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ABSTRACT

Simulation-based inference (SBI) is transforming experimental sciences by en-
abling parameter estimation in complex non-linear models from simulated data.
A persistent challenge, however, is model misspecification: simulators are only
approximations of reality, and mismatches between simulated and real data can
yield biased or overconfident posteriors. We address this issue by introducing
Flow Matching Corrected Posterior Estimation (FMCPE), a framework that lever-
ages the flow matching paradigm to refine simulation-trained posterior estimators
using a small set of real calibration samples. Our approach proceeds in two stages:
first, a posterior approximator is trained on abundant simulated data; second, flow
matching transports its predictions toward the true posterior supported by real
observations, without requiring explicit knowledge of the misspecification. This
design enables FMCPE to combine the scalability of SBI with robustness to distri-
butional shift. Across synthetic benchmarks and real-world datasets, we show that
our proposal consistently mitigates the effects of misspecification, delivering im-
proved inference accuracy and uncertainty calibration compared to standard SBI
baselines, while remaining computationally efficient.

1 INTRODUCTION

Many fields of science and engineering describe complex phenomena with stochastic models, which
capture inherent sources of randomness, such as measurement noise, probabilistic dynamics, etc.
While such simulators provide a convenient way to produce synthetic data x ∈ Rd given parameters
θ ∈ Rp, they rarely yield tractable likelihoods, making classical statistical inference methods such
as Markov chain Monte Carlo (MCMC) (Robert & Casella, 2005) or variational inference (Rezende
& Mohamed, 2015) inapplicable. Simulation-Based Inference (SBI) (Deistler et al., 2025; Cranmer
et al., 2020) addresses this limitation by performing Bayesian parameter inference directly from
simulated datasets, bypassing the need for an explicit likelihood pX|Θ.

Given a prior pΘ over parameters and assuming the existence of an unknown real data-generating
process pY |Θ for observations y ∈ Rd, SBI algorithms provide various approaches (Papamakarios
& Murray, 2016; Lueckmann et al., 2017; Boelts et al., 2022; Hermans et al., 2020) to obtain ap-
proximate samples from the posterior distribution pΘ|Y with the aid of deep generative models. In
this paper, we focus on neural-based approaches that directly approximate the posterior distribution,
often called neural posterior estimation (NPE). This corresponds to the following form of posterior
estimates, where the simulator’s likelihood pX|Θ is used in place of the real data likelihood pY |Θ,

p̂Θ|X(θ|y) ∝ pΘ(θ)pX|Θ(y|θ) . (1)

However, discrepancies between pY |Θ and pX|Θ, can severely degrade parameter inference us-
ing the above p̂Θ|X . In the Bayesian literature, this problem is referred to as model misspecifi-
cation (Walker, 2013). Misspecification reflects limitations of the simulator or surrogate forward
model—whether due to mathematical approximations, simplified dynamics, unmodeled noise, or
insufficient computational resources to run more realistic simulations. Such mismatches can lead to
biased or overconfident posterior distributions (Frazier et al., 2020; Schmitt et al., 2024), ultimately
undermining inference reliability. In particular, modern SBI methods built on deep generative mod-
els are especially vulnerable to misspecification. They often perform poorly when faced with out-of-
distribution data (Nalisnick et al., 2019) and can fail dramatically across a wide range of real-world
problems (Cannon et al., 2022).
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(1)

(2)

FLOW MATCHING (1) FLOW MATCHING (2)

Figure 1: Overview of FMCPE. The method combines two complementary flow matching steps to correct
simulation-based posterior distributions under model misspecification (represented by p̂Θ|X(θ|y) in grey level
sets). (1) Scarce calibration data (θ,y) are used to learn a transport map TX that couples real observations y
with surrogate counterparts x̃ lying in the simulator’s domain. (2) We then learn TΘ to transport samples from
a qX|Y -weighted version of the simulation-based posterior p̂Θ|X(θ|x̃) toward the final corrected posterior
p̂Θ|Y . Note that both transports are required: TX addresses the mismatches between simulated data and real
observations, while TΘ refines parameter inference to align with the true posterior.

A natural way to address imperfections in p̂Θ|X is to act to reduce its deviation from an estimator
built on high-fidelity data—accurate representations of the phenomenon obtained either from costly
high-quality simulations or from ground-truth observations. Since such data are typically scarce
due to their prohibitive cost, the central challenge is to design strategies that maximally exploit the
limited information they provide in order to correct p̂Θ|X .

In this work, we propose a correction method that leverages the flow matching paradigm of Lip-
man et al. (2023) to refine posterior estimators trained on simulations using only a small set of
high-fidelity calibration samples. The principled ability of flows to efficiently model paths be-
tween distributions makes them good candidates to design corrective procedures agnostic to the
type of misspecifications. Moreover, flows have demonstrated high-scalability with state-of-the-art
performance at large-scale image generation (Esser et al., 2024) and data-efficient performance in
SBI (Wildberger et al., 2023). Our approach proceeds in two stages. First, a posterior approximator
p̂Θ|X is trained on abundant simulated data via NPE. Second, a reweighted version of this estimator
is used to define a proposal distribution πΘ|Y , which serves as the source in a flow matching model
that learns a transport map to the well-specified posterior pΘ|Y . Crucially, this transport does not re-
quire explicit knowledge of the misspecification form: it aligns the simulation-based posterior with
the true posterior supported by real observations. The resulting procedure enables accurate estima-
tion of pΘ|Y despite the limited availability of calibration data. Figure 1 gives an overview of our
method, which we call “Flow Matching for Corrected Posterior Estimation“ (FMCPE). Experiments
on synthetic and real-world tasks show that FMCPE is more robust to misspecification than standard
SBI baselines, while being computationally efficient, amortized and applicable as a post-processing
to any SBI model.

The remainder of the paper is organized as follows. We begin with an overview of SBI under
model misspecification and outline how it relates to our contribution. Next, we motivate and detail
our methodology, introducing flow matching concepts and notation as needed. Finally, we present
numerical experiments and conclude with a discussion of the results.

2 RELATED WORK

Model misspecification in SBI has been studied both in the framework of Approximate Bayesian
Computation (ABC) (Frazier et al., 2020; Bharti et al., 2022; Fujisawa et al., 2021) and with modern
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neural-based approaches (Kelly et al., 2024; Ward et al., 2022; Huang et al., 2023; Schmitt et al.,
2024). These works, however, focus on settings distinct from ours. For instance, Ward et al. (2022)
assume a known form of misspecification, while Huang et al. (2023) penalize the NPE loss according
to the distributional shift between summary statistics of x and y. Other contributions, such as
Schmitt et al. (2024), restrict attention to detecting misspecification at inference time by imposing a
Gaussian prior on the space of summary statistics.

An alternative perspective is to interpret misspecification as a noisy channel between simulated and
real-world observations. In this view (Wehenkel et al., 2025; Ward et al., 2022), one assumes that
once simulated data x are known, the real observation y does not carry additional information about
the parameters θ. Formally, this conditional independence reads

y ⊥ θ | x . (2)

Under this hypothesis, the true posterior distribution can be expressed as

pΘ|Y (θ|y) =
∫
pΘ|X(θ|x)pX|Y (x|y) dx , (3)

which states that the true posterior distribution is a mixture of simulation-based posteriors, weighted
by the probability of each simulated outcome x given y.

Wehenkel et al. (2025) exploit this idea by assuming access to a calibration dataset of parame-
ter–observation pairs {(θi,yi)}1≤i≤Ncal collected from costly or time-consuming experiments. They
approximate pΘ|Y by replacing pX|Y in Equation (3) with a coupling qX|Y estimated via optimal
transport (Peyré & Cuturi, 2019), which links real observations y and simulated data x. However,
a key limitation is that their method requires access to the full test set at inference time, prevent-
ing its use in online or sequential prediction scenarios. Moreover, the conditional independence
assumption (2), while convenient, does not always hold. For example, if the model misspecification
stems from the fact that the low-fidelity model neglects some parameters—say, for θ = (θ1, θ2),
pX|Θ(x|θ) = f(θ1) while pY |Θ(y|θ) = g(θ1, θ2)—then y will still depend on the full parameter
vector, violating conditional independence.

In contrast, the method MFNPE proposed by Krouglova et al. (2025) does not rely on conditional in-
dependence nor require access to the full test set. Their approach first trains a posterior approximator
pLF(θ|x) on low-fidelity simulations using standard NPE, then refines it with high-fidelity data. Our
method follows the same spirit of leveraging low-fidelity approximations but uses them differently:
the low-fidelity estimator plays a distinct role, and the subsequent corrections it undergoes are of a
different nature, as detailed in the next section.

3 FLOW MATCHING CORRECTED POSTERIOR ESTIMATION

We consider the general problem of sampling from a posterior distribution pΘ|Y resulting from an
unknown likelihood pY |Θ over observation y ∈ Rd, and known prior pΘ over a parameter vec-
tor θ ∈ Rp. If the likelihood were known, the posterior would be given by the Bayes rule as
pΘ|Y (θ|y) ∝ pY |Θ(y|θ)pΘ(θ). Instead, we assume access to an imperfect stochastic simulator
S : (θ, ϵ) 7→ x, generating low cost simulations x ∈ Rd, with ϵ a random noise accounting for ran-
domness in the generative process. The simulator implicitly defines a generative model pX|Θ whose
posterior distribution can be approximated by an easy-to-sample model p̂Θ|X , for instance, using
techniques from the SBI literature such as NPE. Unfortunately, since the simulator is inaccurate, the
SBI model p̂Θ|X is likely not to provide an accurate approximation to the true posterior pΘ|Y , in
general, no matter how accurately it approximates the simulator’s posterior pΘ|X . However, one
can reasonably expect such learned model to be informative about the true posterior. We propose to
leverage the simulator S and posterior model p̂Θ|X in addition to a small set of calibration pairs of
high-quality data Dcal = {(θj ,yj)}1≤j≤Ncal from the joint distribution pΘ,Y to provide an accurate
and efficient model p̂Θ|Y for the true posterior pΘ|Y . Such a dataset typically represents scarce
ground-truth measurements or high-fidelity simulations that are costly to obtain. Consequently, we
assume thatNcal is not large enough to provide an accurate posterior estimate from this dataset alone.

We propose to use the flow matching paradigm to learn a dynamic transport map, a vector field,
from a carefully designed source distribution πΘ|Y towards the target posterior pΘ|Y using the
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calibration dataset Dcal. Increasing the proximity of the source and target distributions reduces the
complexity of the flow and makes it easier to learn from a small number of samples. Intuitively,
smaller distributional gaps are likely to require fewer steps and improve sample complexity (Cui
et al., 2024; Lin et al., 2025; Kong et al., 2025; Wang et al., 2025). Following this principle, we
employ the simulator S and the posterior approximation p̂Θ|X , to design and train an informative
source distribution that facilitates the learning of the vector field from few calibration samples.
The resulting algorithm (Algorithm 1 in Section 3.3) combines simultaneous learning of both the
source distribution and the vector field, ensuring the source is continually updated as the vector
field becomes more accurate. Next, we detail the approaches for learning the vector field given an
informed source distribution, constructing the source itself and training them jointly.

3.1 DATA-EFFICIENT POSTERIOR FLOW MATCHING

The goal is to use the calibration dataset Dcal to learn a transport map TΘ : Rp × Rd → Rp from an
easy-to-sample base (or source) distribution πΘ towards the posterior distribution pΘ|Y :

θ0 ∼ πΘ(θ) ⇒ θ1 = TΘ(θ0,y) ∼ pΘ|Y (θ|y) . (4)

To learn TΘ, we use the flow matching framework of Lipman et al. (2023), an approach that has
proven effective for modeling complex target distributions, such as images (Esser et al., 2024), and
has recently been applied successfully in simulation-based inference (Wildberger et al., 2023). Flow
matching consists of learning a time-dependent vector field uΘ capable of transporting a sample θ
from πΘ along a trajectory (θt)t∈[0,1] starting from θ0 = θ, so that θ1 is distributed according to
the target pΘ|Y . The trajectory is obtained as a solution of the following ODE:

dθt
dt

= uΘ (t,θt,y) , ∀t ∈ [0, 1], with θ0 = θ.

The time-dependent flow ψΘ associated to the above ODE is simply given by samples along the path
starting from the initial condition θ, i.e. ψΘ(t,θ,y) := θt. Such a flow allows defining the transport
map from πΘ to pΘ|Y as TΘ(θ,y) := ψΘ(1,θ,y). The vector field is approximated with a deep
neural network ûΘ trained on a guided version of the conditional flow-matching loss from Lipman
et al. (2023) with a linear interpolation strategy:

LΘ(ûΘ) = E
[∫ 1

0

∥ûΘ(t,θt,y)− (θ1 − θ0)∥2 dt
]
, θt := (1− t)θ0 + tθ1 ∀t ∈ [0, 1] , (5)

where the expectation is taken over (θ1,y,θ0) ∼ pΘ,Y (θ1,y)πΘ(θ0). Here, the high-fidelity
dataset Dcal can be used to provide joint samples (θ1,y) from pΘ,Y (θ1,y), thus providing an em-
pirical version of the above objective.

In most flow matching instances, the base distribution πΘ is set to a simple standardized Gaussian
distribution, i.e. πΘ(θ) = N (θ | 0, Ip). However, for settings such as the one we consider here,
where Dcal is small, this choice may result in very poor posterior approximators with high vari-
ance. Instead, we use the simulator to construct a more informative data-driven source distribution
πΘ = πΘ|Y that acts as a possibly low-quality surrogate of the true pΘ|Y . Training itself remains
consistent with standard guided flow matching; the learned flow then serves to refine this source
distribution using only the limited high-fidelity data.

3.2 SIMULATION-INFORMED SOURCE DISTRIBUTION

The source distribution πΘ|Y plays a central role in our framework. Ideally, it should be very close
to the true posterior distribution, so that the flow ψΘ induces minimal corrections to θ0 ∼ πΘ|Y .
Making use of the availability of the simulator S, a first natural possibility is to set πΘ|Y (θ|y) =
p̂Θ|X(θ|y) where p̂Θ|X is a posterior approximation obtained via SBI. This provides a reasonable
approximation of the true pΘ|Y in the absence of misspecification but is likely to be a poor one
in less favorable settings. A natural alternative is to plug into p̂Θ|X a conditioning sample from a
distribution qX|Y (x|y) with the same support as pX(x) and informative of y. This corresponds to
considering a source distribution of the form

πΘ|Y (θ|y) =
∫
p̂Θ|X(θ|x) qX|Y (x|y) dx. (6)
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The most straightforward choice for qX|Y is qX|Y (x|y) := pX|Y (x|y), which would require, in
addition to Dcal, a large number of ground truth samples (y,x) for training an approximator. Thus,
we consider instead,

qX|Y (x|y) :=
∫
pX|Θ(x|θ) pΘ|Y (θ|y) dθ, (7)

that can be seen as a mixture and approximated using the simulator S and joint calibration pairs
(θj ,yj) ∼ pΘ,Y (θ,y) = pΘ|Y (θ|y)pY (y). Indeed, note that for each yj ∈ Dcal, its associated θj
is a sample from pΘ|Y (θ|yj) that can be plugged in the simulator to generate xj ∼ pX|Θ(x|θj),
leading to xj ∼ qX|Y (x|yj). This is typically used in lines 2 and 3 of Algorithm 2.

In practice, a sample θ from the source distribution (6), can be obtained by first drawing a sample x̃
from qX|Y (x̃|y) in (7), then setting θ to a sample from p̂Θ|X(θ|x̃). As we can already easily sample
from p̂Θ|X , it only remains to provide a way to sample from qX|Y (x|y) for any y. To this end, we
use the flow matching framework to construct a conditional transport map TX : Rd × Rd → Rd,
from a Gaussian distribution centered around y with isotropic variance σ2, towards qX|Y (x|y) i.e.:

x0 ∼ N (x|y, σ2Id) → x̃ = TX(x0,y) ≈ qX|Y (x|y). (8)

More specifically, we define TX(x0,y) = ψX(1,x0,y), where ψX is the flow associated to the
velocity field neural approximator ûX learned by minimizing the following objective:

LX(ûX) =E
[∫ 1

0

∥ûX(t,xt,y)− (x1 − x0)∥2 dt
]
, xt := (1− t)x0 + tx1 ∀t ∈ [0, 1] , (9)

where the expectation is taken over (y,x1,x0) ∼ qY ,X(y,x1)N (x0|y, σ2Id). Here, the dataset
Dcal and simulator S can be used to provide joint samples (y,x1) from qY ,X(y,x1) as discussed
later in Section 3.3. We took inspiration from Albergo et al. (2024) to define a source distribution
that induces a coupling between the base and target distributions through the conditioning variable,
which greatly helps the training process under limited data.

When the conditional independence hypothesis in Equation (2) is valid and chosing qX|Y (x|y) =
pX|Y (x|y), we can use Equation (3) to see that pX|Y (x|y) is indeed the optimal choice for trans-
porting data from y-space to x-space, since

pΘ|Y (θ|y) = EX|Y
[
pΘ|X(θ|x)|y

]
,

x̃ ∼ pX|Y (x|y) and θ ∼ pΘ|X(θ|x̃) =⇒ θ ∼ pΘ|Y (θ|y), .

In that case, learning only ûX could be seen as sufficient, since the proposal πΘ|Y is already a
good approximation to the true posterior. However, if the conditional independence is no longer
valid, if p̂Θ|X is poorly trained, or ûX is not optimal, the proposal would not have the flexibility to
compensate for errors from each of its different parts. This is no longer an issue when using ûX to
define a source distribution for learning the vector field ûΘ, as proposed in this work, since it does
not rely on the validity of Equation (2).

3.3 JOINT TRAINING OF POSTERIOR AND SOURCE DISTRIBUTIONS BY FLOW MATCHING

We now face two optimization tasks: minimizing the loss in (9) to train the simulation-space vector
field ûX and minimizing (5) to train the parameter-space vector field ûΘ. Instead of solving them
separately, we propose to optimize the following joint objective for improved practical performance:

LΘ,X(ûX , ûΘ) = E
[∫ 1

0

∥∥ûΘ(t,θt,y)− (θ1 − θ0)
∥∥2 + ∥∥ûX(t,xt,y)− (x1 − x0)

∥∥2 dt] ,
with (x1,θ1,y,x0,θ0) ∼ qX|Y (x1|y)pΘ,Y (θ1,y)πΘ|Y (θ0|y)N (x0,y, σ

2Id) and where θt and
xt are convex combinations as in Equations (5) and (9). An important specificity of the above
objective compared to standard flow matching is that the source sample θ0 depends on ûX , by
definition of the source πΘ|Y , which is evolving during training. Intuitively, this joint formulation
forces ûΘ to be robust to noisy or inaccurate samples from the source distribution: during early
training stages, πΘ|Y may yield poor candidates θ0, yet ûΘ must learn to accommodate them.
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This robustness is desirable at test time, where the source distribution may also generate imperfect
samples for previously unseen observations y.

The joint learning of vector fields ûX and ûΘ is summarized in Algorithm 1, which specifies how to
optimize the objective LΘ,X(ûX , ûΘ) using the sampling procedure from Algorithm 2 referred to
as function SAMPLETRAININGTUPLE. In practice, variable t is sampled i.i.d. for each of the terms
X and Θ from LX,Θ (lines 5 and 6) to reduce bias. Also, because ûX affects the distribution of
θ0 (via x̃), the effective source distribution for ûΘ is non-stationary; to mitigate instability we use
small learning rates and gradient clipping to reduce training instability in the early stages.

Algorithm 1 Joint flow training for FMCPE
Require: SAMPLETRAININGTUPLE function, trainable flows ûX , ûΘ and minibatch size B.

1: repeat
2: L ← 0
3: for i = 1 to B do
4: (y,θ1,θ0,x1,x0)← SAMPLETRAININGTUPLE(ûX) ▷ see Algorithm 2
5: Draw t ∼ U [0, 1] and set xt = (1− t)x0 + tx1

6: Draw another independent τ ∼ U [0, 1] and set θτ = (1− τ)θ0 + τ θ1

7: ℓX ← ∥ûX(t,xt,y)− (x1 − x0)∥2
8: ℓΘ ← ∥ûΘ(τ,θτ ,y)− (θ1 − θ0)∥2
9: L ← L+ (ℓX + ℓΘ)

10: end for
11: L ← L/B
12: Take one optimizer step on trainable parameters of ûX and ûΘ using L
13: until convergence

Algorithm 2 first samples (θ1,y) from the calibration dataset, where θ1 serves as target sample
to the vector field ûΘ. We then generate x1 ∼ pX|Θ(x|θ1) which serves as target for ûX and
is approximately distributed according to qX|Y (x|y) (see Equation (7)). The source sample x0 is
obtained from a Gaussian distribution centered at y. To obtain a source sample θ0 for the vector
field ûΘ, an intermediate sample x̃ is computed by solving an ODE driven by the current estimated
vector field ûX and starting from x0. This sample is simply provided to the approximate posterior
to get θ0 ∼ p̂Θ|X(θ|x̃) as discussed in Section 3.2. Note that one could alternatively generate
x̃ = S(θ1, ϵ) directly from the simulator instead of solving the ODE induced by ûX . However, this
strategy cannot be applied at inference time, where only the observation y is available and not the
pair (θ,y). For consistency between training and inference, we therefore sample x̃ using the ODE.
A crucial aspect in the above sampling procedure is to prevent gradients from propagating through
the intermediate sample x̃ when optimizing the vector field ûX which would bias its training.

Algorithm 2 SAMPLETRAININGTUPLE(ûX )

Require: Calibration setDcal, simulator S, pretrained SBI model p̂Θ|X(θ | x̃) (frozen) and velocity field ûX

1: function SAMPLETRAININGTUPLE(ûX )
2: Sample (θ1,y) ∼ Dcal ▷ calibration samples
3: Sample x1 using simulator S evaluated at θ1 ▷ see Equation (7)
4: Draw base sample x0 ∼ N (x0,y, σ

2I) ▷ base for X-flow
5: Solve ODE: dx̄t

dt
= ûX(t, x̄t, y) with x̄0 = x0.

6: Set x̃← TX(x0;y) := x̄1 ▷ map base→ simulator-space (uses current ûX )
7: Set x̃← StopGradient(x̃) ▷ do not propagate gradient through sample
8: Sample θ0 ∼ p̂Θ|X(θ|x̃) ▷ sample from source
9: return (y,θ1,θ0,x1,x0)

10: end function

4 EXPERIMENTS

We benchmark our method against two baselines, NPE and MFNPE. Note that we do not include
RoPE (Wehenkel et al., 2025) because it is a method that requires access to the full test set at
inference time and is not directly comparable to our approach, as explained in Section 2. The
comparison is carried out on four tasks described in Section 4.1, using various evaluation metrics

6
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specified in Section 4.2. We follow the implementation from Wehenkel et al. (2025) for NPE and
train it using only the limited calibration data Dcal. Note that since the simulator is not used, we
expect this baseline NPE to fail as the complexity of the generating process increases. For each
experiment, all evaluations are performed on a test set Dtest = {(θj ,yj)}1≤j≤Ntest withNtest = 2000
unless otherwise specified, and each metric is reported for different sizes Ncal of the calibration set.
Calibration sets are constructed in an expanding manner, gradually adding new samples to an initial
set, to limit the sources of variability in the comparison; see Appendix A for details.

All experiments described below are implemented in Python using pytorch (Paszke et al.,
2019) and mlxp (Arbel & Zouaoui, 2024). We also use nflows (Durkan et al., 2020) and the
dingo (Dax et al., 2021) packages for the implementation of continuous normalizing flows. Our
code is provided as a zip file in the supplementary materials.

4.1 TASKS

Our experiments consist of two synthetic and two real-world tasks. Setup and implementation details
can be found in Appendix A.

Gaussian: A multivariate Gaussian model is considered, with θ ∈ R3 and θ ∼ N (µθ,Σθ).
Both x ∈ R10 and y ∈ R10 follow multivariate Gaussian distributions centered on different linear
combinations of θ.

Pendulum: The damped pendulum (Takeishi & Kalousis, 2021) models the oscillations of a mass
around a fixed attachment point. Parameters θ = [A,ω0] are the oscillation amplitude A and the
natural frequency ω0. Simulations are generated from a simplified model that omits friction forces,
thus creating a systematic misspecification relative to the real dynamics. Both observations and
simulations are real-valued time-series of length 200.

WindTunnel: This task from Gamella et al. (2025) consists of measuring the air pressure inside an
horizontal tube where air is being pushed through by two controllable fans at both ends. The goal is
to infer the opening angle (in degrees) of a hatch H ∈ [0, 45] on the side, given the pressure values
inside the tunnel after applying a short power impulse to the intake fan. For the simulator, we use
the model A2C3 from (Gamella et al., 2025, Appendix IV).

LightTunnel: In this task from Gamella et al. (2025), a camera is capturing light passing through
two linear polarizers inside an elongated chamber. The goal is to predict RGB values of the light
source and the polarizer effect α ∈ [0, 1], which is a function of the polarizer angle, so that
θ := [R,G,B, α] ∈ [0, 255]3× [0, 1]. The simulator is a simplification of the real world process
and described in (Gamella et al., 2025, Appendix IV) (Model F1). Observations are RGB images of
size (W,H,C) = (64, 64, 3) produced by either the simulator or the real apparatus; model misspec-
ification arises because the simulator omits certain physical effects present in the real measurements.

4.2 EVALUATION METRICS

We assess the performance of our method performance based on three metrics.

Joint Classifier Two-Sample Test (jC2ST). The C2ST (Lopez-Paz & Oquab, 2017) measures the
discrepancy between two distributions by training a binary classifier to distinguish samples drawn
from them. The test statistic is the classifier’s accuracy on samples from a test set, which is equal to
chance-level (usually 0.5) for indistinguishable distributions and approaches 1 as the distributions
diverge. As our reference Dtest provides a single ground truth value θj for each yj in the test set,
standard C2ST cannot be used, as it would require a full sample from the true posterior p(θ|yj) for
each yj . Instead, for each yj we generate one θ̃j from the learned posterior and compare Dtest to the
set of pairs {(θ̃j ,yj)}1≤j≤Ntest as samples from a joint distribution, justifying the name jC2ST.

Wasserstein Distance (W2). Similarly, the Wasserstein distance for the L2 cost is computed be-
tween samples from the true and approximate joint distributions,

W2 = min
γ∈RNtest×Ntest

+

∑
i,j

γi,j∥(θi,yi)− (θ̃j ,yj)∥22

 1
2

such that γ.1 = 1
Ntest

and γT .1 = 1
Ntest

.
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Figure 2: Wasserstein distance (top row, ↓ is better) and jC2ST (bottom row, ↓ is better) with respect to an
increasing calibration set size Ncal ∈ {10, 50, 200, 1000}. Each boxplot shows the distribution of metric values
across five independent runs, each using a different randomly chosen calibration set.

We computeW2 between samples from the approximate and true joint distribution p(θ,y) to provide
a geometry-aware notion of distributional similarity.

Mean Squared Error (MSE). We also report the average mean squared error betweenM generated
samples {θ̃i

j}1≤i≤M and the ground truth parameters {θj}1≤j≤Ntest for each observation yj in Dtest.

MSE =
1

Ntest

1

M

Ntest∑
j

M∑
i

∥θ̃i
j − θi∥22 .

MSE is a good accuracy measure for unimodal posteriors, which is often the case in our experiments.

4.3 RESULTS AND DISCUSSION

Figure 2 and Appendix Figure 4, first illustrate the impact ofNcal on posterior estimation. All metrics
decrease as Ncal increases, highlighting the importance of having enough calibration data to correct
misspecification. Note that for WindTunnel we sometimes observe jC2ST values below 0.5. This
is due to an insufficient test set with respect to the dimensions of the problem. For this task, Ntest
was set to 5000, the maximal number of validation data points provided by the causal-chamber
package. For a given ground truth couple (θ∗,y∗), Figure 3 illustrates the posterior density of the
first two components of θ for each method, for Gaussian and Pendulum. Similar plots for the
other tasks are provided in the Appendix in Figures 5 (WindTunnel) and 6 (LightTunnel).

All experiments demonstrate that our method consistently outperforms both baselines, quantitatively
and qualitatively. In Figure 2, we observe that even on the simple Gaussian task, our approach
achieves better performance than plain NPE and fine-tuned MFNPE. This gap becomes more striking
in Figure 3 (second row), where both NPE and MFNPE produce multimodal posteriors even when
the true posterior is unimodal. In contrast, our method yields unimodal posteriors that are better
calibrated and centered on the ground-truth parameter θ∗, and this even for a low calibration size.
For more complex tasks, such as Pendulum and LightTunnel, NPE fails to capture the intricate
dependencies between parameters and observations—even when Ncal = 1000. In these cases, our
method achieves superior performance in both jC2ST and W2, while also exhibiting lower variance
across calibration seeds compared to MFNPE (Figure 2). Figure 3 further illustrates that MFNPE of-
ten produces overly sharp posterior distributions in one or more dimensions, yet fails to recover
the true parameter θ∗. In contrast, our method consistently recovers θ∗ with higher accuracy. We
hypothesize that this behavior stems from the MFNPE training procedure. MFNPE learns a neural
encoder hω(x) to extract latent representations from simulated data x. During fine-tuning, however,
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Figure 3: Kernel density estimates of joint and marginal samples for Tasks B (first row) and A (second row).
For a given y∗∈ Dtest, we draw {θ̃i}1≤i≤2000, for each method and 3 calibration sizes Ncal ∈ {10, 50, 200}.
Dotted black lines indicate the true parameter θ∗ that generated y∗.

this encoder is evaluated on real observations y, whose distribution differs from that of x. This
distributional shift leads to erroneous latent representations hω(y), and consequently to biased pos-
teriors. While this issue diminishes as Ncal increases, it remains pronounced at small calibration
sizes (Ncal = 10 or 50). The Pendulum task provides further evidence supporting this analysis.
The misspecification arises from exponential damping, which predominantly affects the estimation
of the oscillation amplitude A, as seen in Figure 3 (first row). In contrast, the estimation of the
frequency ω0 remains accurate, since it is less sensitive to the damping mismatch. Finally, in the
real-world tasks (WindTunnel and LightTunnel), our approach yields substantially better re-
sults at small calibration sizes, particularly in terms of W2, and remains competitive or superior for
larger calibration sets. We provide additional visualizations of the posterior estimates for these tasks
in Appendix B.

5 CONCLUSION

We tackled model misspecification in SBI by combining scarce real calibration data with abun-
dant simulations. Our method builds a proposal posterior from both sources and refines it via flow
matching, producing posterior estimates that are more accurate and better calibrated as compared to
standard SBI baselines. Importantly, our proposal is also computationally efficient, as it can lever-
age off-the-shelf SBI posterior distributions as proposals, requiring only lightweight refinement with
calibration data.

While severe misspecifications in high dimensions may still require larger calibration sets, our re-
sults show that even small amounts of real data can substantially improve inference quality. This
highlights the promise of our framework as a practical and scalable way to bring SBI closer to
real-world scientific applications, and opens exciting opportunities for richer proposal architectures,
domain adaptation techniques, and deployment on large-scale simulators where misspecification is
inevitable.
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A EXPERIMENTAL SETUP

We provide additional details on the training setup used across all experiments. For every task, we
allocate a simulation budget of Nsim = 5 × 104 samples and evaluate four calibration set sizes,
Ncal ∈ {10, 50, 200, 1000}, which we denote by N1, N2, N3, N4.

During training, 20% of each calibration set is reserved for validation and the remaining 80% is used
for training. We did not optimize over random seeds. All models were trained on a Nvidia RTX3060
GPU under 3 hours.

Data preprocessing. For tasks Pendulum, WindTunnel, and LightTunnel (uniform priors),
we apply a logit transformation to map prior samples into Rp. All datasets are standardized (z-
scored) prior to training.

Calibration sets. For each Ncal, we generate 5 calibration sets by subsampling from a larger pool
of calibration data. To reduce variance across runs, the sets are constructed in a nested fashion:
denoting by Di

Nr
the i-th calibration set of size Nr, we enforce Di

Nr
⊂ Di

Ns
whenever r < s.

Neural Posterior Estimation (NPE). NPE is implemented with two components: a neural statistic
estimator (NSE), hω(x), that encodes data into a low-dimensional representation, and a normalizing
flow (NF) that maps a base distribution to the posterior. For task Gaussian, we use a standard
neural spline flow (Durkan et al., 2019) and omit the NSE. For tasks Pendulum, WindTunnel
and LightTunnel, we reuse the architectures and hyperparameters from Wehenkel et al. (2025).

Flow Matching. We use the architecture of Wildberger et al. (2023) as a backbone. For the θ-
space flow uΘ, conditioning on x is implemented through a task-specific embedding network. For
the data-space flow uX , we employ the same architecture but with a separate embedding head for
(xt, t), equipped with positional encoding.

Evaluation details. The Wasserstein distance is computed using the POT package with default set-
tings. For the C2ST, we train a classifier based on an MLP backbone, augmented with an embedding
network for y; the embedding architecture matches the one used for the normalizing flow. We apply
3-fold cross-validation and report the average validation accuracy across folds. By default, we bal-
ance the two classes - C = 0 (true samples) and C = 1 (generated samples)—but note that stratified
K-fold can also be used to handle class imbalance.

A.1 GAUSSIAN

The Gaussian task is defined as
pΘ = N (µθ,Σθ), pX|Θ = N (Aθ + b,Σx), pY |Θ = N (Cθ + d,Σy), (10)
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where

µθ ∈ R3, Σθ ∈ R3×3, A ∈ R10×3, b ∈ R10, Σx ∈ R10×10, C ∈ R10×3, d ∈ R10, Σy ∈ R10×10.

All parameters above are drawn randomly at the start of the experiment.

A.2 PENDULUM

We follow the setup of Wehenkel et al. (2025, Appendix I.2). We sample N = 200 timesteps
ti ∼ U [0, 10] and define the simulator

S :
θ, ϵ 7−→ [x1, . . . , xN ]T

with xi = A cos(ω0ti + φ) + ϵi, φ ∼ U [0, 2π], ϵi ∼ N (0, σ2),
(11)

where θ = [A,ω0] are the parameters of interest. The high-fidelity data-generating process (DGP)
includes damping:

DGP :
θ, ϵ 7−→ [y1, . . . , yN ]T

with yi = e−αti A cos(ω0ti + φ) + ϵi, α ∼ U [0, 1],
(12)

where α encodes the friction coefficient. The prior is uniform: pΘ = U [0, 3]× U [0.5, 10].

A.3 WIND TUNNEL

We use the load out 0.5 osr downwind 4 experiment from the wt intake impulse v1
dataset (Gamella et al., 2025). The data consist of 50-step time series measuring air pressure in the
chamber after an impulse applied to the input fan. A hatch on the side controls an additional opening,
which can be controlled with precision. The inference task is to predict its position H ∈ [0, 45]. We
adopt model A2C3 from the causalchamber package as the simulator.

A.4 LIGHT TUNNEL

We use the light tunnel experiment uniform ap 1.8 iso 500.0 ss 0.005 from the
lt camera v1 dataset (Gamella et al., 2025). A camera at the rear-end of an elongated cham-
ber captures a light source emitted from the other end passing through two linear polarizers. We
refer the reader to (Gamella et al., 2025) for more details about the mechanistic model of the tunnel.
The inference task consists in inferring the color of the light source ((R,G,B) ∈ [0, 255]3) as well
as the Malus law (Collett, 2005) coefficient α ∈ [0, 1]. The prior over these variables is uniform.
The coefficient is a function of the polarizer angle α = cos2(ϕ1 − ϕ2), which are given in the
dataset. The misspecification is introduced by omitting some physical aspects, which are detailed in
(Gamella et al., 2025, Appendix D.IV.2.2).

B ADDITIONAL PLOTS & METRICS

We display here the MSE metric in Figure 4 and the KDE plots for tasks WindTunnel and
LightTunnel, respectively in Figures 5 and 6.
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Figure 4: MSE with respect to an increasing calibration set size Ncal ∈ {10, 50, 200, 1000}. Each
boxplot shows the distribution of MSE values across five independent runs, each using a different
randomly chosen calibration set.
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Figure 5: Kernel density estimates of the learned posteriors for task WindTunnel. For a given
y∗∈Dtest, we draw {θ̃i}1≤i≤2000, for each method and 3 calibration sizes Ncal∈{10, 50, 200}. The
dotted black line indicates the true parameter θ∗ that generated y∗.
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Figure 6: Kernel density estimates of joint and marginal samples for task LightTunnel. We report
the posterior densities for the first two coordinates of the parameter [θ1, θ2] = (R,G). For a given
y∗∈ Dtest, we draw {θ̃i}1≤i≤2000, for each method and 3 calibration sizes Ncal ∈ {10, 50, 200}.
Dotted black lines indicate the true parameter θ∗ that generated y∗.

14


	Introduction
	Related work
	Flow Matching Corrected Posterior Estimation
	Data-efficient posterior flow matching
	Simulation-informed source distribution
	Joint training of posterior and source distributions by flow matching

	Experiments
	Tasks
	Evaluation Metrics
	Results and discussion

	Conclusion
	Experimental Setup
	Gaussian
	Pendulum
	Wind Tunnel
	Light Tunnel

	Additional Plots & Metrics

