
Under review as submission to TMLR

Learning to Localize Leakage
of Cryptographic Sensitive Variables

Anonymous authors
Paper under double-blind review

Abstract

While cryptographic algorithms such as the ubiquitous Advanced Encryption Standard1

(AES) are secure, physical implementations of these algorithms in hardware inevitably ‘leak’2

sensitive data such as cryptographic keys. A particularly insidious form of leakage arises from3

the fact that hardware consumes power and emits radiation in a manner that is statistically4

associated with the data it processes and the instructions it executes. Supervised deep5

learning has emerged as a state-of-the-art tool for carrying out side-channel attacks, which6

exploit this leakage by learning to map power/radiation measurements throughout encryption7

to the sensitive data operated on during that encryption. In this work we develop a principled8

deep learning framework for determining the relative leakage due to measurements recorded9

at different points in time, in order to inform defense against such attacks. This information10

is invaluable to cryptographic hardware designers for understanding why their hardware leaks11

and how they can mitigate it (e.g. by indicating the particular sections of code or electronic12

components which are responsible). Our framework is based on an adversarial game between13

a classifier trained to estimate the conditional distributions of sensitive data given subsets of14

measurements, and a budget-constrained noise distribution which probabilistically erases15

individual measurements to maximize the loss of this classifier. We demonstrate our method’s16

efficacy and ability to overcome limitations of prior work through extensive experimental17

comparison on 6 publicly-available power/EM trace datasets from AES, ECC and RSA18

implementations. Our PyTorch code is available here.19

1 Introduction20

The Advanced Encryption Standard (AES)1 (Daemen & Rijmen, 1999; 2013) is widely used and trusted for21

protecting sensitive data. For example, it is approved by the United States National Security Agency for22

protecting top secret information (Committee on National Security Systems, 2003), it is a major component23

of the Transport Layer Security (TLS) protocol (Rescorla, 2000) which underlies the security of HTTPS24

(Rescorla, 2000), and it is used in payment card readers to secure card information before transmission to25

financial institutions (Bluefin Payment Systems, 2023).26

AES aims to keep data secret when it is transmitted over insecure channels that are accessible to unknown27

and untrusted parties (e.g. via wireless transmissions which may be intercepted, or storage on hard drives28

accessible to untrusted individuals). Prior to transmission, the data is first encoded and partitioned into a29

sequence of fixed-length bitstrings called plaintexts. Each plaintext is then encrypted into a ciphertext by30

applying an invertible function from a family of functions indexed by an integer called a cryptographic key.31

This family of functions is designed so that if the key is sampled uniformly at random, then the plaintext32

and ciphertext are marginally independent. The key is known to the sender and intended recipients of the33

transmission, and is kept secret from potential eavesdroppers. Thus, the intended recipients can use the key34

to decrypt the ciphertext back into the original plaintext, while eavesdroppers who possess the ciphertext but35

not the key learn nothing about the plaintext.36

1For clarity of exposition we discuss AES here, but our technique also applies to other algorithms.

1

https://anonymous.4open.science/r/learning_to_localize_leakage-420B

Under review as submission to TMLR

Key

Plaintext Ciphertext

Cryptographic
hardware

Power
source

Measurement
apparatus

Known
function

Sensitive intermediate
variable

Power trace

Dataset

Supervised
learning

Side channel leakage Side channel attack

Figure 1: Diagram illustrating our probabilistic framing of side-channel leakage in the special case of power
side-channel leakage from a symmetric-key (e.g. AES) cryptographic implementation. A cryptographic device
consumes power over time while encrypting data. The power consumption leaks the secret key because it
is statistically associated with key-dependent internal variables. Our work considers profiling side-channel
attacks, a worst-case scenario where attackers can freely model the relationship between an implementation’s
secret data and its power consumption over time, then use this model to attack the same device.

Clearly, such an algorithm is effective only if the cryptographic key remains outside of the hands of attackers.37

AES is believed to be ‘algorithmically secure’ in the sense that it is infeasible to determine the cryptographic38

key by exploiting its intended inputs and outputs: plaintexts and ciphertexts (Mouha, 2021; Tao & Wu, 2015).39

Despite this, physical implementations of AES in hardware ‘leak’ information about their cryptographic keys.40

This phenomenon, called side-channel leakage, occurs because hardware inevitably emits measurable physical41

signals that are statistically associated with the data it processes and the instructions it executes (Mangard42

et al., 2007). There are many diverse physical side-channels which can leak, such as program/operation43

execution time (Kocher, 1996; Lipp et al., 2018; Kocher et al., 2019), temperature (Hutter & Schmidt, 2014),44

and sound due to vibration of electronic components (Genkin et al., 2014). In this work the side-channels45

we consider are power and electromagnetic (EM) radiation over time (Kocher et al., 1999; Mangard et al.,46

2007), which are major security vulnerabilities for AES implementations (Genkin et al., 2016; Bronchain &47

Standaert, 2020).48

Side-channel attacks exploit this leakage to break cryptographic implementations by revealing secret internal49

variables such as cryptographic keys. In this work we consider profiling side-channel attacks (Chari et al.,50

2003; Mangard et al., 2007), which assume a worst-case scenario where the attacker possesses a clone of the51

target device and can repeatedly measure its power/radiation over time while encrypting arbitrary plaintexts52

using arbitrary keys. These sequences of power/radiation measurements are recorded as real vectors called53

traces, where each element encodes a measurement at a fixed point in time relative to the start of encryption.54

The attacker can thereby gather data from the clone device to model the conditional distribution of the55

secret variable given a trace. They can then defeat the target device by measuring its power/radiation traces,56

feeding them to the model, and revealing its secret internal variables.57

Supervised deep learning has emerged as a state-of-the-art technique for this modeling task, achieving58

comparable or superior performance to prior approaches while requiring far less data preprocessing and59

feature selection (Maghrebi et al., 2016; Benadjila et al., 2020; Zaid et al., 2020; Wouters et al., 2020; Lu et al.,60

2021; Bursztein et al., 2023). Older non-deep learning attacks were mostly based on parametric statistics and61

had major limitations such as restrictive modeling assumptions (Messerges, 2000; Chari et al., 2003; Agrawal62

et al., 2005; Schindler et al., 2005; Hospodar et al., 2011) and inability to scale to long traces (Chari et al.,63

2003; Archambeau et al., 2006). Deep learning overcomes these limitations and consequently poses a major64

and growing threat to a wide assortment of security measures and evaluations that were designed with the65

limitations of older attacks in mind.66

2

Under review as submission to TMLR

Table 1: A summary of the important quantities and variables used throughout this work.

Notation Explanation
pA, pA|B , etc. Probability distribution of random variable A, conditional distribution of A given B, etc.
E f(A, B), EA f(A, B) Expected value of f(A, B) (left: over all randomness, right: over randomness of A)
I[A; B | C] ∈ R+ Conditional mutual information between A and B given C
T ∈ Z++ Number of measurements/timesteps in power trace
X ≡ (X1, . . . , XT) ∈ RT Power trace (random variable) consisting of T measurements
Y ∈ Y Secret data (random variable) from finite set Y (e.g. Y = {0, 1, . . . , 255} for uint8 Y)
γ ≡ (γ1, . . . , γT) ∈ [0, 1]T Occlusion probabilities, where γt denotes probability of occluding Xt

C ∈ R++ Budget for occlusion probability vector, which incurs cost
∑T

t=1 c(γt)
γ = C/(C + T) ∈ (0, 1) Re-parameterized version of C which is less-sensitive to dataset
Aγ ≡ (Aγ,1, . . . ,Aγ,T) ∈ {0, 1}T Occlusion mask (random variable), where Prob(Aγ,t = 0) = γt

X ⊙Aγ ∈ RT Occluded trace (elementwise product of trace and occlusion mask)
Φθ(· |X ⊙Aγ , Aγ) ∈ [0, 1] Predicted distribution of secret data given occluded trace and mask, by classifier w/ weights θ

In this work, we seek to leverage deep learning to defend against side-channel attacks by identifying specific67

points in time at which power/radiation measurements leak sensitive data. Our aim is to aid the designers of68

implementations in understanding why their implementations leak (e.g. by indicating the particular sections69

of code or electronic components which are responsible) and thereby enable targeted mitigation of the leaks.70

Our key contributions are:71

• We propose a principled information theoretic quantity which measures the ‘leakiness’ of individual72

power/EM radiation measurements. Unlike prior approaches, ours is sensitive to arbitrary statistical73

associations between a chosen secret variable and subsets of measurements. Our quantity is implicitly74

defined through a constrained optimization problem.75

• We propose a novel deep learning algorithm called Adversarial Leakage Localization (ALL) which76

approximately solves this optimization problem. ALL is based on an adversarial game played between77

a neural net ‘attacker’ trained to classify secret data using power/radiation traces, and a budget-78

constrained noise distribution trained to ‘defend’ against the attack by introducing noise to individual79

measurements in the traces. Due to the budget constraint, noise cannot be added everywhere and80

must be rationed for the leakiest measurements. After training we can thereby surmise the leakiness81

of each measurement from its noisiness.82

• We compare ALL with 11 baseline methods on 6 publicly-available power and EM radiation side-83

channel leakage datasets from implementations of the AES, ECC, and RSA cryptographic standards.84

To our knowledge this is by far the most comprehensive and quantitative comparison of leakage85

localization algorithms which has been done, and we release our code and procedure in the hope of86

facilitating reproducibility and benchmarking of future work in this area.87

2 Background and Setting88

See Table 1 for a summary of the important notation we will use throughout the rest of the paper. Our89

setting is standard in the context of profiling power/EM side-channel analysis (Chari et al., 2003; Mangard90

et al., 2007) and is illustrated in Fig. 1. We assume to have a cryptographic device which encrypts data in a91

manner dependent on secret variable y ∈ Y, where Y is a finite set (e.g. consisting of bitstrings encoding92

all possible values of the variable). We assume to have some measurement apparatus that allows us to93

measure the power consumption or EM radiation throughout encryption. We view the resulting measurement94

sequences as vectors x ∈ RT , called traces, where T ∈ Z++ denotes the number of measurements per trace.95

We view the secret variable as a random variable Y ∼ pY where pY is a simple (e.g. uniform) distribution96

under our control. The resulting trace X | Y ∼ pX|Y then comes from a complicated and a priori unknown97

distribution dictated by factors such as the hardware, environment, and measurement setup. Here each98

element Xt of the random vector X ≡ (X1, . . . , XT) represents a power/radiation measurement at a fixed99

point in time relative to the start of encryption. In this work we assume that the distributions pX,Y (· | y)100

3

Under review as submission to TMLR

exist and have full support for all y ∈ Y, which is reasonable because empirically power consumption usually101

has a ‘random’ component which is well-described by additive Gaussian noise (Mangard et al., 2007). Most102

profiling side-channel attacks amount to collecting a dataset D i.i.d.∼ pX,Y and using supervised (deep or103

otherwise) learning to model pY |X .104

Given these jointly-distributed X, Y, we seek to define for each Xt a scalar quantifying its ‘leakiness,’ i.e. the105

extent to which it can be exploited by attackers to learn Y from X. Towards this end it is useful to consider106

the Shannon conditional mutual information (Shannon, 1948)107

I[Y ; Xt | S] := E
[
log pY |Xt,S(Y | Xt, S)− log pY |S(Y | S)

]
, S ⊆ {X1, . . . , XT } \ {Xt}. (1)

Intuitively, I[Y ; Xt | S] tells us the extent to which our uncertainty about Y is reduced upon observing Xt,108

provided we have already observed the elements of S.109

Each individual quantity I[Y ; Xt | S] tells us something about the leakiness of Xt. However, for each t there110

are 2T −1 such quantities, and it is not obvious how they should be combined into a single scalar. Clearly,111

Xt should be considered leaky if I[Y ; Xt] > 0 and non-leaky if I[Y ; Xt | S] = 0 ∀S. More-subtly, there are112

many practical scenarios in which we have second-order leakage, where I[Y ; Xt] = 0 but I[Y ; Xt | Xt′] > 0 for113

some t′ ̸= t (i.e. Xt alone reveals nothing about Y, but reveals something useful about Y when combined114

with Xt′). For example, many cryptographic implementations use a Boolean masking countermeasure (Chari115

et al., 1999; Benadjila et al., 2020) whereby a sensitive variable is decomposed into a pair of independent116

‘random shares’ which are operated on at distant points in time. Hence, the naïve choice of I[Y ; Xt] as our117

definition of the leakiness of Xt would not work.118

Another naive choice would be to define the leakiness of Xt as I[Y ; Xt | {X1, . . . , XT } \ {Xt}]. This addresses119

the insensitivity of I[Y ; Xt] to second-order leakage. However, it introduces a new shortcoming: when there120

are many leaky measurements with ‘redundant’ information, we may have I[Y ; Xt | {X1, . . . , XT } \ {Xt}] ≈ 0121

even if I[Y ; Xt]≫ 0. In other words, Xt has little new information about Y which is not already provided by122

the other measurements. As we will show, this phenomenon creates issues for many prior deep learning-based123

leakage localization algorithms.124

We will subsequently propose a natural notion of leakiness which is sensitive to all the quantities described125

by Eqn. 1. Before we do so, let us consider relevant prior work and its limitations.126

3 Existing work and its limitations127

We consider prior work in the side-channel analysis literature which may be leveraged for leakage localization.128

One prominent category of such work is parametric statistics-based methods which use non-deep learning129

techniques to look for pairwise associations between the measurements Xt and Y. The other is neural net130

attribution-based methods, where 1) a profiling side-channel attack is carried out with supervised deep learning,131

and 2) the neural net is ‘interpreted’ to determine the relative importance of its input features. Refer to132

Appendix C for further details.133

3.1 First-order parametric statistics-based methods134

First-order parametric statistics-based methods (Mangard et al., 2007; Chari et al., 2003; Brier et al., 2004)135

are widely used for understanding leakage due to their simplicity, interpretability, and low computational136

cost. However, these cannot detect leakage of order 2 or higher, and make restrictive assumptions about the137

relationship between X and Y. Thus, such methods are ill-suited to our work’s ‘black-box’ leakage localization138

setting where we make minimal assumptions about the cryptographic implementation being evaluated.139

In practice, leakage mitigation will likely be done in a ‘white-box’ setting where hardware designers understand140

the implementation and have access to its internal variables. In this setting, nth-order leakage can often be141

decomposed into first-order leakage of ≥ n internal variables, which can then be localized individually with142

first-order methods. However, such analysis is error-prone and relies on careful analysis of the implementation.143

For example, Benadjila et al. (2020) released the second order-leaking ASCADv1-fixed dataset and analyzed144

its leakage by decomposing it into 2 pairs of first-order-leaking internal variables. Subsequently, Egger et al.145

4

Under review as submission to TMLR

(2022) noted additional internal variables which contribute to leakage but were missed in the initial analysis.146

We view black-box deep learning-based methods such as ours as complementary with parametric white-box147

analysis: the latter provides an interpretable and hyperparameter-free assessment of known-leaky internal148

variables, while the former can detect leakage stemming from both known and unknown sources.149

3.2 Neural net attribution-based methods150

There is a great deal of prior work on localizing leakage by applying interpretability techniques to neural151

nets which have been trained to perform side-channel attacks (Masure et al., 2019; Hettwer et al., 2020; Jin152

et al., 2020; Zaid et al., 2020; Wouters et al., 2020; van der Valk et al., 2021; Golder et al., 2022; Li et al.,153

2022; Perin et al., 2022; Schamberger et al., 2023; Yap et al., 2023; Li et al., 2024; Yap et al., 2025). Most154

of these techniques can be summarized as follows: 1) use standard supervised deep learning techniques to155

train a model p̂ ≈ pY |X using data, and 2) use interpretability techniques to estimate the influence of each156

input feature on the model, on average over the dataset. For example, the Gradient Visualization (GradVis)157

technique of Masure et al. (2019) estimates the leakiness of Xt by EX,Y

∣∣∣− ∂
∂xt

log p̂(Y | x)|x=X

∣∣∣ , and the158

1-Occlusion technique of Hettwer et al. (2020) estimates it as EX,Y |p̂(Y |X)− p̂(Y | (1− It)⊙X)| where159

It denotes column t of the identity matrix. In this work we consider as baselines the recent OccPOI method160

(Yap et al., 2025), the m-Occlusion and 2nd-order m-Occlusion techniques (Schamberger et al., 2023), as161

well as GradVis (Masure et al., 2019), Saliency (Simonyan et al., 2014; Hettwer et al., 2020), 1-Occlusion162

(Zeiler & Fergus, 2014; Hettwer et al., 2020), LRP (Bach et al., 2015; Hettwer et al., 2020), and Input ∗163

Grad (Shrikumar et al., 2017; Wouters et al., 2020). Note that these subsume the deep learning baselines164

considered by Yap et al. (2025); Schamberger et al. (2023).165

Most of these methods are prone to detecting only some leaking measurements while ignoring others.166

GradVis, Saliency, 1-Occlusion, LRP and Input ∗ Grad compute the leakiness of Xt by occluding or167

differentiating the input xt to p̂(Y | X1, . . . , Xt−1, xt, Xt+1, . . . , XT) and observing its change in output.168

However, as discussed in Sec. 2, when many of the measurements carry ‘redundant’ information, one may169

have I[Y ; Xt | {X1, . . . , XT } \ {Xt}] ≈ 0 even if I[Y ; Xt] ≫ 0. In this case a well-fit p̂ becomes essentially170

constant with respect to xt, causing these methods to spuriously estimate low leakiness for Xt.171

While m-Occlusion, 2nd-order m-Occlusion, and OccPOI occlude multiple inputs simultaneously and are172

thus less-susceptible to this issue, they have their own shortcomings. m-Occlusion is like 1-Occlusion except173

that it occludes m-diameter windows rather than single points, which has an undesirable smoothing effect174

and is helpful only when the ‘redundant’ measurements are temporally-local. 2nd-order m-Occlusion entails175

occluding all pairs of windows, which is expensive because it requires Θ(T 2) passes through the dataset176

with the neural net. Additionally, while it provides the interesting and unique ability to discern whether177

leakage is first-order or second-order, we find that it gives little improvement over m-Occlusion when adapted178

to estimate the leakiness of a single point. Unlike the other considered methods, OccPOI does not assign179

a leakiness estimate to every measurement. Rather, it is a heuristic which aims to identify a non-unique180

minimal-cardinality set of measurements sufficient for p̂ to attain some classification performance when all181

other measurements are occluded. Additionally, it is expensive because it requires Ω(T) non-parallelizable182

passes through the dataset with the neural net.183

4 Our method: Adversarial Leakage Localization (ALL)184

Here we propose a novel algorithm called Adversarial Leakage Localization (ALL) for localizing leakage which185

addresses the shortcomings of prior work. In line with Sec. 2, we have jointly-distributed power/EM radiation186

traces X := (X1, . . . , XT) and secret data Y. We seek to define for each Xt a scalar quantifying its ‘leakiness,’187

i.e. its usefulness to attackers for learning Y from X.188

Intuitively, ALL is based on an adversarial game played between a neural net ‘attacker’ trained to predict Y189

from X, and a budget-constrained noise distribution trained to ‘defend’ against the attack by introducing190

noise to individual measurements to maximize the loss of the classifier. Because of the budget constraint,191

increasing the noise applied to one measurement requires reducing the noise of other measurements. Thus,192

noise cannot simply be applied everywhere, and must be ‘triaged’ so that leakier measurements get more193

5

Under review as submission to TMLR

noise. After training we can surmise the leakiness of a measurement from the amount of noise which has194

been applied to it.195

In this section we first propose a constrained optimization problem which implicitly defines a notion of196

‘leakiness’ which is sensitive to all the terms I[Y ; Xt | S] : S ⊆ {X1, . . . , XT } \ {Xt}. We then derive ALL as a197

practical deep learning algorithm which approximately solves this optimization problem. We conclude by198

explicitly contrasting ALL with prior work. Refer to Appendix D for an extended version of this section with199

proofs and derivations, and Algorithm 2 for pseudocode.200

4.1 Implicit definition of leakiness through a constrained optimization problem201

We define a vector γ ∈ [0, 1)T which we name the occlusion probabilities. γ parameterizes a distribution over202

a binary random vector with range {0, 1}T which we call the occlusion mask: Aγ ≡ (Aγ,1, . . . ,Aγ,T) ∼ pAγ :203

Aγ,t ∼ Bernoulli(1− γt). For arbitrary vectors x ∈ RT , α ∈ {0, 1}T , let us denote xα := (xt : t = 1, . . . , T :204

αt = 1), i.e. the sub-vector of x containing its elements for which the corresponding element of α is 1. We205

can accordingly use Aγ to obtain random sub-vectors XAγ of X. Note that γt denotes the probability that206

Xt will not be an element of XAγ .207

We assign to each element of γ a strictly-increasing ‘cost’ c : [0, 1) → R+ : x 7→ x
1−x , with the properties208

c(0) = 0 and limx→1 c(x) =∞. We seek to solve the constrained optimization problem209

min
γ∈[0,1)T

L(γ) := I[Y ; XAγ | Aγ] such that
T∑

t=1
c(γt) = C (2)

where C ∈ R++ is a ‘budget’ hyperparameter. Intuitively, the mutual information term tells us the extent210

to which the ‘occluded’ trace XAγ ‘leaks’ Y, and γ is optimized to distribute a fixed ‘budget of occlusion211

probability’ among the individual elements of X to minimize this leakage.212

As discussed in Appendix D.1, during this optimization process each γt is ‘pushed’ up towards 1 in proportion213

to a weighted sum over all values I[Y ; Xt | S] : S ⊆ {X1, . . . , XT } \ {Xt}. Thus, ALL is sensitive to all214

associations between Y and subsets of {X1, . . . , XT }. This is in contrast to parametric methods which consider215

only pairwise associations between each Xt and Y, methods like 1-Occlusion, GradVis, Saliency, Input ∗ Grad216

and LRP which are sensitive to associations between Y and the sets {X1, . . . , XT }, {X1, . . . , XT } \ {Xt}, and217

OccPOI, m-Occlusion, and 2nd-order m-Occlusion, which consider larger yet still tiny subsets of the power218

set of {X1, . . . , XT }.219

Due to the budget constraint, increasing γt requires reducing other γτ , τ ≠ t. Let us denote by γ∗ a solution220

to Eqn. 2. Each γ∗
t will be closer to 1 if Xt is ‘leakier’ in the sense that it has greater mutual information221

with Y, conditioned on other Xτ , τ ̸= t. Thus, we propose using γ∗
t to measure the ‘leakiness’ of Xt.222

4.2 Deep learning-based implementation223

We will now re-frame this problem in a way that is amenable to standard deep learning techniques. Refer to224

Fig. 2 for a diagram.225

We first re-parameterize it into an unconstrained problem by defining the variable η := softmax(η̃), η̃ ∈ RT
226

and letting γ be a function from RT → [0, 1]T satisfying227

c(γt(η̃)) = Cηt ⇐⇒ γt(η̃) = sigmoid(log C + log(softmax(η̃)t)). (3)

We can now optimize with respect to η̃ instead of γ, letting us drop the constraint because it is satisfied for228

any η̃. Note that it is cheap and numerically-stable to map η̃ to γ in PyTorch.229

Next, as described in Appendix D.2, we can approximate the mutual information term of Eqn. 2 with a230

neural net. Note that I[Y ; XAγ | Aγ] =
∑

α∈{0,1}T pAγ (α) I[Y ; Xα] where each I[Y ; Xα] = E log pY |Xα
(Y |231

Xα)− E log pY (Y). The right terms can be dropped because their corresponding terms in the full expression232

do not depend on γ. The conditional distributions in the left terms can each be approximated by using233

supervised deep learning with cross-entropy loss to classify Y from Xα. There are 2T such distributions and234

6

Under review as submission to TMLR

Secret variable,
e.g. cryptographic key

Trace: side-channel (e.g.
power, EM radiation)

measurements over time

Classifier ('Attacker'): noise-
conditional neural net predicts

secret variable from trace

Learned occlusion
probabilities

Occlusion
mask

Noise distribution ('Defender'): applies
multiplicative binary noise to trace

Neural net
weights

?
Predicted

distribution over
secret variable

Figure 2: A diagram illustrating our Adversarial Leakage Localization (ALL) algorithm. A classifier Φθ is
trained to ‘attack’ a cryptographic implementation by predicting its secret data Y from power/EM radiation
traces X ≡ (X1, . . . , XT). Simultaneously, a noise distribution is trained to ‘defend against the attack’ by
occluding the classifier’s individual input features Xt with probabilities γt, subject to a budget constraint
which prevents trivially occluding every feature with probability 1. Because of the constraint, increasing γt

necessarily entails decreasing γτ for some τ ≠ t, so the noise distribution must preferentially apply noise to
leakier features. Thus, after training we may interpret γt as the ‘leakiness’ of Xt.

it would be infeasible to train this many neural nets independently. Instead, similarly to Lippe et al. (2022),235

we train a single neural net to estimate all the distributions by occluding its inputs according to Aγ and236

feeding Aγ as an auxiliary input. Thus, we can approximate Eqn. 2 with the optimization problem237

min
η̃∈RT

max
θ∈RP

Ladv(η̃, θ) := E log Φθ

(
Y |X ⊙Aγ(η̃), Aγ(η̃)

)
(4)

where Φθ : Y × RT × {0, 1}T → (0, 1) is a neural net with weights θ and softmax output activation, and238

Φθ(y | x⊙α, α) denotes its estimated probability that Y = y given Xα = xα. This can be approximately239

solved using alternating SGD-style algorithms, similarly to GANs (Goodfellow et al., 2014).240

To use SGD-like algorithms we must estimate ∇θLadv(η̃, θ) and ∇η̃Ladv(η̃, θ) with Monte Carlo integration.241

The former is routine in the context of DNN training. However, the latter is nontrivial because Ladv has the242

form Eα∼pη̃ f(α) where α is discrete. There is a large body of work on gradient estimation for functions of243

this nature, which can broadly be categorized into unbiased REINFORCE (Williams, 1992)-based estimators244

with variance reduction strategies, and biased estimators based on relaxing pη̃ into a continuous distribution245

for which we can use the reparameterization trick (Rezende et al., 2014; Kingma & Welling, 2014). In our246

experiments we use the biased CONCRETE estimator (Maddison et al., 2017) with fixed temperature τ = 1247

because it is cheap and simple, and we find it yields nearly the same performance as more-complicated248

estimators we tried. We conjecture that we get strong performance with this simple and biased estimator249

because our performance metrics are sensitive only to the relative leakiness assigned to measurements, and250

the bias does not significantly affect this. Note that f(α) ≡ E log Φθ(Y | X ⊙ α, α) has been defined for251

α ∈ {0, 1}T , but after the CONCRETE relaxation we may have any α ∈ [0, 1]T . Thus, we replace it with the252

modified function f(α) ≡ E log Φθ(Y |X ⊙α + ε⊙ (1−α), α) where ε ∼ N (0, 1)T .253

Our method is mainly sensitive to 3 hyperparameters: the learning rates of θ and η̃, and the budget254

hyperparameter C. Rather than tuning C directly, we find it easier to tune the hyperparameter γ := C
C+T . γ255

is equal to the occlusion probability of each measurement when η̃ is constant, and is less-sensitive to the data256

dimensionality T than C.257

7

Under review as submission to TMLR

4.3 Differences from prior work258

Whereas GradVis, Saliency, LRP, Input ∗ Grad and 1-Occlusion effectively perturb single input features to259

the classifier and analyze the change in its outputs, ALL generally perturbs many inputs simultaneously. This260

is useful in settings where there are many ‘redundant’ leaking measurements and the impact of perturbing261

only one of them is small.262

Like ALL, m-Occlusion, 2nd-order m-Occlusion and OccPOI also simultaneously occlude multiple input263

features. The key differences of our method are: 1) ALL samples from a distribution over all 2T possible264

occlusion masks optimized to maximally hurt the performance of the classifier, whereas prior work iterates over265

a tiny subset of possible occlusion masks chosen heuristically. 2) ALL leverages the gradient of classifier loss266

with respect to relaxed occlusion masks, whereas prior work uses only zeroeth-order information from forward267

passes with ‘hard’ occlusion masks. 3) We simultaneously optimize the mask distribution to maximally hurt268

the classifier, and the classifier weights to be optimal for the current mask distribution. In contrast, prior269

work trains the classifier with standard supervised learning techniques, then ‘interprets’ the fixed classifier270

with occlusion.271

5 Experimental results272

5.1 Synthetic datasets where we know ‘ground truth’ leakiness273

100 101 102 103 104

Number of second-order leaky pairs: D

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
ne

ga
tiv

e
ra

te
↓

Oracle
Random
Best parametric
Best gradient-based

Bestm-occlusion
OccPOI
ALL (ours)

Figure 3: A toy setting described in Sec. 5.1 where ALL (ours) significantly outperforms baselines. We
sample 1 non-leaky feature and D second-order leaky pairs, then plot the false negative rate, defined as the
proportion of points incorrectly assigned leakiness less than or equal to that of the non-leaky point, as we
increase D. ALL (ours) succeeds for D up to 64× higher the best prior deep learning-based approach, and the
first-order parametric methods completely fail in this setting. Dots denote median and error bars denote
min–max over 5 random seeds.

Toy setting where ALL succeeds and prior work fails As we will show, these differences lead to274

significant performance gains, as well as speedup relative to 2nd-order m-Occlusion and OccPOI.275

We generate a sequence of binary-label 2D +1-feature classification datasets consisting of ordered pairs (X, Y)276

sampled independently as follows (see Appendix E.1 for details): Y ∼ U{0, 1}, R ∼ U{0, 1}, Mi ∼ U{0, 1}277

for i = 1, . . . , D, XR ∼ N (R, 1), XMi ∼ N (Mi, 1), XY ⊕Mi ∼ N (Y ⊕Mi, 1) for i = 1, . . . , D. Here we denote278

8

Under review as submission to TMLR

by ⊕ the exclusive-or operation and X := (XR, XM1 , XY ⊕Mi
, . . . , XMD

, XMD⊕Y). Intuitively, we can view279

the features XR, XMi , and XY ⊕Mi as noisy observations of R, Mi, and Y ⊕Mi, respectively. Note that R280

tells us nothing about Y, and while individually each variable Mi, Y ⊕Mi is independent of Y , the pairs of281

variables {Mi, Y ⊕Mi} allow us to determine Y through the identity Y = Y ⊕Mi ⊕Mi. An ideal leakage282

localization algorithm should indicate that each feature XMi
, XY ⊕Mi

is leaking, while XR is not.283

In Fig. 3, we plot the performance of ALL and prior work as we sweep the value of D. While prior deep284

learning-based methods succeed for small D, they fail when D grows large because the individual contribution285

of each {XMi
, XY ⊕Mi

} is ‘drowned out’ in the sense that I[Y ; {XMi
, XY ⊕Mi

} | {XMj
, XY ⊕Mj

: j ̸= i}]286

vanishes. ALL succeeds for D up to 64× larger than prior work because as the classifier becomes more-287

reliant on particular features they are subject to a higher occlusion probability, mitigating this effect. For288

completeness we also include first-order parametric methods in our comparison; these fail because they are289

not sensitive to the second-order associations between Y and {XMi
, XY ⊕Mi

}.290

Estimated leakiness Ground truth leaky instruction timestep

Increasing shuffle locations
n = 1 n = 5 n = 9 n = 15

0

1

0 100 0 100 0 100 0 100
Timestep t Timestep t Timestep t Timestep t

E
st

im
at

ed
 le

ak
in

es
s

of
 X

t

Increasing max random delay duration
n = 0 n = 5 n = 13 n = 25

0

1

E
st

im
at

ed
 le

ak
in

es
s

of
 X

t

Increasing leaky instruction count
n = 0 n = 3 n = 7 n = 13

0

1

E
st

im
at

ed
 le

ak
in

es
s

of
 X

t

Increasing low-pass filtering strength
β = 0.0 β = 0.875 β = 0.96875 β = 0.9921875

0

1

E
st

im
at

ed
 le

ak
in

es
s

of
 X

t

Figure 4: Output γ∗ ≡ γ(η̃∗) of our ALL algorithm when applied to simulated AES-128 power trace datasets
based on the Hamming weight model of (Mangard et al., 2007, ch. 4), as described in Appendix E.2. Leakiness
estimated by ALL is consistent with the ground truth timestep at which leaky instruction(s) are executed
across varying low-pass filtration strength, leaky instruction count, random no-op insertion, and random
shuffling.

Simulated AES-128 datasets We next apply ALL to a variety of simulated AES datasets. These are291

a useful complement to subsequent experiments on real datasets because we can validate ALL’s outputs292

against ground truth knowledge about which timesteps are leaking, as well as gain insight into its behavior293

when individually varying particular dataset properties. Traces are simulated using the Hamming weight294

leakage model of (Mangard et al., 2007, ch. 4), which decomposes total power consumption as Xt =295

Xdata, t + Xop, t + Xresid, t. Here Xdata, t is a function of the Hamming weight of the data currently being296

operated on, Xop, t is a function of the operation currently being applied to the data, and Xresid, t models297

9

Under review as submission to TMLR

remaining sources of noise as a Gaussian random variable. Further details can be found in Appendix E.2.298

Note that while this model applies to a particular device studied by Mangard et al. (2007), the relationship299

between data and power consumption is device-dependent and often eludes simple characterization.300

In Fig. 4 we simulate several factors of variation which may be expected to occur in realistic settings,301

and observe the change in behavior of ALL. First, we apply a varying-strength discrete low-pass filter to302

the simulated traces. As the strength increases, the peak of the estimated leakiness remains centered at303

the timestep of the leaky instruction while becoming more-diffuse. Second, we vary the number of leaky304

instructions and see that ALL consistently produces similar-height peaks at every leaky instruction. Third,305

we introduce a random delay before the leaky instruction, which causes ALL’s peak diffuses over the set of306

timesteps at which the instruction may occur. Fourth, we shuffle the location of the leaky instruction so307

that it may occur at various points in time. As when varying the number of instructions, ALL produces308

similar-height peaks at each point in time at which the instruction sometimes occurs.309

5.2 Real power and EM radiation leakage datasets310

Leakiness from white-box assessment

L
ea

ki
ne

ss
es

tim
at

ed
by

A
LL

(o
ur

s)

L
ea

ki
ne

ss
es

tim
at

ed
by

2n
d
-o

rd
er

7-
O

cc
lu

si
on

0 250 500 750 1000 1250

Time t

10−2

10−1

100

101

‘O
ra

cl
e’

le
ak

in
es

s
of
X
t

White-box SNR assessment

rin

r2

rout

w2 ⊕ k2 ⊕ rin

S(w2 ⊕ k2)⊕ r2
S(w2 ⊕ k2)⊕ rout

Sprev ⊕ S(w2 ⊕ k2)⊕ rout

Security load

100

E
st

im
at

ed
le

ak
in

es
s

of
X
t

2nd-order 7-occlusion (best baseline)

0 250 500 750 1000 1250

Time t

0.00

0.25

0.50

0.75

E
st

im
at

ed
le

ak
in

es
s

of
X
t

ALL (ours)

0.00

0.25

0.50

0.75

All variables (rin, w2 ⊕ k2 ⊕ rin)

10−2 10−1 100

0.00

0.25

0.50

0.75

(rout, S(w2 ⊕ k2)⊕ rout)

10−2 10−1 100

(r2, S(w2 ⊕ k2)⊕ r2)

Security load

10−2 10−1 100

Sprev ⊕ S(w2 ⊕ k2)⊕ rout

100

100

Figure 5: A qualitative comparison on ASCADv1-variable between the estimated leakiness by a white-box
SNR-based assessment following Egger et al. (2022), ALL (our method), and 2nd-order 7-Occlusion (the
strongest baseline). (left) Superimposed per-timestep leakiness of 8 internal AES variables which contribute
to leakage of our targeted ‘secret variable’ Y ≡ S(w2 ⊕ kw). We consider Y to leak to the extent that at
least one of these internal variables leaks. (center) The per-timestep leakiness of Y, as estimated by ALL
and the baseline. Ideally, these estimates should align with peaks in the white-box assessment. (right) The
per-timestep leakiness as estimated by ALL and the baseline, vs. the mean SNR of subsets of the internal
AES variables (indicated in plot titles). In the plot labeled ‘All variables’, ALL exhibits a stronger positive
association with the aggregate white-box assessment than the baseline. For individual variable subsets, ALL
consistently produces a |/-shaped structure with a diagonal trend indicating agreement between estimated
leakiness and SNR for the variables of interest, and a vertical band corresponding to leakage from other
variables. In contrast, the baseline often exhibits an L-shaped structure, with the horizontal band reflecting
spuriously low leakiness estimates at timesteps where the internal variables are known to have significant
leakage. It appears that the baseline is mainly sensitive to (rin, w2 ⊕ k2 ⊕ rin) and possibly the security load
(which leaks at similar times as rin), but understates or misses leakage due to the other variables.

We compare our method to prior work on 6 publicly-available datasets of real recorded side-channel emissions311

and metadata covering diverse settings, as described in Appendix E.3.1. See Appendix E.3 for an extended312

version of this section including full implementation details, additional experiments, and ablation studies.313

Experimental setup Despite their methodological differences, all considered methods may be viewed as a314

function which maps a dataset to a sequence of scalars encoding the estimated leakiness of Xt for each t. For315

all deep learning baselines apart from ALL, we first train a supervised classifier to predict secret variables Y316

from power traces (X1, . . . , XT). We then use the ‘importance’ of Xt to the classifier’s prediction about Y, on317

average over the profiling set, as the estimated leakiness of Xt. The definition of ‘importance’ is prescribed318

10

Under review as submission to TMLR

by the method. For ALL, we simply run our method as described in Sec. 4, then directly use the trained319

occlusion probability γ∗
t as the estimated leakiness of Xt.320

For the supervised classifiers and the classifier denoted Φθ in ALL, we use the same ReLU MLP architecture321

trained with the AdamW optimizer (see Appendix E.3.2). For both supervised classification and ALL training322

runs, we use the same minibatch size and training step count, tune the important hyperparameters for each323

dataset using random search with a 50-run budget, and leave the rest at reasonable defaults (see Appendix324

E.3.3). Supervised classifier hyperparameters are tuned to minimize correct-key rank (similar to maximizing325

accuracy). For ALL we cannot use this approach, so we instead use a criterion based on occluding the inputs326

to a frozen supervised classifier and observing its change in performance (see Appendix E.3.5). Baselines are327

implemented using Captum (Kokhlikyan et al., 2020) where possible. OccPOI and (2nd-order) m-Occlusion328

are adapted to the setting of our paper as described in Appendix E.3.2.329

Performance evaluation strategies and results In Fig. 5, in line with previous work (Masure et al.,330

2019; Wouters et al., 2020; Schamberger et al., 2023; Yap et al., 2025), we compute a white-box leakage331

assessment on ASCADv1-variable and qualitatively compare it to the outputs of ALL and the strongest332

baseline. As is standard, we target the variable Y ≡ S(w2 ⊕ k2). Because this AES implementation employs333

Boolean masking, Y does not directly influence the power consumption. Nonetheless, there are 3 pairs of334

internal variables which do directly influence power consumption and can be combined to determine Y (as335

well as more-complicated identities involving the security load and Sprev ⊕ S(w2 ⊕ k2)⊕ rout) (Egger et al.,336

2022). Ideally, a leakage localization algorithm should consider each Xt leaky to the extent that at least one337

such variable with utility for determining Y leaks. In Fig. 5 ALL successfully identifies the leakage of all 3338

pairs of variables, while the best considered baseline clearly identifies leakage from only one of the pairs.339

In the interest of scaling our comparison to many baselines and datasets, we next consider quantitative340

performance metrics. For real-world datasets quantitative performance evaluation is challenging because we341

lack ‘ground truth’ knowledge about leakage, and there is no consensus on the best way to do so. We thus342

employ 4 performance evaluation metrics which are conceptually similar to evaluation strategies in prior work.343

Because the specific numbers used to encode leakiness by the various baselines are not directly comparable,344

we use metrics which are sensitive only to the relative leakiness of different timesteps – i.e. under which345

a vector of estimated leakiness values (γ∗
1 , . . . , γ∗

T) has the same performance as (f(γ∗
1), . . . , f(γ∗

T)) for any346

strictly-increasing f : R→ R.347

Table 2 lists performance across four complementary metrics which emphasize different aspects of performance.348

See Appendix E.3.4 for details about each metric. The oracle agreement metric assesses agreement with a349

white-box leakiness evaluation, and is given by the Spearman rank correlation coefficient between estimated350

leakiness and the average SNR of known leaky internal variables (similar to Fig. 5). The template attack351

minimum traces to disclosure (MTD)2metric assesses the utility of the estimated-leakiest measurements352

for conducting a side-channel attack – higher-fidelity leakiness estimates are expected to allow leakier353

measurements to be fed to the attacker, leading to better attack performance. The forward DNN occlusion354

test2 measures the extent to which the performance of a deep learning-based side-channel attack is preserved355

as we occlude all but the estimated-leakiest measurements, and is mainly sensitive to spurious or incorrectly-356

ordered high estimates. The reverse DNN occlusion test2 measures the extent to which performance is357

preserved as we occlude all but the estimated-least-leaky measurements, and is mainly sensitive to spurious358

low estimates. As seen in Table 2, ALL outperforms all baselines on the majority of datasets under every359

metric except for the forward DNN occlusion test.360

6 Conclusion361

We have proposed a novel algorithm for localizing side-channel leakage from cryptographic implementations.362

Unlike prior work, ours is sensitive to arbitrary statistical associations responsible for leakage and operates363

in a ‘black box’ manner, requiring only a supervised learning-style dataset with labels denoting the secret364

2The template attack MTD metric is similar to evaluations done in Masure et al. (2019); Yap et al. (2025). The DNN
occlusion tests were inspired by the ZB-KGE and KRPC algorithms of Hettwer et al. (2020). As described in Appendix E.3.4,
we alter implementation details to summarize these as scalars and improve reliability on second-order datasets.

11

Under review as submission to TMLR

Table 2: A comparison of the considered deep learning-based leakage localization algorithms on 6 datasets
and under 4 quantitative performance metrics. We report mean ± 1 standard deviation over 5 random seeds.
Bold numbers denote the method with the best mean performance (ties broken by lower variance). ↑
denotes that a higher number is better, and ↓ denotes that a lower number is better. (Oracle agreement ↑)
The Spearman rank correlation coefficient between the predicted leakiness and an ‘oracle’ leakiness derived
from a white-box SNR-based assessment exploiting knowledge of the internal variables contributing to leakage
of the target. (Template attack MTD ↓) The minimum traces to disclosure (MTD) of a template attack
when using the predicted leakiness for point of interest (feature) selection. (Forward DNN occlusion
test ↓) The mean single-trace correct-key rank of a DNN-based attacker when occluding all but the k
predicted-leakiest timesteps, on average for k ∈ {1, . . . , T}. (Reverse DNN occlusion test ↑) The mean
single-trace correct-key rank of a DNN-based attacker when occluding all but the k predicted-least-leaky
timesteps, on average for k ∈ {1, . . . , T}.

2nd-order datasets 1st-order datasets
Method ASCADv1-f ASCADv1-r DPAv4 AES-HD OTiAiT OTP

O
ra

cl
e

ag
re

em
en

t
↑ GradVis 0.48± 0.02 0.27± 0.01 0.198± 0.009 0.07± 0.01 0.55± 0.05 0.57± 0.02

Saliency 0.47± 0.02 0.26± 0.01 0.198± 0.008 0.07± 0.01 0.67± 0.06 0.58± 0.02
Input ∗ Grad 0.47± 0.02 0.25± 0.01 0.202± 0.009 0.08± 0.02 0.71± 0.05 0.60± 0.02
LRP 0.47± 0.02 0.25± 0.01 0.202± 0.009 0.08± 0.02 0.71± 0.05 0.60± 0.02
OccPOI 0.07± 0.01 0.064± 0.004 0.030± 0.008 0.044± 0.009 0.07± 0.02 0.01± 0.02
1-Occlusion 0.47± 0.02 0.25± 0.01 0.202± 0.009 0.08± 0.01 0.71± 0.05 0.60± 0.02
m∗-Occlusion 0.49± 0.02 0.41± 0.01 0.32± 0.01 0.18± 0.05 0.72± 0.04 0.77± 0.01
2nd-order 1-Occlusion 0.51± 0.01 0.27± 0.01 0.206± 0.009 0.08± 0.01 0.74± 0.05 0.60± 0.02
2nd-order m∗-Occlusion 0.52± 0.01 0.42± 0.01 0.330± 0.009 0.19± 0.05 0.75± 0.04 0.788± 0.007
ALL (ours) 0.794± 0.006 0.60± 0.01 0.317± 0.002 0.22± 0.03 0.782± 0.001 0.848± 0.003

T
m

pl
.

at
ta

ck
M

T
D
↓ GradVis 686± 100 1162± 1000 2.7± 0.1 20014± 6000 1.4± 0.3 1.378± 0.007

Saliency 726± 100 1412± 2000 2.7± 0.1 19438± 6000 1.14± 0.02 1.379± 0.005
Input ∗ Grad 675± 100 1194± 2000 2.6± 0.1 19893± 6000 1.14± 0.02 1.378± 0.003
LRP 675± 100 1194± 2000 2.6± 0.1 19893± 6000 1.14± 0.02 1.378± 0.003
OccPOI 787± 100 942± 200 71± 30 25000.000 1.08± 0.03 1.47± 0.05
1-Occlusion 667± 100 1376± 2000 2.65± 0.08 20011± 6000 1.14± 0.02 1.379± 0.003
m∗-Occlusion 673± 70 727± 400 9± 1 16283± 10 1.17± 0.02 1.382± 0.007
2nd-order 1-Occlusion 709± 100 1086± 1000 2.65± 0.08 20222± 6000 1.14± 0.02 1.378± 0.003
2nd-order m∗-Occlusion 642± 60 710± 400 9± 1 16033± 700 1.16± 0.03 1.381± 0.008
ALL (ours) 459± 40 394± 20 2.22± 0.01 17582± 5000 1.11± 0.02 1.363± 0.007

Fw
d.

D
N

N
oc

cl
us

io
n
↓ GradVis 108.6± 0.5 96.8± 0.3 9.5± 0.6 125.6± 0.3 1.9± 0.2 1.013± 0.002

Saliency 108.5± 0.4 96.3± 0.4 9.5± 0.7 125.6± 0.3 1.8± 0.1 1.014± 0.001
Input ∗ Grad 108.5± 0.4 96.8± 0.4 9.4± 0.7 125.6± 0.3 1.7± 0.2 1.013± 0.001
LRP 108.5± 0.4 96.8± 0.4 9.4± 0.7 125.6± 0.3 1.7± 0.2 1.013± 0.001
OccPOI 122.3± 0.8 120.8± 0.2 58± 2 127.4± 0.3 2.6± 0.2 1.09± 0.04
1-Occlusion 108.5± 0.4 96.7± 0.4 9.4± 0.7 125.6± 0.3 1.7± 0.2 1.013± 0.001
m∗-Occlusion 108.2± 0.5 95.7± 0.6 9.0± 0.6 125.3± 0.2 1.8± 0.2 1.013± 0.001
2nd-order 1-Occlusion 108.4± 0.4 97.0± 0.4 9.4± 0.7 125.5± 0.3 1.7± 0.2 1.013± 0.001
2nd-order m∗-Occlusion 108.2± 0.5 95.9± 0.6 9.0± 0.5 125.3± 0.2 1.7± 0.2 1.013± 0.001
ALL (ours) 107.3± 0.4 104± 1 9.9± 0.7 125.5± 0.3 1.8± 0.1 1.014± 0.001

R
ev

.
D

N
N

oc
cl

us
io

n
↑ GradVis 125.9± 0.2 127.6± 0.1 122± 1 128.0± 0.3 4.2± 0.4 1.34± 0.07

Saliency 125.8± 0.2 127.4± 0.2 122± 1 128.0± 0.3 5.1± 0.3 1.33± 0.06
Input ∗ Grad 125.7± 0.3 127.5± 0.2 121.9± 0.9 128.1± 0.3 5.2± 0.3 1.34± 0.06
LRP 125.7± 0.3 127.5± 0.2 121.9± 0.9 128.1± 0.3 5.2± 0.3 1.34± 0.06
OccPOI 122.3± 0.4 124.6± 0.2 43± 1 127.0± 0.3 3.6± 0.3 1.09± 0.04
1-Occlusion 125.8± 0.3 127.4± 0.2 122± 1 128.1± 0.3 5.2± 0.3 1.34± 0.06
m∗-Occlusion 126.0± 0.2 127.4± 0.2 121± 1 128.5± 0.2 5.3± 0.2 1.30± 0.04
2nd-order 1-Occlusion 125.8± 0.3 127.5± 0.2 122.0± 0.9 128.1± 0.3 5.3± 0.2 1.34± 0.06
2nd-order m∗-Occlusion 126.1± 0.2 127.4± 0.2 121.3± 0.9 128.5± 0.2 5.3± 0.2 1.30± 0.04
ALL (ours) 126.4± 0.2 127.96± 0.06 125± 1 128.3± 0.2 5.6± 0.2 1.39± 0.05

variable under consideration. In light of the ever-increasing efficacy of deep side-channel attack algorithms365

and the failure of existing work to detect all leakage they may exploit, our work marks a critical step towards366

understanding and mitigating the emerging vulnerabilities of cryptographic hardware.367

12

Under review as submission to TMLR

Broader Impact Statement368

The goal of our work is to enhance the security of cryptographic implementations against side-channel attacks369

by identifying the points in time at which they reveal sensitive information, thereby facilitating targeted370

defenses and mitigation strategies. We foresee ALL as being a useful complement to widely-adopted parametric371

leakage localization techniques due to its ability to identify leakage in a ‘black box’ manner without being372

limited by the domain knowledge of its users.373

Our work is primarily defensive in nature. We do not introduce strategies that directly improve the374

performance of profiling side-channel attacks, and we solely consider cryptographic datasets which have been375

made available for research purposes and are already widely studied and understood. Nonetheless, improving376

the ability to identify and understand the weaknesses of cryptographic systems could potentially benefit377

attackers as well as defenders. We believe the utility of our work for defense outweighs this risk.378

References379

Dakshi Agrawal, Josyula R Rao, Pankaj Rohatgi, and Kai Schramm. Templates as master keys. In380

Cryptographic Hardware and Embedded Systems–CHES 2005: 7th International Workshop, Edinburgh, UK,381

August 29–September 1, 2005. Proceedings 7, pp. 15–29. Springer, 2005.382

Cédric Archambeau, Eric Peeters, F X Standaert, and J J Quisquater. Template attacks in principal subspaces.383

In Cryptographic Hardware and Embedded Systems-CHES 2006: 8th International Workshop, Yokohama,384

Japan, October 10-13, 2006. Proceedings 8, pp. 1–14. Springer, 2006.385

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and386

Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance387

propagation. PloS one, 10(7):e0130140, 2015.388

Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas. Deep learning for389

side-channel analysis and introduction to ASCAD database. Journal of Cryptographic Engineering, 10(2):390

163–188, 2020.391

Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Analysis and392

improvements of the dpa contest v4 implementation. In Security, Privacy, and Applied Cryptography393

Engineering: 4th International Conference, SPACE 2014, Pune, India, October 18-22, 2014. Proceedings 4,394

pp. 201–218. Springer, 2014.395

Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. AES HD dataset - 50 000 traces. AISyLab repository,396

2020. https://github.com/AISyLab/AES_HD.397

Bluefin Payment Systems. Bluefin and ID TECH partner to deliver PCI validated Advanced Encryption Stan-398

dard (AES) P2PE solution. Online, November 2023. URL https://www.bluefin.com/news/bluefin-399

and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-400

solution/.401

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leakage model. In402

Marc Joye and Jean-Jacques Quisquater (eds.), Cryptographic Hardware and Embedded Systems - CHES403

2004, pp. 16–29, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-28632-5.404

Olivier Bronchain and François-Xavier Standaert. Side-channel countermeasures’ dissection and the limits of405

closed source security evaluations. IACR Transactions on Cryptographic Hardware and Embedded Systems,406

pp. 1–25, 2020.407

Elie Bursztein, Luca Invernizzi, Karel Král, Daniel Moghimi, Jean-Michel Picod, and Marina Zhang. Generic408

attacks against cryptographic hardware through long-range deep learning. arXiv preprint arXiv:2306.07249,409

2023.410

13

https://github.com/AISyLab/AES_HD
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/

Under review as submission to TMLR

Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. Towards sound approaches to counteract411

power-analysis attacks. In Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology412

Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19, pp. 398–412. Springer,413

1999.414

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S. Kaliski, çetin K. Koç,415

and Christof Paar (eds.), Cryptographic Hardware and Embedded Systems - CHES 2002, pp. 13–28, Berlin,416

Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-36400-9.417

Committee on National Security Systems. Committee on National Security Systems Policy No. 15, Fact418

Sheet No. 1, June 2003. URL https://csrc.nist.gov/csrc/media/projects/cryptographic-module-419

validation-program/documents/cnss15fs.pdf.420

Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random delay generation in embedded421

software. In International Workshop on Cryptographic Hardware and Embedded Systems, pp. 156–170.422

Springer, 2009. Dataset available at https://github.com/ikizhvatov/randomdelays-traces.423

Joan Daemen and Vincent Rijmen. AES proposal: Rijndael document version 2. AES Algorithm424

Submission, September 1999. URL https://csrc.nist.gov/csrc/media/projects/cryptographic-425

standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf.426

Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer Berlin, Heidelberg, March 2013. URL427

https://link.springer.com/book/10.1007/978-3-662-04722-4.428

Josef Danial, Debayan Das, Anupam Golder, Santosh Ghosh, Arijit Raychowdhury, and Shreyas Sen. Em-x-dl:429

Efficient cross-device deep learning side-channel attack with noisy em signatures. ACM Journal on Emerging430

Technologies in Computing Systems (JETC), 18(1):1–17, 2021.431

Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Raychowdhury, and Shreyas Sen. X-432

deepsca: Cross-device deep learning side channel attack. In Proceedings of the 56th Annual Design433

Automation Conference 2019, pp. 1–6, 2019.434

Maximilian Egger, Thomas Schamberger, Lars Tebelmann, Florian Lippert, and Georg Sigl. A second look435

at the ASCAD databases. In International Workshop on Constructive Side-Channel Analysis and Secure436

Design, pp. 75–99. Springer, 2022.437

Guangjun Fan, Yongbin Zhou, Hailong Zhang, and Dengguo Feng. How to choose interesting points for438

template attacks? Cryptology ePrint Archive, Paper 2014/332, 2014. URL https://eprint.iacr.org/439

2014/332.440

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge,441

and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):442

665–673, 2020.443

Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-bandwidth acoustic cryptanalysis.444

In Juan A. Garay and Rosario Gennaro (eds.), Advances in Cryptology – CRYPTO 2014, pp. 444–461,445

Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-44371-2.446

Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom. ECDSA key extraction447

from mobile devices via nonintrusive physical side channels. In Proceedings of the 2016 ACM SIGSAC448

Conference on Computer and Communications Security, pp. 1626–1638, 2016.449

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.450

In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–256.451

JMLR Workshop and Conference Proceedings, 2010.452

Anupam Golder, Ashwin Bhat, and Arijit Raychowdhury. Exploration into the explainability of neural453

network models for power side-channel analysis. In Proceedings of the Great Lakes Symposium on VLSI454

2022, GLSVLSI ’22, pp. 59–64, New York, NY, USA, 2022. Association for Computing Machinery. ISBN455

9781450393225. doi: 10.1145/3526241.3530346. URL https://doi.org/10.1145/3526241.3530346.456

14

https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/cnss15fs.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/cnss15fs.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/cnss15fs.pdf
https://github.com/ikizhvatov/randomdelays-traces
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/ documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/ documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/ documents/aes-development/rijndael-ammended.pdf
https://link.springer.com/book/10.1007/978-3-662-04722-4
https://eprint.iacr.org/2014/332
https://eprint.iacr.org/2014/332
https://eprint.iacr.org/2014/332
https://doi.org/10.1145/3526241.3530346

Under review as submission to TMLR

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron457

Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing458

systems, 27, 2014.459

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International Conference460

on Learning Representations, 2021. URL https://openreview.net/forum?id=lQdXeXDoWtI.461

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David462

Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,463

Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark464

Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer465

Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):466

357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-467

020-2649-2.468

Katherine Hermann and Andrew Lampinen. What shapes feature representations? exploring datasets,469

architectures, and training. Advances in Neural Information Processing Systems, 33:9995–10006, 2020.470

Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep neural network attribution methods for leakage471

analysis and symmetric key recovery. In Kenneth G. Paterson and Douglas Stebila (eds.), Selected472

Areas in Cryptography – SAC 2019, pp. 645–666, Cham, 2020. Springer International Publishing. ISBN473

978-3-030-38471-5.474

Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and Joos Vandewalle. Machine475

learning in side-channel analysis: a first study. Journal of Cryptographic Engineering, 1(4):293–302, 2011.476

Michael Hutter and Jörn-Marc Schmidt. The temperature side channel and heating fault attacks. In Smart477

Card Research and Advanced Applications: 12th International Conference, CARDIS 2013, Berlin, Germany,478

November 27-29, 2013. Revised Selected Papers 12, pp. 219–235. Springer, 2014.479

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In International480

Conference on Learning Representations (ICLR 2017). OpenReview. net, 2017.481

Minhui Jin, Mengce Zheng, Honggang Hu, and Nenghai Yu. An enhanced convolutional neural network in482

side-channel attacks and its visualization. arXiv preprint arXiv:2009.08898, 2020.483

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann LeCun484

(eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April485

14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6114.486

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael Wiener (ed.), Advances487

in Cryptology — CRYPTO’ 99, pp. 388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN488

978-3-540-48405-9.489

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz490

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting491

speculative execution. In 40th IEEE Symposium on Security and Privacy (S&P’19), 2019.492

Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Neal493

Koblitz (ed.), Advances in Cryptology — CRYPTO ’96, pp. 104–113, Berlin, Heidelberg, 1996. Springer494

Berlin Heidelberg. ISBN 978-3-540-68697-2.495

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan Reynolds,496

Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, et al. Captum: A unified and generic497

model interpretability library for pytorch. arXiv preprint arXiv:2009.07896, 2020.498

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit compiler. In Proceedings499

of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1–6, 2015.500

15

https://openreview.net/forum?id=lQdXeXDoWtI
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/1312.6114

Under review as submission to TMLR

Yanbin Li, Yuxin Huang, Fuwei Jia, Qingsong Zhao, Ming Tang, and Shougang Ren. A gradient deconvolutional501

network for side-channel attacks. Computers & Electrical Engineering, 98:107686, 2022.502

Yanbin Li, Jiajie Zhu, Zhe Liu, Ming Tang, and Shougang Ren. Deep learning gradient visualization-based503

pre-silicon side-channel leakage location. IEEE Transactions on Information Forensics and Security, 2024.504

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn,505

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading506

kernel memory from user space. In 27th USENIX Security Symposium (USENIX Security 18), 2018.507

Phillip Lippe, Taco Cohen, and Efstratios Gavves. Efficient neural causal discovery without acyclicity508

constraints. In International Conference on Learning Representations, 2022. URL https://openreview.509

net/forum?id=eYciPrLuUhG.510

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on511

Learning Representations, 2018.512

Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention to raw traces: A deep learning513

architecture for end-to-end profiling attacks. IACR Transactions on Cryptographic Hardware and Embedded514

Systems, pp. 235–274, 2021.515

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation516

of discrete random variables. In International Conference on Learning Representations, 2017. URL517

https://openreview.net/forum?id=S1jE5L5gl.518

Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking cryptographic implementations519

using deep learning techniques. In Security, Privacy, and Applied Cryptography Engineering: 6th Inter-520

national Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings 6, pp. 3–26.521

Springer, 2016.522

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks. Springer New York, NY,523

1st edition, March 2007. doi: 10.1007/978-0-387-38162-6. URL https://link.springer.com/book/10.524

1007/978-0-387-38162-6.525

Loïc Masure and Rémi Strullu. Side-channel analysis against ANSSI’s protected AES implementation on526

ARM: end-to-end attacks with multi-task learning. Journal of Cryptographic Engineering, 13(2):129–147,527

2023.528

Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization for general characterization in529

profiling attacks. In Constructive Side-Channel Analysis and Secure Design: 10th International Workshop,530

COSADE 2019, Darmstadt, Germany, April 3–5, 2019, Proceedings 10, pp. 145–167. Springer, 2019.531

Thomas S Messerges. Using second-order power analysis to attack dpa resistant software. In International532

Workshop on Cryptographic Hardware and Embedded Systems, pp. 238–251. Springer, 2000.533

Nicky Mouha. Review of the Advanced Encryption Standard. NIST Interagency/Internal Report (NISTIR)534

8319, National Institute of Standards and Technology, July 2021. URL https://csrc.nist.gov/pubs/535

ir/8319/final.536

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,537

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep538

learning library. Advances in neural information processing systems, 32, 2019.539

Guilherme Perin, Lichao Wu, and Stjepan Picek. I know what your layers did: Layer-wise explainability540

of deep learning side-channel analysis. Cryptology ePrint Archive, Paper 2022/1087, 2022. URL https:541

//eprint.iacr.org/2022/1087.542

Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina. SoK: Deep learning-based543

physical side-channel analysis. ACM Computing Surveys, 55(11):1–35, 2023.544

16

https://openreview.net/forum?id=eYciPrLuUhG
https://openreview.net/forum?id=eYciPrLuUhG
https://openreview.net/forum?id=eYciPrLuUhG
https://openreview.net/forum?id=S1jE5L5gl
https://link.springer.com/book/10.1007/978-0-387-38162-6
https://link.springer.com/book/10.1007/978-0-387-38162-6
https://link.springer.com/book/10.1007/978-0-387-38162-6
https://csrc.nist.gov/pubs/ir/8319/final
https://csrc.nist.gov/pubs/ir/8319/final
https://csrc.nist.gov/pubs/ir/8319/final
https://eprint.iacr.org/2022/1087
https://eprint.iacr.org/2022/1087
https://eprint.iacr.org/2022/1087

Under review as submission to TMLR

Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Measures and counter-545

measures for smart cards. In Isabelle Attali and Thomas Jensen (eds.), Smart Card Programming and546

Security, pp. 200–210, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-45418-2.547

Christian Rechberger and Elisabeth Oswald. Practical template attacks. In Chae Hoon Lim and Moti Yung548

(eds.), Information Security Applications, pp. 440–456, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.549

ISBN 978-3-540-31815-6.550

Eric Rescorla. HTTP over TLS. RFC 2818, May 2000. URL https://www.rfc-editor.org/info/rfc2818.551

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate552

inference in deep generative models. In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st553

International Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research,554

pp. 1278–1286, Bejing, China, 22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/555

rezende14.html.556

Kotaro Saito, Akira Ito, Rei Ueno, and Naofumi Homma. One truth prevails: A deep-learning based557

single-trace power analysis on rsa–crt with windowed exponentiation. IACR Transactions on Cryptographic558

Hardware and Embedded Systems, pp. 490–526, 2022.559

Thomas Schamberger, Maximilian Egger, and Lars Tebelmann. Hide and seek: Using occlusion techniques560

for side-channel leakage attribution in cnns. In Jianying Zhou, Lejla Batina, Zengpeng Li, Jingqiang561

Lin, Eleonora Losiouk, Suryadipta Majumdar, Daisuke Mashima, Weizhi Meng, Stjepan Picek, Moham-562

mad Ashiqur Rahman, Jun Shao, Masaki Shimaoka, Ezekiel Soremekun, Chunhua Su, Je Sen Teh, Aleksei563

Udovenko, Cong Wang, Leo Zhang, and Yury Zhauniarovich (eds.), Applied Cryptography and Network564

Security Workshops, pp. 139–158, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-41181-6.565

Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for differential side channel566

cryptanalysis. In Cryptographic Hardware and Embedded Systems–CHES 2005: 7th International Workshop,567

Edinburgh, UK, August 29–September 1, 2005. Proceedings 7, pp. 30–46. Springer, 2005.568

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical journal, 27569

(3):379–423, 1948.570

Alexander Shekhovtsov. Bias-variance tradeoffs in single-sample binary gradient estimators. In DAGM571

German Conference on Pattern Recognition, pp. 127–141. Springer, 2021.572

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating573

activation differences. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International574

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 3145–3153.575

PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/shrikumar17a.html.576

K Simonyan, A Vedaldi, and A Zisserman. Deep inside convolutional networks: visualising image classification577

models and saliency maps. In Proceedings of the International Conference on Learning Representations578

(ICLR). ICLR, 2014.579

Biaoshuai Tao and Hongjun Wu. Improving the biclique cryptanalysis of AES. In Ernest Foo and Douglas580

Stebila (eds.), Information Security and Privacy, pp. 39–56, Cham, 2015. Springer International Publishing.581

ISBN 978-3-319-19962-7.582

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar: Low-583

variance, unbiased gradient estimates for discrete latent variable models. Advances in Neural Information584

Processing Systems, 30, 2017.585

Daan van der Valk, Stjepan Picek, and Shivam Bhasin. Kilroy was here: The first step towards explainability586

of neural networks in profiled side-channel analysis. In Guido Marco Bertoni and Francesco Regazzoni (eds.),587

Constructive Side-Channel Analysis and Secure Design, pp. 175–199, Cham, 2021. Springer International588

Publishing. ISBN 978-3-030-68773-1.589

17

https://www.rfc-editor.org/info/rfc2818
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v70/shrikumar17a.html

Under review as submission to TMLR

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni590

Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,591

Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric592

Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,593

Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,594

Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for595

Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.596

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep neural597

networks: A strong baseline. In 2017 International joint conference on neural networks (IJCNN), pp.598

1578–1585. IEEE, 2017.599

Leo Weissbart, Stjepan Picek, and Lejla Batina. One trace is all it takes: Machine learning-based side-channel600

attack on eddsa. In Security, Privacy, and Applied Cryptography Engineering: 9th International Conference,601

SPACE 2019, Gandhinagar, India, December 3–7, 2019, Proceedings 9, pp. 86–105. Springer, 2019.602

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.603

Machine learning, 8:229–256, 1992.604

Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revisiting a methodology for efficient605

CNN architectures in profiling attacks. IACR Transactions on Cryptographic Hardware and Embedded606

Systems, pp. 147–168, 2020.607

Yuxin Wu and Justin Johnson. Rethinking" batch" in batchnorm. arXiv preprint arXiv:2105.07576, 2021.608

Trevor Yap, Adrien Benamira, Shivam Bhasin, and Thomas Peyrin. Peek into the black-box: Interpretable609

neural network using sat equations in side-channel analysis. IACR Transactions on Cryptographic Hardware610

and Embedded Systems, pp. 24–53, 2023.611

Trevor Yap, Stjepan Picek, and Shivam Bhasin. Occpois: Points of interest based on neural network’s key612

recovery in side-channel analysis through occlusion. In Sourav Mukhopadhyay and Pantelimon Stănică613

(eds.), Progress in Cryptology – INDOCRYPT 2024, pp. 3–28, Cham, 2025. Springer Nature Switzerland.614

ISBN 978-3-031-80311-6.615

Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Methodology for efficient CNN616

architectures in profiling attacks. IACR Transactions on Cryptographic Hardware and Embedded Systems,617

pp. 1–36, 2020.618

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In David Fleet,619

Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision – ECCV 2014, pp. 818–833,620

Cham, 2014. Springer International Publishing. ISBN 978-3-319-10590-1.621

18

Under review as submission to TMLR

A Notation and variable names622

See table 3 below for a list of the notation we use, and table 4 for a list of the main variables we define.

Table 3: List of the notation used in our paper.

Symbol Description
Variable case: X, x Upper case: random variable, lower-case: actualization
R, Z Set of real numbers, set of integers
[a .. b] where a < b, a, b ∈ Z Interval of integers {a, . . . , b}
Serif font: S Other sets
A ⊆ B A is a non-strict subset of B
A \ B Complement of B in A, i.e. A \ B := {x ∈ A : x /∈ B}
S+ Nonnegative elements of S ⊆ R
S++ Positive elements of S ⊆ R
Bold font: x Vector in RD for some D ∈ Z++
a⊙ b Elementwise product of a and b
f(x) where f : R→ R Elementwise application of f to x
∇xf(x, . . .) Gradient with respect to x
xα where α ∈ {0, 1}D Sub-vector of x according to α: (xd : d = 1, . . . , D : αd = 1)
X ∼ p X is a random variable with distribution p
pA The distribution of A
pA,B The joint distribution of A and B
pA|B The conditional distribution of A given B

X ∼ pN X is a random vector with elements X1, X2, . . .
i.i.d.∼ p

N (µ; σ2) Normal distribution with mean µ, scale σ
U(S) Uniform distribution over set S
E f(A, B, . . .) Expectation w.r.t. all random variables A, B, . . . in expression
EA f(A, B, . . .) Expectation w.r.t. only to A
I[A; B] Mutual information between A and B
I[A; B | C] Conditional mutual information between A and B given C
A ⊥⊥ B, A ⊥̸⊥ B A is marginally independent, dependent on B
A ⊥⊥ B | C, A ⊥̸⊥ B | C A is conditionally independent, dependent on B given C

623

B Extended background624

Here we provide a high-level overview of the AES algorithm and power side-channel attacks aimed at a625

machine learning audience. Since our algorithm views the cryptographic algorithm and hardware as a black626

box to be characterized with data, a deep understanding is not necessary to understand and appreciate our627

work. Thus, we omit many details and aim to impart an intuitive understanding of these topics. Interested628

readers may refer to Daemen & Rijmen (2013) for a detailed introduction to the AES algorithm, to Mangard629

et al. (2007) for a detailed introduction to power side-channel attacks, and to Picek et al. (2023) for a survey630

of supervised deep learning-based power side-channel attacks on AES implementations. Additionally, note631

that while for clarity of exposition we focus here on power side-channel attacks on AES implementations, our632

algorithm requires only a supervised learning-style dataset of side-channel emission traces and metadata which633

enables computation of the target variable, so is applicable in a more-general setting. We have demonstrated634

that it works with various target variables on AES, ECC and RSA implementations with both power and635

EM radiation measurements, and suspect it is relevant in far more contexts.636

19

Under review as submission to TMLR

Table 4: List of the main variables defined in our paper.

Variable Description
T ∈ Z++ Dimensionality of power trace
X ∼ pX Power trace (random variable)
x ∈ RT Power trace (actualization)
Xt, xt Power measurement at time t, i.e. t-th element of power trace
Y ⊆ Z Set of values the targeted variable may take on
Y ∼ pY Targeted variable (random variable)
y ∈ Y Targeted variable (actualization)
D ⊆ RT × Y Dataset of power traces/targeted variable pairs, sampled i.i.d. from pX,Y

γ ∈ [0, 1]T Occlusion probabilities
γt Occlusion probability at timestep t
γ∗ ∈ [0, 1]T The optimal value of γ after solving Eqn. ??
η̃ ∈ RT Unconstrained logits which parameterize γ
Aγ ∼ pAγ Multiplicative binary noise vector parameterized by occlusion probabilities γ
α ∈ {0, 1}T Actualization of Aγ

c : [0, 1)→ R+ Cost function for occlusion probability elements γt

C ∈ R++ Budget for occlusion probabilities: they must satisfy C =
∑T

t=1 c(γt)
γ ∈ (0, 1) Reparameterized version of C which is more stable w/ data dimensionality
Φθ : RT × [0, 1]T → R Noise-conditional neural net w/ weights θ; returns softmax logits for Y

CiphertextPlaintext PlaintextCryptographic
hardware

Cryptographic
hardware

Key

Secure
channel

Insecure
channel

Sender Intended recipient

"The credit card
number is..."

"The credit card
number is..."

Potential eavesdroppers

Figure 6: Diagram illustrating the main components of symmetric-key cryptographic algorithms, which enable
secure transmission of data over insecure channels where it may be intercepted by eavesdroppers. The data is
first partitioned and encoded as a sequence of plaintexts. Each plaintext is transformed into a ciphertext
by an invertible function indexed by a cryptographic key. The key is transmitted over a secure channel to
intended recipients of the data, allowing them to invert the function and recover the original plaintext. The
set of functions is designed so that absent this key, the ciphertext gives no information about the plaintext.
Thus, the data remains secure even if eavesdroppers have access to the ciphertext.

B.1 Cryptographic algorithms637

Data is often transmitted over insecure channels which leave it accessible not only to intended recipients,638

but also to unknown and untrusted parties. For example, when a signal is wirelessly transmitted from one639

antenna to another, an eavesdropper could set up a third antenna between the two and intercept the signal.640

Alternately, data stored on a hard drive by one user of a computer may be accessed by a different user.641

Cryptographic algorithms aim to preserve the privacy of data under such circumstances by transforming it so642

that it is meaningful only in combination with additional data which is known to its intended recipients but643

not to the untrusted parties.644

20

Under review as submission to TMLR

We focus here on the ubiquitous advanced encryption standard (AES), which is a symmetric-key cryptographic645

algorithm. See Fig. 6 for a diagram illustrating the important components of such algorithms. The unencrypted646

data to be transmitted is encoded and partitioned into a sequence of fixed-length bitstrings called plaintexts.647

The cryptographic algorithm encrypts each plaintext into a ciphertext by applying an invertible function648

from a set of functions indexed by an integer called the cryptographic key. This set of functions is designed so649

that of one were to sample a key and plaintext uniformly at random from the sets of all possible keys and650

plaintexts, then the plaintext and ciphertext would be marginally independent. Thus, such an algorithm may651

be used to securely transmit data by ensuring that the sender and recipient of the data know a shared key,3652

and that the key is kept secret from all potential eavesdroppers on the data.653

B.2 Side-channel attacks654

Many symmetric-key cryptographic algorithms are believed to be secure in the sense that it is not feasible to655

determine their cryptographic key by encrypting known plaintexts and observing the resulting ciphertexts.656

Any such algorithm with a finite number of possible keys is vulnerable to ‘brute-force’ attacks based on657

arbitrarily guessing and checking keys until success, but doing so requires checking half of all possible keys in658

the average case, which is unrealistic for algorithms such as AES which has either 2128, 2192, or 2256 possible659

keys. To our knowledge the best known such attack against AES reduces the required number of guesses by660

less than a factor of 8 compared to a naive brute force attack (Mouha, 2021; Tao & Wu, 2015).661

However, while algorithms may be secure when considering only their intended inputs and outputs, hardware662

executing these algorithms will inevitably emit measurable physical signals which are statistically associated663

with their intermediate variables and operations. Examples of such signals include a device’s power con-664

sumption over time (Kocher et al., 1999), the amount of time it takes to execute a program or instruction665

(Kocher, 1996; Lipp et al., 2018; Kocher et al., 2019), electromagnetic radiation it emits (Quisquater &666

Samyde, 2001; Genkin et al., 2016), and sound due to vibrations of its electronic components (Genkin et al.,667

2014). This phenomenon is called side-channel leakage, and can be exploited to determine sensitive data such668

as a cryptographic key through side-channel attacks.669

As a simple example of side-channel leakage, consider the following Python function which checks whether a670

password is correct:671

def is_correct (provided_password : str , correct_password : str) -> bool:672

if len(provided_password) != len(correct_password):673

return False674

for i in range(len(provided_password)):675

if provided_password [i] != correct_password [i]:676

return False677

return True678

Suppose the password consists of n characters, each with c possible values. Consider an attacker seeking679

to determine the correct password by feeding various guessed passwords until the function returns True.680

Naively, the attacker could simply guess and check all possible m-length passwords for m = 1, . . . , n. This681

would require O(cn) calls to the function, which would be extremely costly for realistically-large c and682

n. However, an attacker with knowledge of the function’s implementation could dramatically reduce this683

cost by observing that the function’s execution time depends on correct_password. Because the function684

exits immediately if len(provided_password) != len(correct_password), the attacker can determine685

the length of correct_password in O(n) time by feeding increasing-length guesses to is_correct until its686

execution time increases. Next, because is_correct exits the first time it detects an incorrect character, the687

attacker can sequentially determine each of the characters of correct_password by checking all c possible688

values of each character and noting that the correct value leads to an increase in execution time. Thus,689

although is_correct secure against attackers which use only its intended inputs and outputs, it provides690

essentially no security against attackers which measure its execution time.691

3The key is typically shared using an asymmetric-key cryptographic algorithm such as RSA or ECC. Asymmetric-key
cryptography is slow and resource-intensive, so when a sufficiently-large amount of data must be transmitted, it is more-efficient
to share the key with an asymmetric-key algorithm and then transmit data using a symmetric-key algorithm than to simply
transmit the data with an asymmetric-key algorithm.

21

Under review as submission to TMLR

Voltage
source

High voltage
 bit

Low voltage
 bit

Data line
-- stores charge

Data line pre-charged to 1

Bit value?

1

0

No change

Charge is drained

Figure 7: Diagram illustrating one reason there is power side-channel leakage in the device characterized
by (Mangard et al., 2007, ch. 4). Data is transmitted over a bus consisting of multiple wires, with one wire
representing each bit. Each wire represents a 0 bit as some prescribed ‘low’ voltage and a 1 bit as a ‘high’
voltage. Energy is consumed when the voltage of a wire changes from low to high because positive and
negative charges, which are attracted to one-another, must be separated to create a high concentration of
positive charge on the wire. When ‘writing’ data to the bus, this particular device first ‘pre-charges’ all wires
to 1, then drains charge from the wires which should represent 0. Thus, because the 0’s must be changed to
1’s before the next write, energy is consumed in proportion to the number of 0’s, thereby creating a statistical
association between the device’s power consumption and the data it operates on.

In this work we focus on side-channel leakage due to the power consumption over time of a device (as well as692

EM radiation, which is closely related due to being dominated by the time derivative of power consumption).693

A device’s power consumption is inevitably statistically-associated with the operations it executes and the694

data it operates on, because these dictate which components are active and the order and manner in which695

they operate. There are many types of components with different functionality, and components with the same696

intended functionality are not identical due to imperfect manufacturing processes. These differences impact697

power consumption. While in general the association between power consumption and data is multifactorial698

and difficult to describe, in Fig. 7 we illustrate a simple relationship which accounts for a significant portion699

of the leakage in a device characterized by Mangard et al. (2007).700

B.3 Power side-channel attacks on AES implementations701

Side-channel attacks are techniques which exploit side-channel leakage to learn sensitive information such as702

cryptographic keys. There are many categories of attacks, but in this work we focus on a category called703

profiled side-channel attacks on symmetric-key cryptographic algorithms. These attacks assume that the704

‘attacker’ has access to a clone of the actual cryptographic device to be attacked, and the ability to encrypt705

arbitrary plaintexts with arbitrary cryptographic keys, observe the resulting ciphertexts, and measure the706

side-channel leakage during encryption. In practice, these assumptions almost certainly overestimate the707

capabilities of attackers – for example, while in some cases an attacker could plausibly identify the hardware708

and source code of a cryptographic implementation, purchase copies of this hardware, program them with the709

source code, and characterize these devices, the nature of the side-channel leakage of these purchased copies710

would differ from those of the actual device due to PVT (pressure, voltage, temperature) variations (e.g. due711

to imperfect manufacturing processes, environment, and measurement setup). It has been demonstrated712

that profiled side-channel attacks can be effective despite this, especially when numerous copies of the target713

hardware are used for profiling (Das et al., 2019; Danial et al., 2021). Regardless, this type of attack provides714

an upper bound on the vulnerability of a device to side-channel attacks, which is a useful metric for hardware715

designers.716

22

Under review as submission to TMLR

While there are diverse types of profiled side-channel attacks, at a high level the following steps encompass717

the important elements of these attacks:718

1. Select some ‘sensitive’ intermediate variable of the cryptographic algorithm which reveals the719

cryptographic key (or part of it).720

2. Compile a dataset of (side-channel leakage, intermediate variable) pairs by repeatedly randomly721

selecting a key and plaintext, encrypting the plaintext using the key and recording the resulting722

ciphertext and side-channel leakage during encryption, and computing the intermediate variable723

based on knowledge of the cryptographic algorithm.724

3. Use supervised learning to train a parametric function approximator to predict intermediate variables725

from recordings of side-channel leakage during encryption.726

4. Measure side-channel leakage during encryptions by the actual target device. Use the trained727

predictor to predict sensitive variables from side-channel leakage. Potentially, these predictions can728

be combined to get a better estimate of the key.729

In the case of power side-channel attacks on AES, it is generally infeasible to directly target the cryptographic730

key because care is taken by hardware designers to prevent it from directly influencing power consumption.731

Instead, it is common to target an intermediate variable which the algorithm directly operates on. A common732

target is the SubBytes output, which is computed as733

y := Sbox(k ⊕ w) (5)

where k ∈ {0, 1}nbits is the key, w ∈ {0, 1}nbits is the plaintext, nbits ∈ Z++ is the number of bits of the key734

and plaintext, ⊕ is the bitwise exclusive-or operation, and Sbox : {0, 1}nbits → {0, 1}nbits is an invertible735

function which is widely known and the same for all AES implementations. Note that if the plaintext is736

known, the key can be computed as737

k = Sbox−1(y)⊕ w. (6)

Additionally, it is common to independently target subsets of the bits of the cryptographic key (e.g. the738

individual bytes). This is reasonable because the common AES target variables are largely leaked by739

instructions which operate on individual bytes.740

B.3.1 Template attack: example of a classical profiled side-channel attack741

In order to underscore the advantage of deep learning over previous side-channel attack algorithms, we will742

here describe the template attack algorithm of Chari et al. (2003), variations of which are the state-of-the-art743

non-deep learning based attacks. The attack is based on modeling the joint distribution of power consumption744

and intermediate variable as a Gaussian mixture model, as described in algorithm 1.745

Note that this algorithm assumes that the joint distribution is well-described by a Gaussian mixture model,746

which may not hold in practice. Additionally, due to the near-cubic runtime of the matrix inversion of each Σy747

required to compute the Gaussian density functions, this algorithm requires pruning power traces down to a748

small number of ‘high-leakage’ timesteps. Follow-up work (Rechberger & Oswald, 2005) proposed performing749

principle component analysis on the traces and modeling the coefficients of the top principle components750

rather than individual timesteps. Nonetheless, these constraints mean that the efficacy of this attack is751

contingent on simplifying assumptions and judgement of which points are ‘leaky’ using simple statistical752

techniques and implementation knowledge, limiting its usefulness as a way for hardware designers to evaluate753

the amount of side-channel leakage from their device.754

B.3.2 Practical profiled deep learning side-channel attacks on AES implementations755

Here we will give a common and concrete setting and method for performing profiled power side-channel756

attacks on AES implementations, which is used for all of our experiments.757

23

Under review as submission to TMLR

Algorithm 1: The Gaussian template attack algorithm of Chari et al. (2003)
Input: Profiling (training) dataset D := {(x(n), y(n) : n ∈ [1 .. N]} ⊆ RT × {0, 1}nbits , attack (testing)

dataset Dattack := {(x(n)
a , w

(n)
a) : n ∈ [1 .. Na]} ⊆ RT × {0, 1}nbits , ‘points of interest’

Tpoi := {tm : m = 1, . . . , T̃} ⊆ [1 .. T]
Output: Predicted key k∗

1 Function get_y (k, w)
2 return Sbox(k ⊕ w) // calculate intermediate variable for given key

3 for n ∈ [1 .. N] do
4 x̃(n) ←

(
x

(n)
tm

: m = 1, . . . , T̃
)

// prune power traces to ‘points of interest’

5 for y ∈ {0, 1}nbits do
// fit a multivariate Gaussian mixture model to the training dataset

6 Dy ←
{

x̃(n) : n ∈ [1 .. N], y(n) = y
}

7 Ny ← |Dy|
8 µy ← 1

Ny

∑
x̃∈Dy

x̃

9 Σy ← 1
Ny−1

∑
x̃∈Dy

(x̃− µy)(x̃− µy)⊤

10 for n ∈ [1 .. Na] do
11 x̃

(n)
a ←

(
x

(n)
a,tm

: m = 1, . . . , T̃
)

// prune power traces of attack dataset

// predict key value which maximizes log-likelihood of attack dataset

12 k∗ ← arg maxk∈{0,1}nbits

∑Na
n=1

[
logN

(
x̃(n); µget_y(k,w

(n)
a), Σget_y(k,w

(n)
a)

)
+ log Nget_y(k,w

(n)
a)

]
13 return k∗

Consider an AES-128 implementation, which has a 128-bit cryptographic key and plaintext. Typically,758

attackers target each of the 16 bytes of the key independently rather than attacking the full key at once. This759

practice tacitly assumes that the bytes of the sensitive variable are statistically-independent given the power760

trace, which is reasonable because many AES operations (including those which are commonly targeted) are761

performed independently on the individual bytes. Thus, it is a convenient way to simplify the attack without762

significantly impacting performance.763

Additionally, it is difficult and uncommon to try to directly map power traces to associated cryptographic764

keys, because great care is taken by hardware designers to ensure that the key does not directly impact power765

consumption. Instead, attackers generally target ‘sensitive’ intermediate variables which unavoidably directly766

impact power consumption and can be combined with the plaintext and ciphertext to learn the key. We767

consider one such intermediate variable which is referred to as the first SubBytes output, and is equal to768

y := Sbox(k ⊕ w), (7)

where k ∈ {0, 1}8 is one byte of the cryptographic key, w ∈ {0, 1}8 is the corresponding byte of the plaintext,769

⊕ denotes the bitwise exclusive-or operation, and Sbox : {0, 1}8 → {0, 1}8 is an invertible function which is770

publicly-available and the same for all AES implementations. Note that if w is known, as is assumed in the771

profiled side-channel attack setting, then k can be recovered as772

k = w ⊕ Sbox−1(y). (8)

In the context of profiled power side-channel analysis, one assumes to have a ‘profiling’ dataset (i.e. a training773

dataset) and an ‘attack’ dataset (i.e. a test dataset). Suppose we target nbytes bytes of the sensitive variable.774

In our setting, the profiling dataset consists of ordered pairs of power traces and their associated sensitive775

intermediate variables:776

D :=
{

(x(n), y(n)) : n ∈ [1 .. N]
}
⊆ RT × {0, 1}nbytes×8 (9)

24

Under review as submission to TMLR

and the attack dataset consists of ordered pairs of power traces and their associated plaintexts:777

Da :=
{

(x(n)
a , w(n)

a) : n ∈ [1 .. Na]
}
⊆ RT × {0, 1}nbytes×8. (10)

Many works prove the concept of their approaches by targeting only a single byte of the sensitive variable.778

When multiple bytes are targeted, it is common to either train a separate neural network for each byte of the779

sensitive variable, or to amortize the cost of targeting these bytes by training a single neural network with a780

shared backbone and a separate head for each byte. In this work we exclusively target single bytes, though it781

would be straightforward to extend our approach to the multitask learning setting.782

Consider a neural network architecture Φ : Y×RT ×RP → R+ : (y, x, θ) 7→ Φ(y | x; θ), where each Φ(· | x; θ)783

is a probability mass function over Y. In the case of a multi-headed network with each head independently784

predicting a single byte, we compute this probability mass of y ∈ Y as the product of the mass assigned to785

each of its bytes. We train the network by approximately solving the optimization problem786

max
θ∈RP

L(θ) := 1
N

N∑
n=1

log Φ(y(n) | x(n); θ). (11)

Given θ̂ ∈ arg maxθ∈RP L(θ), we then identify the key which maximizes our estimated likelihood of our787

attack dataset and key as follows:788

k̂ ∈ arg max
k∈{0,1}nbytes×8

Na∑
n=1

log Φ
((

Sbox(ki ⊕ w
(n)
a,i) : i = 1, . . . , nbytes

)
| x(n)

a ; θ̂
)

(12)

where we denote by ki and w
(n)
i the individual bytes of k and w(n).789

C Extended related work790

Here we consider existing work which has been applied to leakage localization in the context of power or EM791

radiation side-channel analysis. In line with the problem framing given in Sec. 2, we view these methods792

as functions which map joint emission-target variable distributions pX,Y to vectors in RT which assign793

to each emission measurement variable Xt a scalar ‘leakiness’ measurement. Prior approaches to leakage794

localization can largely be categorized as either 1) parametric statistics-based methods which check for795

pairwise associations between Xt and Y , or 2) neural net attribution methods which use standard supervised796

deep learning techniques to train a model p̂Y |X ≈ pY |X , then use ‘attribution’ techniques to estimate the797

average ‘importance’ of each feature Xt to the predictions made by the model.798

C.1 First-order parameteric statistics-based methods799

In the side-channel attack literature it is common to use parametric first-order statistical methods to localize800

leakage. In this work we consider the signal to noise ratio (SNR) (Mangard et al., 2007), the sum of squared801

differences (SOSD) (Chari et al., 2003), and correlation power analysis with a Hamming weight leakage model802

(CPA) (Brier et al., 2004) due to their popularity and efficacy for ‘point of interest’ selection (Fan et al.,803

2014). Below we summarize and discuss these methods.804

The SNR is a standard tool for leakage localization and is defined as805

SNR(pX,Y) :=
VarY ∼pY

EX∼pX|Y
[X]

EY ∼pY
VarX∼pX|Y

(X) . (13)

The SOSD method was introduced as a point of interest (feature) selection technique for the Gaussian806

template attack, a parametric side-channel attack based on modeling emission measurements as a multivariate807

Gaussian mixture model with a component corresponding to each possible value of the target variable,808

25

Under review as submission to TMLR

then using Bayes’ rule to estimate the conditional distribution of the target variable given the emission809

measurements. The SOSD is defined as810

sosd(pX,Y) :=
∑
y∈Y

∑
y′∈Y

(
EX∼pX|Y (·|y)[X]− EX∼pX|Y (·|y′)[X]

)2
. (14)

CPA is based on the assumption that power consumption is a noisy linear function of the Hamming weight811

of the target variable, which is a useful model for certain devices. It is defined as the elementwise Pearson812

correlation between emission measurements and the target variable’s Hamming weight:813

cpa(pX,Y) := E[(X − E[X])(HW(Y)− E[HW(Y)])]√
Var(X) Var(HW(Y))

(15)

where HW :
[
0 .. 2d − 1

]
→ [0 .. d] maps integers to the sum of their bits when writing them as an unsigned814

integer.815

While techniques such as these are invaluable due to their simplicity, interpretability and low cost, they have816

major shortcomings. Notably, they consider they are sensitive only to pairwise associations between single817

emission measurements and the target variable and will consider the measurement Xt to be non-leaky when818

it is nonleaky in isolation but gives exploitable information when combined with Xτ for some τ ≠ t, i.e. when819

I[Y ; Xt] = 0 but ∃τ ̸= t such that I[Y ; Xt | Xτ] > 0.820

Additionally, these techniques make strong assumptions about the nature of pX,Y which have generally been821

observed to hold in practice, but nonetheless introduce the risk of failing to detect leaking measurements.822

SNR and SOSD are sensitive only to the influence of Y on the mean of X, and would fail to identify Xt is823

leaking if Y changes its distribution while leaving its mean unchanged (e.g. if the variance of Xt changes824

with Y). CPA is sensitive only to associations between Xt and the Hamming weight of Y, and additionally825

assumes a linear relationship between these variables.826

While the present work concerns mainly ‘black box’ leakage localization algorithms which make minimal827

assumptions about the cryptographic implementation being evaluated, in practice these parametric methods828

are often employed as tools in white-box analyses of implementations. For example, in our work we consider829

the ASCADv1 datasets (Benadjila et al., 2020), which use a Boolean masking countermeasure and thus830

have mainly second-order leakage. This renders the above methods ineffective when directly analyzing831

leakage of their canonical target variable. However, Egger et al. (2022) identified 4 pairs of internal AES832

variables which individually have first-order leakage and may be combined to determine the target variable.833

Thus, if one is aware a priori that these variables leak and has access to the internal randomly-generated834

Boolean mask variables, they may individually analyze leakage of these variables with the above methods835

and accumulate the results. We use such an approach to compute ‘ground truth’ leakiness measurements836

when running experiments on the ASCADv1 datasets. We emphasize that this type of analysis is challenging837

and error-prone: multiple leaking variable identified by Egger et al. (2022) were unknown or overlooked by838

Benadjila et al. (2020), who introduced the dataset. This underscores the importance of black box techniques839

such as ours to supplement white box analysis.840

C.2 Neural net attribution methods841

There is a great deal of prior work on localizing leakage based on interpretability techniques to determine the842

relative importance of input features to a deep neural net which has been trained to model p̂Y |X ≈ pY |X843

using standard supervised deep learning techniques (Masure et al., 2019; Hettwer et al., 2020; Jin et al., 2020;844

Zaid et al., 2020; Wouters et al., 2020; van der Valk et al., 2021; Wu & Johnson, 2021; Golder et al., 2022; Li845

et al., 2022; Perin et al., 2022; Schamberger et al., 2023; Yap et al., 2023; Li et al., 2024; Yap et al., 2025).846

As baselines we consider the recent works Yap et al. (2025); Schamberger et al. (2023) as well as a variety of847

older neural net attribution techniques which were compared in Masure et al. (2019); Hettwer et al. (2020);848

Wouters et al. (2020). Note that our choice of deep learning baselines subsumes those of Yap et al. (2025);849

Schamberger et al. (2023). Since these methods all ‘interpret’ a trained deep neural net, we view them as850

functions mapping the data distribution pX,Y as well as a model p̂Y |X s.t. softmax p̂Y |X ≈ pY |X to a vector851

26

Under review as submission to TMLR

of leakiness estimates in RT . Here we summarize and discuss the works Masure et al. (2019); Hettwer et al.852

(2020); Wouters et al. (2020); Schamberger et al. (2023); Yap et al. (2025) which we consider as baselines.853

To our knowledge Masure et al. (2019) were the first to explore neural net interpretability for leakage854

localization, proposing the Saliency-like GradVis leakage assessment, defined as855

GradVis(pX,Y ; p̂Y |X) := EX,Y

∣∣−∇x logsoftmax p̂Y |X(Y | x)|x=X

∣∣ . (16)

Hettwer et al. (2020) subsequently compared the 1-Occlusion (Zeiler & Fergus, 2014), Saliency (Simonyan856

et al., 2014), and layerwise relevance propagation (LRP) (Bach et al., 2015) as leakage localization techniques.857

The 1-Occlusion technique is based on computing the size of change in the model’s prediction as each858

individual input feature is ‘occluded’ (replaced by 0), and is defined as859

1-Occlusion(pX,Y ; p̂Y |X) := EX,Y

(∣∣p̂Y |X(Y |X)− p̂Y |X(Y | (1− It)⊙X)
∣∣ : t = 1, . . . , T

)
(17)

where It denotes the vector in RT with element t equal to 1 and all other elements equal to 0. Saliency is860

defined as861

Saliency(pX,Y ; p̂Y |X) := EX,Y

∣∣∇xp̂Y |X(Y | x)|x=X

∣∣ . (18)

LRP (Bach et al., 2015) is a gradient-based explainability technique which is more-complicated than the862

above, and we refer readers to Bach et al. (2015) for an explanation. Wouters et al. (2020) applied the Input ∗863

Grad method (Shrikumar et al., 2017) to leakage localization; as its name suggests, this method is defined as864

Input * Grad(pX,Y ; p̂Y |X) := EX,Y

∣∣X ⊙∇xp̂Y |X(Y | x)|x=X

∣∣ . (19)

We find that all these techniques have a tendency to incorrectly assign low leakiness to certain measurements,865

particularly in scenarios where lots of features have significant leakage. We suspect that a primary reason866

for this is that these methods rely on perturbing the input xt to the function p̂Y |X(y | x1, . . . , xt, . . . , xT),867

but when Y is almost entirely determined by Xτ for τ ̸= t, it becomes nearly independent of Xt conditioned868

on {X1, . . . , XT } \ {Xt}, i.e. p̂Y |X(y | xτ : τ = 1, . . . , T) ≈ p̂Y |X(y | xτ : τ = 1, . . . , t − 1, t + 1, . . . , T). We869

demonstrate this phenomenon with a simple Gaussian mixture model setting in Sec. C.3.870

We also consider the recent works Schamberger et al. (2023); Yap et al. (2025) which estimate leakiness by871

perturbing many inputs simultaneously to a classifier, and do not necessarily suffer from the same issue.872

Schamberger et al. (2023) presents the m-Occlusion technique, which is like 1-Occlusion except that it873

occludes m-diameter windows rather than single points. This could plausibly overcome the aforementioned874

issue if the ‘redundant’ points are temporally-local. However, it has an undesirable ‘smoothing’ effect where875

the estimated leakiness of a single point is tied to those of nearby points. Schamberger et al. (2023) also876

proposes to use 2nd-order m-Occlusion to analyze leakiness, where pairs of windows are occluded rather877

than only individual windows. This is computationally-expensive because it requires Θ(T 2) passes through878

the dataset where T is the data dimensionality. Additionally, Schamberger et al. (2023) proposes it as a879

means to determine whether a measurement has first-order leakage or is part of a second-order leaking pair,880

and does not explore its use for single-measurement leakiness estimation. In our experiments we find it881

only marginally-better than 1-Occlusion for this task, and not worth the significantly-higher computational882

cost. Yap et al. (2025) proposes the OccPOI technique, which aims to identify a non-unique minimal set883

of measurements sufficient for a neural net to attain some chosen classification performance when all other884

measurements are occluded. This differs from our other considered methods in that it does not assign a885

leakiness estimate to every measurement, and we find that it is ill-suited for our leakage localization task and886

performance metrics. Additionally, it is computationally-expensive to run, requiring Ω(T) non-parallelizable887

passes through the dataset.888

C.3 Numerical experiment illustrating conditional mutual information decay when many redundant889

leaking measurements are present890

Here we provide a simple numerical experiment to illustrate conditional mutual information decay. Consider891

random variables Y ∼ U{−1, 1} and X1, . . . , Xn
i.i.d.∼ N (Y, σ2). In Fig. 8 we plot the quantity I[Y ; Xn |892

27

Under review as submission to TMLR

5 10 15

n

10−3

10−2

10−1

I[Y
;X

1
|X

2
,.
..
,X

n
]

H[Y]

10−1

100

101

σ

Figure 8: A numerical experiment evaluating the scaling behavior of I[Y ; Xn | X1, . . . , Xn−1] vs. n for
various values of σ, where Y ∼ U{−1, 1} and X1, . . . , Xn

i.i.d.∼ N (Y, σ2). Observe that for small σ, each Xi is
approximately a point mass on Y and we have I[Y ; X1] ≈ H[Y] and I[Y ; Xn | X1, . . . , Xn−1] ≈ 0 for all n > 1.
When σ is large, each Xi gives us little information about Y and we have I[Y ; Xn | X1, . . . , Xn−1]≪ H[Y]
approximately constant with n sufficiently small.

X1, . . . , Xn−1] vs. n. We see that for various values of σ the quantity decays rapidly with n, and appears893

to be well-described by the function I[Y ; X1 | X2, . . . , Xn] ≈ Ikn for some I ∈ R+, k ∈ (0, 1). Informally,894

the fact that conditional mutual information decays with n makes sense for the following reason: each895

successive Xi can be viewed as an independent ‘noisy observation’ of Y which reduces uncertainty about it896

without fully determining it. For all n we have 0 ≤ I[Y ; X1, . . . , Xn] = I[Y ; X1] + I[Y ; X2 | X1] + . . . I[Y ; Xn |897

X1, . . . , Xn−1] ≤ H[Y]. If we assume that each I[Y ; Xm | X1, . . . , Xm−1] is nonnegative, then for their sum898

to stay bounded they must converge to 0.899

D Extended method with derivations900

Given X, Y ∼ pX,Y as defined in section 2, where X := (X1, . . . , XT), we seek to assign to each timestep901

t a scalar γ∗
t indicating the ‘amount of leakage’ about Y due to Xt. All of the quantities I[X; Xt | S] for902

S ⊆ {X1, . . . , XT } \ {Xt} are relevant to the ‘leakiness’ of Xt, but it is not clear how to weight these 2T
903

quantities into a single scalar measurement. Most prior work simply ignores most of these quantities: the904

first-order parametric methods (Mangard et al., 2007; Brier et al., 2004; Chari et al., 2003) consider only the905

pairwise terms I[Y ; Xt], and GradVis (Masure et al., 2019), Saliency (Simonyan et al., 2014; Hettwer et al.,906

2020), 1-Occlusion (Zeiler & Fergus, 2014; Hettwer et al., 2020), LRP (Bach et al., 2015; Hettwer et al., 2020),907

Input ∗ Grad (Shrikumar et al., 2017; Wouters et al., 2020) may loosely be viewed as computing proxies for908

I[Y ; Xt | Xτ ̸=t]. While m-Occlusion, 2nd-order m-Occlusion (Schamberger et al., 2023), and OccPOI (Yap909

et al., 2025) are sensitive to more of these terms, they still ignore almost all of them in an ad hoc manner.910

In this section we propose a constrained optimization problem which implicitly defines an intuitively-911

reasonable definition of γ∗
t which is sensitive to I[Y ; Xt | S] for all S ⊆ {X1, . . . , XT } \ {Xt}. We then propose912

an adversarial deep learning algorithm which lets us approximately solve it by modeling all the conditional913

distributions pY |S in an amortized manner which emphasizes those with a large impact on the objective.914

While our objective is a sum over 2T occlusion mask-like values, in practice we find we can efficiently optimize915

it using the reparameterization trick (Kingma & Welling, 2014; Rezende et al., 2014) with a CONCRETE-like916

28

Under review as submission to TMLR

relaxation (Jang et al., 2017; Maddison et al., 2017) of our objective. This lets us exploit first-order gradient917

information, in contrast to ‘hard’ occlusion-based methods such as Schamberger et al. (2023); Yap et al.918

(2025) which leverage only zeroth-order information.919

D.1 Optimization problem920

We define a vector γ ∈ [0, 1]T which we name the occlusion probabilities. We use γ to parameterize a921

distribution over binary vectors in {0, 1}T as follows:922

Aγ ∼ pAγ where Aγ,t =
{

1 with probability 1− γt

0 with probability γt,
(20)

i.e. Aγ is a vector of independent Bernoulli random variables where the t-th element has parameter p = 1−γt.923

For arbitrary vectors x ∈ RT , α ∈ {0, 1}T , let us denote xα := (xt : t = 1, . . . , T : αt = 1), i.e. the sub-vector924

of x containing its elements for which the corresponding element of α is 1. We can accordingly use Aγ to925

obtain random sub-vectors XAγ of X. Note that γt denotes the probability that Xt will not be an element926

of XAγ (hence, ‘occlusion probability’).927

We assign to each element of γ a ‘cost’, defined as928

c : [0, 1]→ R+ : x 7→

{
x

1−x x < 1
∞ x = 1

. (21)

We seek to solve the constrained optimization problem929

min
γ∈[0,1]T

Lideal(γ) := I[Y ; XAγ | Aγ] such that
T∑

t=1
c(γt) = C (22)

for hyperparameter C > 0. Note that c is strictly-increasing with c(0) = 0 and limx→1
x<1

c(x) =∞ so that for930

finite C any optimal γ will be in [0, 1)T , and increasing some γt necessarily entails reducing some other γτ ,931

τ ̸= t. Additionally, for each t we can re-write our objective as932

Lideal(γ) =
∑

α∈{0,1}T

pAγ (α) I[Y ; Xα] (23)

=
∑

α∈{0,1}T

αt=0

pAγ,−t(α−t) [(1− γt) I[Y ; Xt, Xα] + γt I[Y ; Xα]] (24)

=
∑

α∈{0,1}T

αt=0

pAγ,−t
(α−t) [I[Y ; Xt, Xα]− γt I[Y ; Xt |Xα]] , (25)

which implies933

∂Lideal(γ)
∂γt

= −
∑

α∈{0,1}T

αt=0

pAγ,−t(α−t) I[Y ; Xt |Xα]. (26)

D.2 Estimating mutual information with deep neural nets934

We cannot solve equation 22 directly because we lack an expression for pX,Y . Here we derive an equivalent935

optimization problem which uses deep learning to characterize pX,Y using data.936

Consider the family {Φα}α∈{0,1}T with each element a deep neural net937

Φα : Y × R
∑T

t=1
αt × RP → [0, 1] : (y, xα, θ) 7→ Φα(y | xα; θ). (27)

29

Under review as submission to TMLR

We assume each Φα(· | x; θ) is a probability mass function over Y (e.g. the neural net has a softmax output938

activation). We define the optimization problem939

min
γ∈[0,1]T

max
θ∈RP

Ladv(γ, θ) := E log ΦAγ (Y |XAγ ; θ) such that
T∑

t=1
c(γt) = C. (28)

Proposition D.1. Consider the objective function Ladv of equation 28. Suppose there exists some θ∗ ∈ RP
940

such that Φα(y | xα; θ∗) = pY |Xα
(y | xα) for all α ∈ {0, 1}T , x ∈ RT , y ∈ Y. Then941

θ∗ ∈ arg max
θ∈RP

Ladv(γ, θ) ∀γ ∈ [0, 1]T . (29)

Furthermore, for all y ∈ Y and for all γ ∈ [0, 1]T , α ∈ {0, 1}T such that pAγ (α) > 0,942

Φα(y | xα; θ̂) = pY |Xα
(y | xα) pX-almost surely ∀θ̂ ∈ arg min

θ∈RP

Ladv(γ, θ). (30)

Proof. Note that since each Φα(· | x, θ) is a probability mass function over Y, by Gibbs’ inequality we have943

E log Φα(Y |Xα; θ) ≤ E log pY |Xα
(Y |Xα) ∀α ∈ {0, 1}T , θ ∈ RP . (31)

Thus,944

Ladv(γ, θ∗) ≥ Ladv(γ, θ) ∀θ ∈ RP , γ ∈ [0, 1]T , (32)

which implies the first claim.945

Next, consider some fixed γ ∈ [0, 1]T and θ̂ ∈ arg minθ∈RP Ladv(γ, θ). We must have Ladv(γ, θ̂) = Ladv(γ, θ∗).946

Thus,947

0 = Ladv(γ, θ∗)− Ladv(γ, θ̂) (33)

= E
[
log pY |Xα

(Y |Xα)− log Φα(Y |Xα; θ̂)
]

(34)

=
∑

α∈{0,1}T

pAγ (α)E
[
log pY |Xα

(Y |Xα)− log Φα(Y |Xα; θ̂)
]

. (35)

By Gibbs’ inequality, each of the expectations in the summation is nonnegative, which implies that whenever948

pAγ (α) > 0 we must have949

0 = E
[
log pY |Xα

(Y |Xα)− log Φα(Y |Xα; θ̂)
]

(36)

=
∫
R
∑T

t=1
αt

pXα(xα)KL
[
pY |Xα

(· | xα) ∥ Φα(· | xα; θ̂)
]

dxα. (37)

Since KL
[
pY |Xα

(· | xα) ∥ Φα(· | xα; θ̂)
]
≥ 0 with equality if and only if pY |Xα

(y | xα) = Φα(y | xα; θ̂)950

∀y ∈ Y, this must be the case except possibly for x ∈ RT where951 ∫
{xα:x∈RT }

pXα(xα) dxα = 0 =⇒
∫
RT

pX(x) dx = 0. (38)

This implies the second claim.952

Corollary D.2. Under the assumptions of Proposition D.1, equations 22 and 28 are equivalent.953

30

Under review as submission to TMLR

Proof. Observe that for any γ ∈ [0, 1]T ,954

max
θ∈RP

Ladv(γ, θ) = max
θ∈RP

E log ΦAγ (Y |XAγ (Y |XAγ ; θ) (39)

=
∑

α∈{0,1}T

pAγ (α)E log pY |Xα
(Y |Xα) by Prop. D.1 (40)

= −
∑

α∈{0,1}T

pAγ (α)H[Y |Xα] (41)

≡
∑

α∈{0,1}T

pAγ (α) [H[Y]−H[Y |Xα]] because H[Y] is not a function of γ (42)

=
∑

α∈{0,1}T

pAγ (α) I[Y ; Xα] (43)

= I[Y ; XAγ | Aγ] (44)
= Lideal(γ). (45)

This implies the result.955

Corollary D.3. Suppose the assumptions of Proposition D.1 are satisfied, and let θ̂ ∈ arg minθ∈RP Ladv(γ, θ)956

for some γ ∈ [0, 1]T . Consider α := α′ + α′′ where α′, α′′ ∈ {0, 1}T such that α′
t = 1 =⇒ α′′

t = 0 and957

α′′
t = 1 =⇒ α′

t = 0, and pAγ (α) > 0. For all y ∈ Y, it follows immediately from Proposition D.1 that958

pX-almost everywhere we can use our classifiers to compute the pointwise mutual information quantities959

pmi(y; xα′ | xα′′) := log pY |Xα
(y | xα)− log pY |Xα′′ (y | xα′′) (46)

= log Φα(y | xα; θ̂)− log Φα′′(y | xα′′ ; θ̂). (47)

This is useful because it allows us to assess leakage from single power traces, as opposed to merely summarizing960

distributions of power traces. There are scenarios where a power measurement might leak for some traces961

but not for others. For example, a common countermeasure is to randomly delay leaky instructions or swap962

their order with another instruction so that they do not occur at a deterministic time relative to the start of963

encryption. One could use pmi computations to determine the timetep at which the leaky instruction has964

been run in a single trace.965

Since it would be impractical to train 2T deep neural networks independently, we implement the family of966

classifiers by a single neural net with input dropout and with the dropout mask fed to the neural net as an967

auxiliary input:968

Φ : Y × RT × {0, 1}T × RP → [0, 1] : (y, x, α, θ) 7→ Φ(y | x⊙α, α; θ) (48)

where Φα(y | xα; θ) := Φ(y | x⊙α, α; θ). This approach was inspired by Lippe et al. (2022).969

D.3 Re-parametrization into an unconstrained optimization problem970

We would like to approximately solve equation 28 using an alternating stochastic gradient descent-style971

approach, similarly to GANs (Goodfellow et al., 2014). Thus, it is convenient to express it as an unconstrained972

optimization problem. We first define a new vector η ∈ ∆T −1 where ∆T −1 := {(δ1, . . . , δT) ∈ RT
+ :

∑T
t=1 δt =973

1} denotes the T -simplex. We then define γ to be the vector satisfying the equality974

c(γt) = Cηt (49)

=⇒ γt

1− γt
= Cηt (50)

=⇒ log γt − log(1− γt) = log C + log ηt (51)
=⇒ γt = sigmoid (log C + log ηt) . (52)

31

Under review as submission to TMLR

If we define η := softmax(η̃) for η̃ ∈ RT , then we can express975

γt = sigmoid (log C + log η̃t − logsumexp(η̃)) , (53)

which allows us to map the unconstrained vector η̃ to γ or log γ using numerically-stable PyTorch operations.976

Our constrained optimization problem 28 is thus equivalent to the following unconstrained problem:977

min
η̃∈RT

max
θ∈RP

L(η̃, θ) := E log Φ
(
Y |X ⊙Aγ(η̃), Aγ(η̃); θ

)
. (54)

D.4 Implementation details978

It is infeasible to exactly compute the expectation with respect to Aγ(η̃) because doing so would require979

summing over 2T terms. As is routine in deep learning contexts, we instead approximate the gradient980

with Monte Carlo integration. Note that our objective4 takes the form L(η̃) = E f(Aγ(η̃)) where f(α) :=981

EX,Y log Φ(Y |X ⊙α, α; θ) and the distribution of Aγ(η̃) depends on η̃.982

Unbiased estimators for ∇η̃L(η) of this form are usually based on the REINFORCE estimator (Williams,983

1992) with control variates, and tend to have complicated implementations and high variance. We tried984

using the vanilla REINFORCE estimator with simple control variates as well as the more-sophisticated985

REBAR estimator (Tucker et al., 2017), and found that the former works poorly, while the latter works well.986

Subsequent ablation studies revealed that the biased CONCRETE estimator (Maddison et al., 2017) works987

almost as well as REBAR for our application and is considerably simpler, so in this work we use CONCRETE.988

The CONCRETE estimator lets us write Aγ(η̃) as a deterministic function of η̃ and η̃-independent noise and989

thereby use the reparameterization trick to estimate ∇η̃L(η̃) using standard automatic differentiation tools.990

For binary random variables such as the elements of Aγ(η̃), the estimator is built on the observation that991

x ∼ Bernoulli(p) ≡ x = H(log p− log(1− p) + log u− log(1− u)) for u ∼ U(0, 1) (55)

where H(x) :=
{

1 x ≥ 0
0 x < 0

denotes the unit step function. H is not amenable to gradient descent because992

its derivative is zero almost everywhere, but we can approximate it with the tempered sigmoid function993

sigmoidτ (x) := sigmoid(x/τ). The temperature parameter τ > 0 can be tuned to control a bias-variance994

tradeoff for the estimator: limτ→0 sigmoidτ (x) = H(x) ∀x ∈ R \ {0}, but variance increases as O(1/τ)995

(Shekhovtsov, 2021). We find that results are reasonable when we simply leave τ fixed at 1, and we do this996

throughout the present work. We conjecture that this is because all our performance evaluation metrics997

consider only the relative leakiness estimates produced by our method, and the nature of the bias is not to998

significantly impact the relative sizes of the elements of γ∗.999

Note that while our original loss function1000

ℓ(η̃, θ, x, y, α) := log Φ(y | x⊙α, α; θ) (56)

is written for a ‘hard’ occlusion mask α ∈ {0, 1}T , the relaxed occlusion masks lie inside the open ball (0, 1)T .1001

Thus, we must relax our loss function to accept these inputs as well. While the right-hand side of Eqn. 56 is1002

still a valid expression for α in (0, 1)T , its optimal value of this loss with respect to θ does not vary smoothly1003

with α because rescaling the elements of X by nonzero constants does not change its mutual information1004

with Y. Thus, we instead use the stochastic relaxed loss function1005

ℓrelaxed(η̃, θ, x, y, α) := log Φ(y | x⊙α + ε⊙ (1−α); θ) where ε ∼ N (0, 1)T . (57)

In Alg. 2 we provide pseudocode for a practical implementation of ALL, omitting details such as minibatch use1006

for clarity. Also refer to this link for a minimal self-contained PyTorch (Paszke et al., 2019) implementation.1007

4ignoring its θ-dependence because differentiating with respect to θ is straightforward here

32

https://anonymous.4open.science/r/learning_to_localize_leakage-420B/src/self_contained_example.ipynb

Under review as submission to TMLR

Algorithm 2: Simplified implementation of our Adversarial Leakage Localization (ALL) algorithm.
Input: Dataset D := {(x(n), y(n)) : n = 1, . . . , N} ⊆ RT × Y, mask-conditional classifier architecture

Φ̃· : RT × [0, 1]T → R|Y|, initial classifier weights θ0 ∼ RP , initial pre-constraint occlusion logits
η̃0 ∈ RT , occlusion budget γ ∈ (0, 1)

Output: Per-timestep ‘leakiness’ estimate γ∗ ∈ [0, 1]T

1 Function getOcclProbLogits (η̃ ∈ RT : pre-constraint logits of occlusion probabilities)
2 return η̃ − logsumexp(η̃) + log T + log γ − log(1− γ)
3 Function sampleFromCONCRETE (γ̃ ∈ (0, 1)T : logits of occlusion probabilities)
4 return sigmoid(logsigmoid(γ̃)− logsigmoid(−γ̃) + log u− log(1− u)), u ∼ U(0, 1)T

5 Function getMaskedCrossEntropy (θ ∈ RP : classifier weights, (x, y) ∈ RT × Y: input and label,
α ∈ [0, 1]T : relaxed input mask)

6 return logsoftmax Φ̃θ(y | (1−α)⊙ x + α⊙ ε, 1−α), ε ∼ N (0, 1)T

7 for t = 0, 1, . . . until convergence do
8 (xt, yt)← sampleDatapoint(D)
9 γ̃t ← getOcclProbLogits(η̃t)

10 αt ← sampleFromCONCRETE(γ̃t)
11 ℓt ← getMaskedCrossEntropy(θt, (xt, yt), αt)
12 gθ

t ← ∇θℓt, gη̃
t ← −∇η̃ℓt, θt+1 ← OptStep(θt, gθ

t), η̃t+1 ← OptStep(η̃t, gη̃
t)

13 return sigmoid getOcclProbLogits(γ̃t+1)

33

Under review as submission to TMLR

E Extended experimental details and results1008

E.1 Toy setting where our method succeeds and prior work fails1009

100 101 102 103 104

Number of second-order leaky pairs: D

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
ne

ga
tiv

e
ra

te
↓

Oracle
Random
Best parametric
Best gradient-based

Bestm-occlusion
OccPOI
ALL (ours)

Figure 9: A toy setting where ALL (ours) significantly outperforms baselines. We sample 1 non-leaky feature
and D second-order leaky pairs, then plot the false negative rate, defined as the proportion of points incorrectly
assigned leakiness less than or equal to that of the non-leaky point, as we increase D. ALL (ours) succeeds for
D up to 64× higher the best prior deep learning-based approach, and the first-order parametric methods
completely fail in this setting. Dots denote median and error bars denote min–max over 5 random seeds.

As previously discussed, first-order parametric statistics-based methods are insensitive to associations of1010

order 2 or higher. Prior deep learning-based leakage localization algorithms tend to exploit few of the1011

available 2T −1 associations between Xt and Y given subsets of {X1, . . . , XT } \ {Xt}, with many of them1012

using only the maximal conditioning set {X1, . . . , XT } \ {Xt} itself. This creates issues when there is a large1013

number of leaky measurements and the individual contribution of each is ‘drowned out’ in the sense that1014

I[Y ; Xt | {X1, . . . , XT } \ {Xt}] vanishes. Here we construct a simple setting where both of these issues are1015

present, and demonstrate that ALL succeeds whereas the prior approaches face issues.1016

We generate a sequence of binary-label 2D + 1-feature classification datasets consisting of ordered pairs1017

(X, Y) sampled independently as follows:1018

Y ∼ U{0, 1}, R ∼ U{0, 1}, Mi ∼ U{0, 1} : i = 1, . . . , D, (58)
XR ∼ N (R, 1), XMi ∼ N (Mi, 1), XY ⊕Mi ∼ N (Y ⊕Mi, 1) : i = 1, . . . , D. (59)

Here we denote by ⊕ the exclusive-or operation and X ≡ (XR, XM1 , XY ⊕M1 , . . . XMD
, XY ⊕MD

). Intuitively,1019

we can view XR as a noisy observation of R and each XMi
, XY ⊕Mi

as noisy observations of Mi, Y ⊕Mi,1020

respectively. Here the variable Y is analogous to a targeted sensitive variable, and the values (Mi, Y ⊕Mi)1021

are analogous to the pairs of second-order leaky variables which arise in Boolean masked implementations1022

such as Benadjila et al. (2020).1023

34

Under review as submission to TMLR

Clearly R, and thus XR, tells us nothing about Y. Additionally, the values Mi in isolation tell us nothing1024

about Y. Similarly, the values Y ⊕Mi in isolation tell us nothing about Y because1025

P(Y = 0 | Y ⊕Mi = 0) = P(Mi = 0) = 1
2 = P(Mi = 1) = P(Y = 1 | Y ⊕Mi = 0) (60)

and similarly1026

P(Y = 0 | Y ⊕Mi = 1) = P(Mi = 1) = 1
2 = P(Mi = 0) = P(Y = 1 | Y ⊕Mi = 1). (61)

Despite this, given the pair of values {Mi, Y ⊕Mi} we can recover Y via the identity1027

Mi ⊕Mi = 0 =⇒ (Y ⊕Mi)⊕Mi = Y. (62)

Thus, we would like a leakage localization algorithm to indicate that XR is non-leaky and the values1028

XMi
, XY ⊕Mi

are leaky.1029

All experiments use the hyperparameters shown in Table 5.

Table 5: Hyperparameters used for our toy Gaussian dataset experiments. We use the default PyTorch
settings except where specified. †These hyperparameters apply only to ALL. Other hyperparameters are used
both for ALL and for our baseline methods.

Hyperparameter Value
Classifier architecture ReLU MLP with 1× 500-neuron hidden layer
Classifier optimizer AdamW
Classifier learning rate 10−4

Classifier weight decay 0.01
Dataset size 10k
Training steps 5k
Minibatch size 800
Noise distribution learning rate† 10−3

Budget γ† 1− 2−0.1·D−1

1030

Results can be seen in Fig. 9. We measure the performance of methods by the percent of measurements1031

in {XMi
: i = 1, . . . , D} ∪ {XY ⊕Mi

: i = 1, . . . , D} assigned a leakiness greater than or equal to that of1032

XR. For clarity we report for each D the best result out of SNR, SOSD and CPA as ‘best parametric’,1033

out of GradVis, Saliency, Input ∗ Grad, and LRP as ‘best gradient-based’, and the best result out of1034

{2m + 1 : m ∈ [0 .. 24], m < 2D + 1}-Occlusion as ‘best m-Occlusion’. Due to their high cost we use OccPOI1035

only for D up to 256, and we do not use 2nd-order m-Occlusion. Note that in subsequent experiments1036

2nd-order m-Occlusion does not significantly outperform first-order occlusion, and OccPOI performs poorly1037

due to identifying only a small number of leaky measurements rather than assigning a leakiness to every1038

measurement.1039

E.2 Simulated AES datasets where we have ground truth knowledge about leakage1040

Here we present experiments done on synthetic AES power traces. These are a useful complement to the1041

experiments on real datasets because 1) here we have ground truth knowledge about which timesteps are1042

leaking, which we can use to validate our model’s output, 2) we can generate infinitely-large datasets to1043

eliminate dataset size as a confounding variable in results, and 3) we can observe the change in our technique’s1044

behavior as we individually vary particular dataset properties such as low-pass filtering strength and leaky1045

instruction count.1046

35

Under review as submission to TMLR

Algorithm 3: Pseudocode for our synthetic data generation procedure, based on the Hamming weight
leakage model of Mangard et al. (2007). For clarity we omit the random delay and shuffling procedures,
but these are straightforward and may be found in our code.
Input: Dataset size N ∈ Z++,

Timesteps per power trace T ∈ Z++,
Bit count nbits ∈ Z++,
Operation count nops ∈ Z++,
Data-dependent noise variance σ2

data ∈ R+,
Operation-dependent noise variance σ2

op ∈ R+,
Residual noise variance σ2

resid ∈ R+,
Low-pass filtering strength β ∈ [0, 1),
Leaking timestep count nlkg ∈ Z+

Output: Synthetic dataset D ⊆ RT × [0 .. 2nbits − 1]
1 {k(n) : n ∈ [1 .. N]} ∼ U ({0, 1}nbits)N // AES keys
2 {w(n) : n ∈ [1 .. N]} ∼ U ({0, 1}nbits)N // plaintexts
3 {ot : t ∈ [1 .. T]} ∼ U ([1 .. nops])N // operations
4 {x̃op, i : i ∈ [1 .. nops]} ∼ N (0, σ2

op)nops // operation-dependent power consumption

5 Tlkg ∼ U
(

[1 .. T]
nlkg

)
// timesteps of leaky instructions

6 for n ∈ [1 .. N] do
7 y(n) ← Sbox(k(n) ⊕ w(n)) // targeted variable: first SubBytes output

8 x
(n)
resid ∼ N (0, σ2

resid)T // residual power consumption
9 for t ∈ Tlkg do

10 d
(n)
t ← y(n) // leaky timesteps: targeted variable is the data

11 for t ∈ [1 .. T] \ Tlkg do
12 d

(n)
t ∼ U ({0, 1}nbits) // rest of data treated as random

13 for t ∈ [1 .. T] do
14 x

(n)
data, t ← σdata

(
4−HW(d(n)

t)
)

/
√

2 // data-dependent power consumption

15 x(n) ← x
(n)
data + xop + x

(n)
resid // total power consumption

16 for t ∈ [2 .. T] do
17 x

(n)
t ← βx

(n)
t−1 + (1− β)x(n)

t // Discrete low-pass filtering of x(n).
// In practice we prepend ‘burn-in’ timesteps to allow transient effects to

decay.

18 return
{

(x(n), y(n)) : n ∈ [1 .. N]
}

36

Under review as submission to TMLR

Unobserved confounder
representing arbitrary

data/operation associations

Observed random variable

Unobserved random variable

Causal dependency

Figure 10: Causal diagram representing the assumed data-generating process for our synthetic AES datasets.
We assume this is an I-map for the data-generating process – i.e. we assume independence conditions
present in the diagram hold for the data-generating process, but the data-generating process might have
additional independence conditions not reflected here. This is an effort to make more precise the Hamming
weight leakage model of (Mangard et al., 2007, ch. 4). We represent the data of the AES algorithm by the
random variables Dt, its operations Ot, and its power consumption Xt, which is further broken down into
data-dependent power consumption Xdata, t, operation-dependent power consumption Xop, t, and ‘residual’
power consumption Xresid, t (e.g. due to random noise, other processes running in parallel, etc.). We assume
that only the composite power consumption Xt is observed.

37

Under review as submission to TMLR

E.2.1 Data generation procedure1047

We base our synthetic data generation procedure on the Hamming weight leakage model of (Mangard et al.,1048

2007, ch. 4), which we will subsequently describe.5 As above, let us represent our power/EM traces as1049

a random vector X := (Xt : t = 1, . . . , T) with range RT . We represent the cryptographic algorithm as1050

sequences of data D := (Dt : t = 1, . . . , T) and operations O := (Ot : t = 1, . . . , T), where each Dt has range1051

{0, 1}nbits and each Ot has range [1 .. nops] for some nbits, nops ∈ Z++. For each t ∈ [1 .. T], we can decompose1052

Xt = Xdata, t + Xop, t + Xresid, t (63)

with dependency structure illustrated in the causal diagram of Fig. 10. Here we have represented by Xdata, t1053

the data-dependent component of power consumption, Xop, t the operation-dependent component of power1054

consumption, and Xresid, t the ‘residual’ power consumption due to random noise, other processes running1055

simultaneously on the same hardware, etc.1056

Mangard et al. (2007) experimentally characterized the power consumption of a cryptographic device and found1057

that it is reasonable to approximate Xdata, t as Gaussian noise with Dt-dependent mean, Xop, t as Gaussian1058

noise with Ot-dependent mean, and Xresid, t as Gaussian noise with constant mean (which we will assume to1059

be zero because it contains no information and is thus irrelevant). For their device, they found that the mean1060

of Xdata, t was roughly proportional to nbits −HW(Dt) where HW : {0, 1}nbits → [0 .. nbits] : x 7→
∑nbits

k=1 xk.1061

We adopt these approximations for our synthetic dataset experiments. See Alg. 3 for pseudocode giving a1062

simplified version of our data generation procedure, and refer to our code for full details.1063

We simulate several factors of variation which can reasonably be expected to occur in realistic settings. We1064

apply discrete-time low-pass filtering to the power traces, to simulate the low-pass filtering which occurs due1065

to measurement apparatus as well as the fact that power consumption does not change instantaneously in1066

real circuits. We allow for the presence of multiple leaky instructions. Additionally, we simulate random1067

delays to the leaky instruction which might result from countermeasures such as random no-op insertion1068

(Coron & Kizhvatov, 2009), and random ‘shuffling’ where the leaky instruction is randomly placed at one of1069

several points in time, as done in Masure & Strullu (2023).1070

We emphasize that these approximations are specific to the device studied by Mangard et al. (2007) and may1071

hold to a limited extent or not at all for other devices. For example, the Hamming weight dependence of1072

power consumption stems from the fact that their device ‘pre-charges’ all its data bus lines to 1, then drains1073

the charge from the lines which should represent 0, thereby consuming power proportional to the number1074

of lines which represent 0. Many devices operate differently, and cryptographic hardware is often designed1075

with the explicit goal of obfuscating this data/power consumption dependence. Thus, while we expect all1076

real cryptographic devices to have some exploitable dependence between data and power consumption given1077

sufficient quality and quantity of data, in many cases the nature of the dependence will likely elude a simple1078

characterization such as this.1079

E.2.2 Experimental details1080

We run experiments on many variations of this dataset and verify that ALL produces outputs which align with1081

our expectations. For all these experiments, our classifier Φθ is a 3-layer multilayer perceptron with hidden1082

dimension 500, ReLU activations, an input dropout rate of 0.1, hidden dropout rate of 0.2, and pre-logits1083

dropout rate of 0.3. We generate data continuously so that our dataset size is effectively infinite. Additional1084

hyperparameters are listed in table 6, and default settings corresponding to Alg. 3 are listed in table 7, which1085

we use except where otherwise stated.1086

E.2.3 Results1087

We vary 4 parameters of the data generation process of Alg. 3 and observe its effect on the output of ALL.1088

We find that ALL consistently produces results consistent with our expectations given the timestep(s) of1089

5For clarity we alter the notation and explicitly define a causal structure for the data-generating process. The decomposition
of power consumption in Eqn. 63 and the definition of Xdata, t in terms of the Hamming weight of the data are based on
Mangard et al. (2007), but the additional details are our own.

38

Under review as submission to TMLR

Table 6: List of hyperparameters used for experiments on synthetic AES datasets. We use the default PyTorch
settings unless otherwise stated. Note that in general for ALL classfiers we disable input dropout, but for
these experiments the dropout rate was set to 0.1 due to an oversight.

Hyperparameter Value
Classifier architecture ReLU MLP with 3× 500-neuron hidden layers
Input dropout 0.1
Hidden dropout 0.2
Output dropout 0.3
Optimizer for both θ and η̃ torch.optim.AdamW
Weight decay for θ 0.01 for weights, 0 for biases
Weight decay for η̃ 0
Training steps 104

Minibatch size 103

Noise budget γ 0.5
Weight initializer torch.nn.init.xavier_uniform_

Table 7: Default synthetic AES dataset configuration, corresponding to the inputs of Alg. 3. Subsequent
experiments will use these settings unless otherwise stated.

Setting Value
Dataset size N ∞
Timesteps per power trace T 101
Bit count nbits 8
Operation count nop 32
Data-dependent noise variance σ2

data 1.0
Operation-dependent noise variance σ2

op 1.0
Residual noise variance σ2

resid 1.0
Number of leaky instructions nlkg 1
Low-pass filtering strength β 0.5
Maximum random delay size 0
Possible leaky timestep location count (i.e. shuffling) 1

the leaky instruction(s), and that the variance of its output is quite low in this context where we have an1090

infinitely-large dataset and a long training duration. Here we describe the parameters being swept and justify1091

the output of ALL given this.1092

Low pass filtering strength β Recall that we are discrete low-pass filtering traces via the recursive1093

function xlpf
t := (1 − β)xt + βxt−1. See the first row of Fig. 11, where from left to right β takes on the1094

values 0, 0.5, 0.75, 0.875, 0.9375, 0.96875, 0.984375, 0.9921875. Note that the peak estimated leakiness always1095

corresponds to the ground-truth leaky instruction timestep. As we increase β we see that measurements to1096

the left and right are assigned high leakiness as well, which makes sense for the following reason:1097

Let us denote by t∗ the timestep at which the leaky instruction was executed. We then have Xt∗ =1098

c1 HW(Y) + c2Ut∗ + c3Xt∗−1 where Ut∗ denotes a ‘residual’ random variable independent of Y, and c1, c2 are1099

appropriate constants. Note that Xt∗+1 = βXt∗ + (1− β)Ut∗+1 = βc1 HW(Y) + βc2Ut∗ + (1− β)Ut∗+1, so1100

Xt∗+1 also leaks Y. Recursively it is clear that the same can be said for Xt∗+2, Xt∗+3, Less-intuitively,1101

Xt∗−1 also leaks Y . This is because although Xt∗−1 is marginally independent of Y, Xt∗ − c3Xt∗−1 has a1102

higher correlation with HW(Y) than Xt∗ does – i.e. Xt∗−1 is dependent on the Y -independent noise of Xt∗ ,1103

and can be used to reduce the noise. Recursively, since Xt∗−2, Xt∗−3, . . . are correlated with Xt∗−1, they1104

also leak Y by the same mechanism.1105

39

Under review as submission to TMLR

0 20 40 60 80 100

0.

1.

E
st

im
at

ed
le

ak
ag

e
of
X
t

LPF β: 0.0

0 20 40 60 80 100

0.

1.

LPF β: 0.5

0 20 40 60 80 100

0.

1.

LPF β: 0.75

0 20 40 60 80 100

0.

1.

LPF β: 0.875

0 20 40 60 80 100

0.

1.

LPF β: 0.9375

0 20 40 60 80 100

0.

1.

LPF β: 0.96875

0 20 40 60 80 100

0.

1.

LPF β: 0.984375

0 20 40 60 80 100

0.

1.

LPF β: 0.9921875

0 20 40 60 80 100

0.

1.

E
st

im
at

ed
le

ak
ag

e
of
X
t

Leaky pt. cnt.: 0

0 20 40 60 80 100

0.

1.

Leaky pt. cnt.: 1

0 20 40 60 80 100

0.

1.

Leaky pt. cnt.: 3

0 20 40 60 80 100

0.

1.

Leaky pt. cnt.: 5

0 20 40 60 80 100

0.

1.

Leaky pt. cnt.: 7

0 20 40 60 80 100

0.

1.

Leaky pt. cnt.: 9

0 20 40 60 80 100

0.

1.

Leaky pt. cnt.: 11

0 20 40 60 80 100

0.

1.

Leaky pt. cnt.: 13

0 20 40 60 80 100

0.

1.

E
st

im
at

ed
le

ak
ag

e
of
X
t

Max no-op cnt.: 0

0 20 40 60 80 100

0.

1.

Max no-op cnt.: 1

0 20 40 60 80 100

0.

1.

Max no-op cnt.: 5

0 20 40 60 80 100

0.

1.

Max no-op cnt.: 9

0 20 40 60 80 100

0.

1.

Max no-op cnt.: 13

0 20 40 60 80 100

0.

1.

Max no-op cnt.: 17

0 20 40 60 80 100

0.

1.

Max no-op cnt.: 21

0 20 40 60 80 100

0.

1.

Max no-op cnt.: 25

0 20 40 60 80 100

Timestep t

0.

1.

E
st

im
at

ed
le

ak
ag

e
of
X
t

Shuffle loc. cnt.: 1

0 20 40 60 80 100

Timestep t

0.

1.

Shuffle loc. cnt.: 3

0 20 40 60 80 100

Timestep t

0.

1.

Shuffle loc. cnt.: 5

0 20 40 60 80 100

Timestep t

0.

1.

Shuffle loc. cnt.: 7

0 20 40 60 80 100

Timestep t

0.

1.

Shuffle loc. cnt.: 9

0 20 40 60 80 100

Timestep t

0.

1.

Shuffle loc. cnt.: 11

0 20 40 60 80 100

Timestep t

0.

1.

Shuffle loc. cnt.: 13

0 20 40 60 80 100

Timestep t

0.

1.

Shuffle loc. cnt.: 15

Figure 11: Results of applying ALL (ours) to synthetic AES datasets with varying parameters. The estimated
leakage by ALL is denoted by blue dots and the ground truth timestep of the leaking instruction is denoted
by the vertical black dotted lines. Blue dots denote mean and shading denotes median over 5 random seeds.
Note that the ALL output is consistent with the ground truth leaky instruction timestep in all cases, and
the variance between runs is quite low in the infinite data regime. (first row) Increasing low pass filtering
strength β from left to right. (second row) Increasing number of leaky instructions from left to right. (third
row) Increasing random delay insertion from left to right. (fourth row) Increasing number of possible
shuffling locations for the leaky point from left to right.

Leaky point count Here we sweep the number of leaky instructions. See the second row of Fig. 11 where1106

from left to right the leaky point count nlkg takes on the values 0, 1, 3, 5, 7, 9, 11, 13. As expected, all leaky1107

instruction timesteps correspond to a peak of ALL-estimated leakiness.1108

Random delay size Here we insert random delays – i.e. instead of always occurring at time t, the leaky1109

instruction occurs at t + u where u ∼ U{0, . . . , dmax. See the third row of Fig. 11 where from left to right1110

dmax takes on values 0, 1, 5, 9, 13, 17, 21, 25. We see that the estimated leakiness becomes ‘spread out’ over1111

the interval [t .. t + dmax].1112

Shuffle location count Here we randomly ‘shuffle’ the leaky instruction – i.e. instead of always occurring1113

at time t, the leaky instruction occurs at t′ ∼ U{t1, . . . , tnshuff}. See the fourth row of Fig. 7 where from left1114

to right nshuff takes on values 1, 3, 5, 7, 9, 11, 13, 15. We see that the leakiness becomes ‘spread out’ over1115

the set of timesteps at which the leaky instruction might occur.1116

E.3 Experiments on real power and EM radiation leakage datasets1117

Here we run experiments on a variety of publicly-available side-channel attack datasets, where we attempt to1118

localize leakage of their canonical target variable.1119

E.3.1 Datasets1120

We compare ALL with prior work on the 6 datasets described in Table 8, which consist of traces of power1121

and EM radiation measurements and associated cryptographic variables recorded from real implementations.1122

Note that we evaluate on AES, ECC and RSA implementations implemented on several MCUs and an FPGA1123

40

Under review as submission to TMLR

Table 8: A list of the datasets used in our paper, with a summary of their salient attributes. Note that
our experiments cover a variety of settings: AES, RSA and ECC implementations on both microcontrollers
(MCUs) and a field-programmable gate array (FPGA), both power and EM radiation traces, and various
types of countermeasures. For all datasets we localize leakage of the canonical target variable. We denote by
subscripts the targeted byte of the variable. We denote by kn, wn, mn, k∗

n, cn the n-th byte (counting from
0) of the AES key, plaintext, mask, last round key, and ciphertext, respectively. †As described below, we
deviate from the canonical profiling/attack split.

Dataset ASCADv1 (fixed key) ASCADv1 (variable key) DPAv4 (Zaid version)
Citation Benadjila et al. (2020) Benadjila et al. (2020) Bhasin et al. (2014); Zaid et al. (2020)
Link (here) (here) (here)
Algorithm AES-128 AES-128 AES-128
Hardware ATMega8515 (MCU) ATMega8515 (MCU) ATMega163 (MCU)
Emission measured Power Power Power
Countermeasures Boolean masking Boolean masking Rotating Sbox mask (known)
Targeted variable Sbox(k3 ⊕ w3) Sbox(k3 ⊕ w3) Sbox(k0 ⊕ w0)
Dataset size (profile/attack) 50k/10k 200k/100k 3k/500†

Feature count T 0.7k 1.4k 4k

Dataset AES-HD One Trace is All it Takes (OTiAiT) One Truth Prevails (OTP) (1024-bit)
Citation Bhasin et al. (2020) Weissbart et al. (2019) Saito et al. (2022)
Link (here) (here) (here)
Algorithm AES-128 EdDSA w/ Curve2559 1024-bit RSA-CRT
Hardware XiLinx Virtex-5 (FPGA) STM32F4 (MCU) STM32F4 (MCU)
Emission measured EM radiation Power EM radiation
Countermeasures None None Dummy load
Targeted variable Sbox−1(k∗

11 ⊕ c11)⊕ c7 Ephemeral key nibble Dummy load?
Dataset size (profile/attack) 50k/25k 5.12k/1.28k 100k/98.304k†

Feature count T 1.25k 1k 1k

with various target variables. ALL as well as most of our baseline algorithms are in principle agnostic to most1124

of these details, requiring only a supervised learning-style dataset with power traces and the associated value1125

of the targeted variable as labels. Through these experiments we demonstrate that this is true in practice1126

across a diverse array of settings.1127

Note that the ASCADv1 datasets have primarily second-order leakage due to their Boolean masking1128

countermeasure, whereas the other 4 datasets have primarily first-order leakage. Our comparisons include1129

both deep learning methods as well as simple first-order parametric methods which are widely used due to1130

their low cost and interpretability. We find that the latter are competitive or superior to the deep learning1131

methods on the first-order datasets but perform significantly worse on the second-order datasets due to failing1132

to exploit second-order leakage. Our experiments do not compellingly show that deep learning methods1133

improve on these simpler methods for first-order datasets, but we nonetheless include them as additional1134

points of comparison between the deep learning methods and to show that ALL works in a variety of settings.1135

In general we use the canonical target variable and profiling/attack dataset split (note that in the context1136

of profiling side-channel analysis the training dataset is called the profiling dataset, and the test dataset is1137

called the attack dataset). We deviate from the canonical dataset configuration in the following cases:1138

• We find that the canonical attack dataset of DPAv4 is too small to compute useful oracle leakiness1139

assessments. We thus concatenate the canonical 4.5k-trace profiling dataset and 0.5k-trace attack1140

dataset into a single 5k-length dataset, and use the first 3k traces for profiling and the last 2k to1141

compute the oracle assessments. Since some of our experiments require metadata which is only1142

available for the attack dataset, for everything other than oracle assessment computation we use the1143

canonical attack dataset and leave the remaining 1.5k traces unused.1144

• We use the version of DPAv4 which was preprocessed and distributed by Zaid et al. (2020) here1145

rather than the original version. This version has shortened traces which have been cropped around1146

the leaky instruction, and has the rotating Sbox mask effectively ‘disabled’ by providing the masked1147

SubBytes variable as the target.1148

41

https://github.com/ANSSI-FR/ASCAD
https://github.com/ANSSI-FR/ASCAD
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA
https://github.com/AISyLab/AES_HD
https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
https://github.com/ECSIS-lab/one_truth_prevails
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA

Under review as submission to TMLR

• The One Truth Prevails (OTP) dataset consists of approximately 64M traces and has a high label1149

imbalance. To save computational resources we extract a 100k-trace randomly-selected balanced1150

subset, which we find is more than sufficient for strong supervised classification and leakage localization1151

performance. See our code for details.1152

E.3.2 Implementation details for the leakage localization algorithms1153

Trace

Occlusion mask

Concatenate

ReLU + Dropout(0.1) ReLU + Dropout(0.2) ReLU + Dropout(0.3)
Logits for predictions

Used for the ALL classifier but not supervised classifiers

Disabled for ALL classifier. Enabled or disabled based on
hyperparameter search for supervised classifiers.

Figure 12: Diagram of the multilayer perceptron architecture used for classifiers in the deep learning methods,
based on the architecture proposed in Wang et al. (2017) for time-series classification.

For ALL and all considered baseline methods the classifier uses the simple ReLU + Dropout MLP architecture1154

of Wang et al. (2017) shown in Fig. 12, which has 3 500-neuron hidden layers, input dropout rate of 0.1,1155

hidden dropout rate of 0.2, and output dropout rate of 0.3. For the deep learning baselines we enable or1156

disable the input, hidden and output dropout based on our hyperparameter search outcome, and for ALL we1157

leave it disabled. The classifier for ALL takes the occlusion mask as an auxiliary input, which we implement1158

by concatenating it with the masked trace.1159

We also explored convolutional architectures, but preliminary experiments indicated that these achieved1160

weaker classification and leakage localization performance across the board, as well as training more-slowly1161

than the MLP architecture due to a higher layer count. We suspect that the inductive biases of convolutional1162

layers are not useful for the datasets we consider. As a sanity check for this design choice, we run the deep1163

learning baseline methods using both our MLP architecture and a handful of open-weight classifiers which1164

were released with Wouters et al. (2020) on the datasets for which they are available.1165

All deep learning methods are implemented in PyTorch (Paszke et al., 2019). Most non-deep methods are1166

implemented with Numpy (Harris et al., 2020), with a handful of compute-intensive methods implemented1167

with Numba (Lam et al., 2015). We use Scipy (Virtanen et al., 2020) implementations of statistical methods1168

where available.1169

We use the AdamW optimizer (Loshchilov & Hutter, 2018; Kingma & Welling, 2014) with the default PyTorch1170

settings β1 = 0.9, β2 = 0.999, λ = 0.01, ϵ = 10−8 and the learning rate chosen through hyperparameter1171

search. Weight decay is applied only to the weights of the linear layers, not to the biases. We use a1172

minibatch size of 256. Weights are initialized with the uniform Glorot initialization (Glorot & Bengio, 2010)1173

torch.nn.init.xavier_uniform_ (default for Keras) rather than the default PyTorch initialization, and1174

we find that this is a critical detail – many supervised classifier runs on the ASCADv1 datasets completely1175

fail to generalize beyond the training dataset when the default PyTorch weight initialization is used. We1176

randomly set aside 20% of the profiling datasets for validation and use the remaining 80% for training. We1177

standardize the traces as x 7→ x−µ
max(σ,10−6) where µ and σ denote the elementwise sample mean and standard1178

deviation computed using the profiling dataset.1179

In general we measure the performance of supervised classifiers with their mean rank rather than their1180

accuracy, as accuracy tends to be low and too-coarse in the context of side-channel analysis. Given a label1181

y ∈ Y and predicted label distribution p̂Y ∈ ∆|Y|−1 (e.g. the softmaxed output of a classifier neural net), we1182

define the rank as the number of possible labels assigned at least as much probability mass as the true label,1183

42

Under review as submission to TMLR

i.e.1184

Rank(p̂Y ; y) := |{y′ ∈ Y : p̂Y (y′) ≥ p̂Y (y)}| . (64)
This metric has range [1 .. |Y|], with lower being better.1185

Implementation of the baseline methods We use Captum (Kokhlikyan et al., 2020) implementations1186

of the Saliency, Input ∗ Grad, LRP, and m-Occlusion methods. We implement SNR, SOSD, CPA, GradVis,1187

and 2nd-order m-Occlusion ourselves, and we implement a PyTorch version of OccPOI based on the Keras1188

implementation released by the authors here.1189

Note the following choices we have made in implementing and evaluating OccPOI (Yap et al., 2025):1190

• OccPOI differs from the other methods we consider in that rather than assigning a leakiness value to1191

every measurement, it aims to identify a non-unique subset of measurements which are sufficient1192

for a classifier to attain some specified performance level when all other measurements are occluded.1193

Since our evaluation metrics require a leakiness value for every measurement, we assign a leakiness of1194

0 to measurements not identified by OccPOI.1195

• Their method uses the attack dataset for probing the classifier’s sensitivity to input features, which1196

introduces data contamination in the context of our performance metrics. We cannot easily use the1197

validation dataset instead because the attack procedure requires having many traces corresponding to1198

a fixed AES key, which is generally only available for the attack dataset. We find that ALL significantly1199

outperforms OccPOI despite this contamination, so as the aim of our work is to demonstrate the1200

efficacy of ALL, we allow OccPOI to use the attack dataset.1201

• Since OTiAiT and OTP do not have attack datasets which facilitate this kind of multi-trace1202

prediction, for these datasets we simply use the mean rank of the classifier on the attack dataset as1203

our performance metric.1204

• Yap et al. (2025) proposes an extension of OccPOI which ranks the leakiness of the points it has1205

identified using a 1-occlusion-like strategy. We use this extension in our implementation.1206

• Yap et al. (2025) proposes an extension of OccPOI where they apply it repeatedly on the residual1207

measurements not selected during the last iteration. We do not use this extension because it is1208

very computationally expensive, requiring O(T) applications of OccPOI which each require Ω(T)1209

non-parallelizable passes through the attack dataset. In preliminary experiments this extension1210

performed better than basic OccPOI, but still far below the performance of the other considered1211

methods despite requiring orders of magnitude more wall clock time.1212

• Similarly to Yap et al. (2025), to save compute we use only a subset of the attack datasets for classifier1213

evaluation. We use 1.8k traces for ASCADv1-fixed, 2.8k for ASCADv1-variable, 140 for DPAv4, 25k1214

for AES-HD, 100 for OTiAiT, and 100 for OTP. These are approximately 10–100× the necessary1215

number of traces to successfully attack the AES methods.1216

• Yap et al. (2025) define their performance threshold to be that the classifier correctly predicts the1217

AES key after accumulating all traces in the attack dataset, and we use the same threshold for the1218

ASCADv1 datasets, AES-HD, and DPAv4. For the non-AES dataset OTiAiT and OTP, our threshold1219

is that the mean rank of the classifier rises by 0.1 relative to its mean rank when no measurements1220

are occluded.1221

As we will show, OccPOI attains significantly lower performance than other methods according to our1222

performance metrics, due to not assigning a leakiness to most measurements. This reflects that the aim of1223

Yap et al. (2025) is somewhat different from the present work: Yap et al. (2025) heavily emphasized the1224

usefulness of OccPOI as a feature selection tool with leakage localization being an auxiliary goal, whereas our1225

work is concerned solely with leakage localization. We consider OccPOI as a baseline because it is similar in1226

spirit to our work, but these results demonstrate that it is ill-suited to the task considered in our paper.1227

We make the following choices in implementing m-Occlusion and 2nd-order m-Occlusion (Schamberger et al.,1228

2023):1229

43

https://github.com/trevor-yap/OccPoIs

Under review as submission to TMLR

• Schamberger et al. (2023) explore different ways to occlude measurements and conclude that it1230

works well to replace measurements by their average value over the profiling dataset, whereas other1231

heuristics such as replacing them with 0 or with Gaussian noise works poorly. We thus replace1232

measurements by their mean. Since we are element-wise standardizing the traces, this is the same as1233

replacing them by 0.1234

• Schamberger et al. (2023) propose 2nd-order m-Occlusion as a means of estimating the leakiness of1235

pairs of windows, which is useful for discerning whether a measurement has first-order leakage or is1236

part of a second-order leaking pair of measurements. They do not propose a means of using it to1237

estimate the leakiness of individual measurements. We choose to define the leakiness of Xt as the1238

average leakiness of the pairs {{Xt, Xt′} : t′ ∈ [1 .. T]}.1239

• Schamberger et al. (2023) uses a large stride for 2nd-order m-Occlusion, and thus get leakiness values1240

for windows of measurements rather than single measurements. We set the stride to 1 for consistency1241

with our other baselines.1242

• These methods introduce the occlusion window size m as a new hyperparameter which must be tuned.1243

For m-Occlusion we tune m by testing successive odd-numbered window sizes starting from 1 until1244

oracle agreement performance starts decreasing, and using the window size which maximizes oracle1245

agreement. We denote this as m∗-Occlusion. Note that this introduces some data contamination,1246

which we accept because our aim is to demonstrate the efficacy of ALL, and ALL outperforms1247

m-Occlusion despite the contamination.1248

• For 2nd-order m-Occlusion we use the optimal value of m for m-Occlusion. We denote this 2nd-order1249

m∗-Occlusion. We don’t do another sweep because 2nd-order m-Occlusion is very computationally-1250

expensive, requiring Θ(T 2) passes through the dataset.1251

• Like Yap et al. (2025), Schamberger et al. (2023) uses the attack dataset to evaluate the sensitivity1252

of the classifier to occluding measurements. To avoid data contamination, and for compatibility1253

with the OTiAiT and OTP datasets which do not have the same kind of attack dataset as the AES1254

implementations, we track the average change in logits over the profiling dataset as we occlude1255

measurements (similarly to 1-Occlusion).1256

E.3.3 Hyperparameter tuning procedure1257

Table 9: Outcome of a 50-trial random hyperparameter search for the supervised classification models used
by the deep learning baseline methods. All trials are early stopped at the point of lowest validation rank, and
we choose the hyperparameter configuration which minimizes the lowest validation rank, with ties broken
based on validation loss. Models are trained with AdamW and weight decay applied only to the weights of
dense and conv1d layers. We use the default PyTorch settings everywhere unless otherwise stated.

Hyperparameter Search space Selected value
ASCADv1 (fixed) ASCADv1 (variable) DPAv4 (Zaid) AES-HD OTiAiT OTP

Learning rate
⋃9

m=1
⋃5

n=3{m · 10−n} 3 · 10−4 2 · 10−4 4 · 10−3 9 · 10−5 8 · 10−3 6 · 10−3

LR schedule {constant, cos annealing} cos annealing cos annealing constant cos annealing cos annealing cos annealing
Input dropout {0.0, 0.1} 0.0 0.0 0.0 0.0 0.0 0.1
Hidden dropout {0.0, 0.2} 0.2 0.2 0.2 0.2 0.2 0.0
Output dropout {0.0, 0.3} 0.3 0.0 0.0 0.3 0.3 0.0
Training steps n/a 20k 40k 10k 20k 1k 1k
Classification performance of chosen model
Test rank ↓ 101± 1 79.1± 0.2 5.6± 0.7 124.7± 0.2 1.010± 0.007 1.00171± 0.00007
Test loss ↓ 5.59± 0.04 5.380± 0.009 3.0± 0.2 5.65± 0.04 0.10± 0.08 0.0085± 0.0006
Traces to AES key disclosure ↓ 179± 71 288± 126 1.4± 0.5 4355± 1915 n/a n/a

All the deep learning methods we consider require hyperparameter tuning. Work in other deep learning1258

subfields such as Gulrajani & Lopez-Paz (2021) has emphasized the importance of a fair hyperparameter1259

tuning process and realistic model selection criterion when comparing the performance of different algorithms,1260

and in this work we aim to follow these recommendations. Accordingly, all methods are tuned with a 50-trial1261

random hyperparameter search. Note that while our main performance evaluation metric is the oracle1262

44

Under review as submission to TMLR

Table 10: Outcome of a 50-trial random hyperparameter search for adversarial leakage localization. Models
are trained with AdamW and weight decay applied only to the weights of the dense and conv1d layers. We use
the default PyTorch settings everywhere unless otherwise stated. For ASCADv1 (fixed), ASCADv1 (variable)
and AES-HD we find it helpful to ‘pretrain’ the classifier with fixed η̃ before beginning the simultaneous
phase of training, but for DPAv4, OTiAiT, and OTP we find this unnecessary.

Hyperparameter Search space Selected value
ASCADv1 (fixed) ASCADv1 (variable) DPAv4 (Zaid) AES-HD OTiAiT OTP

θ learning rate (pretrain)
⋃10

m=1{m · 10−4} 10−4 10−4 n/a 10−3 n/a n/a
γ (pretrain) n/a 0.5 0.5 n/a 0.5 n/a n/a
θ learning rate

⋃9
m=1

⋃6
n=4{m · 10−n} 6 · 10−6 7 · 10−5 2 · 10−5 10−4 10−4 4 · 10−4

η̃ learning rate
θ learning rate

⋃9
m=1

⋃2
n=0{m · 10n} 50 6 9 20 3 3

γ
⋃19

m=1{0.05 ·m} 0.3 0.4 0.7 0.85 0.8 0.65
Training steps (pretrain) n/a 10k 20k 0 10k 0 0
Training steps n/a 10k 20k 10k 10k 1k 1k

agreement, it would be unrealistic to use this for model selection, even when computed on a validation dataset,1263

because it relies on ‘white box’ knowledge about cryptographic implementations that we assume not to have1264

at training time. Instead, for ALL we use the model selection criterion proposed in Sec. E.3.5. The prior1265

deep learning methods are based on ‘interpreting’ a classifier trained with supervised learning, and in line1266

with prior work we tune its associated hyperparameters to optimize classification performance via minimizing1267

the early-stopped mean rank on a validation dataset. We also visualize the distribution of results over the1268

hyperparameter sweep for each method.1269

ALL is sensitive to the noise budget parameter γ and the learning rates of the classifier weights θ and the1270

noise distribution parameter η̃. We consistently find that η̃ should have a higher learning rate than θ, so1271

in order to focus the search on better hyperparameter configurations we tune the ratio of the learning rate1272

of η̃ to that of θ rather than the learning rate of η̃. For ASCADv1 (fixed, variable) and AES-HD we find1273

that performance is much better if we pretrain the classifier for half of the training steps with fixed η̃ = 01274

and noise budget γ = 0.5, then proceed as normal for the next half. Thus, for these trials, we first do a1275

10-trial grid search of the learning rate for θ to minimize mean rank during this pretraining phase, then1276

tune all hyperparameters as normal using this trained classifier as the starting point for the remaining 401277

trials. In preliminary experiments we explored tuning the β1, β2, ϵ and weight decay strength of the AdamW1278

optimizer as well as the number of η̃ steps per θ step, but chose to leave these fixed for the final search1279

because they had little impact on performance. See Table 10 for the hyperparameter search space and chosen1280

configurations for ALL.1281

The deep learning baselines are based on ‘interpreting’ a trained supervised classifier and require tuning this1282

classifier – we tune its learning rate, dropout rates, and decide whether to use a constant or cosine decay1283

learning rate schedule. In preliminary experiments we also explored tuning the β1, β2, ϵ and weight decay1284

strength λ of the AdamW optimizer, but chose to leave them at fixed values for the final search because1285

they had little effect on classification performance. See Table 9 for the hyperparameter search space, chosen1286

configurations, and resulting classification performance for the supervised classifiers.1287

E.3.4 Performance evaluation methods1288

Unlike for the experiments on synthetic datasets, here we lack ground truth knowledge about the leakiness of1289

individual measurements. It is challenging to evaluate the performance of leakage localization algorithms in1290

this setting, and there is currently no consensus about the best way to do so. We consider 4 quantitative1291

performance evaluation strategies which are conceptually-similar to performance evaluation strategies of prior1292

work. To account for the varying ‘shapes’ of leakage assessments returned by the compared methods, all of1293

our evaluation metrics are sensitive only to the relative leakiness assigned to measurements.1294

‘Oracle’ leakiness via SNR with relevant leaking first-order variables The present work is concerned1295

with ‘black box’ leakage localization algorithms which require only a supervised learning-style dataset of1296

traces and associated target variable values, and minimal a priori knowledge about the cryptographic1297

45

Under review as submission to TMLR

implementations being analyzed. However, it is also possible to analyze devices in a ‘white box’ manner1298

which does incorporate a priori knowledge. In particular, while second-order datasets such as ASCADv11299

(fixed and variable) are not amenable to black box analysis with the first-order parametric methods such as1300

SNR, it is possible to study the implementation and ‘decompose’ the second-order leakage into first-order1301

leakage of pairs of internal variables, then use parametric methods to analyze leakage of these variables1302

individually. As our main performance evaluation strategy, we use such a white box analysis to compute1303

per-measurement leakiness predictions, which we treat as an ‘oracle’ against which to compare output. This1304

is a useful way to validate deep learning methods because 1) it is interpretable and hyperparameter-free, and1305

2) it lets us check whether an output is consistent with an analysis which a domain expert might do.1306

For the ASCADv1 datasets, we use the white box analysis of Egger et al. (2022) to compute ‘oracle’ leakiness1307

estimates for each of the measurements. We use the canonical target variable for both datasets, which1308

is Sbox(k2 ⊕ w2) where Sbox is an invertible function which is publicly-known and shared by all AES1309

implementations, ⊕ denotes the bitwise exclusive-or operation and k2 and w2 denote byte 2 of the key and1310

plaintext, respectively, with indexing starting from 0. The underlying AES-128 implementation of these1311

datasets uses Boolean masking, as shown in Alg. 1 of Benadjila et al. (2020). By design, this Boolean masking1312

prevents the algorithm from ever directly operating on Sbox(k2 ⊕ w2), making all power measurements Xt1313

nearly marginally statistically-independent of Sbox(k2 ⊕ w2).1314

Alg. 1 does directly operate on the following pairs of variables: (r2, Sbox(k2 ⊕ w2)⊕ r2), (rout, Sbox(k2 ⊕1315

w2)⊕ rout), (rin, k2 ⊕ w2 ⊕ rin). The variables r2, rout, rin are called masks and are internal variables which1316

are randomly generated during each encryption. Thus, each of these variables is marginally dependent on1317

some measurements Xt and can be detected with first-order parametric methods. Each of these pairs is said1318

to leak Sbox(k2 ⊕ w2) because given both, one can calculate Sbox(k2 ⊕ w2) using the identity a⊕ b⊕ b = a.1319

In addition to these pairs of variables, Egger et al. (2022) identified that the variables Sbox(Sprev⊕ rin)⊕ rout1320

and a ‘security load’ Sprev ⊕ Sbox(w2 ⊕ k2) ⊕ rout also have a strong first-order association with power1321

consumption and might contribute to leakage, where for byte 2 Sprev = Sbox(k11 ⊕ w11)⊕ r11.1322

All 8 of these internal variables may be computed using the metadata published with the ASCADv1 datasets.1323

As our oracle assessment for the ASCADv1 datasets, we compute the SNR of each of these 8 variables using1324

the attack dataset and average them together. We can then qualitatively assess agreement between the output1325

of leakage localization algorithms and these oracle assessments. For the 4 first-order datasets, we use as our1326

oracle assessment the SNR of the target itself from the attack dataset, which amounts to an assumption that1327

there is no leakage of order 2 or higher.1328

We use the Spearman rank correlation coefficient as a scalar summary of this agreement. This quantity1329

is defined as the Pearson correlation coefficient between the ranks of a pair of sequences, and is useful for1330

our purposes because it tells us the extent to which leakage localization algorithms assign the same relative1331

leakiness to measurements as the oracle, while being insensitive to differences in their ‘shape’.1332

Most prior work (Masure et al., 2019; Wouters et al., 2020; Schamberger et al., 2023; Yap et al., 2025) has1333

used white box assessments similar to this for qualitative evaluation of leakage localization algorithms. To our1334

knowledge, ours is the first work to summarize agreement with a scalar and use it for large-scale comparison1335

between a large number of methods.1336

We refer to this performance evaluation strategy as oracle agreement. Note that we use the word ‘oracle’ for1337

clarity of exposition, and we believe this is the least-flawed of the evaluation metrics we consider, but it does1338

not give us genuine ground truth leakiness measurements. It is sensitive only to first-order leakage of variables1339

which can be identified a priori as leaky, and will ignore any other exploitable variables. Additionally, SNR1340

is not perfectly sensitive even to first-order leakage: it relies on changes in the expected values E[Xt | Y = y]1341

with y and will not detect dependencies which do not influence the mean (e.g. if Xt is a Gaussian random1342

variable with Y -independent mean but Y -dependent variance).1343

DNN occlusion tests Hettwer et al. (2020) proposed a variety of tests based on plotting the performance1344

of a trained supervised classifier as its input features are successively occluded in order of their leakiness.1345

The intuition is that leakier features should have a larger impact on the performance of the classifier, so the1346

rate at which its performance changes as we successively occlude its inputs tells about the extent to which1347

46

Under review as submission to TMLR

Algorithm 4: Pseudocode for the DNN occlusion tests.
Input: Trained supervised classifier Φ∗ : RT × Y → [0, 1], attack dataset Dattack ⊆ RT × Y, leakiness

estimates ℓ ∈ RT , direction d ∈ {‘forward’, ‘reverse’}
Output: Area under DNN occlusion curve r

1 m0 ← 0 // occlusion mask
2 ℓidx ← argsort(ℓ) // indices of sorted leakiness values, from low–high
3 if d = ‘forward’ then
4 ℓidx ← reverseOrder(ℓidx) // sort from high–low instead
5 else if d = ‘reverse’ then
6 pass
7 for t = 1, . . . , T do
8 mt ←mt−1 + Iℓidx, t

// un-occlude t-th least (reverse) or most (forward)-leaky feature
9 rt ← 1

|Dattack|
∑

x,y∈Dattack
Rank (Φ∗(· | (1−mt)⊙ x); y) // record average classifier

performance on attack dataset under this occlusion mask

10 return 1
T

∑T
t=1 rt // area under the DNN occlusion curve

these inputs were leaky. In a similar spirit, we propose 2 evaluation metrics which we name the forward and1348

reverse DNN occlusion tests.1349

See Alg. 4. For the forward DNN occlusion test we initially occlude all the input features of a trained1350

classifier, then successively un-occlude one feature at a time from most- to least-leaky as predicted by the1351

leakage localization algorithm under test. At each occlusion level we measure the performance of the classifier1352

on the attack dataset in terms of mean rank. We then report the average performance across all occlusion1353

levels. For a ‘good’ leakage assessment we expect the average performance to be better (lower) because useful1354

features are un-occluded at a greater proportion of occlusion levels. Conversely, for a ‘bad’ leakage assessment1355

we expect the average performance to be worse because useful features stay occluded for longer. The reverse1356

DNN occlusion test is identical except that we un-occlude features from least- to most-leaky. For this test we1357

expect the average performance to be worse (higher) for a ‘good’ leakage assessment and better (lower) for1358

a ‘good’ leakage assessment. In general we expect the forward test to be sensitive to the extent to which1359

the predicted-leakiest measurements are truly among the leakiest (similar to true/false positives), and the1360

reverse test to be sensitive to the extent to which the predicted-nonleaky features are truly nonleaky (similar1361

to true/false negatives).1362

A major limitation of the DNN occlusion tests is that they rely on an imperfect DNN classifier, and are only1363

sensitive to associations insofar as the classifier exploits them. Additionally, we use the same architecture,1364

training procedure and hyperparameters for these classifiers as for those ‘interpreted’ by the neural net1365

attribution baseline methods, so the test may be ‘biased’ in favor of these. Nonetheless, we consider them1366

a useful supplement to the oracle agreement metric because they do not suffer from the same restrictive1367

assumptions about the nature of associations.1368

Feature selection efficacy for Gaussian template attack Similarly to Masure et al. (2019); Yap1369

et al. (2023), we also evaluate leakage localization assessments based on their ability to do feature selection1370

for Gaussian template attacks. To carry out this test, we first select the top 20 measurements with the1371

highest estimated leakiness. We then perform a Gaussian template attack (Chari et al., 2003) using these1372

measurements. The Gaussian template attack is a well-known parametric side-channel attack based on1373

modeling pX|Y with a Gaussian mixture model with one component per value Y may take on, then using1374

Bayes’ rule to estimate pY |X . The leakier these features are, the more-performant we expect the attack to be.1375

For AES datasets accuracy is often low when predicting Y from a single value of X. Thus, attack datasets1376

typically consist of many traces X1, . . . , XM recorded with a fixed AES key but varying plaintext. The1377

target variable Y is typically chosen so that given the corresponding plaintext and ciphertext, Y is a known1378

invertible function of the key. One can thereby make many predictions about the key using these traces, then1379

‘accumulate’ these predictions through the identity log pX1,...,XM |K =
∑M

m=1 log pXm|K where K denotes the1380

47

Under review as submission to TMLR

key. A common performance metric for attacks is the minimum traces to disclosure (MTD), given by the1381

number of traces one must accumulate before the true key has the highest predicted probability mass (lower1382

is better). We use this metric to measure the performance of Gaussian template attacks on AES datasets.1383

For OTiAiT and OTP, which are not AES datasets, we simply use the mean rank of the target variable on1384

the attack dataset.1385

Note that for the second-order ASCADv1 datasets, the algorithms we consider do not reveal which of the1386

leaky internal AES variables a measurement leaks. This is problematic when selecting features for a template1387

attack, because a successful attack must have features corresponding to both of a pair of second-order leaky1388

variables. If we simply used the top 20 predicted-leakiest features for an attack, this would be left to chance1389

and make the performance metric unreliable. To address this issue, for the second-order datasets we instead1390

segment the T measurements into 10 bins each containing ⌊ T
10⌋ consecutive measurements, then select the1391

top 2 leakiest measurements from each bin.1392

The main shortcoming of this performance metric is that it is only sensitive to the 20 predicted-leakiest1393

measurements and ignores all others (e.g. it cannot detect that leaky measurements have been assigned1394

spuriously-low leakiness). Additionally, it assumes that the relationship between measurements and the target1395

variable is well-described by a Gaussian mixture model, which may not hold in practice. However, unlike the1396

oracle agreement metric it does not rely on human-identified first-order leaky variables, and unlike the DNN1397

occlusion tests it is hyperparameter-free and may be biased towards different associations than the DNN1398

classifiers. Thus, it is also a useful supplement to the aforementioned metrics.1399

E.3.5 Model selection criterion1400

While we consider the oracle agreement metric our most straightforward and useful performance metric, we1401

cannot use it for model selection (e.g. choosing hyperparameters, or early-stopping runs). This is because1402

it relies on ‘white box’ knowledge of the internal first-order leaky variables of second-order algorithms and1403

knowledge of their random masks, which we assume not to have at training time. Thus, we must devise a1404

model selection criterion which does not rely on this information.1405

Note that we can freely use the forward and reverse DNN occlusion tests and the template attack feature1406

selection test for model selection by running them on our validation dataset rather than the attack dataset.1407

Additionally, we find that because ‘good’ runs typically converge to similar leakiness assessments whereas1408

‘bad’ runs resemble random noise, a reasonable model selection heuristic is to 1) compute the average leakiness1409

value for each measurement over all hyperparameter tuning runs, then 2) use the Spearman rank correlation1410

coefficient between the average leakiness assessments and those for a particular run as a proxy for the run’s1411

performance. We refer to this model selection strategy as the mean agreement criterion.1412

In Fig. 13 we visualize the relationship between the oracle agreement and the forward and reverse DNN1413

occlusion tests as well as the mean agreement criterion. We find that the forward and reverse DNN occlusion1414

criterion are weakly correlated with oracle agreement, and that the mean agreement is strongly correlated1415

for every dataset apart from OtiAiT. However, while we can consistently discard bad runs using these1416

criteria, they typically lead to selection of suboptimal models. In this work we select ALL models using a1417

‘composite criterion’ based on ranking runs according to the forward and reverse DNN occlusion tests and1418

mean agreement criterion, then selecting the model with the highest mean ranking across these 3 criteria.1419

More research into model selection strategies for leakage localization algorithms is warranted.1420

E.3.6 Summary of experiments1421

We report and visualize our results in a variety of ways, which we list and summarize here.1422

Visualization of the best-performing leakage localization results found by ALL In Fig. 14 we1423

visualize the oracle leakiness measurements and qualitatively compare them with the best ALL runs found1424

during our hyperparameter sweeps. For the ASCADv1 datasets we draw distinct curves for the individual1425

leaky variables – note the similarity between these plots and (Egger et al., 2022, Fig. 3a). We see a strong1426

visual resemblance between the ALL outputs and the oracle leakiness assessments, despite the nonlinear1427

relationship between them. Additionally, there are few points assigned a low oracle leakiness but high relative1428

48

Under review as submission to TMLR

0.4 0.6 0.8

Oracle agreement ↑

106

108

110

112

114

116

Fo
rw

ar
d

D
N

N
O

cr
ite

ri
on

Dataset: ASCADv1 (fixed)

0.4 0.6 0.8

Oracle agreement ↑

120

122

124

126

R
ev

er
se

D
N

N
O

cr
ite

ri
on

Dataset: ASCADv1 (fixed)

0.4 0.6 0.8

Oracle agreement ↑

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
ag

re
em

en
t

Dataset: ASCADv1 (fixed)

0.4 0.6 0.8

Oracle agreement ↑

20

40

60

80

100

C
om

po
si

te
cr

ite
ri

on

Dataset: ASCADv1 (fixed)

0.2 0.4 0.6 0.8

Oracle agreement ↑

102

104

106

108

110

Fo
rw

ar
d

D
N

N
O

cr
ite

ri
on

Dataset: ASCADv1 (variable)

0.2 0.4 0.6 0.8

Oracle agreement ↑

123

124

125

126

127

128

R
ev

er
se

D
N

N
O

cr
ite

ri
on

Dataset: ASCADv1 (variable)

0.2 0.4 0.6 0.8

Oracle agreement ↑

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
ag

re
em

en
t

Dataset: ASCADv1 (variable)

0.2 0.4 0.6 0.8

Oracle agreement ↑

20

40

60

80

100

120

C
om

po
si

te
cr

ite
ri

on

Dataset: ASCADv1 (variable)

0.1 0.2 0.3

Oracle agreement ↑

9

10

11

12

13

14

Fo
rw

ar
d

D
N

N
O

cr
ite

ri
on

Dataset: DPAv4 (Zaid vsn.)

0.1 0.2 0.3

Oracle agreement ↑

20

40

60

80

100

120

R
ev

er
se

D
N

N
O

cr
ite

ri
on

Dataset: DPAv4 (Zaid vsn.)

0.1 0.2 0.3

Oracle agreement ↑

0.0

0.2

0.4

0.6

0.8

M
ea

n
ag

re
em

en
t

Dataset: DPAv4 (Zaid vsn.)

0.1 0.2 0.3

Oracle agreement ↑

20

40

60

80

100

120

140

C
om

po
si

te
cr

ite
ri

on

Dataset: DPAv4 (Zaid vsn.)

−0.1 0.0 0.1 0.2 0.3

Oracle agreement ↑

125.25

125.50

125.75

126.00

126.25

126.50

126.75

Fo
rw

ar
d

D
N

N
O

cr
ite

ri
on

Dataset: AES-HD

−0.1 0.0 0.1 0.2 0.3

Oracle agreement ↑

127.4

127.6

127.8

128.0

128.2

128.4

128.6

128.8

R
ev

er
se

D
N

N
O

cr
ite

ri
on

Dataset: AES-HD

−0.1 0.0 0.1 0.2 0.3

Oracle agreement ↑

−0.2

0.0

0.2

0.4

0.6

0.8

M
ea

n
ag

re
em

en
t

Dataset: AES-HD

−0.1 0.0 0.1 0.2 0.3

Oracle agreement ↑

20

40

60

80

100

C
om

po
si

te
cr

ite
ri

on

Dataset: AES-HD

−0.5 0.0 0.5

Oracle agreement ↑

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fo
rw

ar
d

D
N

N
O

cr
ite

ri
on

Dataset: OTiAiT

−0.5 0.0 0.5

Oracle agreement ↑

1

2

3

4

5

R
ev

er
se

D
N

N
O

cr
ite

ri
on

Dataset: OTiAiT

−0.5 0.0 0.5

Oracle agreement ↑

0.0

0.2

0.4

0.6

0.8

M
ea

n
ag

re
em

en
t

Dataset: OTiAiT

−0.5 0.0 0.5

Oracle agreement ↑

40

60

80

100

120

C
om

po
si

te
cr

ite
ri

on

Dataset: OTiAiT

0.0 0.2 0.4 0.6 0.8

Oracle agreement ↑

1.01

1.02

1.03

1.04

1.05

1.06

Fo
rw

ar
d

D
N

N
O

cr
ite

ri
on

Dataset: OTP (1024-bit)

0.0 0.2 0.4 0.6 0.8

Oracle agreement ↑

1.1

1.2

1.3

1.4

R
ev

er
se

D
N

N
O

cr
ite

ri
on

Dataset: OTP (1024-bit)

0.0 0.2 0.4 0.6 0.8

Oracle agreement ↑

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ag

re
em

en
t

Dataset: OTP (1024-bit)

0.0 0.2 0.4 0.6 0.8

Oracle agreement ↑

20

40

60

80

100

120

140

C
om

po
si

te
cr

ite
ri

on

Dataset: OTP (1024-bit)

Figure 13: Visualization of the relationship between various model selection criteria from Sec. E.3.5 and the
oracle agreement for ALL runs produced during hyperparameter search. We find consistently across datasets
that the forward/reverse DNN occlusion and mean agreement criteria are consistently positively or negatively
correlated with the oracle agreement, though this correlation is often weak. We achieve slightly better results
using a composite criterion which uses considers the ‘votes’ according to all these criterion, and we adopt this
composite criterion when selecting ALL models for comparison with baselines. However, this criterion often
selects suboptimal models, and future research on leakage localization model selection strategies is warranted.

49

Under review as submission to TMLR

0 200 400 600

Time t

10−1

100

101

O
ra

cl
e

le
ak

in
es

s
of
X
t

Dataset: ASCADv1 (fixed)
rin

r2

rout

w2 ⊕ k2 ⊕ rin

Sbox(w2 ⊕ k2)⊕ r2
Sbox(w2 ⊕ k2)⊕ rout

Sprev ⊕ Sbox(w2 ⊕ k2)⊕ rout

Security load

0 200 400 600

Time t

0.75

0.80

0.85

0.90

0.95

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: ASCADv1 (fixed)

10−1 100

Oracle leakiness of Xt

0.75

0.80

0.85

0.90

0.95

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: ASCADv1 (fixed)

0 250 500 750 1000 1250

Time t

10−2

10−1

100

101
O

ra
cl

e
le

ak
in

es
s

of
X
t

Dataset: ASCADv1 (variable)
rin

r2

rout

w2 ⊕ k2 ⊕ rin

Sbox(w2 ⊕ k2)⊕ r2
Sbox(w2 ⊕ k2)⊕ rout

Sprev ⊕ Sbox(w2 ⊕ k2)⊕ rout

Security load

0 250 500 750 1000 1250

Time t

0.0

0.2

0.4

0.6

0.8

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: ASCADv1 (variable)

10−2 10−1 100

Oracle leakiness of Xt

0.0

0.2

0.4

0.6

0.8

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: ASCADv1 (variable)

0 1000 2000 3000 4000

Time t

100

O
ra

cl
e

le
ak

in
es

s
of
X
t

Dataset: DPAv4 (Zaid vsn.)
Sbox(k0 ⊕ w0)⊕m0

0 1000 2000 3000 4000

Time t

0.6

0.7

0.8

0.9

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: DPAv4 (Zaid vsn.)

100

Oracle leakiness of Xt

0.6

0.7

0.8

0.9

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: DPAv4 (Zaid vsn.)

0 200 400 600 800 1000 1200

Time t

10−2

2× 10−2

O
ra

cl
e

le
ak

in
es

s
of
X
t

Dataset: AES-HD
Sbox−1(k∗11 ⊕ c11)⊕ c7

0 200 400 600 800 1000 1200

Time t

0.75

0.80

0.85

0.90

0.95

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: AES-HD

10−2 2× 10−2

Oracle leakiness of Xt

0.75

0.80

0.85

0.90

0.95
E

st
im

at
ed

le
ak

in
es

s
of
X
t

by
A

L
L

Dataset: AES-HD

0 200 400 600 800 1000

Time t

10−2

10−1

100

101

O
ra

cl
e

le
ak

in
es

s
of
X
t

Dataset: OTiAiT
Ephemeral key nibble

0 200 400 600 800 1000

Time t

0.4

0.5

0.6

0.7

0.8

0.9

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: OTiAiT

10−2 10−1 100 101

Oracle leakiness of Xt

0.4

0.5

0.6

0.7

0.8

0.9

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: OTiAiT

0 200 400 600 800 1000

Time t

10−10

10−8

10−6

10−4

10−2

100

O
ra

cl
e

le
ak

in
es

s
of
X
t

Dataset: OTP (1024-bit)
Dummy load?

0 200 400 600 800 1000

Time t

0.65

0.70

0.75

0.80

0.85

0.90

0.95

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: OTP (1024-bit)

10−10 10−8 10−6 10−4 10−2 100

Oracle leakiness of Xt

0.65

0.70

0.75

0.80

0.85

0.90

0.95

E
st

im
at

ed
le

ak
in

es
s

of
X
t

by
A

L
L

Dataset: OTP (1024-bit)

Figure 14: A plot which qualitatively compares the estimated leakiness of the best-performing ALL runs
with the oracle leakiness values. (left column) A plot of oracle leakiness of Xt vs. timestep t. For the
second-order ASCADv1 datasets (top two rows), note that our plots are similar to (Egger et al., 2022, Fig.
3a) as they are based on the same first-order variables; differences are because we measure leakiness with
SNR whereas they use CPOI. (middle column) A plot of estimated leakiness of Xt vs. timestep t according
to ALL, for the best-performing ALL run as measured by oracle agreement. We want this column to look like
the left column, up to a strictly-increasing nonlinear transform. (right column) A plot of the ALL-estimated
leakiness of Xt vs. the oracle leakiness of Xt. These curves show that the ALL estimates are good in the sense
that they tend to apply similar relative leakiness values to the measurements as the oracle.

50

Under review as submission to TMLR

ALL-predicted leakiness or vice-versa. Most of the disagreement appears to lie in the predicted relative1429

leakiness within groups of high-leakiness or low-leakiness measurements.1430

ALL training curves In Fig. 15 we plot the evolution of various metrics over time during the ALL training1431

procedure for the runs chosen using the model selection criterion of Sec. E.3.5. In Fig. 16 we compare the1432

oracle agreement at different timesteps on ASCADv1-variable for ALL and selected baselines. In general1433

we observe that for successful ALL runs the classifier validation rank drops significantly below the random-1434

guessing threshold at some point in training, though it may begin to rise again as the noise distribution1435

trains adversarially against it. These curves are generally smooth and we do not observe significant training1436

instability. Unfortunately, we are not aware of a reliable way to predict oracle agreement performance from1437

the training curves.1438

Sensitivity of ALL to hyperparameters The main hyperparameters of ALL are the noise budget γ and1439

the learning rates of the classifier weights θ and the noise distribution parameter η̃. In Fig. 17 we evaluate1440

the sensitivity of ALL to these hyperparameters by varying them individually using the optimal configuration1441

with respect to oracle agreement as a starting point. We find in general that performance generally varies1442

smoothly with these hyperparameters and stays significantly above random-guessing over a large search space,1443

which is desirable from a standpoint of hyperparameter tuning.1444

Attack performance and training curves of supervised classifiers All of the deep learning-based1445

baseline methods are based on ‘interpreting’ a fixed classifier which has been trained using supervised learning1446

to predict the target variable Y from the trace X. In Fig. 18 we plot the cross-entropy loss and mean rank1447

over time for these classifiers during training. Additionally, for the AES datasets we plot the rank of the1448

correct key as we accumulate traces from the attack dataset. For reference we superimpose the correct key1449

rank during trace accumulation for the following publicly-available open-weight classifiers: the CNNBest and1450

MLPBest model of Benadjila et al. (2020), both of which are available here, and the models of Zaid et al.1451

(2020) and their simplified versions from Wouters et al. (2020) distributed here. Also note that in Table 9 we1452

list the early-stopped validation cross-entropy loss, rank, and minimum traces to disclosure (MTD) for these1453

models. We find that our classifiers are able to ‘successfully’ attack all datasets (i.e. they can successfully1454

predict the key by accumulating all traces in the provided attack dataset), and they achieve comparable1455

MTD to these open-weight models on ASCADv1-fixed, ASCADv1-variable, and DPAv4, and somewhat-worse1456

MTD on the AES-HD dataset.1457

m-Occlusion window size sweep and smoothing effect We consider as baselines m-Occlusion and1458

2nd-order m-Occlusion. These baselines introduce the occlusion window size as an additional hyperparameter1459

which must be tuned. In Fig. 19 we plot the oracle agreement performance of m-Occlusion as we sweep m,1460

and qualitatively show how the resulting leakiness vector is smoothed out with increasing m. In subsequent1461

experiments, we denote by m∗ the optimal value of m found in these experiments, and report results for1462

1-Occlusion, m∗-Occlusion, 2nd-order 1-Occlusion and 2nd-order m∗-Occlusion (due to the high cost of1463

2nd-order m-Occlusion we do not separately sweep its window size). Note that this introduces some data1464

leakage into the results, as we are doing validation with our test metric which incorporates implementation1465

knowledge that we assume not to have at training time. Because the goal of this work is to demonstrate the1466

efficacy of ALL, and ALL generally outperforms m∗-Occlusion and 2nd-order m∗-Occlusion despite the data1467

leakage, we consider this acceptable.1468

Compared to 1-Occlusion, m-Occlusion has two major differences: it occludes multiple inputs simultaneously1469

to increase the influence on classifier predictions, and it has a ‘smoothing’ effect which causes nearby1470

measurements to be assigned similar leakiness values. The latter effect can be easily simulated using average-1471

pooling, so we also plot the performance of ALL as we average-pool it with stride 1 and kernel size m. We1472

find that while m-Occlusion significantly improves performance over 1-Occlusion on the DPAv4 and AES-HD1473

datasets, on these same datasets we can significantly improve the performance of ALL by average-pooling,1474

and ALL convincingly outperforms m-Occlusion when accounting for this. We conjecture that the smoothing1475

effect provides a useful inductive bias for these datasets, and emphasize that it can easily be applied to any1476

other leakage localization technique.1477

51

https://github.com/ANSSI-FR/ASCAD
https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA

Under review as submission to TMLR

Table 11: Performance comparison between various leakage localization algorithms according to the oracle
agreement metric (larger is better) described in Sec. E.3.4. Results are reported as mean ± standard
deviation over 5 random seeds. The best result is boxed and the best deep learning result is underlined.
We consider a result to be ‘best’ if its mean lies inside of the error bars of the result with the highest mean.

2nd-order datasets 1st-order datasets
Method ASCADv1 (fixed) ASCADv1 (random) DPAv4 (Zaid vsn.) AES-HD OTiAiT OTP (1024-bit)
Random −0.00± 0.04 −0.02± 0.01 0.01± 0.01 −0.01± 0.02 0.02± 0.03 0.03± 0.03

SNR 0.031 −0.092 0.344 0.185 0.989 0.944
SOSD −0.253 0.272 0.259 0.063 0.886 0.803
CPA 0.521 −0.095 0.420 0.303 0.630 0.945
GradVis 0.48± 0.02 0.27± 0.01 0.198± 0.009 0.07± 0.01 0.55± 0.05 0.57± 0.02
Saliency 0.47± 0.02 0.26± 0.01 0.198± 0.008 0.07± 0.01 0.67± 0.06 0.58± 0.02
Input ∗ Grad 0.47± 0.02 0.25± 0.01 0.202± 0.009 0.08± 0.02 0.71± 0.05 0.60± 0.02
LRP 0.47± 0.02 0.25± 0.01 0.202± 0.009 0.08± 0.02 0.71± 0.05 0.60± 0.02
OccPOI 0.07± 0.01 0.064± 0.004 0.030± 0.008 0.044± 0.009 0.07± 0.02 0.01± 0.02
1-Occlusion 0.47± 0.02 0.25± 0.01 0.202± 0.009 0.08± 0.01 0.71± 0.05 0.60± 0.02
m∗-Occlusion 0.49± 0.02 0.41± 0.01 0.32± 0.01 0.18± 0.05 0.72± 0.04 0.77± 0.01
1-Occlusion2 0.51± 0.01 0.27± 0.01 0.206± 0.009 0.08± 0.01 0.74± 0.05 0.60± 0.02
m∗-Occlusion2 0.52± 0.01 0.42± 0.01 0.330± 0.009 0.19± 0.05 0.75± 0.04 0.788± 0.007
WoutersNet 1-Occlusion 0.18± 0.03 n/a 0.21± 0.02 0.11± 0.03 n/a n/a
WoutersNet m∗-Occlusion 0.20± 0.03 n/a 0.29± 0.02 0.21± 0.04 n/a n/a
WoutersNet GradVis 0.19± 0.03 n/a 0.21± 0.02 0.11± 0.03 n/a n/a
WoutersNet Input ∗ Grad 0.18± 0.03 n/a 0.21± 0.02 0.11± 0.03 n/a n/a
WoutersNet Saliency 0.19± 0.03 n/a 0.21± 0.02 0.11± 0.03 n/a n/a
ZaidNet 1-Occlusion 0.24± 0.03 n/a 0.19± 0.01 0.13± 0.02 n/a n/a
ZaidNet m∗-Occlusion 0.25± 0.04 n/a 0.273± 0.009 0.21± 0.05 n/a n/a
ZaidNet GradVis 0.25± 0.03 n/a 0.19± 0.01 0.13± 0.02 n/a n/a
ZaidNet Input ∗ Grad 0.25± 0.04 n/a 0.19± 0.01 0.13± 0.02 n/a n/a
ZaidNet Saliency 0.25± 0.03 n/a 0.19± 0.01 0.13± 0.02 n/a n/a

ALL (ours) 0.794± 0.006 0.60± 0.01 0.317± 0.002 0.22± 0.03 0.782± 0.001 0.848± 0.003

Quantitative comparison between ALL and baseline methods using oracle agreement, forward1478

and reverse DNN occlusion tests, and template attack feature selection test In Tables 11, 12,1479

13, 14 we compare the performance of ALL with our baseline methods according to the oracle agreement,1480

forward DNN occlusion, reverse DNN occlusion, and template attack feature selection tests, respectively. As1481

a sanity check against our supervised neural net architecture and training procedure, we also include results1482

for GradVis, Saliency, LRP, Input ∗ Grad, 1-Occlusion, and m∗-Occlusion computed using the models of1483

Zaid et al. (2020) and their simplified versions from Wouters et al. (2020) distributed here.1484

We find that ALL outperforms all prior deep learning-based leakage localization algorithms on all datasets1485

except for DPAv4 according to the oracle agreement metric. The first-order parametric methods outperform1486

the deep learning methods on the first-order datasets but generally do poorly on the second-order ASCADv11487

datasets due to not being sensitive to second-order associations. Unsurprisingly, SNR and SOSD achieve1488

near-random performance on ASCADv1-fixed and SNR and CPA achieve near-random performance on1489

ASCADv1-variable. Surprisingly, CPA performs fairly well on ASCADv1-fixed and SOSD performs fairly well1490

on ASCADv1-variable. We are not sure why this is the case, but conjecture it is because these methods have1491

some natural proclivity to ‘rule out’ measurements which are not at useful points in time for these particular1492

datasets (e.g. those which are not close to a clock edge). Note that this surprisingly-strong performance1493

compared to the deep learning baselines does not appear to carry over to the evaluations with the DNN1494

occlusion tests or the template attack feature selection test.1495

On average, ALL is the best method on the majority of datasets according to the reverse DNN occlusion test1496

and template attack test, but results are mixed according to the forward DNN occlusion test. However, we1497

find that the DNN occlusion tests have high variance, and in general there is a large overlap in error bars1498

(note the large number of boxed and underlined methods in Tables 12 and 13).1499

52

https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA

Under review as submission to TMLR

Table 12: Performance comparison between various leakage localization algorithms according to the forward
DNN occlusion test (smaller is better) described in Sec. E.3.4. Results are reported as mean ± standard
deviation over 5 random seeds. The best result is boxed and the best deep learning result is underlined.
We consider a result to be ‘best’ if its mean lies inside of the error bars of the result with the highest mean.

2nd-order datasets 1st-order datasets
Method ASCADv1 (fixed) ASCADv1 (random) DPAv4 (Zaid vsn.) AES-HD OTiAiT OTP (1024-bit)
Random 111± 1 111.7± 0.8 20± 2 126.8± 0.1 1.30± 0.05 1.065± 0.010

SNR 117.525 118.448 11.275 125.053 1.209 1.015
SOSD 115.516 106.072 11.455 125.365 1.213 1.032
CPA 111.449 117.349 11.811 125.267 2.049 1.015

GradVis 108.6± 0.5 96.8± 0.3 9.5± 0.6 125.6± 0.3 1.9± 0.2 1.013± 0.002
Saliency 108.5± 0.4 96.3± 0.4 9.5± 0.7 125.6± 0.3 1.8± 0.1 1.014± 0.001
Input ∗ Grad 108.5± 0.4 96.8± 0.4 9.4± 0.7 125.6± 0.3 1.7± 0.2 1.013± 0.001
LRP 108.5± 0.4 96.8± 0.4 9.4± 0.7 125.6± 0.3 1.7± 0.2 1.013± 0.001
OccPOI 122.3± 0.8 120.8± 0.2 58± 2 127.4± 0.3 2.6± 0.2 1.09± 0.04
1-Occlusion 108.5± 0.4 96.7± 0.4 9.4± 0.7 125.6± 0.3 1.7± 0.2 1.013± 0.001
m∗-Occlusion 108.2± 0.5 95.7± 0.6 9.0± 0.6 125.3± 0.2 1.8± 0.2 1.013± 0.001
1-Occlusion2 108.4± 0.4 97.0± 0.4 9.4± 0.7 125.5± 0.3 1.7± 0.2 1.013± 0.001
m∗-Occlusion2 108.2± 0.5 95.9± 0.6 9.0± 0.5 125.3± 0.2 1.7± 0.2 1.013± 0.001

WoutersNet 1-Occlusion 109.1± 0.7 n/a 8.7± 0.8 125.4± 0.3 n/a n/a
WoutersNet m∗-Occlusion 109.0± 0.8 n/a 9.0± 0.7 125.4± 0.2 n/a n/a
WoutersNet GradVis 109.3± 0.8 n/a 8.8± 0.8 125.4± 0.3 n/a n/a
WoutersNet Input ∗ Grad 109.1± 0.7 n/a 8.7± 0.8 125.4± 0.3 n/a n/a
WoutersNet Saliency 109.2± 0.8 n/a 8.7± 0.8 125.4± 0.3 n/a n/a

ZaidNet 1-Occlusion 110.0± 0.4 n/a 8.7± 0.7 125.5± 0.2 n/a n/a
ZaidNet m∗-Occlusion 109.5± 0.9 n/a 9.0± 0.7 125.4± 0.2 n/a n/a
ZaidNet GradVis 109.7± 0.6 n/a 8.7± 0.7 125.5± 0.2 n/a n/a
ZaidNet Input ∗ Grad 109.9± 0.3 n/a 8.7± 0.7 125.5± 0.2 n/a n/a
ZaidNet Saliency 109.7± 0.6 n/a 8.7± 0.7 125.5± 0.2 n/a n/a

ALL (ours) 107.3± 0.4 104± 1 9.9± 0.7 125.5± 0.3 1.8± 0.1 1.014± 0.001

53

Under review as submission to TMLR

Table 13: Performance comparison between various leakage localization algorithms according to the reverse
DNN occlusion test(larger is better) described in Sec. E.3.4. Results are reported as mean ± standard
deviation over 5 random seeds. The best result is boxed and the best deep learning result is underlined.
We consider a result to be ‘best’ if its mean lies inside of the error bars of the result with the highest mean.

2nd-order datasets 1st-order datasets
Method ASCADv1 (fixed) ASCADv1 (random) DPAv4 (Zaid vsn.) AES-HD OTiAiT OTP (1024-bit)
Random 111.9± 0.5 114± 3 25± 4 126.7± 0.2 1.276± 0.010 1.079± 0.010

SNR 110.679 123.284 125.924 128.599 5.267 1.373
SOSD 112.074 126.765 108.267 128.216 4.957 1.369
CPA 119.875 117.885 114.857 128.367 3.792 1.364
GradVis 125.9± 0.2 127.6± 0.1 122± 1 128.0± 0.3 4.2± 0.4 1.34± 0.07
Saliency 125.8± 0.2 127.4± 0.2 122± 1 128.0± 0.3 5.1± 0.3 1.33± 0.06
Input ∗ Grad 125.7± 0.3 127.5± 0.2 121.9± 0.9 128.1± 0.3 5.2± 0.3 1.34± 0.06
LRP 125.7± 0.3 127.5± 0.2 121.9± 0.9 128.1± 0.3 5.2± 0.3 1.34± 0.06
OccPOI 122.3± 0.4 124.6± 0.2 43± 1 127.0± 0.3 3.6± 0.3 1.09± 0.04
1-Occlusion 125.8± 0.3 127.4± 0.2 122± 1 128.1± 0.3 5.2± 0.3 1.34± 0.06
m∗-Occlusion 126.0± 0.2 127.4± 0.2 121± 1 128.5± 0.2 5.3± 0.2 1.30± 0.04
1-Occlusion2 125.8± 0.3 127.5± 0.2 122.0± 0.9 128.1± 0.3 5.3± 0.2 1.34± 0.06
m∗-Occlusion2 126.1± 0.2 127.4± 0.2 121.3± 0.9 128.5± 0.2 5.3± 0.2 1.30± 0.04
WoutersNet 1-Occlusion 121.9± 0.7 n/a 116± 5 128.2± 0.1 n/a n/a
WoutersNet m∗-Occlusion 122.4± 0.8 n/a 119.3± 0.7 128.4± 0.2 n/a n/a
WoutersNet GradVis 121.8± 0.7 n/a 116± 5 128.2± 0.1 n/a n/a
WoutersNet Input ∗ Grad 121.9± 0.7 n/a 116± 5 128.2± 0.1 n/a n/a
WoutersNet Saliency 121.8± 0.7 n/a 116± 4 128.2± 0.1 n/a n/a
ZaidNet 1-Occlusion 122± 3 n/a 116± 3 128.1± 0.2 n/a n/a
ZaidNet m∗-Occlusion 123± 3 n/a 119± 2 128.4± 0.3 n/a n/a
ZaidNet GradVis 122± 3 n/a 117± 3 128.1± 0.2 n/a n/a
ZaidNet Input ∗ Grad 122± 3 n/a 116± 3 128.1± 0.2 n/a n/a
ZaidNet Saliency 122± 3 n/a 117± 3 128.1± 0.2 n/a n/a

ALL (ours) 126.4± 0.2 127.96± 0.06 125± 1 128.3± 0.2 5.6± 0.2 1.39± 0.05

54

Under review as submission to TMLR

Table 14: Performance comparison between various leakage localization algorithms according to the template
attack feature selection test (smaller is better) described in Sec. E.3.4. Results are reported as mean
± standard deviation over 5 random seeds. The best result is boxed and the best deep learning result is
underlined. We consider a result to be ‘best’ if its mean lies inside of the error bars of the result with the
highest mean.

2nd-order datasets 1st-order datasets
Method ASCADv1 (fixed) ASCADv1 (random) DPAv4 (Zaid vsn.) AES-HD OTiAiT OTP (1024-bit)
Random 1293± 1000 56421± 40000 449± 100 25000.000 1.2± 0.1 1.44± 0.02

SNR 5496.010 54834.990 2.590 17159.690 1.058 1.385
SOSD 7733.870 3237.250 91.410 17520.530 1.059 1.398
CPA 3826.440 100000.000 10.540 18974.510 1.101 1.385
GradVis 686± 100 1162± 1000 2.7± 0.1 20014± 6000 1.4± 0.3 1.378± 0.007
Saliency 726± 100 1412± 2000 2.7± 0.1 19438± 6000 1.14± 0.02 1.379± 0.005
Input ∗ Grad 675± 100 1194± 2000 2.6± 0.1 19893± 6000 1.14± 0.02 1.378± 0.003
LRP 675± 100 1194± 2000 2.6± 0.1 19893± 6000 1.14± 0.02 1.378± 0.003
OccPOI 787± 100 942± 200 71± 30 25000.000 1.08± 0.03 1.47± 0.05
1-Occlusion 667± 100 1376± 2000 2.65± 0.08 20011± 6000 1.14± 0.02 1.379± 0.003
m∗-Occlusion 673± 70 727± 400 9± 1 16283± 10 1.17± 0.02 1.382± 0.007
1-Occlusion2 709± 100 1086± 1000 2.65± 0.08 20222± 6000 1.14± 0.02 1.378± 0.003
m∗-Occlusion2 642± 60 710± 400 9± 1 16033± 700 1.16± 0.03 1.381± 0.008

WoutersNet 1-Occlusion 6454± 4000 n/a 2.9± 0.6 20278± 3000 n/a n/a
WoutersNet m∗-Occlusion 4408± 4000 n/a 11.7± 0.6 16124± 300 n/a n/a
WoutersNet GradVis 6230± 4000 n/a 2.9± 0.5 19539± 5000 n/a n/a
WoutersNet Input ∗ Grad 4988± 4000 n/a 3.0± 0.6 20546± 4000 n/a n/a
WoutersNet Saliency 5878± 4000 n/a 2.8± 0.5 20151± 4000 n/a n/a
ZaidNet 1-Occlusion 2236± 2000 n/a 2.6± 0.3 20696± 2000 n/a n/a
ZaidNet m∗-Occlusion 2485± 2000 n/a 9± 2 16124± 300 n/a n/a
ZaidNet GradVis 2560± 3000 n/a 3.0± 0.8 22790± 3000 n/a n/a
ZaidNet Input ∗ Grad 3234± 3000 n/a 2.5± 0.3 21600± 3000 n/a n/a
ZaidNet Saliency 2295± 2000 n/a 2.4± 0.4 22561± 3000 n/a n/a

ALL (ours) 459± 40 394± 20 2.22± 0.01 17582± 5000 1.11± 0.02 1.363± 0.007

55

Under review as submission to TMLR

Distribution of performance during hyperparameter sweeps In Fig. 20 we show the distribution of1500

performance during the random hyperparameter searches for ALL and selected baselines. We see that ALL1501

convincingly outperforms all baselines besides m∗-Occlusion on all datasets. Additionally, it has a higher peak1502

performance than m∗-Occlusion on every dataset except for DPAv4, and a higher median performance on1503

ASCADv1-fixed, ASCADv1-variable, and AES-HD. As previously noted and considered again in subsequent1504

ablation studies, we can further improve the performance of ALL relative to m∗-Occlusion by mimicking its1505

smoothing effect with stride-1 average-pooling.1506

E.3.7 Ablation studies1507

ALL has many differences from prior work, so here we run ablation studies to evaluate the impact of some of1508

the important individual differences. For each ablated design decision, we run a new 50-trial hyperparameter1509

sweep and plot the distribution of performance in terms of oracle agreement. Results are shown in Fig. 21,1510

with the salient results from Fig. 20 copied over for reference. We ablate the following design decisions:1511

Heavy input dropout for the supervised classifiers used by baselines See the distributions labeled1512

‘m∗-Occl + heavy dropout’. The ALL classifier is trained on occluded inputs with the possible ‘heaviness’1513

of the occlusion chosen spanning a wide range and chosen as a hyperparameter to optimize our proxy for1514

oracle agreement. In contrast, the baseline methods are based on ‘interpreting’ fixed classifiers which have1515

been trained with input dropout chosen from {0.0, 0.1} to optimize classification performance. A plausible1516

conjecture is that ALL has strong performance because the heavy input corruption ‘encourages’ the classifier1517

to compensate by leveraging a wider variety of input-output associations, whereas because the supervised1518

classifiers train on uncorrupted or lightly-corrupted inputs, they have no such ‘incentive’. We test this1519

assumption by tuning the classifiers with input dropout chosen from {0.05, 0.1, . . . , 0.95} (the same search1520

space that ALL uses for γ). We plot the performance distribution for m∗-occlusion and 1-occlusion. For clarity1521

we omit GradVis, Saliency, LRP and Input ∗ Grad, but these have similar trends as 1-occlusion. We did not1522

test OccPOI or second-order occlusion because they are costly and in our prior experiments second-order1523

m-occlusion performs similarly to m-occlusion and OccPOI performs poorly compared to baselines.1524

We see that this heavy input dropout leads to significant improvements to the maximum and median1525

performance on all datasets, though ALL still convincingly outperforms 1-occlusion and m-occlusion except1526

on DPAv4 and OTiAiT. To our knowledge no prior work has explored the effect of regularization strategies on1527

leakage localization performance of methods which ‘interpret’ supervised classifiers, and this result suggests1528

that such research may be fruitful.1529

Adversarial → ‘Cooperative’ leakage localization See the distributions labeled ‘ALL (cooperative)’.1530

The intuition behind ALL is that we train a noise distribution to distribute a fixed amount of noise to1531

minimize the performance of a classifier, and we then interpret noisier measurements as leakier. Along the1532

lines of this intuition, we could also train it to distribute noise to maximize the performance of a classifier,1533

then interpret less-noisy measurements as leakier. We try this approach and find that it typically degrades1534

performance relative to the adversarial version of the algorithm. We conjecture that this is because the1535

adversarial approach encourages the classifier to rely on a diverse assortment of input-output associations,1536

whereas the cooperative approach does the opposite.1537

Omitting the noise conditioning to the classifier See the distributions labeled ‘ALL (unconditional)’.1538

We feed the occlusion mask as an auxiliary input to the ALL classifiers, motivated by our theory which views1539

it as a family of classifiers trained in an amortized manner via conditioning a single neural net. We test1540

omitting this auxiliary input and find mixed results. On ASCADv1-fixed and DPAv4, ALL achieves stronger1541

performance without this auxiliary input, whereas on AES-HD it achieves stronger performance with this1542

input and on ASCADv1-variable, OTiAiT, and OTP results are approximately the same. For future work it1543

is likely justifiable to simplify ALL by omitting this conditioning.1544

Average pooling ALL to mimic the smoothing effect of m∗-Occlusion See the distributions labeled1545

‘ALL + AvgPool(m∗)’. Recall that we have chosen the occlusion window size m∗ by sweeping it over successive1546

odd numbers until finding a local maximum in oracle agreement. We find that this consistently improves1547

56

Under review as submission to TMLR

performance. One plausible explanation for the performance improvement is that large-window occlusion has a1548

‘smoothing’ effect which amounts to an assumption that temporally-close measurements have similar leakiness.1549

This is likely true for some datasets, and as 1-occlusion is always included in the window size search space,1550

m∗ occlusion will never degrade performance relative to 1-occlusion. To test this explanation we average1551

pool ALL with stride 1, kernel size m∗, and zero-padding to preserve dimensionality, which creates a similar1552

smoothing effect. Our results seem to support this explanation, with average pooling significantly improving1553

the performance of ALL on the DPAv4 and AES-HD datasets, where m∗-occlusion also has significantly1554

stronger performance than 1-occlusion. Note that using oracle agreement to choose an occlusion/pooling1555

window size causes data contamination, so while it is fair to compare results for m∗-average-pooled ALL to1556

those of m∗-occlusion, they cannot fairly be compared to any other baseline.1557

E.3.8 Theoretical and empirical computational cost of deep learning methods1558

In table 15 we list the theoretical computational complexity of the considered methods, as well as the measured1559

wall clock time to run them. While for fairness our experiments use an equal number of training steps for ALL1560

and supervised learning, note that in general we suspect the latter will converge in fewer training steps; thus,1561

these measurements likely overestimate the practical wall-clock time of supervised training. Additionally,1562

note that OccPOI takes significantly more time than m-occlusion despite having the same computational1563

complexity; this is because it requires Ω(T) sequential forward passes through the model, whereas all forward1564

passes may be done in parallel for m-occlusion. There is additional variance for the runtime of this method1565

because we choose the attack dataset size to be as small as possible while comfortably allowing the classifier1566

to attain a correct-key rank of 0 – e.g. AES-HD takes the longest because we use the full attack dataset. We1567

omit the parametric statistics-based methods from consideration, but these are done on the CPU and take a1568

negligible amount of time compared to the deep learning methods.

Table 15: Comparison of the computational cost of methods considered in our work. We denote by CF

and CB the cost of a forward and backward pass through our neural net respectively, N the dataset size,
nsup and nall the number of epochs required for supervised learning and ALL respectively, and T the data
dimensionality. We omit the parametric statistics-based baseline methods because they are done on the CPU
and take a negligible amount of time relative to the deep learning methods. Runtimes are reported as mean
± standard deviation over 5 runs. †These methods are used to ‘interpret’ a trained supervised classifier, but
for comparison we report the cost of running them after training the classifier. In practice one would also
incur the cost of supervised training (first row).

Method Total FLOPS A6000 minutes per trial
ASCADv1 (fixed) ASCADv1 (random) DPAv4 (Zaid) AES-HD OTiAiT OTP

Supervised training Θ(Nnsup(CF + CB)) 2.09± 0.01 3.68± 0.02 1.98± 0.04 1.78± 0.03 0.17± 0.02 0.448± 0.009
GradVis† Θ(N(CF + CB)) 0.0675± 0.0008 0.263± 0.002 0.0080± 0.0001 0.0384± 0.0003 0.0080± 0.0001 0.0666± 0.0005
Saliency† Θ(N(CF + CB)) 0.078± 0.001 0.300± 0.003 0.0086± 0.0002 0.048± 0.002 0.0085± 0.0002 0.0881± 0.0004
Input ∗ Grad† Θ(N(CF + CB)) 0.080± 0.002 0.3023± 0.0007 0.0086± 0.0002 0.049± 0.002 0.0086± 0.0002 0.086± 0.003
LRP† Θ(N(CF + CB)) 0.080± 0.001 0.3045± 0.0008 0.0088± 0.0002 0.050± 0.002 0.00861± 0.00007 0.087± 0.005
m-Occlusion† Θ(NCF T) 0.1235± 0.0004 0.952± 0.003 0.0644± 0.0003 0.1781± 0.0007 0.018± 0.002 0.247± 0.002
2nd-order m-Occlusion† Θ(NCF T 2) 16.6± 0.1 327± 1 81.1± 0.5 68.4± 0.6 4.42± 0.02 70.6± 0.3
OccPOI† Ω(NCF T) 2.29± 0.09 7.6± 0.4 0.709± 0.009 36.5± 0.6 0.042± 0.002 0.0437± 0.0004
ALL (Ours) Θ(Nnall(CF + CB)) 3.2± 0.2 4.7± 0.2 2.44± 0.05 2.28± 0.05 0.200± 0.005 0.323± 0.004

1569

F Limitations1570

For real side-channel leakage datasets we lack ground truth knowledge about the leakiness of each measurement,1571

and all evaluation metrics considered in our paper have limitations. In particular:1572

• The ‘oracle’ leakage assessments used in the main paper ignore leakage of order greater than 1 except1573

where higher-order leakage may be decomposed into first-order leakage of multiple variables, similarly1574

to the analysis of Egger et al. (2022). This relies on careful analysis of implementations by humans,1575

and is subject to error and oversights. Additionally, the SNR is not guaranteed to detect even1576

first-order leakage – it is sensitive only to the influence of the secret variable Y on the mean of each1577

57

Under review as submission to TMLR

Xt | Y, and will not detect cases where the distribution of Xt | Y changes with the mean remaining1578

fixed (e.g. if Xt is Gaussian distributed with Y -dependent variance and Y -independent mean).1579

• The DNN occlusion tests and similar metrics proposed by Hettwer et al. (2020) are sensitive only to1580

the associations between X and Y that the neural net exploits. The superior performance of ALL1581

compared to prior deep learning-based algorithms, as well as work in other domains such as Geirhos1582

et al. (2020); Hermann & Lampinen (2020), suggests that DNNs are prone to exploiting some but1583

not all of the associations at their disposal. Additionally, such metrics may be biased in favor of deep1584

learning methods due to both leveraging SGD-trained DNNs.1585

• Evaluation via feature selection for a Gaussian template attack as done by Masure et al. (2019); Yap1586

et al. (2023) is sensitive only to the top ≈ 10 leakiest measurements identified by an algorithm and1587

ignores all others, which is a major limitation. Additionally, for second-order datasets a template1588

attack will be unsuccessful unless both of a leaking pair of variables (e.g. r3 and Sbox(w3 ⊕ k3)⊕ r31589

for ASCADv1) are leaked through the selected measurements, and because no method considered in1590

our work except for second-order occlusion has any ability to discern the particular variable leaking1591

through a measurement, this would rely on random chance.1592

We believe it is important for work in this domain to use a variety of evaluation strategies to compensate for1593

these individual limitations. This is similar to image synthesis research where it is common to use precision,1594

recall, and FID score to avoid the individual limitations of each of these metrics.1595

ALL (alongside the other deep learning-based method we consider) has major advantages over manual analysis1596

and simpler parametric methods. However, it also comes with its own limitations:1597

• Deep learning methods such as ours have a far larger computational cost than parametric methods.1598

Additionally, ALL is more computationally-expensive than the prior deep learning algorithms apart1599

from OccPOI and second-order occlusion. This increased cost is not fully reflected in our reported1600

runtimes because while for fairness we have run both ALL and supervised learning-based methods for1601

the same number of training steps and post-hoc early-stopped the latter, in practice we find that1602

supervised learning usually converges to good solutions in fewer training steps than ALL.1603

• Deep learning methods such as ours require hyperparameter tuning and will give incorrect leakiness1604

estimates if poorly tuned. We view ALL as complementary with traditional approaches rather than1605

as a replacement. Traditional approaches can cheaply exploit domain/implementation knowledge1606

and detect many types of leakage for a low computational cost. ALL can then be used to search for1607

additionally leaking measurements not detected by these approaches.1608

Additionally, a limitation of the literature on deep side-channel leakage localization which we do not address1609

in this work is that experiments are done at a smaller scale than the state of the art in deep side-channel1610

attacks, and the considered algorithms would likely need to be significantly scaled up for practical use. The1611

largest-scale experiments in this and prior work consider the ASCADv1-variable dataset, which consists of1612

300k 1400-measurement power traces and can be attacked with simple MLP and CNN architectures. The1613

1400-length power traces are extracted from longer 250k-length traces via downsampling and cropping in1614

the general vicinity of known leaky instructions which were themselves located with a white box analysis.1615

We believe that a critical direction for future work in this area is scaling existing methods to larger-scale1616

architectures applied to uncropped high-dimensionality datasets, such as the transformer architecture of1617

Bursztein et al. (2023) and the raw ASCADv2 dataset (Masure & Strullu, 2023), which consists of 800k1618

1M-measurement power traces.1619

Our experiments consider mainly temporally-synchronized power trace datasets, which we believe is reasonable1620

because in practice implementation designers are likely able to collect synchronized traces, as the dataset1621

authors have done (e.g. by using the clock line of the hardware to trigger an oscilloscope). In practice a1622

violation of this condition would mean that leakage appears ‘spread out’ (e.g. see row 3 of Fig. 4), making it1623

more-challenging for designers to identify its source.1624

58

Under review as submission to TMLR

A limitation of ALL, alongside the parametric statistical methods and OccPOI, is that they produce only a1625

single vector summarizing leakage over the entire dataset, rather than for individual traces. As observed by1626

Wouters et al. (2020), the neural net attribution methods can also be used to assign leakiness estimates to1627

individual traces, though to our knowledge no work has systematically studied this ability. This would be a1628

useful direction for future work, and would likely require innovation in performance evaluation strategies1629

beyond those introduced in this paper or prior work.1630

59

Under review as submission to TMLR

0 5000 10000 15000 20000

Training step

−6.0

−5.8

−5.6

−5.4

−5.2

−5.0

−4.8

M
C

es
tim

at
e

of
L(
θ
,η̃

)
l

Dataset: ASCADv1 (fixed)

train
val

0 5000 10000 15000 20000

Training step

50

60

70

80

90

100

110

120

130

C
la

ss
ifi

er
m

ea
n

ra
nk
↓

Dataset: ASCADv1 (fixed)

train
val

0 5000 10000 15000 20000

Training step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: ASCADv1 (fixed)

0 10000 20000 30000 40000

Training step

−5.65

−5.60

−5.55

−5.50

−5.45

−5.40

−5.35

−5.30

M
C

es
tim

at
e

of
L(
θ
,η̃

)
l

Dataset: ASCADv1 (variable)

train
val

0 10000 20000 30000 40000

Training step

80

90

100

110

120

130

C
la

ss
ifi

er
m

ea
n

ra
nk
↓

Dataset: ASCADv1 (variable)

train
val

0 10000 20000 30000 40000

Training step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
ra

cl
e

ag
re

em
en

t↑

Dataset: ASCADv1 (variable)

0 2000 4000 6000 8000 10000

Training step

−9

−8

−7

−6

−5

−4

−3

−2

−1

M
C

es
tim

at
e

of
L(
θ
,η̃

)
l

Dataset: DPAv4 (Zaid vsn.)

train
val

0 2000 4000 6000 8000 10000

Training step

0

20

40

60

80

100

120

140

C
la

ss
ifi

er
m

ea
n

ra
nk
↓

Dataset: DPAv4 (Zaid vsn.)

train
val

0 2000 4000 6000 8000 10000

Training step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

O
ra

cl
e

ag
re

em
en

t↑

Dataset: DPAv4 (Zaid vsn.)

0 5000 10000 15000 20000

Training step

−5.8

−5.6

−5.4

−5.2

M
C

es
tim

at
e

of
L(
θ
,η̃

)
l

Dataset: AES-HD

train
val

0 5000 10000 15000 20000

Training step

80

90

100

110

120

130

C
la

ss
ifi

er
m

ea
n

ra
nk
↓

Dataset: AES-HD

train
val

0 5000 10000 15000 20000

Training step

0.00

0.05

0.10

0.15

0.20

0.25

O
ra

cl
e

ag
re

em
en

t↑
Dataset: AES-HD

0 200 400 600 800 1000

Training step

−2.5

−2.0

−1.5

−1.0

−0.5

M
C

es
tim

at
e

of
L(
θ
,η̃

)
l

Dataset: OTiAiT

train
val

0 200 400 600 800 1000

Training step

1

2

3

4

5

6

7

C
la

ss
ifi

er
m

ea
n

ra
nk
↓

Dataset: OTiAiT

train
val

0 200 400 600 800 1000

Training step

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: OTiAiT

0 200 400 600 800 1000

Training step

−0.55

−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

M
C

es
tim

at
e

of
L(
θ
,η̃

)
l

Dataset: OTP (1024-bit)

train
val

0 200 400 600 800 1000

Training step

1.050

1.075

1.100

1.125

1.150

1.175

1.200

1.225

1.250

C
la

ss
ifi

er
m

ea
n

ra
nk
↓

Dataset: OTP (1024-bit)

train
val

0 200 400 600 800 1000

Training step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: OTP (1024-bit)

Figure 15: Training curves for ALL with the hyperparameter configuration chosen using our composite model
selection criterion. Grey shaded regions denote ‘pretraining’ phases where we optimize θ but not η̃. Note that
jumps in the traces happen because we set γ = 0.5 for pretraining and change it to the setting chosen through
hyperparameter search for training. (left column) The per-minibatch estimates of our objective function
L(θ, η̃) (i.e. negative cross-entropy classification loss of the classifier) during training. We are optimizing θ
to maximize this value and η̃ to minimize it. (center column) The mean rank of the correct label in the
logits of the classifier (lower corresponds to higher classifier performance). We use this instead of accuracy
for its finer granularity. (right column) The performance in terms of oracle agreement over the course
of training; higher is better, as it indicates that the current ALL leakiness estimates are closer to being a
strictly-increasing function of the oracle assessments.

60

Under review as submission to TMLR

0 10000 20000 30000 40000

Training steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
ra

cl
e

ag
re

em
en

t↑

ALL (ours)
OccPOI (final)

2nd-orderm∗-Occlusion (final)
Random

Gradient-based methods
1-Occlusion
m∗-Occlusion

Figure 16: A comparison of the evolution of oracle agreement vs. training steps for ALL and selected baselines.
Note that the oracle agreement for ALL is flat for the first 20k training steps and jumps up for the remaining
steps because we leave all elements of γ fixed at 0.5 during our ‘pretraining’ phase of training, and update
it only during the second half. For 2nd-order m∗-Occlusion and OccPOI, due to their high computational
cost we report only the final performance after training via horizontal lines, rather than the evolution of
performance during training.

0.2 0.4 0.6 0.8

Budget hyperparameter γ

−0.50

−0.25

0.00

0.25

0.50

0.75

O
ra

cl
e

ag
re

em
en

t↑

Dataset: ASCADv1 (fixed)

0.2 0.4 0.6 0.8

Budget hyperparameter γ

−0.2

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: ASCADv1 (variable)

0.2 0.4 0.6 0.8

Budget hyperparameter γ

0.0

0.1

0.2

0.3

O
ra

cl
e

ag
re

em
en

t↑

Dataset: DPAv4 (Zaid vsn.)

0.2 0.4 0.6 0.8

Budget hyperparameter γ

0.0

0.1

0.2

0.3

O
ra

cl
e

ag
re

em
en

t↑

Dataset: AES-HD

0.2 0.4 0.6 0.8

Budget hyperparameter γ

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: OTiAiT

0.2 0.4 0.6 0.8

Budget hyperparameter γ

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: OTP (1024-bit)

10−6 10−5 10−4 10−3 10−2
Learning rate of θ

10−4 10−3 10−2 10−1
Learning rate of η̃

10−5 10−4 10−3 10−2
Learning rate of θ

10−3 10−2 10−1 100
Learning rate of η̃

10−7 10−6 10−5 10−4 10−3
Learning rate of θ

10−5 10−4 10−3 10−2
Learning rate of η̃

10−6 10−5 10−4 10−3 10−2
Learning rate of θ

10−5 10−4 10−3 10−2
Learning rate of η̃

10−7 10−6 10−5 10−4
Learning rate of θ

10−4 10−3 10−2 10−1
Learning rate of η̃

10−6 10−5 10−4 10−3 10−2
Learning rate of θ

10−4 10−3 10−2 10−1
Learning rate of η̃

Figure 17: A plot of the performance of ALL as we perturb its 3 main hyperparameters: the noise budget
γ and the learning rates of the classifier weights θ and the noise distribution parameter η̃. We find that
performance varies smoothly with these hyperparameters and stays significantly better than random guessing
over a large region of the search space, which is useful from a standpoint of hyperparameter tuning. We
consider γ values in np.arange(0.05, 1.0, 0.05) and learning rates scaled by values in np.logspace(-2,
2, 19) relative to their optimal values according to the oracle agreement metric. All hyperparameters other
than those being perturbed are left at their optimal values according to the oracle agreement metric. We
repeat trials for 5 random seeds and report their mean with dots and ± 1 standard deviation with shading.

61

Under review as submission to TMLR

0 5000 10000 15000 20000

Training step

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

C
ro

ss
-e

nt
ro

py
lo

ss
↓

Dataset: ASCADv1 (fixed)

train
val

0 5000 10000 15000 20000

Training step

40

60

80

100

120

M
ea

n
co

rr
ec

tk
ey

ra
nk
↓

Dataset: ASCADv1 (fixed)

train
val

100 101 102 103 104

Traces seen

0

50

100

150

200

250

C
or

re
ct

A
E

S
ke

y
ra

nk

Dataset: ASCADv1 (fixed)

WoutersNet
ZaidNet
Benadjila’s CNNbest

Benadjila’s MLPbest

ALL (ours)

0 10000 20000 30000 40000

Training step

4.6

4.8

5.0

5.2

5.4

5.6
C

ro
ss

-e
nt

ro
py

lo
ss
↓

Dataset: ASCADv1 (variable)

train
val

0 10000 20000 30000 40000

Training step

40

60

80

100

120

M
ea

n
co

rr
ec

tk
ey

ra
nk
↓

Dataset: ASCADv1 (variable)

train
val

100 101 102 103 104 105

Traces seen

0

20

40

60

80

100

120

140

C
or

re
ct

A
E

S
ke

y
ra

nk

Dataset: ASCADv1 (variable)

Benadjila’s CNNbest

ALL (ours)

0 2000 4000 6000 8000 10000

Training step

1

2

3

4

5

6

7

C
ro

ss
-e

nt
ro

py
lo

ss
↓

Dataset: DPAv4 (Zaid vsn.)

train
val

0 2000 4000 6000 8000 10000

Training step

0

20

40

60

80

100

120

140
M

ea
n

co
rr

ec
tk

ey
ra

nk
↓

Dataset: DPAv4 (Zaid vsn.)

train
val

100 101 102

Traces seen

0

5

10

15

20

25

30

C
or

re
ct

A
E

S
ke

y
ra

nk

Dataset: DPAv4 (Zaid vsn.)

WoutersNet
ZaidNet
ALL (ours)

0 5000 10000 15000 20000

Training step

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

C
ro

ss
-e

nt
ro

py
lo

ss
↓

Dataset: AES-HD

train
val

0 5000 10000 15000 20000

Training step

40

60

80

100

120

M
ea

n
co

rr
ec

tk
ey

ra
nk
↓

Dataset: AES-HD

train
val

100 101 102 103 104

Traces seen

0

50

100

150

200

250

C
or

re
ct

A
E

S
ke

y
ra

nk
Dataset: AES-HD

WoutersNet
ZaidNet
ALL (ours)

0 200 400 600 800 1000

Training step

0

1

2

3

4

5

6

7

C
ro

ss
-e

nt
ro

py
lo

ss
↓

Dataset: OTiAiT

train
val

0 200 400 600 800 1000

Training step

1.0

1.5

2.0

2.5

3.0

M
ea

n
co

rr
ec

tk
ey

ra
nk
↓

Dataset: OTiAiT

train
val

0 200 400 600 800 1000

Training step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
ro

ss
-e

nt
ro

py
lo

ss
↓

Dataset: OTP (1024-bit)

train
val

0 200 400 600 800 1000

Training step

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

M
ea

n
co

rr
ec

tk
ey

ra
nk
↓

Dataset: OTP (1024-bit)

train
val

Figure 18: Training curves and attack performance of the supervised classifiers which are ‘interpreted’ by the
deep learning baseline methods. (Left column) The training + validation cross-entropy loss vs. training
steps for the supervised classifiers. (center column) The training + validation rank vs. training steps for
the supervised classifiers. (right column) The rank of the correct key as we accumulate predictions on the
attack dataset for the supervised classifiers, which is a common way of evaluating attack performance in the
side-channel literature. For reference, we superimpose the results using open-weight classifiers provided by
Benadjila et al. (2020) and Wouters et al. (2020). Note that our classifiers can successfully attack all datasets.
They get comparable performance to the open-weight classifiers on ASCADv1-fixed, ASCADv1-variable and
DPAv4, and somewhat worse performance on AES-HD.

62

Under review as submission to TMLR

5 10 15

Occlusion window size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
at

as
et

:A
SC

A
D

v1
(fi

xe
d)

Oracle agreement

m-occlusion
Avg-pooled ALL (ours)

0 200 400 600

Timestep t

0.02

0.04

0.06

0.08

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 1

0 200 400 600

Timestep t

0.05

0.10

0.15

0.20

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: m∗ = 3

0 200 400 600

Timestep t

0.1

0.2

0.3

0.4

0.5

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 19

5 10 15

Occlusion window size

0.3

0.4

0.5

0.6

D
at

as
et

:A
SC

A
D

v1
(v

ar
ia

bl
e)

Oracle agreement

m-occlusion
Avg-pooled ALL (ours)

0 250 500 750 1000 1250

Timestep t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 1

0 250 500 750 1000 1250

Timestep t

0.0

0.5

1.0

1.5

2.0

2.5

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: m∗ = 7

0 250 500 750 1000 1250

Timestep t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 19

0 10 20 30 40 50

Occlusion window size

0.200

0.225

0.250

0.275

0.300

0.325

0.350

D
at

as
et

:D
PA

v4
(Z

ai
d

vs
n.

)

Oracle agreement

m-occlusion
Avg-pooled ALL (ours)

0 1000 2000 3000 4000

Timestep t

0.0

0.1

0.2

0.3

0.4

0.5

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 1

0 1000 2000 3000 4000

Timestep t

0

1

2

3

4

5

6

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: m∗ = 41

0 1000 2000 3000 4000

Timestep t

0

1

2

3

4

5

6

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 49

0 10 20 30 40 50

Occlusion window size

0.10

0.15

0.20

0.25

0.30

D
at

as
et

:A
E

S-
H

D

Oracle agreement

m-occlusion
Avg-pooled ALL (ours)

0 200 400 600 800 1000 1200

Timestep t

0.008

0.010

0.012

0.014

0.016

0.018

0.020

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 1

0 200 400 600 800 1000 1200

Timestep t

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: m∗ = 31

0 200 400 600 800 1000 1200

Timestep t

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 49

5 10 15

Occlusion window size

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

D
at

as
et

:O
Ti

A
iT

Oracle agreement

m-occlusion
Avg-pooled ALL (ours)

0 200 400 600 800 1000

Timestep t

0

2

4

6

8

10

12

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 1

0 200 400 600 800 1000

Timestep t

0

5

10

15

20

25

30

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: m∗ = 3

0 200 400 600 800 1000

Timestep t

0

20

40

60

80

100

120

140

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 19

5 10 15

Occlusion window size

0.55

0.60

0.65

0.70

0.75

0.80

0.85

D
at

as
et

:O
T

P
(1

02
4-

bi
t)

Oracle agreement

m-occlusion
Avg-pooled ALL (ours)

0 200 400 600 800 1000

Timestep t

0.00

0.02

0.04

0.06

0.08

0.10

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 1

0 200 400 600 800 1000

Timestep t

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: m∗ = 5

0 200 400 600 800 1000

Timestep t

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

E
st

im
at

ed
le

ak
in

es
s

of
X
t

Window size: 19

Figure 19: A sweep of the window size m for m-Occlusion. In the first column we plot the oracle agreement
vs. window size (red curve). For reference we also plot the output of ALL (blue curve) as we average-pool it
with stride 1 and kernel size m. Note that ALL consistently outperforms m-Occlusion for a wide range of
window sizes. In the second, third and fourth columns we plot the m-Occlusion leakiness assessment for
m = 1, optimal m, and maximum considered m. Observe that there is a smoothing effect as we increase m.

63

Under review as submission to TMLR

ALL (ou
rs)

3-O
cc

lus
ion

1-O
cc

lus
ion

Grad
Vis

Inp
ut
∗ G

rad LRP

Sali
en

cy

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: ASCADv1 (fixed)

ALL (ou
rs)

7-O
cc

lus
ion

1-O
cc

lus
ion

Grad
Vis

Inp
ut
∗ G

rad LRP

Sali
en

cy
−0.2

0.0

0.2

0.4

0.6

0.8
O

ra
cl

e
ag

re
em

en
t↑

Dataset: ASCADv1 (variable)

ALL (ou
rs)

41
-O

cc
lus

ion

1-O
cc

lus
ion

Grad
Vis

Inp
ut
∗ G

rad LRP

Sali
en

cy

−0.1

0.0

0.1

0.2

0.3

O
ra

cl
e

ag
re

em
en

t↑

Dataset: DPAv4 (Zaid vsn.)

ALL (ou
rs)

31
-O

cc
lus

ion

1-O
cc

lus
ion

Grad
Vis

Inp
ut
∗ G

rad LRP

Sali
en

cy

−0.1

0.0

0.1

0.2

0.3

O
ra

cl
e

ag
re

em
en

t↑

Dataset: AES-HD

ALL (ou
rs)

3-O
cc

lus
ion

1-O
cc

lus
ion

Grad
Vis

Inp
ut
∗ G

rad LRP

Sali
en

cy

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: OTiAiT

ALL (ou
rs)

5-O
cc

lus
ion

1-O
cc

lus
ion

Grad
Vis

Inp
ut
∗ G

rad LRP

Sali
en

cy

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑
Dataset: OTP (1024-bit)

Figure 20: Distribution of performance of ALL and selected baseline methods during a 50-trial random
hyperparameter search. Note that ALL generally outperforms baselines over a wide range of configurations.
Blue dots denote individual samples, and boxes extend from first quartile to third quartile with a line at the
median and whiskers extending to the furthest dot lying within 1.5× the interquartile range from the box.

64

Under review as submission to TMLR

ALL
+ Avg

Poo
l(3

)

ALL (ou
rs)

ALL
(co

op
era

tiv
e)

ALL
(un

co
nd

itio
na

l)

3-O
cc

l +
he

av
y dro

po
ut

3-O
cc

lus
ion

1-O
cc

l +
he

av
y dro

po
ut

1-O
cc

lus
ion

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: ASCADv1 (fixed)

ALL
+ Avg

Poo
l(7

)

ALL (ou
rs)

ALL
(co

op
era

tiv
e)

ALL
(un

co
nd

itio
na

l)

7-O
cc

l +
he

av
y dro

po
ut

7-O
cc

lus
ion

1-O
cc

l +
he

av
y dro

po
ut

1-O
cc

lus
ion

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: ASCADv1 (variable)

ALL
+ Avg

Poo
l(4

1)

ALL (ou
rs)

ALL
(co

op
era

tiv
e)

ALL
(un

co
nd

itio
na

l)

41
-O

cc
l +

he
av

y dro
po

ut

41
-O

cc
lus

ion

1-O
cc

l +
he

av
y dro

po
ut

1-O
cc

lus
ion

−0.1

0.0

0.1

0.2

0.3

O
ra

cl
e

ag
re

em
en

t↑

Dataset: DPAv4 (Zaid vsn.)

ALL
+ Avg

Poo
l(3

1)

ALL (ou
rs)

ALL
(co

op
era

tiv
e)

ALL
(un

co
nd

itio
na

l)

31
-O

cc
l +

he
av

y dro
po

ut

31
-O

cc
lus

ion

1-O
cc

l +
he

av
y dro

po
ut

1-O
cc

lus
ion

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

O
ra

cl
e

ag
re

em
en

t↑

Dataset: AES-HD

ALL
+ Avg

Poo
l(3

)

ALL (ou
rs)

ALL
(co

op
era

tiv
e)

ALL
(un

co
nd

itio
na

l)

3-O
cc

l +
he

av
y dro

po
ut

3-O
cc

lus
ion

1-O
cc

l +
he

av
y dro

po
ut

1-O
cc

lus
ion

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: OTiAiT

ALL
+ Avg

Poo
l(5

)

ALL (ou
rs)

ALL
(co

op
era

tiv
e)

ALL
(un

co
nd

itio
na

l)

5-O
cc

l +
he

av
y dro

po
ut

5-O
cc

lus
ion

1-O
cc

l +
he

av
y dro

po
ut

1-O
cc

lus
ion

0.0

0.2

0.4

0.6

0.8

O
ra

cl
e

ag
re

em
en

t↑

Dataset: OTP (1024-bit)

Figure 21: Ablation studies where we evaluate the influence of individual aspects of ALL on its performance
gains relative to prior work, as described in Sec. E.3.7. These are plots of the distribution of oracle agreement
values after a 50-trial random hyperparameter search with each ablation in place. ‘ALL (ours)’ denotes our
method without modification. ‘ALL + AvgPool(m∗)’ denotes an average-pooled version of ALL to mimic the
smoothing effect of m∗-Occlusion. ‘ALL (cooperative)’ denotes ALL with the adversarial objective replaced
by a ‘cooperative’ objective where both the classifier and noise distribution are trained to maximize the
performance of the classifier. ‘ALL (unconditional)’ denotes ALL without the occlusion masks being fed as an
auxiliary input to the classifier. ‘m-Occl + heavy dropout’ denotes m-Occlusion with the input dropout to the
classifier chosen from {0.05, 0.1, . . . , 0.95} rather than {0.0, 0.1} as in our other experiments. ‘m-Occlusion’
denote the results with the unmodified m-Occlusion techniques.

65

	Introduction
	Background and Setting
	Existing work and its limitations
	First-order parametric statistics-based methods
	Neural net attribution-based methods

	Our method: Adversarial Leakage Localization (ALL)
	Implicit definition of leakiness through a constrained optimization problem
	Deep learning-based implementation
	Differences from prior work

	Experimental results
	Synthetic datasets where we know `ground truth' leakiness
	Real power and EM radiation leakage datasets

	Conclusion
	Notation and variable names
	Extended background
	Cryptographic algorithms
	Side-channel attacks
	Power side-channel attacks on AES implementations
	Template attack: example of a classical profiled side-channel attack
	Practical profiled deep learning side-channel attacks on AES implementations

	Extended related work
	First-order parameteric statistics-based methods
	Neural net attribution methods
	Numerical experiment illustrating conditional mutual information decay when many redundant leaking measurements are present

	Extended method with derivations
	Optimization problem
	Estimating mutual information with deep neural nets
	Re-parametrization into an unconstrained optimization problem
	Implementation details

	Extended experimental details and results
	Toy setting where our method succeeds and prior work fails
	Simulated AES datasets where we have ground truth knowledge about leakage
	Data generation procedure
	Experimental details
	Results

	Experiments on real power and EM radiation leakage datasets
	Datasets
	Implementation details for the leakage localization algorithms
	Hyperparameter tuning procedure
	Performance evaluation methods
	Model selection criterion
	Summary of experiments
	Ablation studies
	Theoretical and empirical computational cost of deep learning methods

	Limitations

