Our main contributions
are summarized as follows:

* We show that mainstream KD for CISS overlooks parameter competition and underuti-
lization of acquired knowledge, motivating our Distribution-based Knowledge Distillation
(DKD) with a minimization—-maximization distribution strategy.

* To mitigate parameter competition, we minimize the distribution of old knowledge after
releasing low-sensitivity occupied parameters; to reduce the underutilization of acquired
knowledge, we reuse the acquired old knowledge to guide new class learning and maximize
the shared knowledge distribution. These two components constitute DKD.

 Theoretical analysis and extensive experiments validate our approach, delivering state-of-
the-art average performance and results close to the joint-training (upper bound).

2 RELATED WORK

In Class-Incremental Semantic Segmentation (CISS), the model is required to continuously learn
new classes for semantic segmentation while preserving the knowledge of previously learned classes,
addressing the challenges of catastrophic forgetting and background shift. Current research on CISS
can be broadly divided into three main types of methods: 1) Replay-based approaches [Cha et al.
(2021b); Maracani et al.| (2021)); Rebuffi et al.| (2017); |Chen et al.| (2025)); Yu et al.|(2024); Oh et al.
(2022)), which mitigate forgetting by storing or generating past data for rehearsal. Recall Maracani
et al.| (2021) leverages generative adversarial networks and web-crawled data to synthesize replayable
samples of previously learned classes for continual learning. To avoid the burden of storing old
data, TiKP [Yu et al.| (2024) employs text-to-image generation to replay samples of previously
learned classes. 2) Dynamic architecture-based approaches Yoon et al.[(2017); Qin et al.| (2021);
Aljundi et al.[(2017); Yan et al.|(2021), which expand the network structure to accommodate new
classes. BNS|Qin et al.|(2021) dynamically constructs task-specific networks to mitigate catastrophic
forgetting while facilitating knowledge transfer across tasks. EG |Aljundi et al.| (2017) progressively
introduces task-specific experts as the number of tasks increases, enabling dynamic expert selection
during inference. 3) Regularization-based approaches preserve previously learned knowledge by
constraining representations. To address background shift, MIB [Cermelli et al.| (2020) remodels
the background in the ground truth based on the output of the previous steps. MicroSeg |[Zhang
et al.| (2022b) introduces mask proposals to refine pseudo-labels. Building on the effectiveness
of knowledge distillation to alleviate catastrophic forgetting|Yang et al.|(2019); Heo et al.| (2019);
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Figure 3: Overview of the proposed Distribution-based Knowledge Distillation (DKD) via a minimiza-
tion—maximization distribution strategy. Our strategy introduces distributional constraints between
old and new knowledge—minimizing the old knowledge distribution via £py;,, while maximizing
the shared knowledge through L., after estimating the new knowledge distribution with Lg;.
This approach achieves parameter release (via L£j;;,,) and knowledge reuse (via Lgg; and Lprqz)-

Wang & Yoon| (2021)), IL [Michieli & Zanuttigh| (2019) leverages the outputs of the old model,
typically with frozen parameters, to supervise the trainable new model by maximizing the similarity
between intermediate representations and logits via distillation losses, a process known as multi-
level feature map-based knowledge distillation (MKD). Methods such as Comformer (Cermelli et al.
(2023), PLOP |Douillard et al.|(2021b), and CLIS |Zheng et al.|(2021)) adopt a confidence map-based
knowledge distillation (CKD), where high-confidence regions from the old model are selected and
retained at the pixel level to guide the distillation process. However, our method differs in that our
goal is to mitigate parameter competition between old and new knowledge while promoting the reuse
of acquired knowledge, thereby effectively balancing stability and plasticity in CISS.

3 METHOD
3.1 PROBLEM DEFINITION

In CISS, the learning process involves a sequence of incremental steps, denoted as t=1,2,3,..., T.
Following prior works [Cha et al.| (2021b)); Douillard et al.| (2021b)); \Cermelli et al.| (2020} |2023), we
adopt the overlapped setting, where the ground truth only includes labels for the currently learned
class C;, while all other classes, both previously learned and those to be presented in future steps, are
treated as background Cy. The CISS model f; ¢ in the t-th incremental learning step is parameterized
by 6, comprising a feature extractor and a classifier. Given an input image z, the predicted result is
obtained as y;, where the predicted category may belong to the old classes C'y.;—1, the new classes
C4, or the background class Cy.

3.2 DISTRIBUTION-BASED KNOWLEDGE DISTILLATION

(a) Parameter-driven minimization of old knowledge distribution. Rather than freezing the
parameters 6;_; of the old model, we dynamically update their utilization at each step to enable
adaptive knowledge retention and effective parameter reuse. To achieve this, as shown in Fig. ]a),
we first retrieve the weight matrix W; for each layer [ in the model. Then we compute the layer-wise
Euclidean norm (L2) of the weight matrix to assess its importance. For layer [, the weight matrix for a
convolutional layer is W, € RCouxCnxHix Wi ‘and for a fully connected layer, W€ € RCouCin,
Here, Cyy and Cj, denote the output and input channels (e.g., 3 for RGB), and H}, and W}, represent
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the height and width of the kernel. The calculation for each layer is as follows:

Cow Cin Hp Wi 2 . . )
5SS Wieihw) s if W™ is a convolutional layer.

o=14i=1h=1w=1

[Will2 = (D

S5 (leoﬂv)Q7 if WF€ is a fully connected layer.

o=11i=1
After computing the Euclidean norm, we apply a pruning threshold 7 = 0.1 (with experimental anal-
ysis in Appendix [C.5) to retain significant weights and prune those below the threshold. Specifically,
if the norm of a filter or output unit is less than 7, it is pruned, and its weights and bias are set to zero.
We define a binary pruning mask P, for each layer, where P, ; = 1 means the ¢-th unit in the {-th
layer is kept, and P} ; = 0 means it is pruned. The selection decision is expressed as P, ; = 1 when
IWiill2 > 7, and P, ; = 0 otherwise. Based on the resulting binary mask P, the weights W, and

biases B; of the old model are updated according to Wl =W; ® P, and Bl = B; ® P, respectively.
By adjusting the utilization of the old parameters in this way, the model maintains essential knowledge
while freeing up capacity for new classes. For each pixel location (h, w) associated with previously
learned classes ¢ € 1, ..., C;_1, the label y (h, w) is updated to alleviate background shift:

Yo (hyw) = ﬂ[yt(hﬂw) = C]ﬂfﬁl(h,w), (2)
where y; (h, w) is the prediction of step ¢ and ;1 represents the prediction after parameter release.
1 denotes an indicator function that outputs 1 if the condition inside the parentheses is satisfied, and
0 otherwise. To dynamically minimize the distribution of old classes in y;(h, w) during the current
learning step ¢ after parameter release, an optimization loss is introduced:

1

Through this computation, the output distribution of the old classes in the current-step model is
encouraged to closely match the output of the old model after parameter release. In this process, the
output of the parameter-released old model serves as the bound for this optimization, enabling the
current step model to dynamically minimize the usage of old-class parameters via the loss constraint.
Further theoretical analysis is provided in Appendix

(b) Laplacian-based projection estimation for constructing the new knowledge distribution. To
effectively leverage previously acquired knowledge when forming the new knowledge distribution,
we calculate a position map and a confidence map to identify where old knowledge is reusable
and how strongly it applies, and we constrain their utilization via the loss Lg4:;. We compute the
second-order gradient to identify low-curvature regions and store them in the position map P;(h, w),
where the representations of old 2and nevs; knowledge exhibit minimal difference and can coexist.
Pulow) = gz + s ) [vEhw) 0w = fiath )], @
Additionally, the confidence map C;(h,w) is generated to quantify the projection strength of old
knowledge along the direction of the new knowledge distribution. Given the current model feature
ft(h,w) and the label y (h,w) of Eq.[2} the confidence map is computed as:
< y::k(hv ’LU), ft(h‘v w) >
h,w) = 5
G )= =, wl, ©
Here, < -,- > denotes the dot product. A higher value of C;(h,w) indicates a stronger projection
between y*(h,w) and f;(h,w), suggesting a higher likelihood of reusing previous knowledge
in that region. Finally, to enforce the alignment between the feature representation f; and the
inferred coexisting region, we define the loss £;,, with the guidance of P(h,w). Besides, we
leverage the confidence map to guide the £, loss to constrain the model to preserve old knowledge
representations in high-confidence regions. As shown in Fig. [3(b), the overall loss of Laplacian-based
projection estimation for the construction of a new knowledge distribution is defined as:

Lopro
Liap
Ci(h,w)y* hw) —_—
Lgi=[1- o | 1P, 6
Est wahzlwz:l 7.0 Y1 fe = Pell2 (6)

where v = 1 by default, with experiments in Section 4.3 and theoretical analysis in Appendix [A.2]

(c) Entropy-induced optimization of overlap between new and old knowledge distribution. To
maximize the shared knowledge between the old and new distributions, we propose a loss constraint
Lnax based on information theory [Ash| (2012)). The objective is to encourage the model to exhibit
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low conditional entropy and high marginal entropy in its predictions. Given a batch of predicted
probabilities y?t ¢) € Rfor category c € {1,...,C:} and sample b € {1, ..., B}, we define marginal
probability 3, ) as the average prediction across the entire batch for class c:

1B
Uie) = D Yoy ™
b=1
The marginal entropy is then calculated as:
Cy
H(Y;) =~ Z?(t,c) 1og(Y(t,c))s (®)

c=1
where high marginal entropy H (Y;) reflects a well-balanced category distribution in the new feature
space, helps to avoid overfitting to specific old or new categories and promotes diversity. The
conditional entropy, measuring the uncertainty of new knowledge given the old, is defined as:

B C,
1
HYi | Yie) = =5 D 2 ¥ 08Wi.0): ©)
b=1c=1
where low conditional entropy H (Y; | Y;—1) indicates that the new knowledge distribution establishes
effective dependencies on the old knowledge, facilitating knowledge retention and constructive
transfer of prior information to form class-specific knowledge of step ¢. Finally, as shown in Fig. [3{c),
we define the Ly« loss to maximize the overlap between the old and new distributions as:
H(Y:) = H(Y; [ Y1)
) (10)
. log |C.’t71_‘ .
where |Cy_1] is the number of old classes for normalization. This loss encourages more general
knowledge between the old and new class distributions by maximizing shared knowledge representa-
tion while maintaining discriminative diversity across classes. Related theoretical analysis is provided

in Appendix

The overall optimization objective of DKD is formulated as follows:
Liowl = Lnin + Lesi + Lnvax + Lk, (11)
where Lcg denotes the cross-entropy loss Zhang & Sabuncul (2018)).

£Max = -

4 EXPERIMENTS
4.1 EXPERIMENT SETUPS

Following previous works |Cermelli et al.[(2020); |Yang et al.| (2023)); |Zhang et al.|(2023); |Park et al.
(2024), we evaluate our method on Pascal VOC 2012 [Everingham et al.|(2010) and ADE20K [Zhou
et al. (2017). We use ViT-B/16 |Dosovitskiy et al.|(2021)) pretrained on ImageNet |Deng et al.[(2009)
as the backbone and a decoder with two transformer blocks at 512x512 resolution. Optimization is
performed using SGD [Ketkar (2017) with momentum 0.9 and weight decay 1 x 10~ for 64 epochs
per step. The learning rate starts at 1 x 102 and is reduced to 1 x 10~* (Pascal VOC) or 5 x 10~
(ADE20K) in incremental steps. Experiments are run on 6 RTX 3090 GPUs with an Intel Xeon Gold
6226R CPU using PyTorch. Performance is evaluated using mean Intersection over Union (mlIoU).

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

Quantitative analysis on Pascal VOC 2012 and ADE20K. In addition to the widely explored
incremental settings of 15-1, 19-1, and 15-5 in previous works, we further evaluate the effectiveness
of our method in more challenging scenarios, specifically 10-1 and 2-2. These two settings involve
a larger number of incremental steps, making them more representative of practical incremental
learning scenarios. As shown in Tab. [I] our method achieves notable improvements over previous
approaches. For example, under the 2-2 setting, our method achieves a 3.9% improvement on the
old classes and a 1.8% gain on the new classes, leading to an overall improvement of 4.7% in the
combined class performance. When averaged across all five incremental settings, our method achieves
a gain of 1.7%, which demonstrates its effectiveness and generalizability in various CISS settings. We
further evaluate the effectiveness of our method on the ADE20K dataset under 4 different incremental
settings, as shown in Tab.[2] The results demonstrate robustness in handling more complex and
large-scale CISS tasks. The average performance closely matches that of joint training, which is
considered the upper bound under this architecture in CISS.

Qualitative analysis of forgetting resistance on old classes and plasticity on new classes. As
shown in Fig. [d{a), prior methods tend to misclassify parts of the class “horse” as “sheep”, indicating
partial forgetting of old knowledge. Besides, previous methods show unsatisfactory sensitivity to new
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Table 1: Comparative experiments on VOC dataset |[Everingham et al.| (2010). The optimal and
suboptimal performance are respectively represented in red and blue bold. The t symbol indicates
results reproduced following the publicly released code. Across five incremental settings, our method
achieves the highest average mloU, demonstrating robust learning ability.

Method Backbone 10-1 (11 steps) 2-2 (10 steps) 15-1 (6 steps) 19-1 (2 steps) 15 52 steps) Average
Old  New Old New All | Old New All | Old New All New  All
Joint ViT 850 847 849|773 855 843|839 79.1 828|844 79.6 842|855 803 843 84.1
MIB Cermelli et al. |(2020] Resnet101 | 123 13.1 127 | 41.1 234 259|342 135 293|714 236 69.1 |764 500 70.1 414
SDR |Michielt & Zanuttigh[(2021)  Resnet101 | 32.1 17.0 249 | 13.0 5.1 62 | 447 21.8 392 |69.1 326 674|754 526 700 415
PLOP |Douillard et al.|(2021a] Resnet101 | 440 155 304 | 241 119 136 | 651 21.1 546|754 374 736|757 517 700 484
SSUL"|Cha et al.|(2021a} Resnet101 | 74.0 532 64.1 - - - 784 490 714|718 498 765|784 558 73.0 -
MicroSeg|Zhang et al.|(2022b} Resnetl01 | 772 572 67.7 | 60.0 509 522 |81.3 525 744|793 629 785|820 592 766 69.9
REMINDER |Phan et al.[(2022) ~ Resnet101 - - - - - - 683 277 586|765 323 744|761 507 70.1 67.7
RCIL |Zhang et al.[(2022a] Resnet101 | 554 151 362|283 19.0 203 | 70.6 237 594|685 121 658|788 520 724 50.8
EWF | Xiao et al. [(2023} Resnet101 | 71.5 303 519 - - - 717 327 670|779 67 745 - - - -
LGKD |Yang et al. (2023} Resnet101 - - - - - - 70.6 309 61.1| 773 429 757|795 548 73.6
IDEC [Zhao et al.|(2023} ResNet101 | 70.7 463 59.1 - - - 7710 365 674 - - - 780 518 71.8 -
GSC |Cong et al.|(2023 ResNetl01 | 50.6 17.3 347 - - - 72.1 244 60.7 | 769 427 753 | 783 542 726 -
CoMasTRe |Gong et al. (2024} ResNet101 - - - - - - 69.8 43.6 635|751 695 749|797 519 731 -
Adapter [Zhu et al.|[(2025} Resnet101 | 749 543 65.1 | 628 579 586|799 519 732 - - - - - - -
MIB|Cermelli et al.|(2020} ViT - - - - - - 72.6 235 609 | 804 478 788|785 632 749 -
SSUL¥|Cha et al.|(2021a) ViT 743 51.0 632|603 406 434|781 334 675|808 315 785|797 553 739 65.3
MicroSeg|Zhang et al.|[(2022b} ViT 735 53.0 637|648 434 465|805 408 71.0|79.0 253 764|819 540 753 66.6
CoinSeg [Zhang et al.|(2023} ViT 80.1 60.0 705|701 633 643|827 525 755|815 448 79.8 821 632 776 73.5
MBS Park et al. (2024 ViT 80.0 729 76.6 | 675 734 703|819 656 78.0 |830 72.6 825|839 726 812 71.7
Nest |Xie et al.|(2024 ViT 652 358 512 - - - 770 533 714|797 600 788|812 674 779 -
Adapter-T [Zhu et al.|(2025) ViT - - - - - - 833 60.1 778 - - - - - - -
Ours ViT 81.7 728 775|740 752 750|834 66.1 793|828 741 824 | 848 764 828 794
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Figure 4: (a) Visual comparison under the 15-1 setting. (b) T-SNE visualizations under the 15-1
setting. Our method achieves more accurate pixel-level segmentation of old classes with strong
resistance to forgetting, while also reducing misclassification of new-class pixels. The t-SNE results
further demonstrate that our method achieves more compact intra-class distributions and more
dispersed inter-class distributions, indicating consistently low class-specific distribution overlap and
effectively mitigating class confusion.

classes, misclassifying “sheep” as “horse” or “cow”—classes seen during the base step. Our method
better preserves old knowledge and adapts more effectively to new classes.

Qualitative analysis of class-specific knowledge distribution and confusion. As shown in Fig.[#{(b),
we visualize the distributions of class-specific feature using t-SNE |Van der Maaten & Hinton| (2008)
for our method and recent approaches under the 15-1 incremental setting. The plots reveal both
intra-class compactness and inter-class separability. Compared to prior methods, our approach yields
tighter clustering of features within the same class, reflected by denser colored point groups, and more
distinct separation between different classes. This improved feature distribution reduces inter-class
entanglement and effectively mitigates class confusion. For example, the “person” class (in )
forms a noticeably more compact and isolated cluster, indicating enhanced class discrimination in
incremental learning scenarios.

Training time and convergence. While our approach achieves consistent effectiveness across various
incremental settings without increasing inference time, it introduces a slight training overhead for
single-class learning: about 7 seconds per epoch longer than CKD on a single GPU (MKD: 51s,
CKD: 53s, DKD: 60s). To evaluate convergence, we analyze the losses of MKD, CKD, and DKD in
step 1 of the 19-1 incremental setting (Fig.[5). All methods show a rapid loss decline in the early
epochs, but MKD and CKD exhibit higher initial loss and greater fluctuations, indicating less stable



Under review as a conference paper at ICLR 2026

Table 2: Comparative experiments on ADE20K Zhou et al,| (2017). Our method is capable of
effectively learning new knowledge and resisting catastrophic forgetting without accessing old-class
data for rehearsal. Notably, the average performance of our method across the four incremental
settings is very close to that of joint training, which is commonly regarded as the upper bound of
performance in CISS.

Method Backbone 100-5 (11 steps) 100-10 (6 steps) 50-50 (3 steps) 100-50 (2 steps) Average
New All | Old New All | Old New All | Old New
Joint ViT 495 38.0 457 | 49.7 384 46.0 | 550 41.1 59.7 | 489 382 454 49.2

SDR Michieli & Zanuttigh|(2021)  ResNetl01 | 36.7 5.7 264 | 289 11.7 232|429 254 399|375 255 335 30.8
PLOP|Douillard et al.|(2021a) ResNetl101 | 39.1 7.8 287 | 405 13.6 31.6 | 488 21.0 375|419 149 330 327
RCILZhang et al. [(2022a) ResNet101 | 385 11.5 29.6 | 39.3 17.7 32.1 | 483 246 409 | 423 188 345 343
SSUL|Cha et al.[(2021a) ResNetl101 | 399 174 324 | 402 18.8 33.1 | 484 202 365|413 180 336 339
REMINDER |Phan et al.|(2022) ResNet101 | 36.1 164 29.6 | 39.0 21.3 33.1 | 47.1 204 363|416 192 342 333
Microseg |Zhang et al.|(2022b) ResNet101 | 40.4 205 338 | 41.5 21.6 349 | 486 248 412|402 188 33.1 35.8

EWF [Xiao et al.|[(2023) ResNet101 | 41.4 134 321 | 415 163 332 - - - 412 213 346 -
IDEC [Zhao et al.|(2023) ResNetl101 | 392 146 31.0 | 423 17.6 34.1 | 474 260 420|420 182 341 353

GSC |Cong et al.|(2023) ResNet101 - - - 40.8 17.6 331 | 462 262 418 | 424 192 347 -
LAG |Yuan et al.|(2024) ResNet101 | 40.0 172 325 | 41.0 187 33.6 | 477 26.1 420 | 416 19.7 343 35.6

CoMasTRe |Gong et al.|(2024) ResNetl101 | 40.8 158 325|423 184 344 - - - 4577 260 392 -
Adapter|Zhu et al.|(2025) ResNetl101 | 42.6 18.0 345|429 199 353|493 273 440 | 43.1 236 36.6 37.6
MIB|Cermelli et al.[(2020) ViT 402 26,6 357 | 43.0 308 39.0|522 356 532|464 350 426 42.6
SSULT|Cha et al.|(2021a) ViT 413 16.0 329|407 190 335|495 213 380|419 201 347 34.8
Microsegf [Zhang et al.|(2022b) ViT 412 21.0 345|410 226 349|498 239 40.7|41.1 241 355 36.4
Coinseg|Zhang et al.[(2023) ViT 43.1 241 36.8 | 421 245 363 |49.0 289 454|416 267 36.7 38.8

CoMFormer|Cermelli et al.|(2023) ViT 395 136 309 | 406 156 323 - - - 447 262 38.6 -
INC|Shang et al.|(2023} ViT 46.9 31.3 41.7 | 485 346 439 | 562 378 568 | 494 356 448 46.8
MBS |Park et al.|(2024) ViT 457 227 38.1 | 48.1 352 438|556 39.8 58.6|494 376 455 46.5
Ours ViT 472 30.0 41.5 | 48.7 373 449 | 56.6 40.5 59.6 | 493 399 46.2 48.1
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Figure 5: Epoch-wise(left) and iteration-wise loss curves (right). DKD stabilizes quickly and
maintains a smoother trajectory, indicating better training stability and reliable convergence.

optimization. In contrast, DKD consistently achieves the lowest average loss and stabilizes quickly,
demonstrating superior training stability and robustness in class-incremental semantic segmentation.

4.3 ABLATION STUDIES

Impact of Adjusting the Distribution of Old Knowledge. To evaluate the effectiveness of adaptive
adjustment to the old model, we conduct an ablation study under the 10-1 setting. As shown
in Fig. |§Ka), the narrower orange shaded area compared to the blue one demonstrates that Ly,
effectively balances the performance between old and new classes. In addition, the performance of
the new classes improves significantly after incorporating Lyi,, as indicated by . This suggests
that dynamic adjustment of the old model’s parameters facilitates the learning of new knowledge.

Effectiveness of components in DKD. To assess the contributions  Table 3: Ablation study on the
of DKD’s loss components, we conduct an ablation study under individual loss of DKD.

the 10-1 setting, as shown in Tab. 3] Comparison of Grp. 1 with  Grp.|Lyin Lrsi Loiax 10-1
e . . Old New All
Grps. 2—4 reveals that each loss individually contributes to a slight T T X X X 635213 434
improvement in the performance of both old and new classes. Com- 2 | v 69.9 46.7 58.9
parisons between Grp. 2 and Grp. 5, as well as Grp. 2 and Grp. 6, i v / 2@3 gg% ggg
show that combining Ly, with Lgg; or Ly, enhances resistance 5| v v 82.1 70.8 76.7
to catastrophic forgetting and improves plasticity. The comparison 6 | v v |82.1 712769
s - 7 v/ |71.2 496 60.9
between Grp. 7 vs. Grp. 8 indicates that adjusting the old knowledge ¢ | , . [s17 728 775

by Lmin allows better adaptation to new classes. To ensure the best
overall performance across old and new classes, Grp. 8 is adopted as the configuration in this paper.

Impact of DKD. To evaluate the effectiveness of the proposed DKD in reducing class confusion,
we compute the class similarity matrix for the 10 incremental classes (from class 11 to 20) in the
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Table 4: Ablation study on the hyperparameter ~. In settings with fewer incremental classes, ~y

indicates hyperparameter insensitivity; conversely, ¥ = 0.4 performs best.

10-1 (11 steps) 19-1 (2 steps)
=0 ~=02 ~=04 =05 ~+=06 =08 =10 |9=0 ~=02 ~=04 ~=05 ~=06 =08 ~=1.0
Old | 804 763 817 826 800 805 802 |828 828 827 828 828 827 828
New | 69.0 666 728 708 699 700 703 | 742 743 740 743 740 740 741
Al |750 717 775 770 752 755 755 | 824 824 823 824 824 823 824

11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20

8 j§8:.000.84
2 0.6 ® . jb20.841.000.88
[=] <
s * x x X 13
0.4 14
<
> % 15
0.2 <
0 2 4 6 8 Step 16
. .901.000.920.890.84
® /©® MioU of baseline / onoldclasses 7 OO R
X/ MiIoU of baseline/ on new classes 18 0.870.921.000.910.84
- / Mean performance of haseline/ 19 0.870.890.911.000.90)
across old and new classes 20 0.830.840.840.901.00
(a) (®)

Figure 6: (a) compares the baseline with and without L,;;, , showing that it enables adaptive
adjustment of old parameters and knowledge distribution, facilitating new class learning while
mitigating forgetting. (b) and (c) show that DKD lowers similarity between incrementally learned
classes, reducing class confusion.

10-1 setting. This is shown in Fig.[6[b) (without DKD) and Fig.[6{c) (with DKD). In the figures, red
indicates higher similarity between classes, while lighter red and blue represent lower similarity. As
shown in Fig. |§Kb), without DKD, the similarity between the classes learned during the incremental
steps (classes 11-20) is relatively high, resulting in an overall similarity matrix with a reddish hue.
However, after applying DKD, as shown in Fig. [f[c), the similarity between the learned classes
significantly decreases. This suggests that the proposed DKD method effectively reduces class
confusion, which in turn enhances pixel-level CISS performance.

Ablation of hyperparameters. Based on the experimental results from 14 sets of hyperparameters,
as shown in Tab. EI, it is observed that for tasks with fewer incremental classes, such as 19-1, v has a
minimal impact on the performance of both old and new classes, as well as their average performance.
Thus, v in Eq. |§| is set to the default value of 1. As the number of incremental classes increases,
new knowledge tends to be underfit without strengthened knowledge reuse; setting y too large or
too small disrupts the performance balance between old and new knowledge. Thus, for tasks with
more incremental classes, such as the 10-1, both the individual performance of old and new classes,
as well as their average performance, reach optimal results when + is around 0.4. Accordingly, the
default value of v is used for the 15-5, 15-1, and 19-1 tasks on Pascal VOC. For settings involving
more incremental steps (10-1 and 2-2 on Pascal VOC) or a larger number of classes (100-50, 100-10,
50-50, and 100-5 on ADE20K), -y is set to 0.4.

Error Analysis. As shown in Tab. [5] we evaluate experimental Table 5: Repeated experiments
error by repeating the 10-1 configuration three times. The overall for error analysis.

standard deviation for combined old and new class performance is I 2 3 - Avg. Std.
approximately 0.1, confirming the stability and robustness of our ow 726 72.4 72.8 72.60 0.20
metrics. Additional analysis is provided in Appendix [C.7] All 774 77.4 77.5 77.43 0.06

5 CONCLUSION

In this paper, we propose Distribution-based Knowledge Distillation (DKD), a minimization—
maximization strategy designed to address parameter competition and knowledge reuse. DKD
first releases low-sensitivity parameters of the old model and applies Ly, to minimize the old-
knowledge distribution, thereby alleviating parameter competition under a static architecture. To
better estimate the distribution of new knowledge and promote the reuse of acquired knowledge,
we introduce Lgyi guided by Laplacian-based projection estimation. To further mitigate the un-
derutilization of previously acquired knowledge, we then employ Ly to maximize the shared
knowledge distribution through an entropy-induced optimization. We establish the rationality of
the method via theoretical analysis and demonstrate its effectiveness through extensive experiments.
This minimization—maximization strategy reduces class confusion and achieves near-upper-bound
average performance on ADE20K and Pascal VOC 2012, without incurring additional inference cost.
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We adhere to the ICLR Code of Ethics in data use, experimentation, and manuscript preparation. The
primary ethical considerations and compliance measures in this work are as follows.

Human subjects and identifiable information. This research does not involve human-subject
experiments and does not collect or process any personally identifiable information (PII) or sensitive
data. All experiments are conducted on publicly available datasets.

Data and licensing. We use the publicly available PASCAL VOC 2012 and ADE20K datasets under
their original licenses and terms of use. Beyond standard preprocessing (e.g., label usage), we do not
modify the data, synthesize new personal content, or inject information that could reveal identities.

Potential harms. Our continual-learning method can improve the stability and plasticity of semantic
segmentation in long-term incremental scenarios, and could, in principle, be adapted to sensitive
applications (e.g., surveillance). To reduce misuse risk: (1) we do not provide any data, models,
or scripts tailored for face recognition, tracking, or other privacy-intrusive tasks; (2) we encourage
practitioners to conduct application-level risk assessments (privacy, compliance, and security reviews)
prior to deployment, and to use our method only in lawful, legitimate, and ethical contexts.

Fairness, bias, and interpretability. Our experiments follow standard CISS architectures and
protocols from prior works, changing only the incremental-learning strategy. We provide theoretical
analysis in the appendix to improve interpretability.

Privacy and security. We do not introduce raw images or metadata that could identify individuals.
Training and evaluation do not involve inversion, re-identification, model stealing, or other high-risk
procedures. Released code will not include scripts or interfaces for downloading personal data.

Legal and regulatory compliance. The research complies with dataset licenses and applicable
copyright/usage terms. For any follow-up or regional extensions, users are responsible for ensuring
compliance with local laws and ethical review requirements.

Conflicts of interest and funding disclosure. We have no undisclosed commercial conflicts of
interest.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. In the following, we summarize the
measures we have taken:

Code Availability. To facilitate the review process, the related code is included in the supplementary
material. The released package includes model definitions, training scripts, and evaluation tools.
Detailed instructions are also provided, covering the environment setup (Python version, PyTorch
dependencies, and GPU drivers), execution commands, and hyperparameter settings, ensuring that
the experiments can be easily replicated.

Details of Experimental Setups. The descriptions of the dataset, implementation details, metrics,
baselines, and implementation configuration are provided in Appendix [B] In particular, we specify
the dataset splits, preprocessing steps, evaluation protocols, and the baseline implementations to
guarantee fair comparisons. All hyperparameters used in training and testing are documented in both
the main paper and the appendix.

Computational Resources. All experiments are conducted on six NVIDIA GeForce RTX 3090 GPUs
and an Intel(R) Xeon(R) Gold 6226R CPU, with a batch size of 16, using PyTorch for implementation,
as mentioned in Sectiond.1]and Appendix [B] We also record average training times and convergence
to provide a clear view of the computational requirements in Section[d.2]

Statistical Significance of Results. To verify the robustness of our conclusions, we conduct multiple
repeated experiments on complex tasks with a larger number of incremental steps. We observe that
the average performance deviation across all classes remains around 0.1, as detailed in Section 4.3
and Appendix In addition, we provide variance and confidence interval analyses for the main
results, which further demonstrate the stability and reliability of our method.

We believe these efforts ensure that our results can be reliably reproduced and extended by the
research community.
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APPENDIX

A THEORETICAL ANALYSIS

A.1 THEORETICAL ANALYSIS ABOUT Lsin

In this paper, to address the crowded distribution of old and new knowledge caused by parameter
competition, we propose a strategy to minimize the discrepancy between the output of the parameter-
released old model and the newly trained model over the old knowledge distribution in Section3.2]
(a). Here, the release is performed once per step for the old model, rather than at every epoch, and
therefore does not introduce additional training overhead. Given the current training step ¢, the
softmax output probability ¥ (h, w) represents the predicted probability of class c at position (h, w):

v > exp(zi(h,w))’
the standard derivative of the softmax with respect to the unnormalized prediction score (logit)
2y, (h, w) for class k at position (h, w) is

t

Sor = yh(0u — k). (13)
k
where d., is the Kronecker delta:
1, e=k
5= b ’ 14
o {0, c#k. 14
Thus, the loss gradient at the pixel (h, w) of Ly, can be written as:
Ol(h,w) oyt
_ * c 15
oz}, Z €0z (15
ceCt—1
== D urytOe — vb); (16)
ceCt—1
(i) When k € C*~! (old claaszes):
o = U=y tu Y e (17)
k ceCt—1 ctk

where the first term encourages the current model to increase the probability y! for this old class,
making it closer to the old model’s output y;, and the second term balances contributions from
other old classes to maintain probability normalization. For old classes k € C*~!, the gradient
direction encourages the current model’s output at the retained parameter locations to not fall below
the reference provided by the pruned old model, thereby achieving “soft target alignment”.

(ii) When & ¢ C'~! (non-old classes): y
T t *, b 18
82’}; Yk ;ﬁlycyca ( )
this positive gradient indirectly shrinks the knowledge distribution for non-old classes, as the opti-

mizer will adjust the logits during gradient descent to reduce this term, thereby alleviating crowded
parameter-fitting knowledge space for old classes.

A.2 THEORETICAL ANALYSIS ABOUT Lpst;

At pixel (h,w), let f := fi(h,w) € RP be the current feature and p := P;(h,w) € R the “low-
curvature coexistence point” inferred from the second-order information of Lok p. Let y¥ (h,w) >0
be the old-knowledge weight at this pixel. Define the pixel-wise distillation term o i p(f) =

yi(h,w) | f = fe—1(h,w)|2, the image-level distillation Lokxp = 7y > hwlokp (fie(h,w)),
and the Laplacian consistency Lyap = 75 > nw I fe(hsw) — Pi(h, w)|2. Here || - ||2 denotes the
Euclidean norm. For any pixel,

lexp(f) —Lekp(p) = yé‘(hw)(llf = fieall2 = llp = ft—lH?) < yelhw) [[f = pll2, (19)
where the inequality follows from the reverse triangle inequality ||u|2 — ||v]l2 < ||u — v]|2 with
u=f — fi—1and v = p — f;_1. Averaging over all pixels and letting ymax := maxy, ,, y;:(h, w)
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yields
1 *
£C’KD(ft) - LCKD(Pt) S HW hgwyc (h?w) ||ft - Pt||2 S Ymax [flap- (20)

Decreasing L;,, guarantees at least a linear reduction of the distillation gap, with proportionality
governed by ¥y’ —this is the direct, mathematical form of “reusing old knowledge.”

Fix a pixel (h, w) and write

fi(h,w) € RP, 21)
y=yc(hw)e (22)
; f
= 23
T 9
C¢(h,w) preserves the degree of reusable old knowledge
Cilh,w) = (f) = <ﬁ” ”f ) (24)
and denote a scalar weight by . The pixel-wise part of Ly, is then
J(f) = —wCi(h,w) = —d¢(f), (25)
which matches the global definition; )
Lpro =1- W ’(I/(h,,w) Ct(h,w), (26)
h,w
Ct(h,u]) — <yC (h?w)7 ft(h’w)> (27)

1 fe (R, w)ll2

(i) Gradient of C;(h,w). Write ¢(f) = N/D with N := 5T fand D := || f||2 = (f " f)'/2. Then
VN =yand VD = f/||f|l2 = f. By the quotient rule, )
DVyN-NVD _ |flay—"f)f

\Y = =
7o) D7 i
=L(y—(fT )f) (I-11M)y. (28)
1112 ||fH
(ii) Descent direction for the pixel-wise objective. Since J(f) = —w ¢(f) with w treated as a
local constant, R
Vi) = —0Vsolf) = = (1= 1)y, (29)
A gradient descent step f* = f —nVJ(f) (n > 0) yields the increment
Af = I = =Py = A« (=7 ] 60

This indicates that our update direction is the steepest ascent direction of the projection-based
alignment, thereby aligning the current representation—without increasing its norm—under the
guidance of the knowledge. The larger w(h,w) emphasizes high-confidence regions where old
knowledge can be reused, guiding the update equation [30]to align the features with old knowledge.
In contrast, low-confidence regions are scarcely affected, preserving capacity for new knowledge.

A.3 THEORETICAL ANALYSIS ABOUT L/qz

Suppose y?t o € [0, 1] denotes the predicted probability (softmax output) of sample b € {1,..., B}
at step ¢ for class ¢ € {1,...,C:}, with Zc 1 y +.c) = 1. Define the batch marginal (per class)
B

1
(te) = T D Yoy 31)
b:l
the marginal entropy
Ct
H(Y) == U0y logTs,0)» (32)
c=1
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and the conditional entropy proxy

B C,
()/f | Y, 1 Z Z (t,c) log y?t,c)' (33)
b: c=1
The objective is
HY;))—H(Y;|Y:— 1Y, Yo
o O ZHY | Yiy) | I(0Yi) .
log |Cy—1] log [Cy—1]
(i) Gradient of the marginal entro;zy ()chain rule).
Y; 1 _
8y€’t B =3 ( —1—log y(tyc)). (35)
(ii) Gradient of the conditional entropy (per-sample derivative).
OH(Y:i [ Vi) _ —l<1+1ogy§ )) (36)
b - t,c) |-
O(e.c) B
(iii) Gradient of Ly (difference and normalization). Combining equation [35}-equation [36]
b
OLMax 1 Y(t,c)
= log 37
ay?t7c) B log |Of 1| Y(t,e)
1 Yl
b, new b (t,0)
~ o T log——=. (38)
Yit.c) Yttey TN Blog|C,_1] gy(t’c)

If yg’t,c) > Y(t,c)» then log% > 050 OLMax /Oy < 0; a gradient descent step y < y — 17 9Lmax /Oy
(n > 0) increases y, making the per-sample distribution sharper (lower H(Y; | Yi_1)). If yé’tw <
Y(t,c)> the sign reverses and y decreases; aggregated over the batch, this pushes y toward balance
(higher H(Y})), mitigating collapse. Since Ly = —I(Y:;Yi—1)/log |Ci—1|, minimizing Ly is
equivalent to maximizing I(Y:; Y:—1): it enforces low conditional entropy (sample-wise certainty
given old knowledge) and high marginal entropy (batch-wise class balance). The former injects
old discriminative knowledge into current predictions (retention/transfer), while the latter preserves
capacity and diversity for new classes. Together, the update sharpens per-sample distributions
and balances class usage across the batch—maximizing shared information between old and new
distributions and thereby enabling “old-to-new” knowledge reuse.

B DETAILS OF EXPERIMENTAL SETUPS

Dataset. Following previous works (Cermelli et al.| (2020); [Yang et al.| (2023); Zhang et al.| (2023);
Park et al.|(2024), our method is evaluated on the Pascal VOC 2012 |[Everingham et al.|(2010) and
ADE20K [Zhou et al.[(2017) datasets. The Pascal VOC dataset|[Everingham et al.| (2010), a widely
used benchmark for incremental segmentation, comprises 10,582 training images and 1,449 validation
images across 20 categories. Additionally, the more challenging ADE20K dataset|Zhou et al.| (2017)
includes 150 categories, with 20,210 training images and 2,000 validation images.

Implementation details. Following established practices |[Park et al.| (2024)); [Zhang et al.| (2023)),
we use ViT pretrained on ImageNet-1K as the backbone network. The decoder is composed of two
transformer blocks, processing image patches at a fixed resolution of 512x512. Model optimization
is conducted using stochastic gradient descent (SGD) with a momentum of 0.9 and a weight decay
of 1 x 10~°. Each training step in both the base and incremental steps is conducted for 64 epochs.
The learning rate starts at 1 x 1073 in the base step (¢ = 1) and is adaptively adjusted in subsequent
incremental steps (¢ > 1). For Pascal VOC, the learning rate is reduced to 1 x 10~# in the incremental
steps, while for ADE20K, it is set to 5 x 10~%. We set 7 = 0.1 for all experiments, and +y is initialized
to 1. For tasks with more incremental classes, including the 10-1 and 2-2 configuration of VOC
and all incremental configurations of ADE20K, 7 is set to 0.4. All experiments are conducted on 6
Nvidia GeForce RTX 3090 GPUs and an Intel(R) Xeon(R) Gold 6226R CPU, with PyTorch used for
implementation.
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Metrics. In this paper, the performance of incremental semantic segmentation is evaluated using the
commonly adopted mean Intersection over Union (mIoU) metric, consistent with previous methods.
In the supplemental material, we additionally report Accuracy (ACC) to compare performance
differences among subcategories. In our terminology, “Old” refers to the mIoU of old classes from
the base step, “New” denotes the mIoU of new classes introduced in incremental steps, and “All”
represents the mloU across all classes, including background.

Baselines. In CISS, most current methods (Cermelli et al.| (2020); Yang et al.| (2023)); Zhang et al.
(2023); |Park et al.| (2024)) focus on optimizing incremental learning strategies rather than the ar-
chitectural design. The primary architectural difference among existing methods lies in the choice
of backbone—typically either ResNet101 or ViT. In this paper, we compare our method with both
ResNet101-based and ViT-based approaches on the VOC and ADE20K datasets. To demonstrate
that our method is not limited to ViT-based architectures, we replace the backbone in CoinSeg
with ResNet101 and apply our proposed DKD strategy for performance validation. We also report
re-implementation results of existing methods with ViT as the backbone, such as MBSt and SSUL{.
Additionally, we provide the performance of our architecture under joint training across multiple
incremental configurations, which is currently considered the upper bound of incremental learning
for models in this field |Yang et al.[(2023)); Baek et al.[(2022).

Incremental configurations. In addition to the widely explored incremental configurations on
the VOC dataset—15-1, 15-5, and 19-1. This paper also conducts experiments on configurations
with more incremental steps, such as 10-1 and 2-2. Furthermore, we evaluate our method on
four configurations on ADE20K: 100-50, 50-50, 100-10, and 100-5. These diverse experimental
setups allow for a comprehensive assessment of the robustness of our approach under various
incremental learning settings. For example, the 19-1 setting represents a typical setting where most
foreground classes (19 in total, excluding background) are learned in the base step, with only one
new class introduced in the incremental step. In the 2-2 configuration, the model is initially trained
on 2 foreground classes, with 2 additional classes added at each of the 9 subsequent incremental
steps—culminating in 18 new classes. This setup reflects a representative case of a substantial number
of classes to be acquired incrementally.

C ADDITIONAL EXPERIMENTS

C.1 PERFORMANCE COMPARISON IN THE DISJOINT SETTING

As shown in Tab. [6] in addition to the commonly explored overlap setting, we also conduct a
quantitative analysis on the VOC dataset using an additional disjoint setting. In the overlap setting,
the background includes previously learned classes, the classes to be learned at the current step, and
the classes to be learned in future steps. In the disjoint setting, the background excludes classes
required for future steps. Taking into account both old and new classes, our method achieves the best
results in all three incremental configurations under the disjoint setting, with overall improvements of
0.2%, 0.1%, and 0.9%, respectively. In cases with fewer incremental steps and fewer new classes
to learn, our method demonstrates better learning of new classes. Specifically, in the 19-1 task, our
method improves the MIoU metric by 5.2%. In the 15-1 task, with more incremental steps, our
method achieves a 4% improvement on new classes. This demonstrates that our method is not only
effective for the overlap setting mentioned in Tab. 1 in the main paper, but also excels in CISS under
the disjoint setting, showing both resistance to forgetting old classes and adaptability to new ones.

C.2 PERFORMANCE COMPARISON ON INDIVIDUAL CLASSES

To analyze the impact of our method on the 20 foreground classes in VOC under the widely explored
overlap setting, we compute the MIoU values of the 20 subcategories for both our method and the
MBS method across three different incremental configurations. Considering the average performance
across the 20 foreground classes as shown in Tab. [/ our method achieves the best results in multiple
incremental configurations, with improvements of 1.6%, 1.3%, and 2.5%, respectively. In the 2-2 task
with more incremental steps, our method demonstrates significant resistance to forgetting, particularly
for the “Aeroplane” and “Bottle” classes, with improvements of 17.8% and 29.0%, respectively.
Additionally, in the 15-5 incremental configuration, our method improves the performance of new
classes—*‘Potted plant”, “Sheep”, “Sofa”, “Train”, and “TV monitor”—by 3.2%, 2.1%, 5.6%, 4.0%,
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Table 6: Performance comparison of the disjoint setting on the VOC dataset. Unlike the overlapping
setting, which has been widely explored in Tab. 1 of the main paper, the disjoint setting only includes
the classes from the current step C} and the previous old classes C7.;_1, without including any future
classes. The optimal and suboptimal performances are respectively represented in red and blue
bold. The { symbol indicates results reproduced following the publicly released code. Our method
demonstrates notable performance gains across most incremental configurations, including a 5.2%
improvement in new classes for 19-1 and a 4% boost in new classes for 15-1.

19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)
Old New All | Old New All | Old New All

Method Publication = Backbone

Joint - ViT 845 80.6 843|853 807 842|853 804 841

MiB Cermelli et al.|(2020) CVPR 2020 ResNetl01 | 69.6 25.6 675 | 71.8 433 650|462 129 383
MiB|Cermelli et al.|(2020) CVPR 2020 ViT 80.6 452 789|750 599 714667 263 571
SDR Michieli & Zanuttigh|[(2021) CVPR 2021 ResNetl101 | 69.9 373 683 | 73.5 473 673|592 129 482
PLOP|Douillard et al.|(2021a) CVPR 2021 ResNetlOl | 754 389 737 | 71.0 428 643|579 13.7 474

RBC|Zhao et al.|(2022) ECCV 2022 ResNetl01 | 76.4 458 749 | 75.1 49.7 69.1 | 61.7 195 51.7
RBCf[Zhao et al.|(2022) ECCV 2022 ViT 809 421 79.1 | 777 59.1 733 | 69.0 284 593
MBS |Park et al.|(2024) ECCV 2024 ViT 844 70.8 838 | 827 68.6 793|810 62.0 765

Ours - ViT 844 76.0 84.0 | 82.8 685 79.4 | 809 66.0 77.4

and 4.3%, respectively. Based on the above analysis, our method is shown to be effective not only
for configurations with fewer incremental steps (e.g., 15-5) but also for tasks with more incremental
steps (e.g., 2-2).

Table 7: Performance comparison of the overlapping setting between our method and the recent
MBS method on 20 individual classes in VOC (excluding the background class). 1 and | represent
the magnitude of improvement and decline in MIoU, respectively, when compared to MBS |Park
et al.| (2024). Considering the 20 foreground classes in VOC, our method achieves the best multi-
class average performance in all 3 configurations, with improvements of 1.6%, 1.3%, and 2.5%,
respectively.

MBS Park et al.|(2024) Ours Comparison
15-5 15-1 2-2 15-5 15-1 2-2 | 15-5 15-1 2-2

Aeroplane | 94.3  93.7 68.3 949 924 86.1 | 106 |13 117.8
Bicycle 455 463 42.6 446 446 438 | J]09 |17 112

Class Name

Bird 92.1 83.0 80.4 94.1 865 87.1 | 120 135 716.7
Boat 809 773 60.6 81.3 805 59.0 | 104 132 |16
Bottle 84.1 85.6 54.6 885 854 836 | 144 102 1290
Bus 923 928 80.5 93,5 952 8L.7| 112 124 112
Car 92.1 894 82.1 922 916 80.1 | 10.1 122 J2.0

Cat 95.3 93.7 94.9 955 947 951|102 11.0 10.2
Chair 52.7 46.1 44.9 51.6 537 455 | [1.1 17.6 10.6
Cow 95.2 95.7 91.7 952 940 893 | 00 |17 |24
Dining table | 61.9 55.2 59.1 639 600 60.1 | 12.0 148 T11.0
Dog 91.6 88.7 88.8 935 919 916 | 119 132 128

Horse 933 925 890 | 933 91.8 80| 00 107 J10
Motorbike | 89.4 89.7 867 | 900 904 834|106 107 |33
Person 894 836 89.6 | 902 897 902|108 111 106
Potted plant | 684 602 678 | 71.6 632 658 | 132 130 120
Sheep 899 865 784 | 920 852 760|121 |13 |24
Sofa 454 351 368 | 510 388 390|156 137 122
Train 864 813 642 | 904 808 676|140 |05 134
Tvmonitor | 73.0 647 727 | 773 623 705 | 143 |24 |22
Avarage | 80.7 773 717 | 822 786 742|116 113 125
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C.3 ABLATION STUDY OF THE BACKBONE

To further assess the generalizability and compatibility of our proposed DKD strategy beyond ViT-
based architectures, we also evaluate its effectiveness when integrated into a ResNet101-based CISS
framework. In particular, we adopt CoinSeg, built upon ResNet101 as backbone, and incorporate our
DKD module. We then conduct experiments under the 19-1 task setting to measure its performance.
As shown in Tab. [§] we report the detailed performance of the original CoinSeg (with ResNet101
backbone) and CoinSeg enhanced with DKD across all 20 foreground classes and the background.
For the new class “Tv monitor”, the original CoinSeg achieves a MIoU of 43.5%. After integrating
DKD, the performance improves significantly to 48.3%, resulting in a 4.8% gain. Averaged over all
20 foreground classes and background, the ResNet101-based architecture obtains a 0.3% increase
in MIoU and a 0.5% improvement in overall accuracy (ACC) with DKD. These results clearly
demonstrate that our DKD strategy is not limited to ViT-based models, but also exhibits compatibility
and orthogonality with ResNet101-based architectures.

Table 8: Performance Comparison on CoinSeg (ResNet101) and CoinSeg + DKD (ResNet101).
When applied to architectures with ResNet101 as the backbone, our method yields substantial gains
in the segmentation performance of newly introduced categories. Specifically, under the 19-1 setting,
the mIoU for the new class (TV monitor) improves by 4.8%, highlighting the adaptability and
effectiveness of our approach beyond ViT-based models.

Coinseg (ResNet101) Coinseg + DKD (ResNet101)
Class Name MIoU Acc MiIoU Acc
Background 92.0 95.6 92.2 95.7
Aeroplane 90.2 95.8 89.1 96.1
Bicycle 38.3 89.2 37.1 90.5
Bird 91.2 95.9 91.5 96.3
Boat 68.6 88.5 68.0 90.2
Bottle 76.3 92.8 76.3 93.2
Bus 92.3 95.6 93.2 96.3
Car 86.2 92.8 85.0 93.1
Cat 95.1 98.6 93.5 98.0
Chair 31.5 40.8 33.2 43.1
Cow 84.1 91.2 83.6 90.7
Dining table 55.1 62.4 56.2 65.4
Dog 88.5 95.0 87.6 94.1
Horse 79.9 88.8 80.1 90.4
Motorbike 87.5 95.5 87.7 95.9
Person 88.0 91.1 87.6 91.5
Potted plant 53.4 68.9 55.3 72.7
Sheep 76.1 89.9 76.4 89.6
Sofa 45.8 53.8 48.0 57.0
Train 88.4 92.7 88.9 93.3
Tv monitor 43.5 85.8 48.3 77.0
Average 73.9 85.7 74.2 86.2

C.4 MORE EXPERIMENTS ABOUT THE PROPOSED DKD.

To evaluate the effectiveness of our method within other CISS methods, we integrate the proposed
DKD strategy into the original CoinSeg, employing a ViT backbone under the 19-1 incremental
setting. We then compare the performance with the original CoinSeg method. As shown in Tab. [0}
by augmenting CoinSeg with our DKD while retaining its original learning strategy, the MIoU for
the new class “Tv monitor” is significantly improved by 20.2%. Moreover, considering the average
performance over all 20 foreground classes and the background class, our method brings an overall
mloU improvement of 1.3% and an accuracy (ACC) gain of 0.6%. These results demonstrate that our
DKD strategy not only enhances the model’s ability to acquire new class knowledge but also helps
preserve knowledge of previously learned classes by mitigating catastrophic forgetting. Besides, we
also conducted related experiments on incremental remote sensing data. On the iSAID dataset, joint
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training achieved upper bounds of 45.2 and 52.3 for old and new classes, respectively. Our method
achieved 44.6 and 49.3, showing that it can perform close to joint training, which is considered the
upper bound for incremental tasks.

Table 9: Performance Comparison on CoinSeg (ViT) and CoinSeg + DKD (ViT). The integration of
the proposed DKD loss into the existing CoinSeg framework highlights its flexibility as a plug-and-
play module. Notably, DKD boosts the mIoU of the novel class “TV monitor” by 20.2%.

Coinseg (ViT) Coinseg + DKD (ViT)
Class Name MIoU Acc MiIoU Acc
Background 93.0 96.3 94.0 97.2
Aeroplane 88.1 92.1 90.5 95.0
Bicycle 42.9 86.6 42.7 89.7
Bird 95.1 97.1 95.1 97.4
Boat 74.9 88.0 75.6 89.1
Bottle 85.3 94.6 85.1 94.8
Bus 95.0 97.3 95.6 97.5
Car 90.5 92.4 90.3 92.4
Cat 96.2 98.3 96.2 98.3
Chair 48.1 59.5 49.0 62.3
Cow 93.8 97.7 93.7 98.0
Dining table 58.4 60.1 59.1 61.0
Dog 92.9 97.7 92.6 97.8
Horse 91.7 94.6 92.2 95.2
Motorbike 92.4 95.9 92.5 96.1
Person 89.7 92.6 89.8 93.0
Potted plant 68.6 85.0 68.6 85.8
Sheep 93.2 95.3 92.5 95.6
Sofa 59.5 67.9 60.1 68.6
Train 90.8 92.2 90.9 92.4
Tv monitor 38.6 86.1 58.8 82.8
Average 79.9 88.9 81.2 89.5

C.5 ABLATION STUDY OF THRESHOLD T

Through the ablation study, we validate the necessity of releasing old parameters based on the
value of 7. Specifically, by comparing Groups (Grps.) 1 and 2 in Tab. 3 of the main paper, we
observe that releasing old knowledge parameters with the assistance of 7 and minimizing the old
distribution can enhance the plasticity of new knowledge. To assess the reasonableness and impact
of selecting the threshold 7 during the release of old model parameters, we conduct experiments
with five different values of 7 on the 10-1 and 19-1 incremental configurations. As shown in Tab.
we evaluate the performance of different 7 values on old classes (including the background
class), new classes emerging in the incremental steps, and overall performance across all classes
(including the background class). In the 10-1 task, when 7 increases from 0.05 to 0.1, we observe a
0.3% performance improvement on new classes, while in the 19-1 task, the improvement reaches
1.6%. Thus, increasing 7 can enhance the ability to learn new classes. By observing the performance
changes of 7 values between 0.15 and 0.4, we find that excessively large values of 7 lead to the
forgetting of old classes. Based on the experiments in Tab. we conclude that if the priority is
to preserve the performance on old classes, 7 = 0.05 is a good choice. However, if the focus is on
learning new knowledge, 7 = 0.1 is a better option. For all experiments in this paper, we use 7 = 0.1,
which is more favorable for learning new classes in the incremental steps.

To further validate that pruning with a predefined threshold does not lead to significant forgetting
of previously learned classes, we conduct experiments under the 19-1 setting. Specifically, we
first load the model at step O of the 19-1 task and evaluate its performance without pruning (W/O
pruning), measuring the mIoU and ACC on the 19 classes already learned. Next, we apply pruning
and re-evaluate the same model (W pruning) on the identical set of 19 classes. As shown in Tab.
the results indicate that this pruning strategy induces only negligible performance degradation.
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Table 10: Ablation study on the threshold 7. Considering both tasks with more incremental steps (e.g.,
10-1) and tasks with fewer incremental steps (e.g., 19-1), we evaluate the resistance to forgetting for
old classes, the ability to learn new classes, and the average performance across all classes (including
the background class). Based on the performance on new classes, we select 7=0.1 as the value for all
experiments.

10-1 19-1
7=005 7=01 7=015 7=02 7=03 7=04|7=005 7=01 7=015 7=02 =03 7=04
Old 83.1 81.7 81.8 81.6 81.1 76.9 83.1 82.8 82.6 82.4 82.4 1.1
New 72.5 72.8 72.9 72.1 64.5 49.4 72.5 74.1 72.8 72.3 71.9 3.1
All 78.1 77.5 77.6 77.1 73.2 63.8 82.6 82.4 82.1 81.9 81.9 1.2

Table 11: Impact of parameter pruning on the performance of learned classes. The results show that
pruning leads to only a minor performance drop on the learned classes, indicating that it does not
cause significant forgetting.

W pruning W/O pruning
Class Name MlIoU Acc MlIoU Acc
Aeroplane 93.2 97.5 943 97.6
Bicycle 43.9 89.6 45.2 90.5
Bird 93.1 96.2 94.8 97.6
Boat 78.5 91.0 78.2 91.8
Bottle 86.4 95.4 87.7 96.2
Bus 92.8 95.5 92.7 95.5
Car 88.8 95.7 89.8 96.3
Cat 94.4 97.1 954 97.4
Chair 51.7 67.4 55.7 74.6
Cow 95.0 97.2 95.3 97.7
Dining table 62.6 65.1 63.9 66.5
Dog 93.2 97.1 94.3 97.9
Horse 92.7 95.2 92.6 94.9
Motorbike 85.9 91.5 86.7 91.7
Person 88.5 93.6 89.3 94.4
Potted plant 71.7 85.8 72.5 96.4
Sheep 91.4 93.9 94.4 96.6
Sofa 57.2 63.2 57.6 63.2
Train 90.8 98.3 90.6 98.3
Tv monitor | Unseen classes Unseen classes | Unseen classes Unseen classes
Average 82.3 90.2 83.2 91.1

Furthermore, ablation results confirm that parameter release, under the guidance of Ly, effectively
promotes the learning of new classes in subsequent steps (refer to Tab[I2] and Sec. [C.6] for more
details). These findings demonstrate the effectiveness of our parameter release strategy.

C.6 FURTHER EVALUATION OF DKD COMPONENT EFFECTIVENESS.

To evaluate the individual contributions of the 3 loss components (Lyin, Lgsti> and Lypax) in DKD,
we conduct an ablation study focusing on their respective roles. As shown in Tab.[I2] experiments
are conducted under 10-1, 15-1, and 19-1 settings to evaluate the effectiveness of the component
in different complex incremental scenarios. Comparing Grp. 1 with Grps. 2—4 show that each loss
function individually helps slightly mitigate the performance imbalance between old and new classes.
After adding the Ly, loss, the new classes in the 10-1 setting, which involve more incremental steps,
show a 25.4% improvement over the baseline Grp. 1. In settings with fewer incremental steps, such
as 15-1 and 19-1, the performance on new classes improves by 4.1% and 3.3%, respectively. These
results demonstrate that the adaptive adjustment and optimization of the old model’s parameters
during the distillation process significantly enhance the plasticity of new knowledge in continuous
learning. Comparisons between Grp. 5 and Grp. 8, as well as Grp. 6 and Grp. 8, show that
combining Ly, With either Lgg; or Lyax significantly improves the balance between old and new
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Table 12: Ablation study of the components of the proposed DKD across multiple incremental
configurations. Through various incremental learning setups, it is observed that each loss function
helps promote a better balance between the performance on old and new classes.
Grp. | Lvin Lrsti Lvax 10-1 (11 Steps) 15-1 (6 Steps) 19-1 (2 Steps) Average

Old New All | Old New All | Old New All | Old New All
X X X 635 213 434|749 383 66.2 | 833 66.7 825|739 421 64.0
v 699 467 589 | 81.8 424 724|825 700 819|781 53.0 71.1
727 452 59.6 | 81.0 36.6 704 | 829 69.7 823|789 505 70.8
68.7 357 53.0| 822 50.1 746|829 71.0 823|779 523 70.0
82.1 70.8 76.7 | 822 68.0 788|826 698 820823 695 792
82.1 712 769 | 833 67.0 794|826 723 821|827 702 795
712 49.6 609 | 812 399 714|829 702 823|784 532 715
81.7 728 715|826 700 79.6 | 828 741 824|824 723 798
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class performance, enhancing resistance to catastrophic forgetting and knowledge plasticity. The Grp.
7 vs. Grp. 8 comparison indicates that refining the old knowledge by Lyin allows better adaptation
to new classes. Ablation experiments conducted under 3 different incremental settings effectively
validate the role of the 3 distinct losses in class-incremental semantic segmentation. This further
demonstrates that the combination of these three losses enhances the model’s ability to learn new
classes while resisting catastrophic forgetting of old classes across various incremental settings.

C.7 FURTHER EXPERIMENTS OF ERROR ANALYSIS

Table 13: Error analysis. The overall performance error of the mean is approximately 0.1

10-1 (11 steps) 2-2 (10 steps) 15-1(6 steps) 19-1 (2 steps) 15-5 (2 steps)

1 2 3 Average  Std 1 2 3 Average  Std 1 2 3 Average  Std 1 2 3 Average  Std 1 2 3 Average  Std
81.8 820 81.7 81.83 0.15
726 724 728 7260 020
774 714 715 77.43 0.06

Old
New
All

740 741 740 74.03 0.06
752 747 750 7497 025
75.0 746 749 74.83 0.21

834 832 833 83.30 0.10
66.1 664 660 6617 021
793 792 792 79.23 0.06

828 828 826 82.73 0.12
740 741 740 7403  0.06
824 824 822 82.33 0.12

84.8 848 847 84.77 0.06
764 762 762 7627 0.12
828 828 827 82.77 0.06

As shown in Tab. [T3] we evaluate the experimental variability by conducting repeated experiments
under the 10-1 and 19-1 settings. Among them, 10-1 represents a complex incremental setting with
numerous incremental steps, while 19-1 involves a greater number of classes learned during the base
step. We select these two representative and challenging settings for error analysis. Each setting is
run three times, recording the mloU for old classes (Old), newly introduced classes (New), and all
classes excluding the background (All). We report the mean and standard deviation (Std) across three
repeated experiments. The results show that the overall variability for the combined performance of
both old and new classes is consistently close to 0.1, further validating the stability and reliability of
the performance under varying incremental learning conditions.

D MORE QUALITATIVE ANALYSIS

To further validate the effectiveness of our proposed method in improving pixel-level semantic classi-
fication accuracy, we present more qualitative comparisons with recent state-of-the-art approaches
in Figs. [/H10lunder 15-1 setting. As illustrated in the second row of Fig. [/| existing methods tend
to confuse the background “cloth” with the “sofa” class after learning sofa-related knowledge in
the incremental step. In the third row, “windows” are mistakenly segmented as “TV monitor” or
“sofa”, indicating that these methods struggle to distinguish fine-grained class segmentation when
integrating new knowledge. Our method maintains the stability of previously learned classes while
effectively acquiring new concepts, demonstrating improved plasticity in adapting to new classes. Fig.
[ provides additional results, where the first row shows a case of “motorcycle” being largely forgotten
after five incremental steps. Some methods fails to retain the object’s contour and misclassifies
it as other irrelevant categories. A similar confusion is more evident in Fig. [0]in the background
of the first row. Our approach successfully preserves fine-grained class distinctions, significantly
reducing pixel-level misclassification. In the final row of Fig. [I0] existing methods confuse the “chair”
occupied by a baby with a “sofa”. Our method achieves much more precise segmentation, with
only a small portion misclassified. These qualitative results clearly demonstrate that our approach
substantially enhances pixel-wise classification accuracy in class-incremental semantic segmentation,
while effectively mitigating class confusion during continual learning.
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Figure 7: Qualitative analysis of results under 15-1 setting. Our method provides more accurate
pixel-level segmentation for old classes with strong resistance to forgetting, while also reducing
misclassification of new class pixels, demonstrating superior plasticity in learning new classes.

E BROADER IMPACTS

In semantic segmentation, a common approach to handling newly emerging classes is to train the
new and old class data together. However, due to storage limitations and data privacy concerns, old
data is often inaccessible, rendering this approach impractical. Additionally, fine-tuning strategies are
prone to catastrophic forgetting. In this paper, we propose a distribution-based incremental semantic
segmentation learning strategy that mitigates forgetting without requiring access to old class data,
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Figure 8: Qualitative analysis of results under 15-1 setting. Our method provides more accurate
pixel-level segmentation for old classes with strong resistance to forgetting, while also reducing
misclassification of new class pixels, demonstrating superior plasticity in learning new classes.

while continuously learning new class knowledge. This method has promising applications in fields
such as autonomous driving, medical image segmentation, and environmental monitoring.
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Figure 9: Qualitative analysis of results under 15-1 setting. Our method provides more accurate
pixel-level segmentation for old classes with strong resistance to forgetting, while also reducing
misclassification of new class pixels, demonstrating superior plasticity in learning new classes.
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Figure 10: Qualitative analysis of results under 15-1 setting. Our method provides more accurate
pixel-level segmentation for old classes with strong resistance to forgetting, while also reducing
misclassification of new class pixels, demonstrating superior plasticity in learning new classes.
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