10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Under review as submission to TMLR

Learning to Localize Leakage
of Cryptographic Sensitive Variables

Anonymous authors
Paper under double-blind review

Abstract

While cryptographic algorithms such as the ubiquitous Advanced Encryption Standard
(AES) are secure, physical implementations of these algorithms in hardware inevitably ‘leak’
sensitive data such as cryptographic keys. A particularly insidious form of leakage arises from
the fact that hardware consumes power and emits radiation in a manner that is statistically
associated with the data it processes and the instructions it executes. Supervised deep
learning has emerged as a state-of-the-art tool for carrying out side-channel attacks, which
exploit this leakage by learning to map power /radiation measurements throughout encryption
to the sensitive data operated on during that encryption. In this work we develop a principled
deep learning framework for determining the relative leakage due to measurements recorded
at different points in time, in order to inform defense against such attacks. This information
is invaluable to cryptographic hardware designers for understanding why their hardware leaks
and how they can mitigate it (e.g. by indicating the particular sections of code or electronic
components which are responsible). Our framework is based on an adversarial game between
a classifier trained to estimate the conditional distributions of sensitive data given subsets of
measurements, and a budget-constrained noise distribution which probabilistically erases
individual measurements to maximize the loss of this classifier. We demonstrate our method’s
efficacy and ability to overcome limitations of prior work through extensive experimental
comparison on 6 publicly-available power/EM trace datasets from AES, ECC and RSA
implementations. Our PyTorch code is available |herel

1 Introduction

The Advanced Encryption Standard (AES)E] (Daemen & Rijmen, 1999; [2013) is widely used and trusted for
protecting sensitive data. For example, it is approved by the United States National Security Agency for
protecting top secret information (Committee on National Security Systems] 2003)), it is a major component
of the Transport Layer Security (TLS) protocol (Rescorlal |2000) which underlies the security of HTTPS
(Rescorlal 2000), and it is used in payment card readers to secure card information before transmission to
financial institutions (Bluefin Payment Systems, [2023)).

AES aims to keep data secret when it is transmitted over insecure channels that are accessible to unknown
and untrusted parties (e.g. via wireless transmissions which may be intercepted, or storage on hard drives
accessible to untrusted individuals). Prior to transmission, the data is first encoded and partitioned into a
sequence of fixed-length bitstrings called plaintezrts. Each plaintext is then encrypted into a ciphertext by
applying an invertible function from a family of functions indexed by an integer called a cryptographic key.
This family of functions is designed so that if the key is sampled uniformly at random, then the plaintext
and ciphertext are marginally independent. The key is known to the sender and intended recipients of the
transmission, and is kept secret from potential eavesdroppers. Thus, the intended recipients can use the key
to decrypt the ciphertext back into the original plaintext, while eavesdroppers who possess the ciphertext but
not the key learn nothing about the plaintext.

1For clarity of exposition we discuss AES here, but our technique also applies to other algorithms.

https://anonymous.4open.science/r/learning_to_localize_leakage-420B

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Under review as submission to TMLR

Side channel leakage Side channel attack

Key %

Plaintext l Ciphertext

. A Dataset D "% px y
Sensitive intermediate
variable /
Y ~py
Known

function Supervised

@ — E] > learning
Cryptographic ‘A Power trace
hardware o
Measuremlent - ﬁY\X(' | X)

Power
apparatus
source

Figure 1: Diagram illustrating our probabilistic framing of side-channel leakage in the special case of power
side-channel leakage from a symmetric-key (e.g. AES) cryptographic implementation. A cryptographic device
consumes power over time while encrypting data. The power consumption leaks the secret key because it
is statistically associated with key-dependent internal variables. Our work considers profiling side-channel
attacks, a worst-case scenario where attackers can freely model the relationship between an implementation’s
secret data and its power consumption over time, then use this model to attack the same device.

Clearly, such an algorithm is effective only if the cryptographic key remains outside of the hands of attackers.
AES is believed to be ‘algorithmically secure’ in the sense that it is infeasible to determine the cryptographic
key by exploiting its intended inputs and outputs: plaintexts and ciphertexts (Mouha) [2021}; Tao & Wul, 2015)).
Despite this, physical implementations of AES in hardware ‘leak’ information about their cryptographic keys.
This phenomenon, called side-channel leakage, occurs because hardware inevitably emits measurable physical
signals that are statistically associated with the data it processes and the instructions it executes (Mangard
et al. 2007). There are many diverse physical side-channels which can leak, such as program/operation
execution time (Kocher) (1996} |Lipp et al. 2018; [Kocher et al., [2019), temperature (Hutter & Schmidt}, 2014)),
and sound due to vibration of electronic components (Genkin et all [2014)). In this work the side-channels
we consider are power and electromagnetic (EM) radiation over time (Kocher et all 1999} Mangard et al.,
2007)), which are major security vulnerabilities for AES implementations (Genkin et al., |2016; Bronchain &
Standaert, [2020]).

Side-channel attacks exploit this leakage to break cryptographic implementations by revealing secret internal
variables such as cryptographic keys. In this work we consider profiling side-channel attacks (Chari et al.
2003 Mangard et al., |2007), which assume a worst-case scenario where the attacker possesses a clone of the
target device and can repeatedly measure its power/radiation over time while encrypting arbitrary plaintexts
using arbitrary keys. These sequences of power/radiation measurements are recorded as real vectors called
traces, where each element encodes a measurement at a fixed point in time relative to the start of encryption.
The attacker can thereby gather data from the clone device to model the conditional distribution of the
secret variable given a trace. They can then defeat the target device by measuring its power/radiation traces,
feeding them to the model, and revealing its secret internal variables.

Supervised deep learning has emerged as a state-of-the-art technique for this modeling task, achieving
comparable or superior performance to prior approaches while requiring far less data preprocessing and
feature selection (Maghrebi et al.l |2016; Benadjila et al., 2020; |Zaid et al., |2020; [Wouters et al.| 2020} |Lu et al.,
2021; Bursztein et al., |2023). Older non-deep learning attacks were mostly based on parametric statistics and
had major limitations such as restrictive modeling assumptions (Messerges, [2000; |Chari et al 2003} |Agrawal
et al., |2005; [Schindler et al., |2005; [Hospodar et all 2011)) and inability to scale to long traces (Chari et al.l
2003} |Archambeau et al., 2006). Deep learning overcomes these limitations and consequently poses a major
and growing threat to a wide assortment of security measures and evaluations that were designed with the
limitations of older attacks in mind.

67

68

69

70

71

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

89

90

91

92

93

94

95

96

97

98

99

100

Under review as submission to TMLR

Table 1: A summary of the important quantities and variables used throughout this work.

Notation Explanation

Pa; pa|B; etc. Probability distribution of random variable A, conditional distribution of A given B, etc.
Ef(A,B),Es f(A,B) Expected value of f(A, B) (left: over all randomness, right: over randomness of A)
I[4;B|C] e Ry Conditional mutual information between A and B given C

TeZyy Number of measurements/timesteps in power trace

X =(Xy,...,Xr) eRT Power trace (random variable) consisting of 7' measurements

YevY Secret data (random variable) from finite set Y (e.g. Y = {0,1,...,255} for uint8 YY)
¥=1,.--,97) €[0,1]7 Occlusion probabilities, where -; denotes probability of occluding X,

CeRyy Budget for occlusion probability vector, which incurs cost ZtT=1 c()
¥=C/(C+T)e(0,1) Re-parameterized version of C' which is less-sensitive to dataset

A, =(Ayq,..., Ay r) € {0,137 Occlusion mask (random variable), where Prob(A, ; = 0) = v

XoA, eRT Occluded trace (elementwise product of trace and occlusion mask)

Do(- | X © A, Ay) €[0,1] Predicted distribution of secret data given occluded trace and mask, by classifier w/ weights

In this work, we seek to leverage deep learning to defend against side-channel attacks by identifying specific
points in time at which power/radiation measurements leak sensitive data. Our aim is to aid the designers of
implementations in understanding why their implementations leak (e.g. by indicating the particular sections
of code or electronic components which are responsible) and thereby enable targeted mitigation of the leaks.
Our key contributions are:

e We propose a principled information theoretic quantity which measures the ‘leakiness’ of individual
power/EM radiation measurements. Unlike prior approaches, ours is sensitive to arbitrary statistical
associations between a chosen secret variable and subsets of measurements. Our quantity is implicitly
defined through a constrained optimization problem.

o We propose a novel deep learning algorithm called Adversarial Leakage Localization (ALL) which
approximately solves this optimization problem. ALL is based on an adversarial game played between
a neural net ‘attacker’ trained to classify secret data using power/radiation traces, and a budget-
constrained noise distribution trained to ‘defend’ against the attack by introducing noise to individual
measurements in the traces. Due to the budget constraint, noise cannot be added everywhere and
must be rationed for the leakiest measurements. After training we can thereby surmise the leakiness
of each measurement from its noisiness.

e We compare ALL with 11 baseline methods on 6 publicly-available power and EM radiation side-
channel leakage datasets from implementations of the AES, ECC, and RSA cryptographic standards.
To our knowledge this is by far the most comprehensive and quantitative comparison of leakage
localization algorithms which has been done, and we release our code and procedure in the hope of
facilitating reproducibility and benchmarking of future work in this area.

2 Background and Setting

See Table [l for a summary of the important notation we will use throughout the rest of the paper. Our
setting is standard in the context of profiling power/EM side-channel analysis (Chari et al., |2003} Mangard
et al.} 2007) and is illustrated in Fig. [II We assume to have a cryptographic device which encrypts data in a
manner dependent on secret variable y € Y, where Y is a finite set (e.g. consisting of bitstrings encoding
all possible values of the variable). We assume to have some measurement apparatus that allows us to
measure the power consumption or EM radiation throughout encryption. We view the resulting measurement
sequences as vectors & € R” | called traces, where T' € Z, ; denotes the number of measurements per trace.
We view the secret variable as a random variable Y ~ py where py is a simple (e.g. uniform) distribution
under our control. The resulting trace X | Y ~ px|y then comes from a complicated and a priori unknown
distribution dictated by factors such as the hardware, environment, and measurement setup. Here each
element X; of the random vector X = (X7, ..., Xr) represents a power/radiation measurement at a fixed
point in time relative to the start of encryption. In this work we assume that the distributions px vy (- | ¥)

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

Under review as submission to TMLR

exist and have full support for all y € Y, which is reasonable because empirically power consumption usually
has a ‘random’ component which is well-described by additive Gaussian noise (Mangard et al., 2007). Most

profiling side-channel attacks amount to collecting a dataset D Bl px.y and using supervised (deep or
otherwise) learning to model py | x.

Given these jointly-distributed X, Y, we seek to define for each X; a scalar quantifying its ‘leakiness,’ i.e. the
extent to which it can be exploited by attackers to learn Y from X. Towards this end it is useful to consider
the Shannon conditional mutual information (Shannon) [1948)

I[Y; X, | S] = E [log pyx, s(Y | X¢,S) —logpys(Y |S)], SC{X1,...,Xr}\ {X:}. (1)

Intuitively, I[Y; X; | S] tells us the extent to which our uncertainty about Y is reduced upon observing X,
provided we have already observed the elements of S.

Each individual quantity I[Y; X; | S] tells us something about the leakiness of X;. However, for each ¢ there
are 27! such quantities, and it is not obvious how they should be combined into a single scalar. Clearly,
X should be considered leaky if I[Y’; X;] > 0 and non-leaky if I[Y; X; | S] = 0 VS. More-subtly, there are
many practical scenarios in which we have second-order leakage, where I[Y; X;] = 0 but I[Y; X, | Xv] > 0 for
some t' # t (i.e. X; alone reveals nothing about Y, but reveals something useful about Y when combined
with X/). For example, many cryptographic implementations use a Boolean masking countermeasure (Chari
et al.l [1999; [Benadjila et al.l |2020) whereby a sensitive variable is decomposed into a pair of independent
‘random shares’ which are operated on at distant points in time. Hence, the naive choice of I[Y’; X;] as our
definition of the leakiness of X; would not work.

Another naive choice would be to define the leakiness of X; as I[Y; Xy | {X1,..., X1} \ {X¢}]. This addresses
the insensitivity of I[Y’; X;] to second-order leakage. However, it introduces a new shortcoming: when there
are many leaky measurements with ‘redundant’ information, we may have I[Y; Xy | {X1,..., X0} \{X:}] =0
even if I[Y; X;] > 0. In other words, X; has little new information about Y which is not already provided by
the other measurements. As we will show, this phenomenon creates issues for many prior deep learning-based
leakage localization algorithms.

We will subsequently propose a natural notion of leakiness which is sensitive to all the quantities described
by Eqn. [I] Before we do so, let us consider relevant prior work and its limitations.

3 Existing work and its limitations

We consider prior work in the side-channel analysis literature which may be leveraged for leakage localization.
One prominent category of such work is parametric statistics-based methods which use non-deep learning
techniques to look for pairwise associations between the measurements X; and Y. The other is neural net
attribution-based methods, where 1) a profiling side-channel attack is carried out with supervised deep learning,
and 2) the neural net is ‘interpreted’ to determine the relative importance of its input features. Refer to
Appendix [C] for further details.

3.1 First-order parametric statistics-based methods

First-order parametric statistics-based methods (Mangard et al.| [2007; (Chari et al 2003; Brier et al., 2004)
are widely used for understanding leakage due to their simplicity, interpretability, and low computational
cost. However, these cannot detect leakage of order 2 or higher, and make restrictive assumptions about the
relationship between X and Y. Thus, such methods are ill-suited to our work’s ‘black-box’ leakage localization
setting where we make minimal assumptions about the cryptographic implementation being evaluated.

In practice, leakage mitigation will likely be done in a ‘white-box’ setting where hardware designers understand
the implementation and have access to its internal variables. In this setting, ntP-order leakage can often be
decomposed into first-order leakage of > n internal variables, which can then be localized individually with
first-order methods. However, such analysis is error-prone and relies on careful analysis of the implementation.
For example, Benadjila et al.| (2020)) released the second order-leaking ASCADv1-fixed dataset and analyzed
its leakage by decomposing it into 2 pairs of first-order-leaking internal variables. Subsequently, [Egger et al.

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

Under review as submission to TMLR

(2022)) noted additional internal variables which contribute to leakage but were missed in the initial analysis.
We view black-box deep learning-based methods such as ours as complementary with parametric white-box
analysis: the latter provides an interpretable and hyperparameter-free assessment of known-leaky internal
variables, while the former can detect leakage stemming from both known and unknown sources.

3.2 Neural net attribution-based methods

There is a great deal of prior work on localizing leakage by applying interpretability techniques to neural
nets which have been trained to perform side-channel attacks (Masure et al., |2019; Hettwer et al.l 20205 [Jin
et al] [2020} Zaid et al., [2020; Wouters et al.| 2020; [van der Valk et al.| [2021} |Golder et al., |2022} [Li et al.|
2022; Perin et al., [2022; |Schamberger et al., [2023; [Yap et al., [2023; |Li et al., 2024} Yap et al., [2025). Most
of these techniques can be summarized as follows: 1) use standard supervised deep learning techniques to
train a model p ~ py|x using data, and 2) use interpretability techniques to estimate the influence of each
input feature on the model, on average over the dataset. For example, the Gradient Visualization (GradVis)

technique of Masure et al.|(2019) estimates the leakiness of X; by Ex y —a%t log p(Y" | w)|m:X’ , and the

1-Occlusion technique of Hettwer et al.| (2020]) estimates it as Ex v [p(Y | X) —p(Y | (1 — I;) ® X)| where
I; denotes column ¢ of the identity matrix. In this work we consider as baselines the recent OccPOI method
(Yap et al., 2025), the m-Occlusion and 2"9-order m-Occlusion techniques (Schamberger et al., [2023)), as
well as GradVis (Masure et al.l 2019), Saliency (Simonyan et al.l 2014; [Hettwer et al.l 2020), 1-Occlusion
(Zeiler & Fergus| 2014} [Hettwer et all 2020), LRP (Bach et all |2015; [Hettwer et all [2020), and Input *
Grad (Shrikumar et all 2017; [Wouters et all 2020]). Note that these subsume the deep learning baselines
considered by |Yap et al| (2025); [Schamberger et al.| (2023).

Most of these methods are prone to detecting only some leaking measurements while ignoring others.
GradVis, Saliency, 1-Occlusion, LRP and Input * Grad compute the leakiness of X; by occluding or
differentiating the input z; to p(Y | Xy,..., X1, 24, X¢y1,...,X7) and observing its change in output.
However, as discussed in Sec. [2] when many of the measurements carry ‘redundant’ information, one may
have I[Y; X | {X1,..., X7} \ {X¢}] = 0 even if I[Y; X;] > 0. In this case a well-fit p becomes essentially
constant with respect to x;, causing these methods to spuriously estimate low leakiness for X;.

While m-Occlusion, 2"4-order m-Occlusion, and OccPOI occlude multiple inputs simultaneously and are
thus less-susceptible to this issue, they have their own shortcomings. m-Occlusion is like 1-Occlusion except
that it occludes m-diameter windows rather than single points, which has an undesirable smoothing effect
and is helpful only when the ‘redundant’ measurements are temporally-local. 2"d-order m-Occlusion entails
occluding all pairs of windows, which is expensive because it requires ©(T?) passes through the dataset
with the neural net. Additionally, while it provides the interesting and unique ability to discern whether
leakage is first-order or second-order, we find that it gives little improvement over m-Occlusion when adapted
to estimate the leakiness of a single point. Unlike the other considered methods, OccPOI does not assign
a leakiness estimate to every measurement. Rather, it is a heuristic which aims to identify a non-unique
minimal-cardinality set of measurements sufficient for p to attain some classification performance when all
other measurements are occluded. Additionally, it is expensive because it requires (T") non-parallelizable
passes through the dataset with the neural net.

4 Our method: Adversarial Leakage Localization (ALL)

Here we propose a novel algorithm called Adversarial Leakage Localization (ALL) for localizing leakage which
addresses the shortcomings of prior work. In line with Sec. |2} we have jointly-distributed power/EM radiation
traces X = (X1,..., X7) and secret data Y. We seek to define for each X; a scalar quantifying its ‘leakiness,’
i.e. its usefulness to attackers for learning Y from X.

Intuitively, ALL is based on an adversarial game played between a neural net ‘attacker’ trained to predict Y
from X, and a budget-constrained noise distribution trained to ‘defend’ against the attack by introducing
noise to individual measurements to maximize the loss of the classifier. Because of the budget constraint,
increasing the noise applied to one measurement requires reducing the noise of other measurements. Thus,
noise cannot simply be applied everywhere, and must be ‘triaged’ so that leakier measurements get more

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

Under review as submission to TMLR

noise. After training we can surmise the leakiness of a measurement from the amount of noise which has
been applied to it.

In this section we first propose a constrained optimization problem which implicitly defines a notion of
‘leakiness’ which is sensitive to all the terms I[Y; X; | S]: S C {X1,..., X7} \ {X:}. We then derive ALL as a
practical deep learning algorithm which approximately solves this optimization problem. We conclude by
explicitly contrasting ALL with prior work. Refer to Appendix [D] for an extended version of this section with
proofs and derivations, and Algorithm [2| for pseudocode.

4.1 Implicit definition of leakiness through a constrained optimization problem

We define a vector v € [0,1)T which we name the occlusion probabilities. v parameterizes a distribution over
a binary random vector with range {0, 1} which we call the occlusion mask: Ay = (Ay1,..., Ay 1) ~pa,
A, + ~ Bernoulli(1 — ;). For arbitrary vectors ¢ € RT, a € {0,1}7, let us denote zo == (2, : t=1,...,T:
ap = 1), i.e. the sub-vector of x containing its elements for which the corresponding element of a is 1. We
can accordingly use \A, to obtain random sub-vectors X 4 of X. Note that ~; denotes the probability that
Xy will not be an element of X 4_ .

We assign to each element of v a strictly-increasing ‘cost’ ¢ : [0,1) — Ry : x +— %, with the properties
¢(0) = 0 and lim,_,; ¢(z) = co. We seek to solve the constrained optimization problem

T
min L(v) =1[Y; X4, | Ay] such that ZC(%) =C (2)

T
~€[0,1) =1

where C' € Ry, is a ‘budget’ hyperparameter. Intuitively, the mutual information term tells us the extent
to which the ‘occluded’ trace X 4, ‘leaks’ Y, and « is optimized to distribute a fixed ‘budget of occlusion
probability’ among the individual elements of X to minimize this leakage.

As discussed in Appendix during this optimization process each ~; is ‘pushed’ up towards 1 in proportion
to a weighted sum over all values I[Y; X, | S] : S C {Xy,..., X7} \ {X:}. Thus, ALL is sensitive to all
associations between Y and subsets of { X1, ..., X7}. This is in contrast to parametric methods which consider
only pairwise associations between each X; and Y, methods like 1-Occlusion, GradVis, Saliency, Input * Grad
and LRP which are sensitive to associations between Y and the sets {X1,..., X7}, {X1,..., X7} \ {X:}, and
OccPOI, m-Occlusion, and 2"¥-order m-Occlusion, which consider larger yet still tiny subsets of the power
set of {X1,..., X1}

Due to the budget constraint, increasing 7; requires reducing other ~,, 7 # t. Let us denote by v* a solution
to Eqn. 2} Each ~; will be closer to 1 if X, is ‘leakier’ in the sense that it has greater mutual information
with Y, conditioned on other X, 7 # ¢. Thus, we propose using ~; to measure the ‘leakiness’ of X;.

4.2 Deep learning-based implementation

We will now re-frame this problem in a way that is amenable to standard deep learning techniques. Refer to
Fig. [2| for a diagram.

We first re-parameterize it into an unconstrained problem by defining the variable n = softmax(n}), 7 € RT

and letting « be a function from R” — [0,1]7 satisfying
c(1(n)) = Cne <= 7(n) = sigmoid(log C + log(softmax(n);)). (3)

We can now optimize with respect to 7 instead of ~y, letting us drop the constraint because it is satisfied for
any 7). Note that it is cheap and numerically-stable to map 7 to « in PyTorch.

Next, as described in Appendix we can approximate the mutual information term of Eqn. [2] with a
neural net. Note that I[Y; X | Ay] =3 c(0137 Pa, () I[Y; Xo] where each I[Y; Xo] = Elogpyx,, (Y|
Xo) —Elogpy (Y). The right terms can be dropped because their corresponding terms in the full expression
do not depend on . The conditional distributions in the left terms can each be approximated by using
supervised deep learning with cross-entropy loss to classify Y from Xg. There are 27 such distributions and

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

Under review as submission to TMLR

Noise distribution ('"Defender"): applies
multiplicative binary noise to trace
Trace: side-channel (e.g. .

power, EM radiation)

R 2

. Y1 -

measurements over time _ w/ prob. 1 — v, x ;
M o R w/ prob. vq

Classifier ('Attacker'): noise-
conditional neural net predicts
secret variable from trace

Secret variable,
e.g. cryptographic key

w/ prob. 1 —
w/ prob. v

Predicted
distribution over
secret variable

w/ prob. 1 —~p

w/ prob. 7
7]
Learned occlusion Occlusion Neural net
probabilities mask weights

Figure 2: A diagram illustrating our Adversarial Leakage Localization (ALL) algorithm. A classifier ®g is
trained to ‘attack’ a cryptographic implementation by predicting its secret data Y from power/EM radiation
traces X = (Xy,..., Xr). Simultaneously, a noise distribution is trained to ‘defend against the attack’ by
occluding the classifier’s individual input features X; with probabilities 7, subject to a budget constraint
which prevents trivially occluding every feature with probability 1. Because of the constraint, increasing ~;
necessarily entails decreasing ~, for some 7 # ¢, so the noise distribution must preferentially apply noise to
leakier features. Thus, after training we may interpret v, as the ‘leakiness’ of X;.

it would be infeasible to train this many neural nets independently. Instead, similarly to [Lippe et al.| (2022,
we train a single neural net to estimate all the distributions by occluding its inputs according to A, and
feeding A, as an auxiliary input. Thus, we can approximate Eqn. |2| with the optimization problem

Join max Laay(7, 0) = Elog @e (Y | X © Aym), Aym)) (4)

where ®g : Y x RT x {0,1}7 — (0,1) is a neural net with weights 8 and softmax output activation, and
Dy(y | ¢ ® a,) denotes its estimated probability that ¥ = y given X, = . This can be approximately
solved using alternating SGD-style algorithms, similarly to GANs (Goodfellow et al.l |2014)).

To use SGD-like algorithms we must estimate Vg Lady (77, 0) and V;Laay (7, 0) with Monte Carlo integration.
The former is routine in the context of DNN training. However, the latter is nontrivial because L,q, has the
form Eqn~p, f(c) where a is discrete. There is a large body of work on gradient estimation for functions of
this nature, which can broadly be categorized into unbiased REINFORCE (Williams), [1992))-based estimators
with variance reduction strategies, and biased estimators based on relaxing ps into a continuous distribution
for which we can use the reparameterization trick (Rezende et al., [2014; |[Kingma & Welling), 2014)). In our
experiments we use the biased CONCRETE estimator (Maddison et al.| [2017) with fixed temperature 7 = 1
because it is cheap and simple, and we find it yields nearly the same performance as more-complicated
estimators we tried. We conjecture that we get strong performance with this simple and biased estimator
because our performance metrics are sensitive only to the relative leakiness assigned to measurements, and
the bias does not significantly affect this. Note that f(a) = Elog®e(Y | X ® a,) has been defined for
a € {0,1}T, but after the CONCRETE relaxation we may have any a € [0,1]7. Thus, we replace it with the
modified function f(a) = Elog®e(Y | X O a+€® (1 — a),) where € ~ N(0,1)7

Our method is mainly sensitive to 3 hyperparameters: the learning rates of 8 and 7, and the budget
hyperparameter C. Rather than tuning C' directly, we find it easier to tune the hyperparameter ¥ := = +T ¥y
is equal to the occlusion probability of each measurement when 7 is constant, and is less-sensitive to the data
dimensionality T than C.

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

Under review as submission to TMLR

4.3 Differences from prior work

Whereas GradVis, Saliency, LRP, Input * Grad and 1-Occlusion effectively perturb single input features to
the classifier and analyze the change in its outputs, ALL generally perturbs many inputs simultaneously. This
is useful in settings where there are many ‘redundant’ leaking measurements and the impact of perturbing
only one of them is small.

Like ALL, m-Occlusion, 2"d-order m-Occlusion and OccPOI also simultaneously occlude multiple input
features. The key differences of our method are: 1) ALL samples from a distribution over all 27 possible
occlusion masks optimized to maximally hurt the performance of the classifier, whereas prior work iterates over
a tiny subset of possible occlusion masks chosen heuristically. 2) ALL leverages the gradient of classifier loss
with respect to relaxed occlusion masks, whereas prior work uses only zeroeth-order information from forward
passes with ‘hard’ occlusion masks. 3) We simultaneously optimize the mask distribution to maximally hurt
the classifier, and the classifier weights to be optimal for the current mask distribution. In contrast, prior
work trains the classifier with standard supervised learning techniques, then ‘interprets’ the fixed classifier
with occlusion.

5 Experimental results

5.1 Synthetic datasets where we know ‘ground truth’ leakiness

1.0 4 == Oracle Best m-occlusion
= == Random OccPOI _ _
{ Best parametric i ALL (ours) T T
i* Best gradient-based
0.8 1 T
* e o 'S 5 é
- - . F
2
2 0.6 o
(5]
= J
B ermmmmmm e m = [- [V S RN | P,
&n .
g o :
§ 0.4 1) 9 [
= .
0.2 1 |
l l 7 I‘II
0.0 + .

T T T T T T ML | T MR
10° 10t 102 103
Number of second-order leaky pairs: D

Figure 3: A toy setting described in Sec. where ALL (ours) significantly outperforms baselines. We
sample 1 non-leaky feature and D second-order leaky pairs, then plot the false negative rate, defined as the
proportion of points incorrectly assigned leakiness less than or equal to that of the non-leaky point, as we
increase D. ALL (ours) succeeds for D up to 64x higher the best prior deep learning-based approach, and the
first-order parametric methods completely fail in this setting. Dots denote median and error bars denote
min-max over 5 random seeds.

Toy setting where ALL succeeds and prior work fails As we will show, these differences lead to
significant performance gains, as well as speedup relative to 2"-order m-Occlusion and OccPOI.

We generate a sequence of binary-label 2D + 1-feature classification datasets consisting of ordered pairs (X,Y")
sampled independently as follows (see Appendix [E1] for details): Y ~ 4{0,1}, R ~1{0,1}, M; ~ U{0,1}
fori=1,...,D,Xr ~N(R,1), Xps, ~N(M;,1), Xygn, ~N(Y & M;,1) fori=1,...,D. Here we denote

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

Under review as submission to TMLR

by @ the exclusive-or operation and X = (Xg, X, Xvem,, -, XMp XMpey). Intuitively, we can view
the features Xgr, X, and Xygas, as noisy observations of R, M;, and Y & M;, respectively. Note that R
tells us nothing about Y, and while individually each variable M;, Y & M, is independent of Y, the pairs of
variables {M;, Y & M;} allow us to determine Y through the identity Y =Y & M; ® M;. An ideal leakage
localization algorithm should indicate that each feature Xy, Xy g, is leaking, while Xg is not.

In Fig. 3| we plot the performance of ALL and prior work as we sweep the value of D. While prior deep
learning-based methods succeed for small D, they fail when D grows large because the individual contribution
of each {Xns,, Xygn,} is ‘drowned out’ in the sense that I[Y;{Xn,, Xveur,} | {Xn,, Xven, : § # i}]
vanishes. ALL succeeds for D up to 64x larger than prior work because as the classifier becomes more-
reliant on particular features they are subject to a higher occlusion probability, mitigating this effect. For
completeness we also include first-order parametric methods in our comparison; these fail because they are
not sensitive to the second-order associations between Y and {Xus,, Xyeu, }-

——— Increasing low-pass filtering strength
3=0.0 3=0.875 \ {4 =0.96875 {4 =0.9921875
b

Ay L TN

P J L—

Estimated leakiness of X,
-

=)

Increasing leaky instruction count
n=3 n=17

=
I
=

S [S — i VS W’ P P U P U P W Py

=3

Estimated leakiness of X,
5

——— Increasing max random delay duration ———»

:fl n=0 n=5 L n=13 Jn=25

: 1 |~

2 p———

8 }
£
=

<
2
]

o
g }
g R
%0
o

_ Increasing shuffle locations _—
51 n=1 n=5 n=9 n=15

S i ; i

4 / ; t
] ; =
E e a :*

1 I 1

] i 1 i

3 1 H bl i

g i i A b
£ e o o o] e 49
%0 ! i 11
oo . 100 0 . 100 0) 100 0) 100

Timestep ¢ Timestep ¢ Timestep ¢ Timestep ¢

@ Estimated leakiness = ==Ground truth leaky instruction timestep

Figure 4: Output v* = ~(7*) of our ALL algorithm when applied to simulated AES-128 power trace datasets
based on the Hamming weight model of (Mangard et al., [2007, ch. 4), as described in Appendix Leakiness
estimated by ALL is consistent with the ground truth timestep at which leaky instruction(s) are executed
across varying low-pass filtration strength, leaky instruction count, random no-op insertion, and random
shuffling.

Simulated AES-128 datasets We next apply ALL to a variety of simulated AES datasets. These are
a useful complement to subsequent experiments on real datasets because we can validate ALL’s outputs
against ground truth knowledge about which timesteps are leaking, as well as gain insight into its behavior
when individually varying particular dataset properties. Traces are simulated using the Hamming weight
leakage model of (Mangard et al.l 2007, ch. 4), which decomposes total power consumption as X; =
Xdata,t + Xop,t + Xresid, t- Here Xqata, ¢+ is a function of the Hamming weight of the data currently being
operated on, X, + is a function of the operation currently being applied to the data, and Xiesiq,+ models

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

Under review as submission to TMLR

remaining sources of noise as a Gaussian random variable. Further details can be found in Appendix
Note that while this model applies to a particular device studied by Mangard et al. (2007)), the relationship
between data and power consumption is device-dependent and often eludes simple characterization.

In Fig. [4 we simulate several factors of variation which may be expected to occur in realistic settings,
and observe the change in behavior of ALL. First, we apply a varying-strength discrete low-pass filter to
the simulated traces. As the strength increases, the peak of the estimated leakiness remains centered at
the timestep of the leaky instruction while becoming more-diffuse. Second, we vary the number of leaky
instructions and see that ALL consistently produces similar-height peaks at every leaky instruction. Third,
we introduce a random delay before the leaky instruction, which causes ALL’s peak diffuses over the set of
timesteps at which the instruction may occur. Fourth, we shuffle the location of the leaky instruction so
that it may occur at various points in time. As when varying the number of instructions, ALL produces
similar-height peaks at each point in time at which the instruction sometimes occurs.

5.2 Real power and EM radiation leakage datasets

‘White-box SNR assessment 27d_order 7-occlusion (best baseline) All variables (Pin, W2 © ko @ 1ip) Security load

=Y
2

1004

A

.-hu-wtuuu‘i

Estimated leakiness of X,

\.A..,u‘\nffuw
ALL (ours)

e

2
7
5
“
g

] 3
> 0.75 1 § ; i

“*&%Wa &W B

1"
0.25 &%fw
INLiSN]
T v T v v v T ; e e e
0 250 500 750 1000 1250 0 250 500 70 1000 1250 1072 107" 10° 1072 107" 10° 1072 107" 10°

7 0.00
Time ¢ Time ¢ Leakiness from white-box assessment

“Oracle” leakiness of X,

Leakiness estimated by ALL (ours)

2

s
7

Leakiness estimated by 2"!-order 7-Occlusion

Estimated leakiness of X,

Figure 5: A qualitative comparison on ASCADv1-variable between the estimated leakiness by a white-box
SNR-based assessment following [Egger et al.| (2022)), ALL (our method), and 2"%-order 7-Occlusion (the
strongest baseline). (left) Superimposed per-timestep leakiness of 8 internal AES variables which contribute
to leakage of our targeted ‘secret variable’ Y = S(wz @ k). We consider Y to leak to the extent that at
least one of these internal variables leaks. (center) The per-timestep leakiness of Y, as estimated by ALL
and the baseline. Ideally, these estimates should align with peaks in the white-box assessment. (right) The
per-timestep leakiness as estimated by ALL and the baseline, vs. the mean SNR of subsets of the internal
AES variables (indicated in plot titles). In the plot labeled ‘All variables’, ALL exhibits a stronger positive
association with the aggregate white-box assessment than the baseline. For individual variable subsets, ALL
consistently produces a |/-shaped structure with a diagonal trend indicating agreement between estimated
leakiness and SNR for the variables of interest, and a vertical band corresponding to leakage from other
variables. In contrast, the baseline often exhibits an L-shaped structure, with the horizontal band reflecting
spuriously low leakiness estimates at timesteps where the internal variables are known to have significant
leakage. It appears that the baseline is mainly sensitive to (ri,, we ® ko ® 7i,) and possibly the security load
(which leaks at similar times as 7j,), but understates or misses leakage due to the other variables.

We compare our method to prior work on 6 publicly-available datasets of real recorded side-channel emissions
and metadata covering diverse settings, as described in Appendix See Appendix [E-3] for an extended
version of this section including full implementation details, additional experiments, and ablation studies.

Experimental setup Despite their methodological differences, all considered methods may be viewed as a
function which maps a dataset to a sequence of scalars encoding the estimated leakiness of X; for each ¢. For
all deep learning baselines apart from ALL, we first train a supervised classifier to predict secret variables Y
from power traces (X1, ..., X7). We then use the ‘importance’ of X; to the classifier’s prediction about Y, on
average over the profiling set, as the estimated leakiness of X;. The definition of ‘importance’ is prescribed

10

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Under review as submission to TMLR

by the method. For ALL, we simply run our method as described in Sec. |4} then directly use the trained
occlusion probability v; as the estimated leakiness of X;.

For the supervised classifiers and the classifier denoted ®y in ALL, we use the same ReLU MLP architecture
trained with the AdamW optimizer (see Appendix . For both supervised classification and ALL training
runs, we use the same minibatch size and training step count, tune the important hyperparameters for each
dataset using random search with a 50-run budget, and leave the rest at reasonable defaults (see Appendix
. Supervised classifier hyperparameters are tuned to minimize correct-key rank (similar to maximizing
accuracy). For ALL we cannot use this approach, so we instead use a criterion based on occluding the inputs
to a frozen supervised classifier and observing its change in performance (see Appendix . Baselines are
implemented using Captum (Kokhlikyan et al., 2020) where possible. OccPOI and (2"“-order) m-Occlusion
are adapted to the setting of our paper as described in Appendix [E.3.2]

Performance evaluation strategies and results In Fig. 5] in line with previous work (Masure et al.,
2019; [Wouters et al., 2020} [Schamberger et all [2023; [Yap et al., [2025), we compute a white-box leakage
assessment on ASCADvl1-variable and qualitatively compare it to the outputs of ALL and the strongest
baseline. As is standard, we target the variable Y = S(wq @ ko). Because this AES implementation employs
Boolean masking, Y does not directly influence the power consumption. Nonetheless, there are 3 pairs of
internal variables which do directly influence power consumption and can be combined to determine Y (as
well as more-complicated identities involving the security load and Sprev @ S(we & k2) ® rous) (Egger et al.|
2022). Ideally, a leakage localization algorithm should consider each X; leaky to the extent that at least one
such variable with utility for determining Y leaks. In Fig. [5| ALL successfully identifies the leakage of all 3
pairs of variables, while the best considered baseline clearly identifies leakage from only one of the pairs.

In the interest of scaling our comparison to many baselines and datasets, we next consider quantitative
performance metrics. For real-world datasets quantitative performance evaluation is challenging because we
lack ‘ground truth’ knowledge about leakage, and there is no consensus on the best way to do so. We thus
employ 4 performance evaluation metrics which are conceptually similar to evaluation strategies in prior work.
Because the specific numbers used to encode leakiness by the various baselines are not directly comparable,
we use metrics which are sensitive only to the relative leakiness of different timesteps — i.e. under which
a vector of estimated leakiness values (77, ...,7s) has the same performance as (f(77), ..., f(v4)) for any
strictly-increasing f: R — R.

Table [2]lists performance across four complementary metrics which emphasize different aspects of performance.
See Appendix for details about each metric. The oracle agreement metric assesses agreement with a
white-box leakiness evaluation, and is given by the Spearman rank correlation coefficient between estimated
leakiness and the average SNR, of known leaky internal variables (similar to Fig. . The template attack
minimum traces to disclosure (MTD /Elmetric assesses the utility of the estimated-leakiest measurements
for conducting a side-channel attack — higher-fidelity leakiness estimates are expected to allow leakier
measurements to be fed to the attacker, leading to better attack performance. The forward DNN occlusion
test? measures the extent to which the performance of a deep learning-based side-channel attack is preserved
as we occlude all but the estimated-leakiest measurements, and is mainly sensitive to spurious or incorrectly-
ordered high estimates. The reverse DNN occlusion test> measures the extent to which performance is
preserved as we occlude all but the estimated-least-leaky measurements, and is mainly sensitive to spurious
low estimates. As seen in Table [2| ALL outperforms all baselines on the majority of datasets under every
metric except for the forward DNN occlusion test.

6 Conclusion

We have proposed a novel algorithm for localizing side-channel leakage from cryptographic implementations.
Unlike prior work, ours is sensitive to arbitrary statistical associations responsible for leakage and operates
in a ‘black box’ manner, requiring only a supervised learning-style dataset with labels denoting the secret

2The template attack MTD metric is similar to evaluations done in [Masure et al. (2019); [Yap et al.| (2025). The DNN
occlusion tests were inspired by the ZB-KGE and KRPC algorithms of [Hettwer et al.|(2020]). As described in Appendix [E.3.4]
we alter implementation details to summarize these as scalars and improve reliability on second-order datasets.

11

365

366

367

Under review as submission to TMLR

Table 2: A comparison of the considered deep learning-based leakage localization algorithms on 6 datasets
and under 4 quantitative performance metrics. We report mean + 1 standard deviation over 5 random seeds.
Bold numbers denote the method with the best mean performance (ties broken by lower variance). 7
denotes that a higher number is better, and | denotes that a lower number is better. (Oracle agreement 1)
The Spearman rank correlation coefficient between the predicted leakiness and an ‘oracle’ leakiness derived
from a white-box SNR-based assessment exploiting knowledge of the internal variables contributing to leakage
of the target. (Template attack MTD) The minimum traces to disclosure (MTD) of a template attack
when using the predicted leakiness for point of interest (feature) selection. (Forward DNN occlusion
test |) The mean single-trace correct-key rank of a DNN-based attacker when occluding all but the k
predicted-leakiest timesteps, on average for k € {1,...,T}. (Reverse DNN occlusion test 1) The mean
single-trace correct-key rank of a DNN-based attacker when occluding all but the k£ predicted-least-leaky
timesteps, on average for k € {1,...,T}.

2nd-order datasets 1st-order datasets

Method ASCADv1-f ASCADvl-r DPAv4 AES-HD OTiAiIT OTP
- GradVis 0.48 +0.02 0.27 +£0.01 0.198 + 0.009 0.07 +0.01 0.55 +0.05 0.57 +0.02
- Saliency 0.47 +£0.02 0.26 +0.01 0.198 + 0.008 0.07 +0.01 0.67 +0.06 0.58 +0.02
5 Input * Grad 0.47 +£0.02 0.25+0.01 0.202 + 0.009 0.08 +0.02 0.71+0.05 0.60 + 0.02
g LRP 0.47 +£0.02 0.254+0.01 0.202 + 0.009 0.08 +0.02 0.71+0.05 0.60 + 0.02
© OccPOI 0.07 £0.01 0.064 £ 0.004 0.030 + 0.008 0.044 £ 0.009 0.07 +£0.02 0.01 +0.02
¥ 1-Occlusion 0.47 +0.02 0.25 +0.01 0.202 + 0.009 0.08 +0.01 0.71 +0.05 0.60 + 0.02
9 m*-Occlusion 0.49 +0.02 0.41+0.01 0.32+0.01 0.18 +0.05 0.72+0.04 0.77 +0.01
§ 2nd_order 1-Occlusion 0.51 +£0.01 0.27 +£0.01 0.206 + 0.009 0.08 +0.01 0.74 +0.05 0.60 + 0.02
O 2*order m*-Occlusion 0.52 +£0.01 0.424+0.01 0.330 + 0.009 0.194+0.05 0.75+0.04 0.788 + 0.007

ALL (ours) 0.794 + 0.006 0.60 +0.01 0.317 +0.002 0.22+0.03 0.782+0.001 0.848 +0.003
— GradVis 686 £+ 100 1162 + 1000 2.7+0.1 20014 + 6000 1.4+0.3 1.378 £ 0.007
A Saliency 726 + 100 1412 + 2000 2.7+0.1 19438 + 6000 1.14 £ 0.02 1.379 £ 0.005
e Input * Grad 675 4+ 100 1194 + 2000 2.6 +0.1 19893 + 6000 1.14 £ 0.02 1.378 £ 0.003
E LRP 675 4+ 100 1194 4+ 2000 2.6 £0.1 19893 + 6000 1.14 £ 0.02 1.378 £ 0.003
d OccPOI 787 £+ 100 942 + 200 71+30 25000.000 1.08 +0.03 1.47 £ 0.05
£ 1-Occlusion 667 + 100 1376 £ 2000 2.65 £+ 0.08 20011 + 6000 1.14 £ 0.02 1.379 £ 0.003
“f m*-Occlusion 673 + 70 727 £+ 400 9+1 16283 + 10 1.17+£0.02 1.382 £ 0.007
2. 2"_order 1-Occlusion 709 £+ 100 1086 4+ 1000 2.65 £+ 0.08 20222 + 6000 1.14 £ 0.02 1.378 £0.003
E 2d_order m*-Occlusion 642 + 60 710 + 400 9+1 16033 + 700 1.16 £ 0.03 1.381 £ 0.008

ALL (ours) 459 + 40 394 + 20 2.22 +0.01 17582 4+ 5000 1.11 +0.02 1.363 +0.007
— GradVis 108.6 £ 0.5 96.8+0.3 9.5+ 0.6 125.6 £ 0.3 1.9+0.2 1.013 £ 0.002
g Saliency 108.5+0.4 96.3+0.4 9.5+0.7 125.6 £0.3 1.8+0.1 1.014 £ 0.001
% Input * Grad 108.5 £ 0.4 96.8+0.4 9.4+0.7 125.6 £0.3 1.7+£0.2 1.013 +0.001
'_'8 LRP 108.5+ 0.4 96.8 +0.4 9.4+0.7 125.6 £ 0.3 1.7+0.2 1.013 +0.001
© OccPOI 122.3 £0.8 120.8 £ 0.2 58 £2 127.4 £ 0.3 2.6 £0.2 1.09 £ 0.04
Z 1-Occlusion 108.5+ 0.4 96.7+0.4 9.4+0.7 125.6 £0.3 1.7+0.2 1.013 +0.001
% m*-Occlusion 108.24+0.5 95.7+ 0.6 9.0+ 0.6 125.3 +0.2 1.84+0.2 1.013 +0.001

. 2" order 1-Occlusion 108.4+0.4 97.0+0.4 9.44+0.7 125.5+0.3 1.7+0.2 1.013 +0.001

E 2"d_order m*-Occlusion 108.24+0.5 95.9+ 0.6 9.0+0.5 125.3+0.2 1.7+0.2 1.013 +0.001

ALL (ours) 107.3+0.4 104 +1 9.9 +0.7 125.5 £ 0.3 1.8+0.1 1.014 £ 0.001
< GradVis 125.9+0.2 127.6 £0.1 122+1 128.0£0.3 4.24+0.4 1.34+0.07
8 Saliency 125.8 £0.2 127.4+£0.2 122+1 128.0 £0.3 5.1+0.3 1.33 £ 0.06
g Input * Grad 125.7 +£ 0.3 127.5 +£0.2 121.9 £ 0.9 128.1 £0.3 5.2+0.3 1.34 +0.06
'_8' LRP 125.7 £ 0.3 127.5 £ 0.2 121.9 £ 0.9 128.1 £0.3 5.2+0.3 1.34 £ 0.06
© OccPOI 122.3+0.4 124.6 £0.2 43+1 127.0£0.3 3.6 +£0.3 1.09 £ 0.04
Z 1-Occlusion 125.8 £0.3 127.4+£0.2 122+1 128.1£0.3 5.24+0.3 1.34 +0.06
% m*-Occlusion 126.0 £ 0.2 127.4£0.2 121+1 128.5+0.2 5.3+0.2 1.30 £ 0.04

" 2" order 1-Occlusion 125.8 £0.3 127.5+£0.2 122.0£0.9 128.1 £0.3 5.3+0.2 1.34 £ 0.06

% 2nd_order m*-Occlusion 126.1 £ 0.2 127.4£0.2 121.3£0.9 128.5+0.2 5.3+0.2 1.30 £ 0.04
& ALL (ours) 126.4 +0.2 127.96 + 0.06 125+1 128.3 £0.2 5.6+0.2 1.39 +0.05

variable under consideration. In light of the ever-increasing efficacy of deep side-channel attack algorithms
and the failure of existing work to detect all leakage they may exploit, our work marks a critical step towards
understanding and mitigating the emerging vulnerabilities of cryptographic hardware.

12

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

405

406

407

408

409

410

Under review as submission to TMLR

Broader Impact Statement

The goal of our work is to enhance the security of cryptographic implementations against side-channel attacks
by identifying the points in time at which they reveal sensitive information, thereby facilitating targeted
defenses and mitigation strategies. We foresee ALL as being a useful complement to widely-adopted parametric
leakage localization techniques due to its ability to identify leakage in a ‘black box’ manner without being
limited by the domain knowledge of its users.

Our work is primarily defensive in nature. We do not introduce strategies that directly improve the
performance of profiling side-channel attacks, and we solely consider cryptographic datasets which have been
made available for research purposes and are already widely studied and understood. Nonetheless, improving
the ability to identify and understand the weaknesses of cryptographic systems could potentially benefit
attackers as well as defenders. We believe the utility of our work for defense outweighs this risk.

References

Dakshi Agrawal, Josyula R Rao, Pankaj Rohatgi, and Kai Schramm. Templates as master keys. In
Cryptographic Hardware and Embedded Systems—CHES 2005: 7th International Workshop, Edinburgh, UK,
August 29-September 1, 2005. Proceedings 7, pp. 15—29. Springer, 2005.

Cédric Archambeau, Eric Peeters, F X Standaert, and J J Quisquater. Template attacks in principal subspaces.
In Cryptographic Hardware and Embedded Systems-CHES 2006: 8th International Workshop, Yokohama,
Japan, October 10-13, 2006. Proceedings 8, pp. 1-14. Springer, 2006.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller, and
Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas. Deep learning for
side-channel analysis and introduction to ASCAD database. Journal of Cryptographic Engineering, 10(2):
163-188, 2020.

Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Analysis and
improvements of the dpa contest v4 implementation. In Security, Privacy, and Applied Cryptography
Engineering: 4th International Conference, SPACE 201}, Pune, India, October 18-22, 201/. Proceedings 4,
pp. 201-218. Springer, 2014.

Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. AES HD dataset - 50000 traces. AISyLab repository,
2020. https://github.com/AISyLab/AES_HD.

Bluefin Payment Systems. Bluefin and ID TECH partner to deliver PCI validated Advanced Encryption Stan-
dard (AES) P2PE solution. Online, November 2023. URL https://www.bluefin.com/news/bluefin~
and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-
solution/.

FEric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leakage model. In
Marc Joye and Jean-Jacques Quisquater (eds.), Cryptographic Hardware and Embedded Systems - CHES
2004, pp- 1629, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-28632-5.

Olivier Bronchain and Frangois-Xavier Standaert. Side-channel countermeasures’ dissection and the limits of
closed source security evaluations. TACR Transactions on Cryptographic Hardware and Embedded Systems,
pp- 1-25, 2020.

Elie Bursztein, Luca Invernizzi, Karel Kral, Daniel Moghimi, Jean-Michel Picod, and Marina Zhang. Generic

attacks against cryptographic hardware through long-range deep learning. arXiv preprint arXiv:2306.07249,
2023.

13

https://github.com/AISyLab/AES_HD
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

448

449

450

451

452

453

454

455

456

Under review as submission to TMLR

Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15-19, 1999 Proceedings 19, pp. 398-412. Springer,
1999.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S. Kaliski, ¢etin K. Kog,
and Christof Paar (eds.), Cryptographic Hardware and Embedded Systems - CHES 2002, pp. 13-28, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-36400-9.

Committee on National Security Systems. Committee on National Security Systems Policy No. 15, Fact
Sheet No. 1, June 2003. URL https://csrc.nist.gov/csrc/media/projects/cryptographic-module~
validation-program/documents/cnss1b5fs.pdf.

Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random delay generation in embedded
software. In International Workshop on Cryptographic Hardware and Embedded Systems, pp. 156-170.
Springer, 2009. Dataset available at https://github.com/ikizhvatov/randomdelays-traces.

Joan Daemen and Vincent Rijmen. AES proposal: Rijndael document version 2. AES Algorithm
Submission, September 1999. URL https://csrc.nist.gov/csrc/media/projects/cryptographic+
standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf.

Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer Berlin, Heidelberg, March 2013. URL
https://link.springer.com/book/10.1007/978-3-662-04722-4,

Josef Danial, Debayan Das, Anupam Golder, Santosh Ghosh, Arijit Raychowdhury, and Shreyas Sen. Em-x-dl:
Efficient cross-device deep learning side-channel attack with noisy em signatures. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 18(1):1-17, 2021.

Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Raychowdhury, and Shreyas Sen. X-
deepsca: Cross-device deep learning side channel attack. In Proceedings of the 56th Annual Design
Automation Conference 2019, pp. 1-6, 2019.

Maximilian Egger, Thomas Schamberger, Lars Tebelmann, Florian Lippert, and Georg Sigl. A second look
at the ASCAD databases. In International Workshop on Constructive Side-Channel Analysis and Secure
Design, pp. 75-99. Springer, 2022.

Guangjun Fan, Yongbin Zhou, Hailong Zhang, and Dengguo Feng. How to choose interesting points for
template attacks? Cryptology ePrint Archive, Paper 2014/332, 2014. URL https://eprint.iacr.org/
2014/332.

Robert Geirhos, Jérn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge,
and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):
665—673, 2020.

Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-bandwidth acoustic cryptanalysis.
In Juan A. Garay and Rosario Gennaro (eds.), Advances in Cryptology — CRYPTO 2014, pp. 444-461,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-44371-2.

Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom. ECDSA key extraction
from mobile devices via nonintrusive physical side channels. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1626-1638, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249-256.
JMLR Workshop and Conference Proceedings, 2010.

Anupam Golder, Ashwin Bhat, and Arijit Raychowdhury. Exploration into the explainability of neural
network models for power side-channel analysis. In Proceedings of the Great Lakes Symposium on VLSI
2022, GLSVLSI ’22, pp. 59-64, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393225. doi: 10.1145/3526241.3530346. URL https://doi.org/10.1145/3526241.3530346.

14

https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/cnss15fs.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/cnss15fs.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/cnss15fs.pdf
https://github.com/ikizhvatov/randomdelays-traces
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/ documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/ documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/ documents/aes-development/rijndael-ammended.pdf
https://link.springer.com/book/10.1007/978-3-662-04722-4
https://eprint.iacr.org/2014/332
https://eprint.iacr.org/2014/332
https://eprint.iacr.org/2014/332
https://doi.org/10.1145/3526241.3530346

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

495

496

497

498

499

500

Under review as submission to TMLR

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=1QdXeXDoWtI.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez del Rio, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):
357-362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586+
020-2649-2.

Katherine Hermann and Andrew Lampinen. What shapes feature representations? exploring datasets,
architectures, and training. Advances in Neural Information Processing Systems, 33:9995-10006, 2020.

Benjamin Hettwer, Stefan Gehrer, and Tim Giineysu. Deep neural network attribution methods for leakage
analysis and symmetric key recovery. In Kenneth G. Paterson and Douglas Stebila (eds.), Selected
Areas in Cryptography — SAC 2019, pp. 645-666, Cham, 2020. Springer International Publishing. ISBN
978-3-030-38471-5.

Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and Joos Vandewalle. Machine
learning in side-channel analysis: a first study. Journal of Cryptographic Engineering, 1(4):293-302, 2011.

Michael Hutter and Jérn-Marc Schmidt. The temperature side channel and heating fault attacks. In Smart
Card Research and Advanced Applications: 12th International Conference, CARDIS 2013, Berlin, Germany,
November 27-29, 2013. Revised Selected Papers 12, pp. 219-235. Springer, 2014.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In International
Conference on Learning Representations (ICLR 2017). OpenReview. net, 2017.

Minhui Jin, Mengce Zheng, Honggang Hu, and Nenghai Yu. An enhanced convolutional neural network in
side-channel attacks and its visualization. arXiv preprint arXiv:2009.08898, 2020.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann LeCun
(eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6114,

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael Wiener (ed.), Advances
in Cryptology — CRYPTO’ 99, pp. 388-397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN
978-3-540-48405-9.

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In 40th IEEE Symposium on Security and Privacy (S€P’19), 2019.

Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Neal
Koblitz (ed.), Advances in Cryptology — CRYPTO ’96, pp. 104113, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg. ISBN 978-3-540-68697-2.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan Reynolds,
Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, et al. Captum: A unified and generic
model interpretability library for pytorch. arXiv preprint arXiv:2009.07896, 2020.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit compiler. In Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1-6, 2015.

15

https://openreview.net/forum?id=lQdXeXDoWtI
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/1312.6114

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

Under review as submission to TMLR

Yanbin Li, Yuxin Huang, Fuwei Jia, Qingsong Zhao, Ming Tang, and Shougang Ren. A gradient deconvolutional
network for side-channel attacks. Computers € Electrical Engineering, 98:107686, 2022.

Yanbin Li, Jiajie Zhu, Zhe Liu, Ming Tang, and Shougang Ren. Deep learning gradient visualization-based
pre-silicon side-channel leakage location. IEEE Transactions on Information Forensics and Security, 2024.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading
kernel memory from user space. In 27th USENIX Security Symposium (USENIX Security 18), 2018.

Phillip Lippe, Taco Cohen, and Efstratios Gavves. Efficient neural causal discovery without acyclicity
constraints. In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=eYciPrLuUhG.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2018.

Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention to raw traces: A deep learning
architecture for end-to-end profiling attacks. TACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 235-274, 2021.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation
of discrete random variables. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=S1jE5SL5gll

Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking cryptographic implementations
using deep learning techniques. In Security, Privacy, and Applied Cryptography Engineering: 6th Inter-
national Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings 6, pp. 3—26.
Springer, 2016.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks. Springer New York, NY,
1st edition, March 2007. doi: 10.1007/978-0-387-38162-6. URL https://link.springer.com/book/10}
1007/978-0-387-38162-6.

Loic Masure and Rémi Strullu. Side-channel analysis against ANSSI’s protected AES implementation on
ARM: end-to-end attacks with multi-task learning. Journal of Cryptographic Engineering, 13(2):129-147,
2023.

Loic Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization for general characterization in
profiling attacks. In Constructive Side-Channel Analysis and Secure Design: 10th International Workshop,
COSADE 2019, Darmstadt, Germany, April 3-5, 2019, Proceedings 10, pp. 145-167. Springer, 2019.

Thomas S Messerges. Using second-order power analysis to attack dpa resistant software. In International
Workshop on Cryptographic Hardware and Embedded Systems, pp. 238-251. Springer, 2000.

Nicky Mouha. Review of the Advanced Encryption Standard. NIST Interagency/Internal Report (NISTIR)
8319, National Institute of Standards and Technology, July 2021. URL https://csrc.nist.gov/pubs/
ir/8319/finall

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Guilherme Perin, Lichao Wu, and Stjepan Picek. I know what your layers did: Layer-wise explainability
of deep learning side-channel analysis. Cryptology ePrint Archive, Paper 2022/1087, 2022. URL https:
//eprint.iacr.org/2022/1087.

Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina. SoK: Deep learning-based
physical side-channel analysis. ACM Computing Surveys, 55(11):1-35, 2023.

16

https://openreview.net/forum?id=eYciPrLuUhG
https://openreview.net/forum?id=eYciPrLuUhG
https://openreview.net/forum?id=eYciPrLuUhG
https://openreview.net/forum?id=S1jE5L5gl
https://link.springer.com/book/10.1007/978-0-387-38162-6
https://link.springer.com/book/10.1007/978-0-387-38162-6
https://link.springer.com/book/10.1007/978-0-387-38162-6
https://csrc.nist.gov/pubs/ir/8319/final
https://csrc.nist.gov/pubs/ir/8319/final
https://csrc.nist.gov/pubs/ir/8319/final
https://eprint.iacr.org/2022/1087
https://eprint.iacr.org/2022/1087
https://eprint.iacr.org/2022/1087

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

Under review as submission to TMLR

Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Measures and counter-
measures for smart cards. In Isabelle Attali and Thomas Jensen (eds.), Smart Card Programming and
Security, pp. 200-210, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-45418-2.

Christian Rechberger and Elisabeth Oswald. Practical template attacks. In Chae Hoon Lim and Moti Yung
(eds.), Information Security Applications, pp. 440-456, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
ISBN 978-3-540-31815-6.

Eric Rescorla. HTTP over TLS. RFC 2818, May 2000. URL https://www.rfc-editor.org/info/rfc2818.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st
International Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research,
pp. 1278-1286, Bejing, China, 22-24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/
rezendel4d .htmll

Kotaro Saito, Akira Ito, Rei Ueno, and Naofumi Homma. One truth prevails: A deep-learning based
single-trace power analysis on rsa—crt with windowed exponentiation. JACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 490-526, 2022.

Thomas Schamberger, Maximilian Egger, and Lars Tebelmann. Hide and seek: Using occlusion techniques
for side-channel leakage attribution in cnns. In Jianying Zhou, Lejla Batina, Zengpeng Li, Jingqgiang
Lin, Eleonora Losiouk, Suryadipta Majumdar, Daisuke Mashima, Weizhi Meng, Stjepan Picek, Moham-
mad Ashiqur Rahman, Jun Shao, Masaki Shimaoka, Ezekiel Soremekun, Chunhua Su, Je Sen Teh, Aleksei
Udovenko, Cong Wang, Leo Zhang, and Yury Zhauniarovich (eds.), Applied Cryptography and Network
Security Workshops, pp. 139-158, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-41181-6.

Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for differential side channel
cryptanalysis. In Cryptographic Hardware and Embedded Systems—CHES 2005: 7th International Workshop,
Edinburgh, UK, August 29-September 1, 2005. Proceedings 7, pp. 30—46. Springer, 2005.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical journal, 27
(3):379-423, 1948.

Alexander Shekhovtsov. Bias-variance tradeoffs in single-sample binary gradient estimators. In DAGM
German Conference on Pattern Recognition, pp. 127-141. Springer, 2021.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating
activation differences. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 3145-3153.
PMLR, 06-11 Aug 2017. URL https://proceedings.mlr.press/v70/shrikumari7a.html.

K Simonyan, A Vedaldi, and A Zisserman. Deep inside convolutional networks: visualising image classification

models and saliency maps. In Proceedings of the International Conference on Learning Representations
(ICLR). ICLR, 2014.

Biaoshuai Tao and Hongjun Wu. Improving the biclique cryptanalysis of AES. In Ernest Foo and Douglas
Stebila (eds.), Information Security and Privacy, pp. 39-56, Cham, 2015. Springer International Publishing.
ISBN 978-3-319-19962-7.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar: Low-
variance, unbiased gradient estimates for discrete latent variable models. Advances in Neural Information
Processing Systems, 30, 2017.

Daan van der Valk, Stjepan Picek, and Shivam Bhasin. Kilroy was here: The first step towards explainability
of neural networks in profiled side-channel analysis. In Guido Marco Bertoni and Francesco Regazzoni (eds.),
Constructive Side-Channel Analysis and Secure Design, pp. 175-199, Cham, 2021. Springer International
Publishing. ISBN 978-3-030-68773-1.

17

https://www.rfc-editor.org/info/rfc2818
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.mlr.press/v70/shrikumar17a.html

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

Under review as submission to TMLR

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Ant6nio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261-272, 2020. doi: 10.1038/s41592-019-0686-2.

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep neural
networks: A strong baseline. In 2017 International joint conference on neural networks (IJCNN), pp.
1578-1585. IEEE, 2017.

Leo Weissbart, Stjepan Picek, and Lejla Batina. One trace is all it takes: Machine learning-based side-channel
attack on eddsa. In Security, Privacy, and Applied Cryptography Engineering: 9th International Conference,
SPACE 2019, Gandhinagar, India, December 3-7, 2019, Proceedings 9, pp. 86—105. Springer, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229-256, 1992.

Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revisiting a methodology for efficient
CNN architectures in profiling attacks. TACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 147-168, 2020.

Yuxin Wu and Justin Johnson. Rethinking" batch" in batchnorm. arXiv preprint arXiv:2105.07576, 2021.

Trevor Yap, Adrien Benamira, Shivam Bhasin, and Thomas Peyrin. Peek into the black-box: Interpretable
neural network using sat equations in side-channel analysis. JACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 24-53, 2023.

Trevor Yap, Stjepan Picek, and Shivam Bhasin. Occpois: Points of interest based on neural network’s key
recovery in side-channel analysis through occlusion. In Sourav Mukhopadhyay and Pantelimon Stanica
(eds.), Progress in Cryptology — INDOCRYPT 2024, pp. 3-28, Cham, 2025. Springer Nature Switzerland.
ISBN 978-3-031-80311-6.

Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Methodology for efficient CNN
architectures in profiling attacks. TACR Transactions on Cryptographic Hardware and Embedded Systems,
pp- 1-36, 2020.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision — ECCV 201, pp. 818-833,
Cham, 2014. Springer International Publishing. ISBN 978-3-319-10590-1.

18

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

Under review as submission to TMLR

A Notation and variable names

See table [3] below for a list of the notation we use, and table [4] for a list of the main variables we define.

Table 3: List of the notation used in our paper.

Symbol Description

Variable case: X,z Upper case: random variable, lower-case: actualization

R, Z Set of real numbers, set of integers

[a .. b] where a < b, a,b € Z Interval of integers {a,...,b}

Serif font: S Other sets

ACB A is a non-strict subset of B

A\ B Complement of B in A, i.e. A\B:={z € A:x¢B}

Sy Nonnegative elements of S C R

Si+ Positive elements of S C R

Bold font: = Vector in RP for some D € Z,

a®b Elementwise product of @ and b

f(x) where f : R - R Elementwise application of f to x

Vaf(zx,...) Gradient with respect to x

ZTo where a € {0,1}P Sub-vector of x according to a: (zg:d=1,...,D:ag=1)
X ~p X is a random variable with distribution p

pA The distribution of A

DA,B The joint distribution of A and B

PAIB The conditional distribution of A given B

X ~pN X is a random vector with elements X7, X, ... R P

N (u;0?%) Normal distribution with mean pu, scale o

Uus) Uniform distribution over set S

Ef(A, B,...) Expectation w.r.t. all random variables A, B, ... in expression
Esf(A,B,...) Expectation w.r.t. only to A

I[A; B] Mutual information between A and B

I[A; B | C] Conditional mutual information between A and B given C
Al B,AUB A is marginally independent, dependent on B

AL B|C,AUB|C A is conditionally independent, dependent on B given C

B Extended background

Here we provide a high-level overview of the AES algorithm and power side-channel attacks aimed at a
machine learning audience. Since our algorithm views the cryptographic algorithm and hardware as a black
box to be characterized with data, a deep understanding is not necessary to understand and appreciate our
work. Thus, we omit many details and aim to impart an intuitive understanding of these topics. Interested
readers may refer to|Daemen & Rijmen| (2013) for a detailed introduction to the AES algorithm, to Mangard
et al.| (2007) for a detailed introduction to power side-channel attacks, and to |[Picek et al.| (2023) for a survey
of supervised deep learning-based power side-channel attacks on AES implementations. Additionally, note
that while for clarity of exposition we focus here on power side-channel attacks on AES implementations, our
algorithm requires only a supervised learning-style dataset of side-channel emission traces and metadata which
enables computation of the target variable, so is applicable in a more-general setting. We have demonstrated
that it works with various target variables on AES, ECC and RSA implementations with both power and
EM radiation measurements, and suspect it is relevant in far more contexts.

19

637

638

639

640

641

642

643

644

Under review as submission to TMLR

Table 4: List of the main variables defined in our paper.

Variable Description

TeZiy Dimensionality of power trace

X ~px Power trace (random variable)

z e RT Power trace (actualization)

X, x4 Power measurement at time t, i.e. t-th element of power trace

YCZ Set of values the targeted variable may take on

Y ~py Targeted variable (random variable)

yeyY Targeted variable (actualization)

DCRT xY Dataset of power traces/targeted variable pairs, sampled i.i.d. from px y
~ € [0,1]" Occlusion probabilities

Ve Occlusion probability at timestep ¢

~* € [0,1]T The optimal value of ~ after solving Eqn. 77

7 €RT Unconstrained logits which parameterize ~

A, ~pa, Multiplicative binary noise vector parameterized by occlusion probabilities ~y
ac{0,1}T Actualization of A,

c:[0,1) = Ry Cost function for occlusion probability elements ;

CeRyy Budget for occlusion probabilities: they must satisfy C' = 23:1 c(v)

7€ (0,1) Reparameterized version of C' which is more stable w/ data dimensionality

g : RT x [0,1]T — R Noise-conditional neural net w/ weights 6; returns softmax logits for ¥’

Secure
channel &
l Key l
Insecure
] channel ax]
—_—> > | = > >
"The credit card L = > L "The credit card
number is..." i) i . number is..."
Plaintext Cryptographic Ciphertext Cryptographic Plaintext
hardware hardware
=T —$3 il
Sender Potential eavesdroppers Intended recipient

Figure 6: Diagram illustrating the main components of symmetric-key cryptographic algorithms, which enable
secure transmission of data over insecure channels where it may be intercepted by eavesdroppers. The data is
first partitioned and encoded as a sequence of plaintexts. Each plaintext is transformed into a ciphertext
by an invertible function indexed by a cryptographic key. The key is transmitted over a secure channel to
intended recipients of the data, allowing them to invert the function and recover the original plaintext. The
set of functions is designed so that absent this key, the ciphertext gives no information about the plaintext.
Thus, the data remains secure even if eavesdroppers have access to the ciphertext.

B.1 Cryptographic algorithms

Data is often transmitted over insecure channels which leave it accessible not only to intended recipients,
but also to unknown and untrusted parties. For example, when a signal is wirelessly transmitted from one
antenna to another, an eavesdropper could set up a third antenna between the two and intercept the signal.
Alternately, data stored on a hard drive by one user of a computer may be accessed by a different user.
Cryptographic algorithms aim to preserve the privacy of data under such circumstances by transforming it so
that it is meaningful only in combination with additional data which is known to its intended recipients but
not to the untrusted parties.

20

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

Under review as submission to TMLR

We focus here on the ubiquitous advanced encryption standard (AES), which is a symmetric-key cryptographic
algorithm. See Fig. [6]for a diagram illustrating the important components of such algorithms. The unencrypted
data to be transmitted is encoded and partitioned into a sequence of fixed-length bitstrings called plaintexts.
The cryptographic algorithm encrypts each plaintext into a ciphertext by applying an invertible function
from a set of functions indexed by an integer called the cryptographic key. This set of functions is designed so
that of one were to sample a key and plaintext uniformly at random from the sets of all possible keys and
plaintexts, then the plaintext and ciphertext would be marginally independent. Thus, such an algorithm may
be used to securely transmit data by ensuring that the sender and recipient of the data know a shared keyE|
and that the key is kept secret from all potential eavesdroppers on the data.

B.2 Side-channel attacks

Many symmetric-key cryptographic algorithms are believed to be secure in the sense that it is not feasible to
determine their cryptographic key by encrypting known plaintexts and observing the resulting ciphertexts.
Any such algorithm with a finite number of possible keys is vulnerable to ‘brute-force’ attacks based on
arbitrarily guessing and checking keys until success, but doing so requires checking half of all possible keys in
the average case, which is unrealistic for algorithms such as AES which has either 2128, 2192 or 2256 possible
keys. To our knowledge the best known such attack against AES reduces the required number of guesses by
less than a factor of 8 compared to a naive brute force attack (Mouhay, [2021}; Tao & Wul, |12015]).

However, while algorithms may be secure when considering only their intended inputs and outputs, hardware
executing these algorithms will inevitably emit measurable physical signals which are statistically associated
with their intermediate variables and operations. Examples of such signals include a device’s power con-
sumption over time (Kocher et al., [1999), the amount of time it takes to execute a program or instruction
(Kocher, |1996; [Lipp et al., |2018; [Kocher et al., 2019)), electromagnetic radiation it emits (Quisquater &
Samyde, 2001} |Genkin et al., 2016]), and sound due to vibrations of its electronic components (Genkin et al.
2014)). This phenomenon is called side-channel leakage, and can be exploited to determine sensitive data such
as a cryptographic key through side-channel attacks.

As a simple example of side-channel leakage, consider the following Python function which checks whether a
password is correct:

def is_correct(provided_password: str, correct_password: str) -> bool:
if len(provided_password) != len(correct_password):
return False
for i in range(len(provided_password)):
if provided_password[i] != correct_password[i]:
return False
return True

Suppose the password consists of n characters, each with ¢ possible values. Consider an attacker seeking
to determine the correct password by feeding various guessed passwords until the function returns True.
Naively, the attacker could simply guess and check all possible m-length passwords for m = 1,...,n. This
would require O(c™) calls to the function, which would be extremely costly for realistically-large ¢ and
n. However, an attacker with knowledge of the function’s implementation could dramatically reduce this
cost by observing that the function’s execution time depends on correct_password. Because the function
exits immediately if len(provided_password) != len(correct_password), the attacker can determine
the length of correct_password in O(n) time by feeding increasing-length guesses to is_correct until its
execution time increases. Next, because is_correct exits the first time it detects an incorrect character, the
attacker can sequentially determine each of the characters of correct_password by checking all ¢ possible
values of each character and noting that the correct value leads to an increase in execution time. Thus,
although is_correct secure against attackers which use only its intended inputs and outputs, it provides
essentially no security against attackers which measure its execution time.

3The key is typically shared using an asymmetric-key cryptographic algorithm such as RSA or ECC. Asymmetric-key
cryptography is slow and resource-intensive, so when a sufficiently-large amount of data must be transmitted, it is more-efficient
to share the key with an asymmetric-key algorithm and then transmit data using a symmetric-key algorithm than to simply
transmit the data with an asymmetric-key algorithm.

21

692

693

694

695

696

697

698

699

700

701

702

703

705

706

707

708

709

710

711

712

713

714

715

716

Under review as submission to TMLR

Data line pre-charged to 1

High voltage
= 1bit

Data line
-- stores charge

Bit value?

Voltage

source _—

Low voltage
=0 bit

Figure 7: Diagram illustrating one reason there is power side-channel leakage in the device characterized
by (Mangard et al.; [2007}, ch. 4). Data is transmitted over a bus consisting of multiple wires, with one wire
representing each bit. Each wire represents a 0 bit as some prescribed ‘low’ voltage and a 1 bit as a ‘high’
voltage. Energy is consumed when the voltage of a wire changes from low to high because positive and
negative charges, which are attracted to one-another, must be separated to create a high concentration of
positive charge on the wire. When ‘writing’ data to the bus, this particular device first ‘pre-charges’ all wires
to 1, then drains charge from the wires which should represent 0. Thus, because the 0’s must be changed to
1’s before the next write, energy is consumed in proportion to the number of 0’s, thereby creating a statistical
association between the device’s power consumption and the data it operates on.

In this work we focus on side-channel leakage due to the power consumption over time of a device (as well as
EM radiation, which is closely related due to being dominated by the time derivative of power consumption).
A device’s power consumption is inevitably statistically-associated with the operations it executes and the
data it operates on, because these dictate which components are active and the order and manner in which
they operate. There are many types of components with different functionality, and components with the same
intended functionality are not identical due to imperfect manufacturing processes. These differences impact
power consumption. While in general the association between power consumption and data is multifactorial
and difficult to describe, in Fig. [7] we illustrate a simple relationship which accounts for a significant portion
of the leakage in a device characterized by Mangard et al.| (2007).

B.3 Power side-channel attacks on AES implementations

Side-channel attacks are techniques which exploit side-channel leakage to learn sensitive information such as
cryptographic keys. There are many categories of attacks, but in this work we focus on a category called
profiled side-channel attacks on symmetric-key cryptographic algorithms. These attacks assume that the

‘attacker’ has access to a clone of the actual cryptographic device to be attacked, and the ability to encrypt

arbitrary plaintexts with arbitrary cryptographic keys, observe the resulting ciphertexts, and measure the
side-channel leakage during encryption. In practice, these assumptions almost certainly overestimate the
capabilities of attackers — for example, while in some cases an attacker could plausibly identify the hardware
and source code of a cryptographic implementation, purchase copies of this hardware, program them with the
source code, and characterize these devices, the nature of the side-channel leakage of these purchased copies
would differ from those of the actual device due to PVT (pressure, voltage, temperature) variations (e.g. due
to imperfect manufacturing processes, environment, and measurement setup). It has been demonstrated
that profiled side-channel attacks can be effective despite this, especially when numerous copies of the target
hardware are used for profiling (Das et al., 2019; |Danial et al., 2021). Regardless, this type of attack provides
an upper bound on the vulnerability of a device to side-channel attacks, which is a useful metric for hardware
designers.

22

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

Under review as submission to TMLR

While there are diverse types of profiled side-channel attacks, at a high level the following steps encompass
the important elements of these attacks:

1. Select some ‘sensitive’ intermediate variable of the cryptographic algorithm which reveals the
cryptographic key (or part of it).

2. Compile a dataset of (side-channel leakage, intermediate variable) pairs by repeatedly randomly
selecting a key and plaintext, encrypting the plaintext using the key and recording the resulting
ciphertext and side-channel leakage during encryption, and computing the intermediate variable
based on knowledge of the cryptographic algorithm.

3. Use supervised learning to train a parametric function approximator to predict intermediate variables
from recordings of side-channel leakage during encryption.

4. Measure side-channel leakage during encryptions by the actual target device. Use the trained
predictor to predict sensitive variables from side-channel leakage. Potentially, these predictions can
be combined to get a better estimate of the key.

In the case of power side-channel attacks on AES, it is generally infeasible to directly target the cryptographic
key because care is taken by hardware designers to prevent it from directly influencing power consumption.
Instead, it is common to target an intermediate variable which the algorithm directly operates on. A common
target is the SubBytes output, which is computed as

y = Sbox(k & w) (5)

where k € {0,1}"it= is the key, w € {0, 1} is the plaintext, npiys € Z44 is the number of bits of the key
and plaintext, @ is the bitwise exclusive-or operation, and Sbox : {0, 1}™its — {0, 1}™it= is an invertible
function which is widely known and the same for all AES implementations. Note that if the plaintext is
known, the key can be computed as

k= Sbox_l(y) D w. (6)

Additionally, it is common to independently target subsets of the bits of the cryptographic key (e.g. the
individual bytes). This is reasonable because the common AES target variables are largely leaked by
instructions which operate on individual bytes.

B.3.1 Template attack: example of a classical profiled side-channel attack

In order to underscore the advantage of deep learning over previous side-channel attack algorithms, we will
here describe the template attack algorithm of |Chari et al.| (2003), variations of which are the state-of-the-art
non-deep learning based attacks. The attack is based on modeling the joint distribution of power consumption
and intermediate variable as a Gaussian mixture model, as described in algorithm

Note that this algorithm assumes that the joint distribution is well-described by a Gaussian mixture model,
which may not hold in practice. Additionally, due to the near-cubic runtime of the matrix inversion of each %,
required to compute the Gaussian density functions, this algorithm requires pruning power traces down to a
small number of ‘high-leakage’ timesteps. Follow-up work (Rechberger & Oswald) 2005)) proposed performing
principle component analysis on the traces and modeling the coefficients of the top principle components
rather than individual timesteps. Nonetheless, these constraints mean that the efficacy of this attack is
contingent on simplifying assumptions and judgement of which points are ‘leaky’ using simple statistical
techniques and implementation knowledge, limiting its usefulness as a way for hardware designers to evaluate
the amount of side-channel leakage from their device.

B.3.2 Practical profiled deep learning side-channel attacks on AES implementations

Here we will give a common and concrete setting and method for performing profiled power side-channel
attacks on AES implementations, which is used for all of our experiments.

23

Under review as submission to TMLR

Algorithm 1: The Gaussian template attack algorithm of |Chari et al.| (2003])

Input: Profiling (training) dataset D = {(x(™), y(") n € [l..N]} CRT x {0,1}mits attack (testing)
dataset Dattack = {(mg ") wé")) n€[l. N, CRT x {O 1}meits | ‘points of interest’
Tooi ={tm :m=1,... T}Q[T

Output: Predicted key k*

1 Function get_y (k, w)

© 0w N o

10

11

12

13

758
759
760
761
762

763

764
765
766
767

768

769
770
771

772

773
774
775

776

L return Sbox(k & w) // calculate intermediate variable for given key
forne[l..N]do
(") (:vg:) m=1,... ,T) // prune power traces to ‘points of interest’

for y € {0,1}"ri*= do

// fit a multivariate Gaussian mixture model to the training dataset
D, + {&™ :nel..N],y™ =y}

Ny < |Dy|

Hy %ZweD v

2 <N 71 ZmeD (iL‘ - Ny)(w - l"'u)

for n € [l.. N, do

" (x.&’? tm=1,... ,T) // prune power traces of attack dataset
// predict key value which maximizes log-likelihood of attack dataset
k
k* < arg maxc g 1}mbics Zn 1 [log./\/(Pt y(kwl™) Eget Sk, w(n))) + log Nget_y(k,wg">)
return k*

Consider an AES-128 implementation, which has a 128-bit cryptographic key and plaintext. Typically,
attackers target each of the 16 bytes of the key independently rather than attacking the full key at once. This
practice tacitly assumes that the bytes of the sensitive variable are statistically-independent given the power
trace, which is reasonable because many AES operations (including those which are commonly targeted) are
performed independently on the individual bytes. Thus, it is a convenient way to simplify the attack without
significantly impacting performance.

Additionally, it is difficult and uncommon to try to directly map power traces to associated cryptographic
keys, because great care is taken by hardware designers to ensure that the key does not directly impact power
consumption. Instead, attackers generally target ‘sensitive’ intermediate variables which unavoidably directly
impact power consumption and can be combined with the plaintext and ciphertext to learn the key. We
consider one such intermediate variable which is referred to as the first SubBytes output, and is equal to

y = Sbox(k ® w), (7)

where k € {0,1}® is one byte of the cryptographic key, w € {0,1}® is the corresponding byte of the plaintext,
@ denotes the bitwise exclusive-or operation, and Sbox : {0,1}® — {0,1}® is an invertible function which is
publicly-available and the same for all AES implementations. Note that if w is known, as is assumed in the
profiled side-channel attack setting, then k can be recovered as

k =w @ Sbox™'(y). (8)
In the context of profiled power side-channel analysis, one assumes to have a ‘profiling’ dataset (i.e. a training
dataset) and an ‘attack’ dataset (i.e. a test dataset). Suppose we target npyes bytes of the sensitive variable.

In our setting, the profiling dataset consists of ordered pairs of power traces and their associated sensitive
intermediate variables:

D= {(@",y™) :n €1 NJ} CR x {0, 1}mmers o

24

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

795

796

797

798

799

800

801

802

803

804

805

806

807

808

Under review as submission to TMLR

and the attack dataset consists of ordered pairs of power traces and their associated plaintexts:

Do = {(@l (™) :ne 1. N} CRT x {0,137, (10)

Many works prove the concept of their approaches by targeting only a single byte of the sensitive variable.
When multiple bytes are targeted, it is common to either train a separate neural network for each byte of the
sensitive variable, or to amortize the cost of targeting these bytes by training a single neural network with a
shared backbone and a separate head for each byte. In this work we exclusively target single bytes, though it
would be straightforward to extend our approach to the multitask learning setting.

Consider a neural network architecture ® : Y x RT x RF — R, : (y,x,0) — ®(y | x; 0), where each ®(- | z; 0)
is a probability mass function over Y. In the case of a multi-headed network with each head independently
predicting a single byte, we compute this probability mass of y € Y as the product of the mass assigned to
each of its bytes. We train the network by approximately solving the optimization problem

N
1
L) == log@(y™ |z;0). 11
max L(6) N;Og(y | z(™); 6) (11)
Given 0 € arg maxgepr £(0), we then identify the key which maximizes our estimated likelihood of our
attack dataset and key as follows:

N
ke arg max Z log ® ((Sbox(kl- D wg?) i=1,..., nbytcs) | (™), é) (12)

ke{0,1} bytes X8 Ty

where we denote by k; and wgn) the individual bytes of k and w™.

C Extended related work

Here we consider existing work which has been applied to leakage localization in the context of power or EM
radiation side-channel analysis. In line with the problem framing given in Sec. 2, we view these methods
as functions which map joint emission-target variable distributions px y to vectors in R” which assign
to each emission measurement variable X; a scalar ‘leakiness’ measurement. Prior approaches to leakage
localization can largely be categorized as either 1) parametric statistics-based methods which check for
pairwise associations between X; and Y, or 2) neural net attribution methods which use standard supervised
deep learning techniques to train a model py|x =~ py|x, then use ‘attribution’ techniques to estimate the
average ‘importance’ of each feature X; to the predictions made by the model.

C.1 First-order parameteric statistics-based methods

In the side-channel attack literature it is common to use parametric first-order statistical methods to localize
leakage. In this work we consider the signal to noise ratio (SNR) (Mangard et al., [2007)), the sum of squared
differences (SOSD) (Chari et al., 2003)), and correlation power analysis with a Hamming weight leakage model
(CPA) (Brier et al., [2004) due to their popularity and efficacy for ‘point of interest’ selection (Fan et al.,
2014). Below we summarize and discuss these methods.

The SNR is a standard tool for leakage localization and is defined as

Vary ~p, Ex~ X
SNR(pX/Y) — Y~p X pX\Y[]

- . (13)
]EYNPY VarXNPXW (X)

The SOSD method was introduced as a point of interest (feature) selection technique for the Gaussian
template attack, a parametric side-channel attack based on modeling emission measurements as a multivariate
Gaussian mixture model with a component corresponding to each possible value of the target variable,

25

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

Under review as submission to TMLR

then using Bayes’ rule to estimate the conditional distribution of the target variable given the emission
measurements. The SOSD is defined as

2
SOSd pX Y Z Z (]EXNwa(ly) [X} - EXNPX\Y('\Z/')[X]) : (14)
yeY y'eY

CPA is based on the assumption that power consumption is a noisy linear function of the Hamming weight
of the target variable, which is a useful model for certain devices. It is defined as the elementwise Pearson
correlation between emission measurements and the target variable’s Hamming weight:

cpa(px.y) = E[(X —E[X])(HW(Y) — EHW(Y)])]
Xy V/Var(X) Var(HW (Y))

(15)

where HW : [0 .. 27 — 1] — [0 .. d] maps integers to the sum of their bits when writing them as an unsigned
integer.

While techniques such as these are invaluable due to their simplicity, interpretability and low cost, they have
major shortcomings. Notably, they consider they are sensitive only to pairwise associations between single
emission measurements and the target variable and will consider the measurement X; to be non-leaky when
it is nonleaky in isolation but gives exploitable information when combined with X for some 7 # ¢, i.e. when
I[Y; X;] = 0 but 37 # ¢ such that I[Y; X; | X;] > 0.

Additionally, these techniques make strong assumptions about the nature of px y which have generally been
observed to hold in practice, but nonetheless introduce the risk of failing to detect leaking measurements.
SNR and SOSD are sensitive only to the influence of ¥ on the mean of X, and would fail to identify X, is
leaking if Y changes its distribution while leaving its mean unchanged (e.g. if the variance of X; changes
with Y). CPA is sensitive only to associations between X; and the Hamming weight of Y, and additionally
assumes a linear relationship between these variables.

While the present work concerns mainly ‘black box’ leakage localization algorithms which make minimal
assumptions about the cryptographic implementation being evaluated, in practice these parametric methods
are often employed as tools in white-box analyses of implementations. For example, in our work we consider
the ASCADv1 datasets (Benadjila et al.| 2020), which use a Boolean masking countermeasure and thus
have mainly second-order leakage. This renders the above methods ineffective when directly analyzing
leakage of their canonical target variable. However, Egger et al. (2022) identified 4 pairs of internal AES
variables which individually have first-order leakage and may be combined to determine the target variable.
Thus, if one is aware a priori that these variables leak and has access to the internal randomly-generated
Boolean mask variables, they may individually analyze leakage of these variables with the above methods
and accumulate the results. We use such an approach to compute ‘ground truth’ leakiness measurements
when running experiments on the ASCADv1 datasets. We emphasize that this type of analysis is challenging
and error-prone: multiple leaking variable identified by [Egger et al. (2022)) were unknown or overlooked by
Benadjila et al.| (2020), who introduced the dataset. This underscores the importance of black box techniques
such as ours to supplement white box analysis.

C.2 Neural net attribution methods

There is a great deal of prior work on localizing leakage based on interpretability techniques to determine the
relative importance of input features to a deep neural net which has been trained to model py|x ~ py|x
using standard supervised deep learning techniques (Masure et al., 2019; [Hettwer et al. 2020; |Jin et al., 2020;
Zaid et all |[2020; Wouters et al.l 2020; van der Valk et al., [2021; [Wu & Johnsonl, 2021} |Golder et al.l 2022; [Li
et al., [2022; |Perin et al., [2022; [Schamberger et al., [2023; [Yap et al., [2023; |Li et al., |2024; [Yap et al., [2025)).
As baselines we consider the recent works [Yap et al.| (2025); Schamberger et al| (2023) as well as a variety of
older neural net attribution techniques which were compared in Masure et al.| (2019); |[Hettwer et al.| (2020);
Wouters et al.| (2020)). Note that our choice of deep learning baselines subsumes those of [Yap et al.| (2025));
Schamberger et al.| (2023). Since these methods all ‘interpret’ a trained deep neural net, we view them as
functions mapping the data distribution px y as well as a model py|x s.t. softmax py|x =~ py|x to a vector

26

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

Under review as submission to TMLR

of leakiness estimates in R”. Here we summarize and discuss the works [Masure et al.| (2019); Hettwer et al.
(2020); Wouters et al.| (2020)); [Schamberger et al.| (2023); [Yap et al| (2025) which we consider as baselines.

To our knowledge Masure et al. (2019) were the first to explore neural net interpretability for leakage
localization, proposing the Saliency-like GradVis leakage assessment, defined as

GradVis(px,v;Pyix) = Exy ‘—Vm logsoftmax py | x (Y | w)|m:X‘ . (16)

Hettwer et al.| (2020) subsequently compared the 1-Occlusion (Zeiler & Fergus| [2014)), Saliency (Simonyan
et al., 2014), and layerwise relevance propagation (LRP) (Bach et al., 2015) as leakage localization techniques.
The 1-Occlusion technique is based on computing the size of change in the model’s prediction as each
individual input feature is ‘occluded’ (replaced by 0), and is defined as

1—OCC1uSiOH(pX’y;]3y|X) = EX,Y (|ﬁy|X(Y | X) —ﬁy|X(Y | (1 — It) O] X)| =]., ce ,T) (17)

where I, denotes the vector in R” with element ¢ equal to 1 and all other elements equal to 0. Saliency is
defined as

Saliency (px.v;Py|x) = Ex,y |Vebyx (Y |)|e=x]| - (18)

LRP (Bach et al.l 2015) is a gradient-based explainability technique which is more-complicated than the
above, and we refer readers to Bach et al.| (2015]) for an explanation. Wouters et al.| (2020)) applied the Input *
Grad method (Shrikumar et al., [2017)) to leakage localization; as its name suggests, this method is defined as

Input * Grad(px,v; Py x) = Ex,y | X © Vapy | x (Y | T)|a=x| - (19)

We find that all these techniques have a tendency to incorrectly assign low leakiness to certain measurements,
particularly in scenarios where lots of features have significant leakage. We suspect that a primary reason
for this is that these methods rely on perturbing the input x; to the function py|x(y | ©1,..., 2, ..., 27),
but when Y is almost entirely determined by X for 7 # ¢, it becomes nearly independent of X; conditioned
on {Xq,..., X} \ {Xs}, e pyix(|27 =1,....T) = pyx(y |z :7=1,...,t = 1,t+1,...,T). We
demonstrate this phenomenon with a simple Gaussian mixture model setting in Sec.

We also consider the recent works [Schamberger et al.| (2023); [Yap et al.| (2025) which estimate leakiness by
perturbing many inputs simultaneously to a classifier, and do not necessarily suffer from the same issue.
Schamberger et al. (2023) presents the m-Occlusion technique, which is like 1-Occlusion except that it
occludes m-diameter windows rather than single points. This could plausibly overcome the aforementioned
issue if the ‘redundant’ points are temporally-local. However, it has an undesirable ‘smoothing’ effect where
the estimated leakiness of a single point is tied to those of nearby points. [Schamberger et al.| (2023)) also
proposes to use 2"-order m-Occlusion to analyze leakiness, where pairs of windows are occluded rather
than only individual windows. This is computationally-expensive because it requires ©(72) passes through
the dataset where T' is the data dimensionality. Additionally, |Schamberger et al.| (2023]) proposes it as a
means to determine whether a measurement has first-order leakage or is part of a second-order leaking pair,
and does not explore its use for single-measurement leakiness estimation. In our experiments we find it
only marginally-better than 1-Occlusion for this task, and not worth the significantly-higher computational
cost. [Yap et al.| (2025)) proposes the OccPOI technique, which aims to identify a non-unique minimal set
of measurements sufficient for a neural net to attain some chosen classification performance when all other
measurements are occluded. This differs from our other considered methods in that it does not assign a
leakiness estimate to every measurement, and we find that it is ill-suited for our leakage localization task and
performance metrics. Additionally, it is computationally-expensive to run, requiring Q(7') non-parallelizable
passes through the dataset.

C.3 Numerical experiment illustrating conditional mutual information decay when many redundant
leaking measurements are present

Here we provide a simple numerical experiment to illustrate conditional mutual information decay. Consider
random variables Y ~ U{-1,1} and Xy,..., X, L (Y,0?). In Fig. we plot the quantity I[Y; X, |

27

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

Under review as submission to TMLR

10t
100 ®
1071
n
Figure 8: A numerical experiment evaluating the scaling behavior of I[Y; X,, | X1,...,Xn-1] vs. n for

ii.d.
~

various values of o, where Y ~ U{—1,1} and Xy,..., X, (Y,0?). Observe that for small o, each X is
approximately a point mass on Y and we have I[Y; X3] = H[Y] and I[Y; X, | X1,...,X,,—1] &~ 0 for alln > 1.
When o is large, each X; gives us little information about Y and we have I[Y; X,, | X1,...,X,,—1] < H[Y]
approximately constant with n sufficiently small.

X1,...,Xn—1] vs. n. We see that for various values of o the quantity decays rapidly with n, and appears
to be well-described by the function I[Y; X; | Xo,...,X,] = Ik™ for some I € Ry, k € (0,1). Informally,
the fact that conditional mutual information decays with n makes sense for the following reason: each
successive X; can be viewed as an independent ‘noisy observation’ of Y which reduces uncertainty about it
without fully determining it. For all n we have 0 <I[Y; Xq,..., X, | =1[Y; X4 +1[Y; Xo | X5+ ... I[Y; X, |
X1,..., Xp—1] <H[Y]. If we assume that each I[Y; X,,, | X1, ..., X;n—1] is nonnegative, then for their sum
to stay bounded they must converge to 0.

D Extended method with derivations

Given X,Y ~ px y as defined in section [2, where X = (Xq,..., X7), we seek to assign to each timestep
t a scalar 7 indicating the ‘amount of leakage’ about Y due to X;. All of the quantities I[X; X, | S] for
S C{Xi,...,Xr}\ {X:} are relevant to the ‘leakiness’ of X;, but it is not clear how to weight these 27
quantities into a single scalar measurement. Most prior work simply ignores most of these quantities: the
first-order parametric methods (Mangard et al., |2007; Brier et all, |2004; (Chari et al., 2003) consider only the
pairwise terms I[Y; X;], and GradVis (Masure et all [2019), Saliency (Simonyan et al., 2014; Hettwer et al.|
2020), 1-Occlusion (Zeiler & Fergus| [2014; Hettwer et al., [2020), LRP (Bach et al., [2015; Hettwer et al., [2020)),
Input % Grad (Shrikumar et all [2017; Wouters et al., 2020) may loosely be viewed as computing proxies for
IY; X¢ | X;¢). While m-Occlusion, 21d_order m-Occlusion (]Schamberger et a1.|, |2023[), and OccPOI
2025|) are sensitive to more of these terms, they still ignore almost all of them in an ad hoc manner.

In this section we propose a constrained optimization problem which implicitly defines an intuitively-
reasonable definition of v, which is sensitive to I[Y; Xy | S] for all S C {X1,..., X7} \ {X:}. We then propose
an adversarial deep learning algorithm which lets us approximately solve it by modeling all the conditional
distributions py|s in an amortized manner which emphasizes those with a large impact on the objective.
While our objective is a sum over 27 occlusion mask-like values, in practice we find we can efficiently optimize
it using the reparameterization trick (Kingma & Welling| 2014} Rezende et al., [2014) with a CONCRETE-like

28

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

Under review as submission to TMLR

relaxation (Jang et al., 2017; Maddison et all 2017)) of our objective. This lets us exploit first-order gradient
information, in contrast to ‘hard’ occlusion-based methods such as [Schamberger et al.| (2023)); [Yap et al.
(2025)) which leverage only zeroth-order information.

D.1 Optimization problem

We define a vector v € [0,1]7 which we name the occlusion probabilities. We use v to parameterize a
distribution over binary vectors in {0,1}7 as follows:

1 with probability 1 — ~;

A, ~pa, where A,;= { (20)

0 with probability ¢,

i.e. A, is a vector of independent Bernoulli random variables where the t-th element has parameter p = 1 —;.
For arbitrary vectors € R, a € {0,1}7, let us denote @ == (z¢ :t =1,...,T : ay = 1), i.e. the sub-vector
of x containing its elements for which the corresponding element of a is 1. We can accordingly use Ay to
obtain random sub-vectors X 4, of X. Note that ; denotes the probability that X; will not be an element
of X 4, (hence, ‘occlusion probability’).

We assign to each element of v a ‘cost’, defined as

c:[O,l]—>R+:x»—>{1z”” vl (21)
o0 r=1
We seek to solve the constrained optimization problem
T
i Litn () =105 X, [A5] sl that Y el) =€ (22)

for hyperparameter C' > 0. Note that ¢ is strictly-increasing with ¢(0) = 0 and lim;—; ¢(x) = oo so that for
<1

finite C' any optimal « will be in [0, 1), and increasing some 7; necessarily entails reducing some other ~,,
7 # t. Additionally, for each t we can re-write our objective as

Ligeat(V) = > pa,(@)IY;Xa] (23)
aef{0,1}7T

= Y pa,(a) (1=)IY; X, Xa] + % 1Y Xal] (24)

ac{0,1}7
ay=0

= Y pa, (e)Y Xe, Xa] =% IY; X | Xall, (25)

ac{0,1}7
ay=0

which implies
8£ideal (7)

g =7 > pa(a)IViXi| Xl -

ac{0,1}7
a;=0

D.2 Estimating mutual information with deep neural nets

We cannot solve equation @ directly because we lack an expression for px y. Here we derive an equivalent
optimization problem which uses deep learning to characterize px y using data.

Consider the family {®a}qefo,137 With each element a deep neural net
T
Do Y xR xR 5 [0,1] : (3, e, 0) = Paly | Za:). (27)

29

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

Under review as submission to TMLR

We assume each @ (- | ;0) is a probability mass function over Y (e.g. the neural net has a softmax output
activation). We define the optimization problem

T

i Loay(7,0) =Elog®4 (Y | X4.:0) such that =C. 28
Jdin max Laa (v.6) 0g®a, (Y | Xa,;0) suchtha ;C(%) (28)

Proposition D.1. Consider the objective function Laqv of equation . Suppose there exists some 6* € RY
such that P (y | Ta;0%) = py|x. (v | ®a) for all o € {0,1}7, € RT, y € Y. Then

0* € arg max Loq.(7,0) Vv < 0,1]7. (29)
OcRFP

Furthermore, for all y € Y and for all v € [0,1]7, a € {0, 1} such that pa (a) > 0,

Do (y | X 0) = Py|x. (¥ | ®a) px-almost surely VO € arg min Laqv (7, 6). (30)
OcRP

Proof. Note that since each (- | @, 0) is a probability mass function over Y, by Gibbs’ inequality we have
Elog ®a (Y | Xa;0) <Elogpy|x. (Y | Xa) Va€{0,1}7,0 € R”. (31)

Thus,
£adv(770*) Z £adv(770) VO € RP,7 € [03 1]T7 (32)
which implies the first claim.

Next, consider some fixed vy € [0,1]7 and 0 € arg mingerr Ladv (7, 0). We must have Laqv (7, 0) = Laav(,6%).
Thus,

~

0= Loae(7,0%) = Laas(7,0) (33)
= E [logpyix, (Y | Xa) ~10g ®a(Y | Xa;6) (34)
= Y pa,(@)E [logpyix. (V| Xa) —log alY | Xai6)] . (35)

aef0,1}7

By Gibbs’ inequality, each of the expectations in the summation is nonnegative, which implies that whenever
pa, (a) > 0 we must have

0 =E [logpy x., (Y | Xa) —log®a(Y | Xa:0)] (36)

= /RZT . Px, (Ta) KL [leXa(' | wa) H Do (- | wa?é)} AT, (37)

Qg
t=1

~

Since KL [py|Xa(' | o) || Pl | xa;é)] > 0 with equality if and only if py | x, (¥ | Zo) = Pa(y | Ta;0)
Vy € Y, this must be the case except possibly for & € R” where

/ px, (Ta)dre =0 = px(x)dz = 0. (38)
{za:xeRT} RT

This implies the second claim. O

Corollary D.2. Under the assumptions of Proposition[D.1], equations[23 and [28 are equivalent.

30

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

Under review as submission to TMLR

Proof. Observe that for any v € [0,1]7,

max Log,(7,0) = max Elog @4, (V | X, (Y | Xa,:0) (39)
= Y pa,(@)Elogpyx,(Y | Xa) by Prop. D] (40)

ae{0,1}7
—— Y pa(@HY | X (41)

aef{0,1}7T

= Z pa, (o) [HY] - H[Y | Xo]] because H[Y] is not a function of v (42)

aef{0,1}T
= > pa,(@)]IY;X,] (43)

ae{0,1}7T
=1Y; X4, | A (44)
= »Cideal ('Y) (45)
This implies the result. O

Corollary D.3. Suppose the assumptions of Proposition are satisfied, and let 0ec arg mingepr Ladv (7, 0)
for some v € [0,1]T. Consider a == o’ + o where &', " € {0,1}T such that o, =1 = o} =0 and
of =1 = o; =0, and pa, () > 0. For all y € Y, it follows immediately from Proposition that
px -almost everywhere we can use our classifiers to compute the pointwise mutual information quantities

pmi(y; Tor | Tarr) = logpy | x, (¥ | o) —logpy|x_, (¥ | Tar) (46)
= log Pa(y | wa;é) —log @ar (y ‘ ma”;é)~ (47)

This is useful because it allows us to assess leakage from single power traces, as opposed to merely summarizing
distributions of power traces. There are scenarios where a power measurement might leak for some traces
but not for others. For example, a common countermeasure is to randomly delay leaky instructions or swap
their order with another instruction so that they do not occur at a deterministic time relative to the start of
encryption. One could use pmi computations to determine the timetep at which the leaky instruction has
been run in a single trace.

Since it would be impractical to train 27 deep neural networks independently, we implement the family of
classifiers by a single neural net with input dropout and with the dropout mask fed to the neural net as an
auxiliary input:

O:Y xR x {0,137 xRF - [0,1]: (y,z,,0) = (y | £ © a, ;) (48)

where Oy (y | £a;0) = P(y | * ® o, o; 0). This approach was inspired by [Lippe et al.| (2022).

D.3 Re-parametrization into an unconstrained optimization problem

We would like to approximately solve equation using an alternating stochastic gradient descent-style
approach, similarly to GANs (Goodfellow et al.l |2014]). Thus, it is convenient to express it as an unconstrained
optimization problem. We first define a new vector n € AT~ where AT~ == {(5y,...,0r) e RT : S, 6, =
1} denotes the T-simplex. We then define « to be the vector satisfying the equality

c(y) = Cny (49)
"o
T (50)
= logvy; —log(1 —) =log C + logn; (51)
= 7, = sigmoid (log C' + log ;) . (52)

31

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

Under review as submission to TMLR

If we define 1 = softmax(7}) for 77 € RT, then we can express
~; = sigmoid (log C + log 7j; — logsumexp(7)) , (53)

which allows us to map the unconstrained vector 7 to 7 or log~ using numerically-stable PyTorch operations.
Our constrained optimization problem [28]is thus equivalent to the following unconstrained problem:

i L(7.0) =Elog® (Y | X A 0) . 54
miy max £(5,0) 0g® (Y | X © Ay, Ay(n); 6) (54)

D.4 Implementation details

It is infeasible to exactly compute the expectation with respect to A,) because doing so would require
summing over 27 terms. As is routine in deep learning contexts, we instead approximate the gradient
with Monte Carlo integration. Note that our objectiveﬁ takes the form £(n) = E f(A,5)) where f(a) =
Ex,ylog®(Y | X © a, a;0) and the distribution of \A.(5) depends on 7.

Unbiased estimators for V;£(n) of this form are usually based on the REINFORCE estimator (Williams,
1992) with control variates, and tend to have complicated implementations and high variance. We tried
using the vanilla REINFORCE estimator with simple control variates as well as the more-sophisticated
REBAR estimator (Tucker et al.l |2017), and found that the former works poorly, while the latter works well.
Subsequent ablation studies revealed that the biased CONCRETE estimator (Maddison et al., |2017)) works
almost as well as REBAR for our application and is considerably simpler, so in this work we use CONCRETE.

The CONCRETE estimator lets us write LA () as a deterministic function of 7§ and 7-independent noise and
thereby use the reparameterization trick to estimate V;£(77) using standard automatic differentiation tools.
For binary random variables such as the elements of A5, the estimator is built on the observation that

z ~ Bernoulli(p) =z = H(logp — log(1 — p) + logu —log(1 —u)) for wu~U(0,1) (55)
1 >0
where H(z) = 0 <0 denotes the unit step function. H is not amenable to gradient descent because
x

its derivative is zero almost everywhere, but we can approximate it with the tempered sigmoid function
sigmoid, (z) := sigmoid(z/7). The temperature parameter 7 > 0 can be tuned to control a bias-variance
tradeoff for the estimator: lim,_,¢sigmoid (z) = H(x) Yoz € R\ {0}, but variance increases as O(1/7)
(Shekhovtsov}, 2021)). We find that results are reasonable when we simply leave 7 fixed at 1, and we do this
throughout the present work. We conjecture that this is because all our performance evaluation metrics
consider only the relative leakiness estimates produced by our method, and the nature of the bias is not to
significantly impact the relative sizes of the elements of ~v*.

Note that while our original loss function
((n,0,z,y,a) =1log ®(y | ¢ © a, ;) (56)

is written for a ‘hard’ occlusion mask a € {0,1}7, the relaxed occlusion masks lie inside the open ball (0,1)%.
Thus, we must relax our loss function to accept these inputs as well. While the right-hand side of Eqn. is
still a valid expression for o in (0,1)7, its optimal value of this loss with respect to @ does not vary smoothly
with a because rescaling the elements of X by nonzero constants does not change its mutual information
with Y. Thus, we instead use the stochastic relaxed loss function

lretaxed (77,0, @y, @) = log ®(y | £ © + € © (1 —);0) where e~ N(0,1)". (57)

In Alg. 2l we provide pseudocode for a practical implementation of ALL, omitting details such as minibatch use
for clarity. Also refer to this link for a minimal self-contained PyTorch (Paszke et all[2019)) implementation.

4ignoring its @-dependence because differentiating with respect to 0 is straightforward here

32

https://anonymous.4open.science/r/learning_to_localize_leakage-420B/src/self_contained_example.ipynb

=

W

Under review as submission to TMLR

Algorithm 2: Simplified implementation of our Adversarial Leakage Localization (ALL) algorithm.

Input: Dataset D = {(z™,y™):n=1,...,N} CRT x Y, mask-conditional classifier architecture
®.:RT x [0,1]7 — R initial classifier weights 8y ~ R”, initial pre-constraint occlusion logits
Mo € RT, occlusion budget 7 € (0,1)
Output: Per-timestep ‘leakiness’ estimate v* € [0,1]7
Function getOcclProbLogits (7 € RT: pre-constraint logits of occlusion probabilities)
L return 7 — logsumexp(7}) + log T + log7 — log(1 — 7)
Function sampleFromCONCRETE (4 € (0,1)7": logits of occlusion probabilities)
L return sigmoid(logsigmoid (%) — logsigmoid(—4) + logu — log(1 — u)), u ~ U(0,1)T
Function getMaskedCrossEntropy (0 € RY: classifier weights, (z,7) € RT x Y: input and label,
a € [0,1]T: relaxed input mask)
L return logsoftmax ®g(y | (1 —a) 0z +a®e,1—a), e ~N(0,1)T

®

©

10
11

12

13

for t =0,1,... until convergence do
(z¢,y:) « sampleDatapoint(D)
4+ + getOcclProblogits(7};)
«a; < sampleFromCONCRETE(4;)
¢, < getMaskedCrossEntropy(60;, (x, yt), o)

gl < Voly, g] < —Vily, 041 + OptStep(8;,g!), Muy1 < OptStep(fi, g))

return sigmoid getOcclProbLogits(Fi41)

33

Under review as submission to TMLR

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

E Extended experimental details and results

E.1 Toy setting where our method succeeds and prior work fails

104 == Oracle Best m-occlusion
== == Random OccPOI _ _
—@— Best parametric + ALL (ours) i T +
—#— Best gradient-based T
0.8 T
. ® o L ® a ; ®
— -
2 ' : T f1Y
S 06 7 [v1 Yl
o
= J
gn - - A
= 9 N
- 4 N
2 0.4 9 »
= .
0.2 1 T /

0.0 T == = A== A=A A A A A A
T T LR | T LR | T T T T
10° 10t 102 10 104
Number of second-order leaky pairs: D

Figure 9: A toy setting where ALL (ours) significantly outperforms baselines. We sample 1 non-leaky feature
and D second-order leaky pairs, then plot the false negative rate, defined as the proportion of points incorrectly
assigned leakiness less than or equal to that of the non-leaky point, as we increase D. ALL (ours) succeeds for
D up to 64x higher the best prior deep learning-based approach, and the first-order parametric methods
completely fail in this setting. Dots denote median and error bars denote min—max over 5 random seeds.

As previously discussed, first-order parametric statistics-based methods are insensitive to associations of
order 2 or higher. Prior deep learning-based leakage localization algorithms tend to exploit few of the
available 271 associations between X; and Y given subsets of {Xi,..., X7} \ {X;}, with many of them
using only the maximal conditioning set {X1,..., X7} \ {X:} itself. This creates issues when there is a large
number of leaky measurements and the individual contribution of each is ‘drowned out’ in the sense that
IY; X¢ | {X1,..., X7} \ {X:}] vanishes. Here we construct a simple setting where both of these issues are
present, and demonstrate that ALL succeeds whereas the prior approaches face issues.

We generate a sequence of binary-label 2D + 1-feature classification datasets consisting of ordered pairs
(X, Y) sampled independently as follows:

YNU{O,1}7RNZ/{{O,1}7 MiNU{O,l}: i1=1,...,D, (58)
Xr NN(R,].),XMl. NN(Mi;]-)aXYEBMi NN(YEBM“].) i=1,...,D. (59)

Here we denote by @ the exclusive-or operation and X = (Xg, X, Xvenm,,--- Xnmp, Xyemp). Intuitively,
we can view Xp as a noisy observation of R and each X, Xygar, as noisy observations of M;, Y & M,,
respectively. Here the variable Y is analogous to a targeted sensitive variable, and the values (M;,Y & M;)
are analogous to the pairs of second-order leaky variables which arise in Boolean masked implementations

such as Benadjila et al.| (2020)).

34

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

Under review as submission to TMLR

Clearly R, and thus Xpg, tells us nothing about Y. Additionally, the values M; in isolation tell us nothing
about Y. Similarly, the values Y @& M; in isolation tell us nothing about Y because

P(YZO‘Y@Mi:O):P(MiZO):%:P(Mi:1):HD(Y:1|Y€BMZ‘:O) (60)
and similarly
PY=0|Ya®&M=1)=PM=1)=3=PM;=0=PY =1|YaM=1). (61)
Despite this, given the pair of values {M;,Y & M;} we can recover Y via the identity
M;®M; =0 = (YO M,)®M; =Y. (62)

Thus, we would like a leakage localization algorithm to indicate that Xp is non-leaky and the values
X, Xyveu, are leaky.

All experiments use the hyperparameters shown in Table [5
Table 5: Hyperparameters used for our toy Gaussian dataset experiments. We use the default PyTorch

settings except where specified. TThese hyperparameters apply only to ALL. Other hyperparameters are used
both for ALL and for our baseline methods.

Hyperparameter Value

Classifier architecture ReLU MLP with 1 x 500-neuron hidden layer
Classifier optimizer AdamW

Classifier learning rate 10~*

Classifier weight decay 0.01

Dataset size 10k

Training steps 5k

Minibatch size 800

Noise distribution learning ratef 1073

Budget 71 1—2701D-1

Results can be seen in Fig. [0] We measure the performance of methods by the percent of measurements
in{Xy, :i=1,...,D}U{Xygn, : i = 1,...,D} assigned a leakiness greater than or equal to that of
Xg. For clarity we report for each D the best result out of SNR, SOSD and CPA as ‘best parametric’,
out of GradVis, Saliency, Input * Grad, and LRP as ‘best gradient-based’, and the best result out of
{2m+1:m € [0 .. 24], m < 2D + 1}-Occlusion as ‘best m-Occlusion’. Due to their high cost we use OccPOI
only for D up to 256, and we do not use 2"9-order m-Occlusion. Note that in subsequent experiments
27d_order m-Occlusion does not significantly outperform first-order occlusion, and OccPOI performs poorly
due to identifying only a small number of leaky measurements rather than assigning a leakiness to every
measurement.

E.2 Simulated AES datasets where we have ground truth knowledge about leakage

Here we present experiments done on synthetic AES power traces. These are a useful complement to the
experiments on real datasets because 1) here we have ground truth knowledge about which timesteps are
leaking, which we can use to validate our model’s output, 2) we can generate infinitely-large datasets to
eliminate dataset size as a confounding variable in results, and 3) we can observe the change in our technique’s
behavior as we individually vary particular dataset properties such as low-pass filtering strength and leaky
instruction count.

35

Under review as submission to TMLR

Algorithm 3: Pseudocode for our synthetic data generation procedure, based on the Hamming weight
leakage model of Mangard et al.| (2007). For clarity we omit the random delay and shuffling procedures,
but these are straightforward and may be found in our code.

Input: Dataset size N € Z, 4,

Timesteps per power trace T' € Z .,

Bit count nyits € Z4 4,

Operation count neps € Z4 4,

Data-dependent noise variance o3, E Ry,
Operation-dependent n01se variance 0’ e Ry,
Residual noise variance o2, € Ry,

Low-pass filtering strength 3 € [0,1),

Leaking timestep count nug € Z4

Output: Synthetic dataset D C RT x [0 .. 27bits — 1]

1 {kM™ :nel.. N} ~U o, 1}nbics)N // AES keys

2 {fw™ :n e[N1} ~ U ({0, 1}nbzt>) // plaintexts

3 {o:te|l.]} U(. nops])N // operations

4 {Zop,ic i G[- Mops } ~ N(O,agp)"ops // operation-dependent power consumption

5 Tig ~U <[n T]> // timesteps of leaky instructions

lkg

6 forn€[l.. N]do

7 y™ « Sbox (k™ @ w™) // targeted variable: first SubBytes output

8 :cgzs)id N(0,0%)T // residual power consumption

9 for t € Ty, do

10 t d(n) — gy // leaky timesteps: targeted variable is the data

11 forte[1..T])\ T, do

12 L dn) U ({0, 1}mwie=) // rest of data treated as random

13 forte[l1..7] do

14 L : El,iia ; < Odata (4 HW(d("))> /2 // data-dependent power consumption

15 x(™) mfﬁbld + Top + scieb)ld // total power consumption

16 forte[2..T]) do

17 xin) — Ba:,gr_l)l +(1- B)xgn) // Discrete low-pass filtering of z(").

// In practice we prepend ‘burn-in’ timesteps to allow transient effects to

decay.

18 return {(z™,y™):n e 1. N]}

36

Under review as submission to TMLR

D¢ D Dy

¢Xdata, t—1 ¢Xdata, t+1

X1 o7
Xresid, t—1 Xresid, t Xresid, t+1
PRSI SS N SENEEENSESS V() WS Y0 U < () WA S0 Y) W _—
Xop, t—1 Xop, t+1
O Ot+1

O Observed random variable

Unobserved random variable

Unobserved confounder
representing arbitrary

data/operation associations » Causal dependency

Figure 10: Causal diagram representing the assumed data-generating process for our synthetic AES datasets.
We assume this is an I-map for the data-generating process — i.e. we assume independence conditions
present in the diagram hold for the data-generating process, but the data-generating process might have
additional independence conditions not reflected here. This is an effort to make more precise the Hamming
weight leakage model of (Mangard et alJ, 2007, ch. 4). We represent the data of the AES algorithm by the
random variables Dy, its operations Oy, and its power consumption X;, which is further broken down into
data-dependent power consumption Xgata,+, operation-dependent power consumption X, ¢, and ‘residual’
power consumption Xyesia, ¢+ (€.g. due to random noise, other processes running in parallel, etc.). We assume
that only the composite power consumption X; is observed.

37

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

Under review as submission to TMLR

E.2.1 Data generation procedure

We base our synthetic data generation procedure on the Hamming weight leakage model of (Mangard et al.,
2007, ch. 4), which we will subsequently describeﬂ As above, let us represent our power/EM traces as
a random vector X = (X; : t = 1,...,T) with range R”. We represent the cryptographic algorithm as
sequences of data D = (Dy:t=1,...,T) and operations O := (O; : t = 1,...,T), where each D; has range
{0, 1}™it= and each O, has range [1 .. nops| for some npits, Nops € Z4+. For each t € [1 .. T, we can decompose

Xt = Xdata, t + Xop, t+ Xresid, t (63)

with dependency structure illustrated in the causal diagram of Fig. @ Here we have represented by Xgata, ¢
the data-dependent component of power consumption, X, ; the operation-dependent component of power
consumption, and X,ed,+ the ‘residual’ power consumption due to random noise, other processes running
simultaneously on the same hardware, etc.

Mangard et al.| (2007)) experimentally characterized the power consumption of a cryptographic device and found
that it is reasonable to approximate Xgata,+ as Gaussian noise with D;-dependent mean, X, ¢ as Gaussian
noise with O;-dependent mean, and X, esiq,+ as Gaussian noise with constant mean (which we will assume to
be zero because it contains no information and is thus irrelevant). For their device, they found that the mean
of Xdata, ¢ was roughly proportional to nyis — HW(D,) where HW : {0, 1}70it — [0 .. npigs] : @ — Doy’ T
We adopt these approximations for our synthetic dataset experiments. See Alg. [3] for pseudocode giving a
simplified version of our data generation procedure, and refer to our code for full details.

We simulate several factors of variation which can reasonably be expected to occur in realistic settings. We
apply discrete-time low-pass filtering to the power traces, to simulate the low-pass filtering which occurs due
to measurement apparatus as well as the fact that power consumption does not change instantaneously in
real circuits. We allow for the presence of multiple leaky instructions. Additionally, we simulate random
delays to the leaky instruction which might result from countermeasures such as random no-op insertion
(Coron & Kizhvatov, [2009), and random ‘shuffling’ where the leaky instruction is randomly placed at one of
several points in time, as done in Masure & Strullul (2023]).

We emphasize that these approximations are specific to the device studied by [Mangard et al.| (2007) and may
hold to a limited extent or not at all for other devices. For example, the Hamming weight dependence of
power consumption stems from the fact that their device ‘pre-charges’ all its data bus lines to 1, then drains
the charge from the lines which should represent 0, thereby consuming power proportional to the number
of lines which represent 0. Many devices operate differently, and cryptographic hardware is often designed
with the explicit goal of obfuscating this data/power consumption dependence. Thus, while we expect all
real cryptographic devices to have some exploitable dependence between data and power consumption given
sufficient quality and quantity of data, in many cases the nature of the dependence will likely elude a simple
characterization such as this.

E.2.2 Experimental details

We run experiments on many variations of this dataset and verify that ALL produces outputs which align with
our expectations. For all these experiments, our classifier ®g is a 3-layer multilayer perceptron with hidden
dimension 500, ReLU activations, an input dropout rate of 0.1, hidden dropout rate of 0.2, and pre-logits
dropout rate of 0.3. We generate data continuously so that our dataset size is effectively infinite. Additional
hyperparameters are listed in table [0 and default settings corresponding to Alg. [3]are listed in table [7] which
we use except where otherwise stated.

E.2.3 Results

We vary 4 parameters of the data generation process of Alg. [3]and observe its effect on the output of ALL.
We find that ALL consistently produces results consistent with our expectations given the timestep(s) of

5For clarity we alter the notation and explicitly define a causal structure for the data-generating process. The decomposition
of power consumption in Eqn. and the definition of Xgata,+ in terms of the Hamming weight of the data are based on
Mangard et al.| (2007)), but the additional details are our own.

38

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

Under review as submission to TMLR

Table 6: List of hyperparameters used for experiments on synthetic AES datasets. We use the default PyTorch
settings unless otherwise stated. Note that in general for ALL classfiers we disable input dropout, but for
these experiments the dropout rate was set to 0.1 due to an oversight.

Hyperparameter Value

Classifier architecture ReLLU MLP with 3 x 500-neuron hidden layers
Input dropout 0.1

Hidden dropout 0.2

Output dropout 0.3

Optimizer for both @ and) torch.optim.AdamW

Weight decay for 0 0.01 for weights, 0 for biases
Weight decay for 7 0

Training steps 10*

Minibatch size 103

Noise budget ¥ 0.5

Weight initializer torch.nn.init.xavier_uniform_

Table 7: Default synthetic AES dataset configuration, corresponding to the inputs of Alg. Subsequent
experiments will use these settings unless otherwise stated.

Setting Value
Dataset size N 00
Timesteps per power trace T' 101
Bit count np;s 8
Operation count ngp 32
Data-dependent noise variance o3, 1.0
Operation-dependent noise variance agp 1.0
Residual noise variance o2, 1.0
Number of leaky instructions nj, 1
Low-pass filtering strength /3 0.5
Maximum random delay size 0

Possible leaky timestep location count (i.e. shuffling) 1

the leaky instruction(s), and that the variance of its output is quite low in this context where we have an
infinitely-large dataset and a long training duration. Here we describe the parameters being swept and justify
the output of ALL given this.

Low pass filtering strength 5 Recall that we are discrete low-pass filtering traces via the recursive
function xipf = (1 — B)xt + Bxi—1. See the first row of Fig. where from left to right g takes on the
values 0, 0.5, 0.75, 0.875, 0.9375, 0.96875, 0.984375, 0.9921875. Note that the peak estimated leakiness always
corresponds to the ground-truth leaky instruction timestep. As we increase 8 we see that measurements to
the left and right are assigned high leakiness as well, which makes sense for the following reason:

Let us denote by t* the timestep at which the leaky instruction was executed. We then have X; =
1 HW(Y) + coUs» + c3 X3+ —1 where U+ denotes a ‘residual’ random variable independent of Y, and ¢q, ¢o are
appropriate constants. Note that Xy« 1 = X + (1 — B)Upy1 = Ber HW(Y) + BeaUpr + (1 — B)Ups 41, SO
Xi+41 also leaks Y. Recursively it is clear that the same can be said for Xy« 9, X¢=13,.... Less-intuitively,
X+ also leaks Y. This is because although Xy« _1 is marginally independent of Y, X+ — ¢3X;«_1 has a
higher correlation with HW(Y') than X;+ does —i.e. X;-_1 is dependent on the Y-independent noise of X,
and can be used to reduce the noise. Recursively, since Xy«_o, Xy«_3,... are correlated with X« _1, they
also leak Y by the same mechanism.

39

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

Under review as submission to TMLR

LPF 3: 0.0 LPF 3: 0.5 LPF j3: 0.75 LPF 3: 0.875 LPF 3: 0.9375 LPF 3: 0.96875 LPF j3: 0.984375 LPF 3: 0.9921875
! . ! f i f i
i 1 f 1 .", / \
| ! fi AR
1 ! 1 H \ / 3
i ’ i A 4 ; y) ~ N
D b G W w0 » W ® W w0 % 4 @ w1 B T S A e T T T T T R)
Leaky pt. cnt.: 0 Leaky pt. cnt.: 1 Leaky pt. cnt.: 3 Leaky pt. cnt.: 5 Leaky pt. cnt.: 7 Leaky pt. cnt.: 9 Leaky pt. ent.: 11 Leaky pt. cnt.: 13
! . ! ! i i i '
=
s
3
m‘] o A SRS SN ¥ SN WSS Y SN S S S S G I OO DA U N D 0, i i
T S A T T 2 @ p 3 @ %
Max no-op cnt.: 0 Max no-op cnt.: 1 Max no-op cnt.: 5 Max no-op cnt.: 9 Max no-op cnt.: 13 Max no-op cnt.: 17 Max no-op cnt.: 21 Max no-op cnt.: 25
! ! f f i '
r —
! ! — — .

] e o] |

““““““ [R T R
Shuffle loc. cnt.: 3

D @ @ s w0 0w 4 @ s 1w n a0 @ s 1w O T N R R T R S R T R
Shuffle loc. cnt.: 5 Shuffle loc. cnt.: 7 Shuffle loc. ent.: 9 Shuffle loc. ent.: 11 Shuffle loc. cnt.: 13 Shuffle loc. cnt.: 15
| 1 1 1 1

I]
[L T M Y il

& 4 Lo die] feddedadid] fdlilaiaulalin] uvuauauuy Wddduddddddy Ddaddad v \ i

E I R S e e T T A) b w0 @ w1 D o e om0 oW o @ w0 % 4 @
Timestep ¢ Timestep { Timestep ! Timestep ! Timestep ! Timestep ¢ Timestep t Timestep t

Figure 11: Results of applying ALL (ours) to synthetic AES datasets with varying parameters. The estimated
leakage by ALL is denoted by blue dots and the ground truth timestep of the leaking instruction is denoted
by the vertical black dotted lines. Blue dots denote mean and shading denotes median over 5 random seeds.
Note that the ALL output is consistent with the ground truth leaky instruction timestep in all cases, and
the variance between runs is quite low in the infinite data regime. (first row) Increasing low pass filtering
strength 8 from left to right. (second row) Increasing number of leaky instructions from left to right. (third
row) Increasing random delay insertion from left to right. (fourth row) Increasing number of possible
shuffling locations for the leaky point from left to right.

Leaky point count Here we sweep the number of leaky instructions. See the second row of Fig. where
from left to right the leaky point count n, takes on the values 0, 1, 3, 5, 7, 9, 11, 13. As expected, all leaky
instruction timesteps correspond to a peak of ALL-estimated leakiness.

Random delay size Here we insert random delays — i.e. instead of always occurring at time t, the leaky
instruction occurs at t + u where u ~ U{0, ..., dmax. See the third row of Fig. where from left to right
dmax takes on values 0, 1, 5, 9, 13, 17, 21, 25. We see that the estimated leakiness becomes ‘spread out’ over
the interval [t .. t + dmax]-

Shuffle location count Here we randomly ‘shuffle’ the leaky instruction — i.e. instead of always occurring
at time ¢, the leaky instruction occurs at ¢’ ~U{t1, ..., tn .} See the fourth row of Fig. [7] where from left
to right nghug takes on values 1, 3, 5, 7, 9, 11, 13, 15. We see that the leakiness becomes ‘spread out’ over
the set of timesteps at which the leaky instruction might occur.

E.3 Experiments on real power and EM radiation leakage datasets

Here we run experiments on a variety of publicly-available side-channel attack datasets, where we attempt to
localize leakage of their canonical target variable.

E.3.1 Datasets

We compare ALL with prior work on the 6 datasets described in Table [8] which consist of traces of power
and EM radiation measurements and associated cryptographic variables recorded from real implementations.
Note that we evaluate on AES, ECC and RSA implementations implemented on several MCUs and an FPGA

40

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

Under review as submission to TMLR

Table 8: A list of the datasets used in our paper, with a summary of their salient attributes. Note that
our experiments cover a variety of settings: AES, RSA and ECC implementations on both microcontrollers
(MCUs) and a field-programmable gate array (FPGA), both power and EM radiation traces, and various
types of countermeasures. For all datasets we localize leakage of the canonical target variable. We denote by
subscripts the targeted byte of the variable. We denote by ky,, wy,, my, kX, ¢, the n-th byte (counting from
0) of the AES key, plaintext, mask, last round key, and ciphertext, respectively. fAs described below, we
deviate from the canonical profiling/attack split.

Dataset ASCADv1 (fixed key) ASCADv1 (variable key) DPAv4 (Zaid version)

Citation Benadjila et al.|(2020) Benadjila et al.|(2020) Bhasin et al.|(2014); |Zaid et al.|(2020)
Link (here) (here) (here)

Algorithm AES-128 AES-128 AES-128

Hardware ATMega8515 (MCU) ATMega8515 (MCU) ATMegal63 (MCU)

Emission measured Power Power Power

Countermeasures Boolean masking Boolean masking Rotating Sbox mask (known)
Targeted variable Sbox (ks @ ws) Sbox (ks @ ws) Shox (ko ® wo)

Dataset size (profile/attack) 50k/10k 200k/100k 3k/5001

Feature count T' 0.7k 1.4k 4k

Dataset AES-HD One Trace is All it Takes (OTiAiT) One Truth Prevails (OTP) (1024-bit)
Citation Bhasin et al.|(2020) Weissbart et al.|(2019) Saito et al.|(2022)

Link (here) (here) (here)

Algorithm AES-128 EdDSA w/ Curve2559 1024-bit RSA-CRT

Hardware XiLinx Virtex-5 (FPGA) STM32F4 (MCU) STM32F4 (MCU)

Emission measured EM radiation Power EM radiation

Countermeasures None None Dummy load

Targeted variable Sbox ! (kf; @ c11) @ cr Ephemeral key nibble Dummy load?

Dataset size (profile/attack) 50k/25k 5.12k/1.28k 100k/98.304k"

Feature count T' 1.25k 1k 1k

with various target variables. ALL as well as most of our baseline algorithms are in principle agnostic to most
of these details, requiring only a supervised learning-style dataset with power traces and the associated value
of the targeted variable as labels. Through these experiments we demonstrate that this is true in practice
across a diverse array of settings.

Note that the ASCADv1 datasets have primarily second-order leakage due to their Boolean masking
countermeasure, whereas the other 4 datasets have primarily first-order leakage. Our comparisons include
both deep learning methods as well as simple first-order parametric methods which are widely used due to
their low cost and interpretability. We find that the latter are competitive or superior to the deep learning
methods on the first-order datasets but perform significantly worse on the second-order datasets due to failing
to exploit second-order leakage. Our experiments do not compellingly show that deep learning methods
improve on these simpler methods for first-order datasets, but we nonetheless include them as additional
points of comparison between the deep learning methods and to show that ALL works in a variety of settings.

In general we use the canonical target variable and profiling/attack dataset split (note that in the context
of profiling side-channel analysis the training dataset is called the profiling dataset, and the test dataset is
called the attack dataset). We deviate from the canonical dataset configuration in the following cases:

e We find that the canonical attack dataset of DPAv4 is too small to compute useful oracle leakiness
assessments. We thus concatenate the canonical 4.5k-trace profiling dataset and 0.5k-trace attack
dataset into a single 5k-length dataset, and use the first 3k traces for profiling and the last 2k to
compute the oracle assessments. Since some of our experiments require metadata which is only
available for the attack dataset, for everything other than oracle assessment computation we use the
canonical attack dataset and leave the remaining 1.5k traces unused.

o We use the version of DPAv4 which was preprocessed and distributed by |Zaid et al.| (2020) here
rather than the original version. This version has shortened traces which have been cropped around
the leaky instruction, and has the rotating Sbox mask effectively ‘disabled’ by providing the masked
SubBytes variable as the target.

41

https://github.com/ANSSI-FR/ASCAD
https://github.com/ANSSI-FR/ASCAD
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA
https://github.com/AISyLab/AES_HD
https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
https://github.com/ECSIS-lab/one_truth_prevails
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

Under review as submission to TMLR

o The One Truth Prevails (OTP) dataset consists of approximately 64M traces and has a high label
imbalance. To save computational resources we extract a 100k-trace randomly-selected balanced
subset, which we find is more than sufficient for strong supervised classification and leakage localization
performance. See our code for details.

E.3.2 Implementation details for the leakage localization algorithms

Occlusion mask i
Linear : R50 — RIYI

aco,1” Linear : R%n — R500 Linear : R%%0 — R500
Logits for predictions
Trace ¢ € RT ReLU + Dropout(0.1) ReLU + Dropout(0.2) ReLU + Dropout(0.3) PY=y|X=1z) R
Concatenate ~ R%n ” ” ” ”
L J
Y
X3

.Used for the ALL classifier but not supervised classifiers

Disabled for ALL classifier. Enabled or disabled based on
hyperparameter search for supervised classifiers.

Figure 12: Diagram of the multilayer perceptron architecture used for classifiers in the deep learning methods,
based on the architecture proposed in (Wang et al.| (2017 for time-series classification.

For ALL and all considered baseline methods the classifier uses the simple ReLU + Dropout MLP architecture
of [Wang et al.[(2017)) shown in Fig. which has 3 500-neuron hidden layers, input dropout rate of 0.1,
hidden dropout rate of 0.2, and output dropout rate of 0.3. For the deep learning baselines we enable or
disable the input, hidden and output dropout based on our hyperparameter search outcome, and for ALL we
leave it disabled. The classifier for ALL takes the occlusion mask as an auxiliary input, which we implement
by concatenating it with the masked trace.

We also explored convolutional architectures, but preliminary experiments indicated that these achieved
weaker classification and leakage localization performance across the board, as well as training more-slowly
than the MLP architecture due to a higher layer count. We suspect that the inductive biases of convolutional
layers are not useful for the datasets we consider. As a sanity check for this design choice, we run the deep
learning baseline methods using both our MLP architecture and a handful of open-weight classifiers which
were released with Wouters et al.| (2020]) on the datasets for which they are available.

All deep learning methods are implemented in PyTorch (Paszke et al., [2019). Most non-deep methods are
implemented with Numpy (Harris et all [2020), with a handful of compute-intensive methods implemented
with Numba (Lam et al. 2015). We use Scipy (Virtanen et al., 2020) implementations of statistical methods
where available.

We use the AdamW optimizer (Loshchilov & Hutter, |2018; [Kingma & Welling, |2014) with the default PyTorch
settings 81 = 0.9, Bz = 0.999, A = 0.01, ¢ = 10~® and the learning rate chosen through hyperparameter
search. Weight decay is applied only to the weights of the linear layers, not to the biases. We use a
minibatch size of 256. Weights are initialized with the uniform Glorot initialization (Glorot & Bengiol [2010)
torch.nn.init.xavier_uniform_ (default for Keras) rather than the default PyTorch initialization, and
we find that this is a critical detail — many supervised classifier runs on the ASCADv1 datasets completely
fail to generalize beyond the training dataset when the default PyTorch weight initialization is used. We
randomly set aside 20% of the profiling datasets for validation and use the remaining 80% for training. We
standardize the traces as @ +— m where ;1 and o denote the elementwise sample mean and standard
deviation computed using the profiling dataset.

In general we measure the performance of supervised classifiers with their mean rank rather than their
accuracy, as accuracy tends to be low and too-coarse in the context of side-channel analysis. Given a label
y € Y and predicted label distribution py € AlYI=1 (e.g. the softmaxed output of a classifier neural net), we
define the rank as the number of possible labels assigned at least as much probability mass as the true label,

42

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

Under review as submission to TMLR

ie.
Rank(py;y) = {y' € Y : v (y') = py ()} (64)
This metric has range [1 .. |Y|], with lower being better.

Implementation of the baseline methods We use Captum (Kokhlikyan et al 2020) implementations
of the Saliency, Input * Grad, LRP, and m-Occlusion methods. We implement SNR, SOSD, CPA, GradVis,
and 2"9-order m-Occlusion ourselves, and we implement a PyTorch version of OccPOI based on the Keras
implementation released by the authors here.

Note the following choices we have made in implementing and evaluating OccPOI (Yap et al., [2025)):

e OccPOlI differs from the other methods we consider in that rather than assigning a leakiness value to
every measurement, it aims to identify a non-unique subset of measurements which are sufficient
for a classifier to attain some specified performance level when all other measurements are occluded.
Since our evaluation metrics require a leakiness value for every measurement, we assign a leakiness of
0 to measurements not identified by OccPOI.

e Their method uses the attack dataset for probing the classifier’s sensitivity to input features, which
introduces data contamination in the context of our performance metrics. We cannot easily use the
validation dataset instead because the attack procedure requires having many traces corresponding to
a fixed AES key, which is generally only available for the attack dataset. We find that ALL significantly
outperforms OccPOI despite this contamination, so as the aim of our work is to demonstrate the
efficacy of ALL, we allow OccPOI to use the attack dataset.

e Since OTiAiT and OTP do not have attack datasets which facilitate this kind of multi-trace
prediction, for these datasets we simply use the mean rank of the classifier on the attack dataset as
our performance metric.

o |Yap et al.| (2025]) proposes an extension of OccPOI which ranks the leakiness of the points it has
identified using a 1-occlusion-like strategy. We use this extension in our implementation.

o [Yap et al.| (2025) proposes an extension of OccPOI where they apply it repeatedly on the residual
measurements not selected during the last iteration. We do not use this extension because it is
very computationally expensive, requiring O(T') applications of OccPOI which each require Q(T')
non-parallelizable passes through the attack dataset. In preliminary experiments this extension
performed better than basic OccPOI, but still far below the performance of the other considered
methods despite requiring orders of magnitude more wall clock time.

o Similarly to|Yap et al.| (2025)), to save compute we use only a subset of the attack datasets for classifier
evaluation. We use 1.8k traces for ASCADv1-fixed, 2.8k for ASCADvl1-variable, 140 for DPAv4, 25k
for AES-HD, 100 for OTiAiT, and 100 for OTP. These are approximately 10-100x the necessary
number of traces to successfully attack the AES methods.

e [Yap et al.| (2025) define their performance threshold to be that the classifier correctly predicts the
AES key after accumulating all traces in the attack dataset, and we use the same threshold for the
ASCADv1 datasets, AES-HD, and DPAv4. For the non-AES dataset OTiAiT and OTP, our threshold
is that the mean rank of the classifier rises by 0.1 relative to its mean rank when no measurements
are occluded.

As we will show, OccPOI attains significantly lower performance than other methods according to our
performance metrics, due to not assigning a leakiness to most measurements. This reflects that the aim of
Yap et al.| (2025)) is somewhat different from the present work: [Yap et al.| (2025)) heavily emphasized the
usefulness of OccPOI as a feature selection tool with leakage localization being an auxiliary goal, whereas our
work is concerned solely with leakage localization. We consider OccPOI as a baseline because it is similar in
spirit to our work, but these results demonstrate that it is ill-suited to the task considered in our paper.

We make the following choices in implementing m-Occlusion and 2"9-order m-Occlusion (Schamberger et al.,
2023)):

43

https://github.com/trevor-yap/OccPoIs

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

Under review as submission to TMLR

e |Schamberger et al.| (2023]) explore different ways to occlude measurements and conclude that it
works well to replace measurements by their average value over the profiling dataset, whereas other
heuristics such as replacing them with 0 or with Gaussian noise works poorly. We thus replace
measurements by their mean. Since we are element-wise standardizing the traces, this is the same as
replacing them by 0.

« Schamberger et al.| (2023) propose 2"d-order m-Occlusion as a means of estimating the leakiness of
pairs of windows, which is useful for discerning whether a measurement has first-order leakage or is
part of a second-order leaking pair of measurements. They do not propose a means of using it to
estimate the leakiness of individual measurements. We choose to define the leakiness of X; as the
average leakiness of the pairs {{X, X¢} : ¢/ € [1 .. T]}.

o Schamberger et al.| (2023) uses a large stride for 2"%-order m-Occlusion, and thus get leakiness values
for windows of measurements rather than single measurements. We set the stride to 1 for consistency
with our other baselines.

e These methods introduce the occlusion window size m as a new hyperparameter which must be tuned.
For m-Occlusion we tune m by testing successive odd-numbered window sizes starting from 1 until
oracle agreement performance starts decreasing, and using the window size which maximizes oracle
agreement. We denote this as m*-Occlusion. Note that this introduces some data contamination,
which we accept because our aim is to demonstrate the efficacy of ALL, and ALL outperforms
m-Occlusion despite the contamination.

o For 27d-order m-Occlusion we use the optimal value of m for m-Occlusion. We denote this 2"d-order
m*-Occlusion. We don’t do another sweep because 2"%-order m-Occlusion is very computationally-
expensive, requiring ©(72) passes through the dataset.

o Like|Yap et al. (2025), |Schamberger et al.| (2023) uses the attack dataset to evaluate the sensitivity
of the classifier to occluding measurements. To avoid data contamination, and for compatibility
with the OTiAiT and OTP datasets which do not have the same kind of attack dataset as the AES
implementations, we track the average change in logits over the profiling dataset as we occlude
measurements (similarly to 1-Occlusion).

E.3.3 Hyperparameter tuning procedure

Table 9: Outcome of a 50-trial random hyperparameter search for the supervised classification models used
by the deep learning baseline methods. All trials are early stopped at the point of lowest validation rank, and
we choose the hyperparameter configuration which minimizes the lowest validation rank, with ties broken
based on validation loss. Models are trained with AdamW and weight decay applied only to the weights of
dense and convld layers. We use the default PyTorch settings everywhere unless otherwise stated.

Hyperparameter Search space Selected value

ASCADVI (fixed) ASCADvI (variable) DPAv4 (Zaid) AES-HD OTIAIT OTP
Learning rate Ul Ul yfm - 1077} 31074 2-107* 41073 9-107° 8-107% 6-1073
LR schedule {constant, cos annealing} cos annealing cos annealing constant cos annealing cos annealing cos annealing
Input dropout {0.0,0.1} 0.0 0.0 0.0 0.0 0.0 0.1
Hidden dropout {0.0,0.2} 0.2 0.2 0.2 0.2 0.2 0.0
Output dropout {0.0,0.3} 0.3 0.0 0.0 0.3 0.3 0.0
Training steps n/a 20k 40k 10k 20k 1k 1k
Classification performance of chosen model
Test rank | 101+1 79.1+0.2 5.6+ 0.7 124.74+0.2 1.010 £ 0.007 1.00171 = 0.00007
Test loss | 5.59 £ 0.04 5.380 £ 0.009 3.0+0.2 5.65 +0.04 0.10£0.08 0.0085 + 0.0006
Traces to AES key disclosure | 179+ 71 288 +126 14+05 4355 + 1915 n/a n/a

All the deep learning methods we consider require hyperparameter tuning. Work in other deep learning
subfields such as |Gulrajani & Lopez-Pazl (2021)) has emphasized the importance of a fair hyperparameter
tuning process and realistic model selection criterion when comparing the performance of different algorithms,
and in this work we aim to follow these recommendations. Accordingly, all methods are tuned with a 50-trial
random hyperparameter search. Note that while our main performance evaluation metric is the oracle

44

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

Under review as submission to TMLR

Table 10: Outcome of a 50-trial random hyperparameter search for adversarial leakage localization. Models
are trained with AdamW and weight decay applied only to the weights of the dense and convld layers. We use
the default PyTorch settings everywhere unless otherwise stated. For ASCADv1 (fixed), ASCADv1 (variable)
and AES-HD we find it helpful to ‘pretrain’ the classifier with fixed 1 before beginning the simultaneous
phase of training, but for DPAv4, OTiAiT, and OTP we find this unnecessary.

Hyperparameter Search space Selected value

ASCADv1 (fixed) ASCADv1 (variable) DPAv4 (Zaid) AES-HD OTiAiT OTP
6 learning rate (pretrain) J'_, {m - 10~} 104 1074 n/a 1073 n/a n/a
7 (pretrain) n/a 0.5 0.5 n/a 0.5 n/a n/a
0 learning rate Ul WS {m 107} 6-1076 7-107° 2.107° 1074 1074 4-.1074
jj learning r. g 3 n
leaming ratc Upm1 Ung{m - 107} 50 6 9 20 3 3
5 UX_{0.05-m} 03 0.4 0.7 0.85 0.8 0.65
Training steps (pretrain) n/a 10k 20k 0 10k 0 0
Training steps n/a 10k 20k 10k 10k 1k 1k

agreement, it would be unrealistic to use this for model selection, even when computed on a validation dataset,
because it relies on ‘white box’ knowledge about cryptographic implementations that we assume not to have
at training time. Instead, for ALL we use the model selection criterion proposed in Sec. The prior
deep learning methods are based on ‘interpreting’ a classifier trained with supervised learning, and in line
with prior work we tune its associated hyperparameters to optimize classification performance via minimizing
the early-stopped mean rank on a validation dataset. We also visualize the distribution of results over the
hyperparameter sweep for each method.

ALL is sensitive to the noise budget parameter 7 and the learning rates of the classifier weights @ and the
noise distribution parameter 77. We consistently find that 77 should have a higher learning rate than 6, so
in order to focus the search on better hyperparameter configurations we tune the ratio of the learning rate
of 77 to that of @ rather than the learning rate of 7. For ASCADv1 (fixed, variable) and AES-HD we find
that performance is much better if we pretrain the classifier for half of the training steps with fixed 71 = 0
and noise budget ¥ = 0.5, then proceed as normal for the next half. Thus, for these trials, we first do a
10-trial grid search of the learning rate for @ to minimize mean rank during this pretraining phase, then
tune all hyperparameters as normal using this trained classifier as the starting point for the remaining 40
trials. In preliminary experiments we explored tuning the 1, 2, € and weight decay strength of the AdamW
optimizer as well as the number of i steps per 8 step, but chose to leave these fixed for the final search
because they had little impact on performance. See Table [I0] for the hyperparameter search space and chosen
configurations for ALL.

The deep learning baselines are based on ‘interpreting’ a trained supervised classifier and require tuning this
classifier — we tune its learning rate, dropout rates, and decide whether to use a constant or cosine decay
learning rate schedule. In preliminary experiments we also explored tuning the 5y, B2, € and weight decay
strength A of the AdamW optimizer, but chose to leave them at fixed values for the final search because
they had little effect on classification performance. See Table [0 for the hyperparameter search space, chosen
configurations, and resulting classification performance for the supervised classifiers.

E.3.4 Performance evaluation methods

Unlike for the experiments on synthetic datasets, here we lack ground truth knowledge about the leakiness of
individual measurements. It is challenging to evaluate the performance of leakage localization algorithms in
this setting, and there is currently no consensus about the best way to do so. We consider 4 quantitative
performance evaluation strategies which are conceptually-similar to performance evaluation strategies of prior
work. To account for the varying ‘shapes’ of leakage assessments returned by the compared methods, all of
our evaluation metrics are sensitive only to the relative leakiness assigned to measurements.

‘Oracle’ leakiness via SNR with relevant leaking first-order variables The present work is concerned
with ‘black box’ leakage localization algorithms which require only a supervised learning-style dataset of
traces and associated target variable values, and minimal a priori knowledge about the cryptographic

45

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

Under review as submission to TMLR

implementations being analyzed. However, it is also possible to analyze devices in a ‘white box’ manner
which does incorporate a priori knowledge. In particular, while second-order datasets such as ASCADv1
(fixed and variable) are not amenable to black box analysis with the first-order parametric methods such as
SNR, it is possible to study the implementation and ‘decompose’ the second-order leakage into first-order
leakage of pairs of internal variables, then use parametric methods to analyze leakage of these variables
individually. As our main performance evaluation strategy, we use such a white box analysis to compute
per-measurement leakiness predictions, which we treat as an ‘oracle’ against which to compare output. This
is a useful way to validate deep learning methods because 1) it is interpretable and hyperparameter-free, and
2) it lets us check whether an output is consistent with an analysis which a domain expert might do.

For the ASCADv1 datasets, we use the white box analysis of [Egger et al|(2022) to compute ‘oracle’ leakiness
estimates for each of the measurements. We use the canonical target variable for both datasets, which
is Sbox (ks & ws) where Sbox is an invertible function which is publicly-known and shared by all AES
implementations, @ denotes the bitwise exclusive-or operation and ke and wy denote byte 2 of the key and
plaintext, respectively, with indexing starting from 0. The underlying AES-128 implementation of these
datasets uses Boolean masking, as shown in Alg. 1 of Benadjila et al.| (2020)). By design, this Boolean masking
prevents the algorithm from ever directly operating on Sbox (ks @ ws), making all power measurements X;
nearly marginally statistically-independent of Sbox (ks & ws).

Alg. 1 does directly operate on the following pairs of variables: (13, Sbox(ks @ wa) ® 72), (Tout, Sbox (ks ®
wa) B Tout), (Tin, ko ® wa ® 7in). The variables ro, rout, rin are called masks and are internal variables which
are randomly generated during each encryption. Thus, each of these variables is marginally dependent on
some measurements X; and can be detected with first-order parametric methods. Each of these pairs is said
to leak Sbox (kg @ ws) because given both, one can calculate Sbox (kg @ ws) using the identity a &b @ b = a.
In addition to these pairs of variables, [Egger et al|(2022)) identified that the variables Sbox(Sprev @ Tin) @ Tout
and a ‘security load’ Sprev @ Sbox(ws @ ka) @ rouy also have a strong first-order association with power
consumption and might contribute to leakage, where for byte 2 Sprev = Sbox(k11 & wi1) B r11.

All 8 of these internal variables may be computed using the metadata published with the ASCADv1 datasets.
As our oracle assessment for the ASCADv1 datasets, we compute the SNR of each of these 8 variables using
the attack dataset and average them together. We can then qualitatively assess agreement between the output
of leakage localization algorithms and these oracle assessments. For the 4 first-order datasets, we use as our
oracle assessment the SNR of the target itself from the attack dataset, which amounts to an assumption that
there is no leakage of order 2 or higher.

We use the Spearman rank correlation coefficient as a scalar summary of this agreement. This quantity
is defined as the Pearson correlation coefficient between the ranks of a pair of sequences, and is useful for
our purposes because it tells us the extent to which leakage localization algorithms assign the same relative
leakiness to measurements as the oracle, while being insensitive to differences in their ‘shape’.

Most prior work (Masure et al., [2019; |[Wouters et al.| [2020; |[Schamberger et al., [2023; |[Yap et al.| 2025) has
used white box assessments similar to this for qualitative evaluation of leakage localization algorithms. To our
knowledge, ours is the first work to summarize agreement with a scalar and use it for large-scale comparison
between a large number of methods.

We refer to this performance evaluation strategy as oracle agreement. Note that we use the word ‘oracle’ for
clarity of exposition, and we believe this is the least-flawed of the evaluation metrics we consider, but it does
not give us genuine ground truth leakiness measurements. It is sensitive only to first-order leakage of variables
which can be identified a priori as leaky, and will ignore any other exploitable variables. Additionally, SNR,
is not perfectly sensitive even to first-order leakage: it relies on changes in the expected values E[X; | Y = y]
with y and will not detect dependencies which do not influence the mean (e.g. if X; is a Gaussian random
variable with Y-independent mean but Y-dependent variance).

DNN occlusion tests [Hettwer et al.|(2020) proposed a variety of tests based on plotting the performance
of a trained supervised classifier as its input features are successively occluded in order of their leakiness.
The intuition is that leakier features should have a larger impact on the performance of the classifier, so the
rate at which its performance changes as we successively occlude its inputs tells about the extent to which

46

© 00 N o s W N

10

1348

1349

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

1362

1363
1364
1365
1366
1367

1368

1369
1370
1371
1372
1373
1374

1375

1376
1377
1378
1379

1380

Under review as submission to TMLR

Algorithm 4: Pseudocode for the DNN occlusion tests.

Input: Trained supervised classifier ®* : RT x Y — [0, 1], attack dataset Dattack € RT x Y, leakiness
estimates £ € RT direction d € {‘forward’, ‘reverse’}
Output: Area under DNN occlusion curve 7

mo < 0 // occlusion mask
Ligx + argsort(£) // indices of sorted leakiness values, from low-high
if d = ‘forward’ then

‘ ligx + reverseOrder(figy) // sort from high-low instead
else if d = ‘reverse’ then

‘ pass

fort=1,...,7 do
My < My_1 + Igidx‘t
re m 2y RADK (27 (- [(1 —myt) © x); y) // record average classifier

// un-occlude t-th least (reverse) or most (forward)-leaky feature

performance on attack dataset under this occlusion mask

T .
return %thl Ty // area under the DNN occlusion curve

these inputs were leaky. In a similar spirit, we propose 2 evaluation metrics which we name the forward and
reverse DNN occlusion tests.

See Alg. For the forward DNN occlusion test we initially occlude all the input features of a trained
classifier, then successively un-occlude one feature at a time from most- to least-leaky as predicted by the
leakage localization algorithm under test. At each occlusion level we measure the performance of the classifier
on the attack dataset in terms of mean rank. We then report the average performance across all occlusion
levels. For a ‘good’ leakage assessment we expect the average performance to be better (lower) because useful
features are un-occluded at a greater proportion of occlusion levels. Conversely, for a ‘bad’ leakage assessment
we expect the average performance to be worse because useful features stay occluded for longer. The reverse
DNN occlusion test is identical except that we un-occlude features from least- to most-leaky. For this test we
expect the average performance to be worse (higher) for a ‘good’ leakage assessment and better (lower) for
a ‘good’ leakage assessment. In general we expect the forward test to be sensitive to the extent to which
the predicted-leakiest measurements are truly among the leakiest (similar to true/false positives), and the
reverse test to be sensitive to the extent to which the predicted-nonleaky features are truly nonleaky (similar
to true/false negatives).

A major limitation of the DNN occlusion tests is that they rely on an imperfect DNN classifier, and are only
sensitive to associations insofar as the classifier exploits them. Additionally, we use the same architecture,
training procedure and hyperparameters for these classifiers as for those ‘interpreted’ by the neural net
attribution baseline methods, so the test may be ‘biased’ in favor of these. Nonetheless, we consider them
a useful supplement to the oracle agreement metric because they do not suffer from the same restrictive
assumptions about the nature of associations.

Feature selection efficacy for Gaussian template attack Similarly to Masure et al.| (2019); Yap
et al.| (2023)), we also evaluate leakage localization assessments based on their ability to do feature selection
for Gaussian template attacks. To carry out this test, we first select the top 20 measurements with the
highest estimated leakiness. We then perform a Gaussian template attack (Chari et al. 2003) using these
measurements. The Gaussian template attack is a well-known parametric side-channel attack based on
modeling px|y with a Gaussian mixture model with one component per value ¥ may take on, then using
Bayes’ rule to estimate py|x. The leakier these features are, the more-performant we expect the attack to be.

For AES datasets accuracy is often low when predicting Y from a single value of X. Thus, attack datasets
typically consist of many traces Xi,..., X recorded with a fired AES key but varying plaintext. The
target variable Y is typically chosen so that given the corresponding plaintext and ciphertext, Y is a known
invertible function of the key. One can thereby make many predictions about the key using these traces, then
‘accumulate’ these predictions through the identity logpx, .. x, |k = an\le logpx,, |k where K denotes the

47

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

Under review as submission to TMLR

key. A common performance metric for attacks is the minimum traces to disclosure (MTD), given by the
number of traces one must accumulate before the true key has the highest predicted probability mass (lower
is better). We use this metric to measure the performance of Gaussian template attacks on AES datasets.
For OTiAiT and OTP, which are not AES datasets, we simply use the mean rank of the target variable on
the attack dataset.

Note that for the second-order ASCADv1 datasets, the algorithms we consider do not reveal which of the
leaky internal AES variables a measurement leaks. This is problematic when selecting features for a template
attack, because a successful attack must have features corresponding to both of a pair of second-order leaky
variables. If we simply used the top 20 predicted-leakiest features for an attack, this would be left to chance
and make the performance metric unreliable. To address this issue, for the second-order datasets we instead
segment the T' measurements into 10 bins each containing L%j consecutive measurements, then select the
top 2 leakiest measurements from each bin.

The main shortcoming of this performance metric is that it is only sensitive to the 20 predicted-leakiest
measurements and ignores all others (e.g. it cannot detect that leaky measurements have been assigned
spuriously-low leakiness). Additionally, it assumes that the relationship between measurements and the target
variable is well-described by a Gaussian mixture model, which may not hold in practice. However, unlike the
oracle agreement metric it does not rely on human-identified first-order leaky variables, and unlike the DNN
occlusion tests it is hyperparameter-free and may be biased towards different associations than the DNN
classifiers. Thus, it is also a useful supplement to the aforementioned metrics.

E.3.5 Model selection criterion

While we consider the oracle agreement metric our most straightforward and useful performance metric, we
cannot use it for model selection (e.g. choosing hyperparameters, or early-stopping runs). This is because
it relies on ‘white box’ knowledge of the internal first-order leaky variables of second-order algorithms and
knowledge of their random masks, which we assume not to have at training time. Thus, we must devise a
model selection criterion which does not rely on this information.

Note that we can freely use the forward and reverse DNN occlusion tests and the template attack feature
selection test for model selection by running them on our validation dataset rather than the attack dataset.
Additionally, we find that because ‘good’ runs typically converge to similar leakiness assessments whereas
‘bad’ runs resemble random noise, a reasonable model selection heuristic is to 1) compute the average leakiness
value for each measurement over all hyperparameter tuning runs, then 2) use the Spearman rank correlation
coeflicient between the average leakiness assessments and those for a particular run as a proxy for the run’s
performance. We refer to this model selection strategy as the mean agreement criterion.

In Fig. [I3] we visualize the relationship between the oracle agreement and the forward and reverse DNN
occlusion tests as well as the mean agreement criterion. We find that the forward and reverse DNN occlusion
criterion are weakly correlated with oracle agreement, and that the mean agreement is strongly correlated
for every dataset apart from OtiAiT. However, while we can consistently discard bad runs using these
criteria, they typically lead to selection of suboptimal models. In this work we select ALL models using a
‘composite criterion’ based on ranking runs according to the forward and reverse DNN occlusion tests and
mean agreement criterion, then selecting the model with the highest mean ranking across these 3 criteria.
More research into model selection strategies for leakage localization algorithms is warranted.

E.3.6 Summary of experiments

We report and visualize our results in a variety of ways, which we list and summarize here.

Visualization of the best-performing leakage localization results found by ALL In Fig. we
visualize the oracle leakiness measurements and qualitatively compare them with the best ALL runs found
during our hyperparameter sweeps. For the ASCADv1 datasets we draw distinct curves for the individual
leaky variables — note the similarity between these plots and (Egger et all 2022, Fig. 3a). We see a strong
visual resemblance between the ALL outputs and the oracle leakiness assessments, despite the nonlinear
relationship between them. Additionally, there are few points assigned a low oracle leakiness but high relative

48

Under review as submission to TMLR

Dataset: ASCADvI (fixed) Dataset: ASCADV] (fixed) Dataset: ASCADVI (fixed) Dataset: ASCADv] (fixed)
116 1 1.0
o) "
126 4 S e {& 0o = Sl
£ 114 5 NS o . 100 4 .
£ £ . < . s . LI B
£ 2 £ 081 . g . .
5105 . 5 1 . : 2 . 2 80 ..
2 <] . . 8 0.7 5 -
4 z 5 . © .
Z .« . . Z & . Z LI
2 110 . 2 1224 206 g 60
] 2 3 £
g 5 = S
4 2 0.5 4 5]
$ 1084 . 40
© 1087 & 120
. 0.4
. . 1 *ue
106 4 . . d . : . . : . 20 . . nl
0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8
Oracle agreement 1 Oracle agreement 1 Oracle agreement 1 Oracle agreement 1
Dataset: ASCADvI (variable) Dataset: ASCADv1 (variable) Dataset: ASCADvI (variable) Dataset: ASCADv1 (variable)
1.0 120
. . o Sualage e %
] . 128 4 . e 0.9
= 110 . - . 100 4 . 8
g . £ . -
2 3 1274 . z 081 . g .
g 108 4 . 5 % _ 2 804 .
g 2 126 207 . H * . ve ,
% 106 Z E . 2 K .
) . 3]257 §uo— % 60 4 L. .
£ 104 . . g =05 5 &
2 2 124 ’ . 40 3}
. .
1024 0.4 .
. 1234« . 204 .
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Oracle agreement Oracle agreement 1 Oracle agreement Oracle agreement 1
Dataset: DPAv4 (Zaid vsn.) Dataset: DPAv4 (Zaid vsn.) Dataset: DPAv4 (Zaid vsn.) Dataset: DPAv4 (Zaid vsn.)
14 .
120 .- 140 .
. 1
= 13 5 K] 08 . 1204 -
g £ 1004 = H o
2 2 £ . .
5 124 5 2064 2 1004 . .
2 S 804 3 . 5 [N
Z Zz . & . 2 .
z z i . 2 804 .
2 11 . a £ 044 . g LY R
2 2 60 é’ £ I.,: g
] . 4 £ 60
£ 104 . H 02 . S '.."‘
= T e 2 40 21 40 g
. .,m . .
94 .o 8
s 5
T T T 01° T T T 0012 T T T 01 T T —
0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
Oracle agreement Oracle agreement 1 Oracle agreement Oracle agreement 1
Dataset: AES-HD Dataset: AES-HD Dataset: AES-HD Dataset: AES-HD
pre) 128.8 4 1 .
126.
£ 12650 1 < 12861 s 100 4 . .
g S X - .
3 5 128.4 . . 06 e B .
5 126.25 5 . . g K 5 80 . e
S %128.2— ° . 2 04 . 5
7 126.00 & 2 -
z . Z 12804 il ¢ O Z o0 '
B 125.75 . 9 g 024 . .
§ 1257 . . Z 12784 s .] .
4 y 5 : . © 404
12550 4 .. 2 1976« 0.04 *
125.25 4 12744, o 02 20 4
T T T T T T T T T T T T T T T T T T T
-01 00 01 02 03 -01 00 01 02 03 -01 00 01 02 03 -01 00 01 02
Oracle agreement Oracle agreement 1 Oracle agreement Oracle agreement 1
Dataset: OTiAIT Dataset: OTiAIT Dataset: OTiAIT Dataset: OTiAIT
* o7 0.84 .- 1201 .
51 A) . .
. . ot . . .
£ .. 06] ., = 100 e
34 s = 0.6 LY . g . e,
. B! . q 2 .’ KON . .
g . £ 3 -
- e . . -_" . g . . 380 .
ol z 5| . 2044 2
. a3 . .2 s s - g .
2 H . 3
5 . . = & 60 4
Ry . 0.24 . v
.- : < e . 40 4
10~ T T 1 T T 0.0 4 T T T T T
—0.5 0.0 0.5 —0.5 0.0 0.5 —0.5 0.0 0.5 —0.5 0.0 0.5
Oracle agreement 1 Oracle agreement 1 Oracle agreement 1 Oracle agreement 1
Dataset: OTP (1024-bit) Dataset: OTP (1024-bit) Dataset: OTP (1024-bit) Dataset: OTP (1024-bit)
1.06 1 10
: -t .53 101" .
144 AL Oac :,
5 105 5 H 081 .. 1204 *
oW s 2
5 104 513 . 2 064 - 3 100
3 1044 213 . £0.6 » £ .
Z . * Z . 3 H) 2 04
z Z . & . Z
2 1.03 a £ 0.4 » g
] 2 124 3 * £ 60
g 5 . = ¢ 1
£ H o . S
2 1024 .. . & . 0.24 104
o LGN I
s of 1 . .
IRy 11 . 204
Lo, T T - T — T T T 001 T T T T T T T T T
00 02 04 06 08 0.0 02 04 06 08 00 02 04 06 08 0.0 02 04 06 08
Oracle agreement Oracle agreement 1 Oracle agreement Oracle agreement 1

Figure 13: Visualization of the relationship between various model selection criteria from Sec. and the
oracle agreement for ALL runs produced during hyperparameter search. We find consistently across datasets
that the forward/reverse DNN occlusion and mean agreement criteria are consistently positively or negatively
correlated with the oracle agreement, though this correlation is often weak. We achieve slightly better results
using a composite criterion which uses considers the ‘votes’ according to all these criterion, and we adopt this
composite criterion when selecting ALL models for comparison with baselines. However, this criterion often
selects suboptimal models, and future research on leakage localization model selection strategies is warranted.

49

Under review as submission to TMLR

Dataset: ASCADv] (fixed) Dataset: ASCADvI (fixed) Dataset: ASCADvI (fixed)
0!) _
— 095 - 095 o
< = 28
= z B
< 3 00 =
5 w) w“
$ 4 A
g g o Z os
E E £
2 E E
2 EXTEN 3
g E E
S 2 g
Eor £
& &
0 200 400 600 0 200 400 600 10" 0"
Time ¢ Time ¢ Oracle leakiness of X;
Dataset: ASCADv]1 (variable) Dataset: ASCADv1 (variable) Dataset: ASCADv]1 (variable)
10— n — wer = = L.
- =
} 2. z,
= 2 2
2 = 06 w06
£] 5
g 2 2
2 0 2 2
S0 S o E o
] 3 El
S
g 102 Bo2 B
] =
£ £
& 00 & 00
0 om0 o0 70 100 120 020 w0 om0 100 120 fti 10! i
Time ¢ Time ¢ Oracle leakiness of X;
Dataset: DPAv4 (Zaid vsn.) Dataset: DPAv4 (Zaid vsn.) Dataset: DPAv4 (Zaid vsn.)
— ot o o e 4 3 e
L z 3 : 3 e oS
< < S
. 200 Zoo
s = z
Z 5 <
2w S os S s
£ 2 2
E £ £
2 & 07 % o7
2 8 2
£ 3 3
© S oo =
£ £
& &
o o0 200 s o0 o w0 so0 a0 i
Time ¢ Time ¢ Oracle leakiness of X;
Dataset: AES-H] Dataset: AES-HD Dataset: AES-HD
e = 095 095 T
Ve Bar =] f =} .
{ < ‘!\ =<
210 z 1 =
= i 2 5 B
3 | o] { s
% { 3]
3
£ 2 085 Z 085
2 £ £
S e} Z
e
2 3 om0 Sow
g E 3
S 2 g
Eor Eox
& 4
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 102 2x 1072
Time t Time ¢ Oracle leakiness of X
Dataset: OTiAIT Dataset: OTiAiT Dataset: OTiAIT
— & ey nible = . =)
10! B = 09 N = oo
8 < <
- -0 = =
= : / Sos Sos
< ey = =
2 0 o w
2 S o7 S o1
£ 2 H
2 5 5
N -Z 06 £ 06
S
] Qos 205
S 2 g
& &
0 200 100 600 800 1000 0 200 400 600 800 1000 102 10! 10 10!
Time ¢ Time ¢ Oracle leakiness of X,
Dataset: OTP (1024-bit) Dataset: OTP (1024-bit)
10° = -
2 = £
= 0o = os o
P = = .,
= < om < om i
k] 1o o] > =5
z 107 5 085 % 085
z 50 50
£ 2 £ ow)
2 e Low 20
Ky = =z
© g 0.75 g 0.75
g 0 2 &
g 2 =
£ S om0 3
e 10 E g
& &

T o 0 oo s e T w0 a0 s 1w T T I
Time ¢ Time ¢ Oracle leakiness of X;

Figure 14: A plot which qualitatively compares the estimated leakiness of the best-performing ALL runs
with the oracle leakiness values. (left column) A plot of oracle leakiness of X; vs. timestep ¢. For the
second-order ASCADv1 datasets (top two rows), note that our plots are similar to (Egger et all [2022] Fig.
3a) as they are based on the same first-order variables; differences are because we measure leakiness with
SNR whereas they use CPOI. (middle column) A plot of estimated leakiness of X; vs. timestep t according
to ALL, for the best-performing ALL run as measured by oracle agreement. We want this column to look like
the left column, up to a strictly-increasing nonlinear transform. (right column) A plot of the ALL-estimated
leakiness of X; vs. the oracle leakiness of X;. These curves show that the ALL estimates are good in the sense
that they tend to apply similar relative leakiness values to the measurements as the oracle.

50

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

Under review as submission to TMLR

ALL-predicted leakiness or vice-versa. Most of the disagreement appears to lie in the predicted relative
leakiness within groups of high-leakiness or low-leakiness measurements.

ALL training curves In Fig. we plot the evolution of various metrics over time during the ALL training
procedure for the runs chosen using the model selection criterion of Sec. [E:3.5] In Fig. [I6] we compare the
oracle agreement at different timesteps on ASCADv1-variable for ALL and selected baselines. In general
we observe that for successful ALL runs the classifier validation rank drops significantly below the random-
guessing threshold at some point in training, though it may begin to rise again as the noise distribution
trains adversarially against it. These curves are generally smooth and we do not observe significant training
instability. Unfortunately, we are not aware of a reliable way to predict oracle agreement performance from
the training curves.

Sensitivity of ALL to hyperparameters The main hyperparameters of ALL are the noise budget 7 and
the learning rates of the classifier weights @ and the noise distribution parameter 7. In Fig. we evaluate
the sensitivity of ALL to these hyperparameters by varying them individually using the optimal configuration
with respect to oracle agreement as a starting point. We find in general that performance generally varies
smoothly with these hyperparameters and stays significantly above random-guessing over a large search space,
which is desirable from a standpoint of hyperparameter tuning.

Attack performance and training curves of supervised classifiers All of the deep learning-based
baseline methods are based on ‘interpreting’ a fixed classifier which has been trained using supervised learning
to predict the target variable Y from the trace X. In Fig. we plot the cross-entropy loss and mean rank
over time for these classifiers during training. Additionally, for the AES datasets we plot the rank of the
correct key as we accumulate traces from the attack dataset. For reference we superimpose the correct key
rank during trace accumulation for the following publicly-available open-weight classifiers: the CNNpest and
MLPpgest model of Benadjila et al.| (2020), both of which are available here, and the models of |[Zaid et al.
(2020) and their simplified versions from Wouters et al.| (2020) distributed fhere. Also note that in Table |§| we
list the early-stopped validation cross-entropy loss, rank, and minimum traces to disclosure (MTD) for these
models. We find that our classifiers are able to ‘successfully’ attack all datasets (i.e. they can successfully
predict the key by accumulating all traces in the provided attack dataset), and they achieve comparable
MTD to these open-weight models on ASCADv1-fixed, ASCADv]1-variable, and DPAv4, and somewhat-worse
MTD on the AES-HD dataset.

m-Occlusion window size sweep and smoothing effect We consider as baselines m-Occlusion and
27d_order m-Occlusion. These baselines introduce the occlusion window size as an additional hyperparameter
which must be tuned. In Fig. we plot the oracle agreement performance of m-Occlusion as we sweep m,
and qualitatively show how the resulting leakiness vector is smoothed out with increasing m. In subsequent
experiments, we denote by m* the optimal value of m found in these experiments, and report results for
1-Occlusion, m*-Occlusion, 2°4-order 1-Occlusion and 2"4-order m*-Occlusion (due to the high cost of
2"d_order m-Occlusion we do not separately sweep its window size). Note that this introduces some data
leakage into the results, as we are doing validation with our test metric which incorporates implementation
knowledge that we assume not to have at training time. Because the goal of this work is to demonstrate the
efficacy of ALL, and ALL generally outperforms m*-Occlusion and 2"9-order m*-Occlusion despite the data
leakage, we consider this acceptable.

Compared to 1-Occlusion, m-Occlusion has two major differences: it occludes multiple inputs simultaneously
to increase the influence on classifier predictions, and it has a ‘smoothing’ effect which causes nearby
measurements to be assigned similar leakiness values. The latter effect can be easily simulated using average-
pooling, so we also plot the performance of ALL as we average-pool it with stride 1 and kernel size m. We
find that while m-Occlusion significantly improves performance over 1-Occlusion on the DPAv4 and AES-HD
datasets, on these same datasets we can significantly improve the performance of ALL by average-pooling,
and ALL convincingly outperforms m-Occlusion when accounting for this. We conjecture that the smoothing
effect provides a useful inductive bias for these datasets, and emphasize that it can easily be applied to any
other leakage localization technique.

o1

https://github.com/ANSSI-FR/ASCAD
https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

Under review as submission to TMLR

Table 11: Performance comparison between various leakage localization algorithms according to the oracle
agreement metric (larger is better) described in Sec. Results are reported as mean £ standard
deviation over 5 random seeds. The best result is and the best deep learning result is underlined.
We consider a result to be ‘best’ if its mean lies inside of the error bars of the result with the highest mean.

2nd-order datasets 1st-order datasets
Method ASCADv1 (fixed) ASCADvI1 (random) DPAv4 (Zaid vsn.) AES-HD OTiAIT OTP (1024-bit)
Random —0.00 £+ 0.04 —0.024+0.01 0.01 £0.01 —0.014+0.02 0.02 £0.03 0.03 £0.03
SNR 0.031 ~0.092 0.344 0.185 0.944
SOSD —0.253 0.272 0.259 0.063 0.886 0.803
CPA 0.521 —0.095 0.630
GradVis 0.48 £0.02 0.27+£0.01 0.198 £ 0.009 0.07 £0.01 0.55 £ 0.05 0.57 £0.02
Saliency 0.47 £0.02 0.26 £0.01 0.198 £+ 0.008 0.07 £0.01 0.67 £+ 0.06 0.58 £0.02
Input * Grad 0.47 £0.02 0.25£0.01 0.202 £ 0.009 0.08 £0.02 0.71 £0.05 0.60 £ 0.02
LRP 0.47 4+ 0.02 0.25£0.01 0.202 £ 0.009 0.08 £0.02 0.71 £0.05 0.60 £ 0.02
OccPOI 0.07+0.01 0.064 & 0.004 0.030 £ 0.008 0.044 +0.009 0.07 £0.02 0.01 £0.02
1-Occlusion 0.4740.02 0.2540.01 0.202 £ 0.009 0.08 +£0.01 0.71+0.05 0.60 +0.02
m*-Occlusion 0.49 £0.02 0.41+£0.01 0.32 £0.01 0.18 £0.05 0.72 £0.04 0.77 £0.01
1-Occlusion? 0.51 £0.01 0.27+£0.01 0.206 £ 0.009 0.08 £0.01 0.74 £0.05 0.60 £ 0.02
m*-Occlusion® 0.52 £0.01 0.42+£0.01 0.330 £ 0.009 0.19 £0.05 0.75 £ 0.04 0.788 £ 0.007
WoutersNet 1-Occlusion 0.18 +£0.03 n/a 0.21 +0.02 0.11+0.03 n/a n/a
WoutersNet m*-Occlusion 0.20 £ 0.03 n/a 0.29 £ 0.02 0.21 £ 0.04 n/a n/a
WoutersNet GradVis 0.19+£0.03 n/a 0.21+£0.02 0.11+£0.03 n/a n/a
WoutersNet Input * Grad 0.18 £0.03 n/a 0.21 £0.02 0.11£0.03 n/a n/a
WoutersNet Saliency 0.19£0.03 n/a 0.21 £0.02 0.11£0.03 n/a n/a
ZaidNet 1-Occlusion 0.24£0.03 n/a 0.19+0.01 0.13+£0.02 n/a n/a
ZaidNet m*-Occlusion 0.25 £0.04 n/a 0.273 £ 0.009 0.21 £0.05 n/a n/a
ZaidNet GradVis 0.25+0.03 n/a 0.19+0.01 0.13£0.02 n/a n/a
ZaidNet Input * Grad 0.25 +0.04 n/a 0.19 +0.01 0.13£0.02 n/a n/a
ZaidNet Saliency 0.25+0.03 n/a 0.19 +£0.01 0.13+£0.02 n/a n/a
ALL (ours) 0.794 + 0.006 \ \ 0.60 4 0.01 \ 0.317 + 0.002 0.224+0.03 0.782+0.001 0.848 +0.003

Quantitative comparison between ALL and baseline methods using oracle agreement, forward
and reverse DNN occlusion tests, and template attack feature selection test In Tables 12
[13] [I4] we compare the performance of ALL with our baseline methods according to the oracle agreement,
forward DNN occlusion, reverse DNN occlusion, and template attack feature selection tests, respectively. As
a sanity check against our supervised neural net architecture and training procedure, we also include results
for GradVis, Saliency, LRP, Input * Grad, 1-Occlusion, and m*-Occlusion computed using the models of
Zaid et al.| (2020) and their simplified versions from Wouters et al.| (2020]) distributed here.

We find that ALL outperforms all prior deep learning-based leakage localization algorithms on all datasets
except for DPAv4 according to the oracle agreement metric. The first-order parametric methods outperform
the deep learning methods on the first-order datasets but generally do poorly on the second-order ASCADv1
datasets due to not being sensitive to second-order associations. Unsurprisingly, SNR and SOSD achieve
near-random performance on ASCADv1-fixed and SNR and CPA achieve near-random performance on
ASCADvl1-variable. Surprisingly, CPA performs fairly well on ASCADv]1-fixed and SOSD performs fairly well
on ASCADvl-variable. We are not sure why this is the case, but conjecture it is because these methods have
some natural proclivity to ‘rule out’ measurements which are not at useful points in time for these particular
datasets (e.g. those which are not close to a clock edge). Note that this surprisingly-strong performance
compared to the deep learning baselines does not appear to carry over to the evaluations with the DNN
occlusion tests or the template attack feature selection test.

On average, ALL is the best method on the majority of datasets according to the reverse DNN occlusion test
and template attack test, but results are mixed according to the forward DNN occlusion test. However, we
find that the DNN occlusion tests have high variance, and in general there is a large overlap in error bars
(note the large number of boxed and underlined methods in Tables [I2] and [L3).

52

https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA

Under review as submission to TMLR

Table 12: Performance comparison between various leakage localization algorithms according to the forward
DNN occlusion test (smaller is better) described in Sec. Results are reported as mean =+ standard

deviation over 5 random seeds. The best result is and the best deep learning result is underlined.
We consider a result to be ‘best’ if its mean lies inside of the error bars of the result with the highest mean.

2nd-order datasets 1st-order datasets
Method ASCADv1 (fixed) ASCADv1 (random) DPAv4 (Zaid vsn.) AES-HD OTiAiT OTP (1024-bit)
Random 111+1 111.7+0.8 20+ 2 126.8 £0.1 1.30 £ 0.05 1.065 £ 0.010
SNR 117.525 118.448 11.275 [125.053] [1.209] 1.015
SOSD 115.516 106.072 11.455 125.365 1.213 1.032
CPA 111.449 117.349 11.811 125.267 2.049 1.015
GradVis 108.6 £ 0.5 96.8 £ 0.3 9.5+0.6 125.6 £ 0.3 1.9+0.2 1.013 4+ 0.002
Saliency 108.5+0.4 96.3 £ 0.4 9.5+0.7 125.6 = 0.3 1.8+£0.1 1.014 4+ 0.001
Input * Grad 108.5+0.4 96.8 £0.4 9.4+0.7 125.6 £0.3 1.74+0.2 1.013 +0.001
LRP 108.5+£0.4 96.8 £ 0.4 9.4+0.7 125.6 0.3 1.7£0.2 1.013 +0.001
OccPOI 122.3+0.8 120.8 +0.2 58 +2 12744+0.3 2.6+0.2 1.09+0.04
1-Occlusion 108.5+0.4 96.7£0.4 9.4+£0.7 125.6 £ 0.3 1.74+0.2 1.013 + 0.001
m*-Occlusion 108.2+ 0.5 1253402 18402 [1.013+0.001
1-Occlusion? 108.4 +0.4 97.0£04 9.4+£0.7 1255+ 0.3 1.74+0.2 1.013 + 0.001
m*-Occlusion? 108.2+0.5 1253402 17402 [1.013+0.001
WoutersNet 1-Occlusion 109.1 £0.7 n/a 8.7+0.8 125.4 £0.3 n/a n/a
WoutersNet m*-Occlusion 109.0 £0.8 n/a 9.0+£0.7 125440.2 n/a n/a
WoutersNet GradVis 109.3 £0.8 n/a 8.8+0.8 125.4 £0.3 n/a n/a
WoutersNet Input * Grad 109.1 £0.7 n/a 8.7+0.8 125.4+0.3 n/a n/a
WoutersNet Saliency 109.2 £0.8 n/a 8.7+0.8 125.4 £0.3 n/a n/a
ZaidNet 1-Occlusion 110.0 £ 0.4 n/a 8.7+0.7 125.5+£0.2 n/a n/a
ZaidNet m*-Occlusion 109.5 £ 0.9 n/a 9.0+£0.7 125.4 £0.2 n/a n/a
ZaidNet GradVis 109.7 4+ 0.6 n/a 8.74+0.7 125.5+ 0.2 n/a n/a
ZaidNet Input * Grad 109.9 £0.3 n/a 8.7+0.7 125.5+£0.2 n/a n/a
ZaidNet Saliency 109.7 4+ 0.6 n/a 8.74+0.7 125.5+ 0.2 n/a n/a

ALL (ours) 107.3+0.4 104+1 9.9 +0.7 125.5+0.3 1.84+0.1 1.014 £ 0.001

53

Under review as submission to TMLR

Table 13: Performance comparison between various leakage localization algorithms according to the reverse
DNN occlusion test(larger is better) described in Sec. Results are reported as mean + standard

deviation over 5 random seeds. The best result is and the best deep learning result is underlined.
We consider a result to be ‘best’ if its mean lies inside of the error bars of the result with the highest mean.

2nd-order datasets 1st-order datasets
Method ASCADv1 (fixed) ASCADvl1 (random) DPAv4 (Zaid vsn.) AES-HD OTiAiT OTP (1024-bit)
Random 111.9 £ 0.5 114+ 3 25+4 126.7£0.2 1.276 £ 0.010 1.079 £0.010
SNR 110.679 123.284 5.267 1.373
SOSD 112.074 126.765 108.267 128.216 4.957 1.369
CPA 119.875 117.885 114.857 128.367 3.792 1.364
GradVis 12594+ 0.2 127.6 £ 0.1 12241 128.0+0.3 4.2+04 1.34+0.07
Saliency 125.8+0.2 127.44+0.2 122+1 128.0+0.3 51+0.3 1.33 £ 0.06
Input * Grad 125.7+0.3 12754+ 0.2 121.9£0.9 128.14+0.3 52+0.3 1.34 4+ 0.06
LRP 125.7+0.3 12754+ 0.2 121.9£0.9 128.1+0.3 52+0.3 1.34 £+ 0.06
OccPOI 1223+ 04 124.6 £0.2 43+1 127.0+0.3 3.6 £0.3 1.09 £0.04
1-Occlusion 125.8+0.3 127.44+0.2 122+1 128.14£0.3 52+0.3 1.34 £+ 0.06
m*-Occlusion 126.0 £ 0.2 12744 0.2 121+1 128.5 4+ 0.2 53+0.2 1.30 £0.04
1-Occlusion? 125.8 £ 0.3 12754+ 0.2 122.0£0.9 128.14+0.3 53+£0.2 1.34+0.06
m*-Occlusion? 126.1+0.2 12744+ 0.2 121.3£0.9 128.5 4+ 0.2 5.3+0.2 1.30 £ 0.04
WoutersNet 1-Occlusion 121.9+0.7 n/a 116 £5 128.2+0.1 n/a n/a
WoutersNet m*-Occlusion 122.4 +0.8 n/a 119.3+0.7 128.4 +0.2 n/a n/a
WoutersNet GradVis 121.8 £ 0.7 n/a 116 +£5 128.2+0.1 n/a n/a
WoutersNet Input * Grad 121.9+0.7 n/a 116 +£5 128.2+0.1 n/a n/a
WoutersNet Saliency 121.8 £ 0.7 n/a 116 +4 128.2+0.1 n/a n/a
ZaidNet 1-Occlusion 12243 n/a 116 +£3 128.1+£0.2 n/a n/a
ZaidNet m*-Occlusion 123 £3 n/a 11942 128.4+ 0.3 n/a n/a
ZaidNet GradVis 12243 n/a 117+3 128.1+£0.2 n/a n/a
ZaidNet Input * Grad 122 £3 n/a 116 +3 128.1+0.2 n/a n/a
ZaidNet Saliency 12243 n/a 117+3 128.1+0.2 n/a n/a

ALL (ours) 126.4 £ 0.2 127.96 & 0.06 12541 128.3 £ 0.2 ‘ 5.6 +0.2 ‘ ‘ 1.39 + 0.05 ‘

o4

Under review as submission to TMLR

Table 14: Performance comparison between various leakage localization algorithms according to the template

attack feature selection test (smaller is better) described i
=+ standard deviation over 5 random seeds. The best result is

4l Results are reported as mean

et and
o

boxed | and the best deep learning result is

underlined. We consider a result to be ‘best’ if its mean lies inside of the error bars of the result with the

highest mean.

2nd-order datasets

1st-order datasets

Method ASCADv1 (fixed) ASCADvl (random) DPAv4 (Zaid vsn.) AES-HD OTiAiT OTP (1024-bit)
Random 1293 £ 1000 56421 £ 40000 449 £ 100 25000.000 1.2£0.1 1.44 £0.02
SNR 5496.010 54834.990 2.590 17159.690 1.058 1.385
SOSD 7733.870 3237.250 91.410 17520.530 1.059 1.398
CPA 3826.440 100000.000 10.540 18974.510 1.101 1.385
GradVis 686 + 100 1162 £ 1000 2.7£0.1 20014 + 6000 1.4+0.3 1.378 £+ 0.007
Saliency 726 + 100 1412 4 2000 2.7+0.1 19438 + 6000 1.14 £0.02 1.379 £ 0.005
Input * Grad 675 £ 100 1194 4 2000 2.6+0.1 19893 £ 6000 1.14 4+ 0.02 1.378 £ 0.003
LRP 675+ 100 1194 £ 2000 2.6 £0.1 19893 + 6000 1.14 £0.02 1.378 £+ 0.003
OccPOIL 787 + 100 942 + 200 71430 25000.000 1.08 £0.03 1.47 £0.05
1-Occlusion 667 £ 100 1376 4 2000 2.65 £ 0.08 20011 £6000 1.144+0.02 1.379 £ 0.003
m*-Occlusion 673 £ 70 727 £ 400 9+1 16283 £+ 10 1.17+0.02 1.382 £ 0.007
1-Occlusion? 709 4+ 100 1086 4 1000 2.65 £ 0.08 20222 £ 6000 1.14 4 0.02 1.378 £ 0.003
m*-Occlusion? 642 £+ 60 710 £ 400 9+1 16033 £700| 1.16 £0.03 1.381 £ 0.008
WoutersNet 1-Occlusion 6454 + 4000 n/a 2.9+0.6 20278 £ 3000 n/a n/a
WoutersNet m*-Occlusion 4408 + 4000 n/a 11.7+£0.6 16124 + 300 n/a n/a
WoutersNet GradVis 6230 & 4000 n/a 29+0.5 19539 + 5000 n/a n/a
WoutersNet Input * Grad 4988 + 4000 n/a 3.0+0.6 20546 £ 4000 n/a n/a
WoutersNet Saliency 5878 £ 4000 n/a 2.8+0.5 20151 + 4000 n/a n/a
ZaidNet 1-Occlusion 2236 £+ 2000 n/a 2.6£0.3 20696 + 2000 n/a n/a
ZaidNet m*-Occlusion 2485 + 2000 n/a 9+2 16124 + 300 n/a n/a
ZaidNet GradVis 2560 £ 3000 n/a 3.0£0.8 22790 + 3000 n/a n/a
ZaidNet Input * Grad 3234 £ 3000 n/a 2.5+0.3 21600 £ 3000 n/a n/a
ZaidNet Saliency 2295 4 2000 n/a 24404 22561 £ 3000 n/a n/a

ALL (ours)

17582 £ 5000 1.114+0.02 |1.363 4 0.007

95

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

Under review as submission to TMLR

Distribution of performance during hyperparameter sweeps In Fig. we show the distribution of
performance during the random hyperparameter searches for ALL and selected baselines. We see that ALL
convincingly outperforms all baselines besides m*-Occlusion on all datasets. Additionally, it has a higher peak
performance than m*-Occlusion on every dataset except for DPAv4, and a higher median performance on
ASCADvl1-fixed, ASCADv1-variable, and AES-HD. As previously noted and considered again in subsequent
ablation studies, we can further improve the performance of ALL relative to m*-Occlusion by mimicking its
smoothing effect with stride-1 average-pooling.

E.3.7 Ablation studies

ALL has many differences from prior work, so here we run ablation studies to evaluate the impact of some of
the important individual differences. For each ablated design decision, we run a new 50-trial hyperparameter
sweep and plot the distribution of performance in terms of oracle agreement. Results are shown in Fig.
with the salient results from Fig. [20] copied over for reference. We ablate the following design decisions:

Heavy input dropout for the supervised classifiers used by baselines See the distributions labeled
‘m*-Occl + heavy dropout’ The ALL classifier is trained on occluded inputs with the possible ‘heaviness’
of the occlusion chosen spanning a wide range and chosen as a hyperparameter to optimize our proxy for
oracle agreement. In contrast, the baseline methods are based on ‘interpreting’ fixed classifiers which have
been trained with input dropout chosen from {0.0,0.1} to optimize classification performance. A plausible
conjecture is that ALL has strong performance because the heavy input corruption ‘encourages’ the classifier
to compensate by leveraging a wider variety of input-output associations, whereas because the supervised
classifiers train on uncorrupted or lightly-corrupted inputs, they have no such ‘incentive’. We test this
assumption by tuning the classifiers with input dropout chosen from {0.05,0.1,...,0.95} (the same search
space that ALL uses for 7). We plot the performance distribution for m*-occlusion and 1-occlusion. For clarity
we omit GradVis, Saliency, LRP and Input * Grad, but these have similar trends as 1-occlusion. We did not
test OccPOI or second-order occlusion because they are costly and in our prior experiments second-order
m~occlusion performs similarly to m-occlusion and OccPOI performs poorly compared to baselines.

We see that this heavy input dropout leads to significant improvements to the maximum and median
performance on all datasets, though ALL still convincingly outperforms 1-occlusion and m-occlusion except
on DPAv4 and OTiAiT. To our knowledge no prior work has explored the effect of regularization strategies on
leakage localization performance of methods which ‘interpret’ supervised classifiers, and this result suggests
that such research may be fruitful.

Adversarial — ‘Cooperative’ leakage localization See the distributions labeled ‘ALL (cooperative)’.
The intuition behind ALL is that we train a noise distribution to distribute a fixed amount of noise to
minimize the performance of a classifier, and we then interpret noisier measurements as leakier. Along the
lines of this intuition, we could also train it to distribute noise to mazimize the performance of a classifier,
then interpret less-noisy measurements as leakier. We try this approach and find that it typically degrades
performance relative to the adversarial version of the algorithm. We conjecture that this is because the
adversarial approach encourages the classifier to rely on a diverse assortment of input-output associations,
whereas the cooperative approach does the opposite.

Omitting the noise conditioning to the classifier See the distributions labeled ‘ALL (unconditional).
We feed the occlusion mask as an auxiliary input to the ALL classifiers, motivated by our theory which views
it as a family of classifiers trained in an amortized manner via conditioning a single neural net. We test
omitting this auxiliary input and find mixed results. On ASCADv]1-fixed and DPAv4, ALL achieves stronger
performance without this auxiliary input, whereas on AES-HD it achieves stronger performance with this
input and on ASCADvl1-variable, OTiAiT, and OTP results are approximately the same. For future work it
is likely justifiable to simplify ALL by omitting this conditioning.

Average pooling ALL to mimic the smoothing effect of m*-Occlusion See the distributions labeled

‘ALL + AvgPool(m*)". Recall that we have chosen the occlusion window size m* by sweeping it over successive
odd numbers until finding a local maximum in oracle agreement. We find that this consistently improves

56

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

Under review as submission to TMLR

performance. One plausible explanation for the performance improvement is that large-window occlusion has a
‘smoothing’ effect which amounts to an assumption that temporally-close measurements have similar leakiness.
This is likely true for some datasets, and as 1-occlusion is always included in the window size search space,
m™* occlusion will never degrade performance relative to 1-occlusion. To test this explanation we average
pool ALL with stride 1, kernel size m*, and zero-padding to preserve dimensionality, which creates a similar
smoothing effect. Our results seem to support this explanation, with average pooling significantly improving
the performance of ALL on the DPAv4 and AES-HD datasets, where m*-occlusion also has significantly
stronger performance than 1-occlusion. Note that using oracle agreement to choose an occlusion/pooling
window size causes data contamination, so while it is fair to compare results for m*-average-pooled ALL to
those of m*-occlusion, they cannot fairly be compared to any other baseline.

E.3.8 Theoretical and empirical computational cost of deep learning methods

In table[I5] we list the theoretical computational complexity of the considered methods, as well as the measured
wall clock time to run them. While for fairness our experiments use an equal number of training steps for ALL
and supervised learning, note that in general we suspect the latter will converge in fewer training steps; thus,
these measurements likely overestimate the practical wall-clock time of supervised training. Additionally,
note that OccPOI takes significantly more time than m-occlusion despite having the same computational
complexity; this is because it requires Q(T") sequential forward passes through the model, whereas all forward
passes may be done in parallel for m-occlusion. There is additional variance for the runtime of this method
because we choose the attack dataset size to be as small as possible while comfortably allowing the classifier
to attain a correct-key rank of 0 — e.g. AES-HD takes the longest because we use the full attack dataset. We
omit the parametric statistics-based methods from consideration, but these are done on the CPU and take a
negligible amount of time compared to the deep learning methods.

Table 15: Comparison of the computational cost of methods considered in our work. We denote by Cg
and Cp the cost of a forward and backward pass through our neural net respectively, N the dataset size,
Neup and ngp the number of epochs required for supervised learning and ALL respectively, and T' the data
dimensionality. We omit the parametric statistics-based baseline methods because they are done on the CPU
and take a negligible amount of time relative to the deep learning methods. Runtimes are reported as mean
+ standard deviation over 5 runs. TThese methods are used to ‘interpret’ a trained supervised classifier, but
for comparison we report the cost of running them after training the classifier. In practice one would also
incur the cost of supervised training (first row).

Method Total FLOPS A6000 minutes per trial

ASCADv1 (fixed) ASCADvl (random) DPAv4 (Zaid) AES-HD OTiAIT OTP
Supervised training 2.09 +0.01 3.68 £0.02 1.98 4 0.04 1.78 £ 0.03 0.17 £0.02 0.448 + 0.009
GradVisf 0.0675 £ 0.0008 0.263 £ 0.002 0.0080 £ 0.0001 0.0384 4+ 0.0003 0.0080 + 0.0001 0.0666 + 0.0005
Saliency' 0.078 + 0.001 0.300 + 0.003 0.0086 = 0.0002 0.048 + 0.002 0.0085 £ 0.0002 0.0881 = 0.0004
Input * Grad? 0.080 + 0.002 0.3023 £ 0.0007 0.0086 £ 0.0002 0.049 £ 0.002 0.0086 £ 0.0002 0.086 + 0.003
LRPf 0.080 + 0.001 0.3045 + 0.0008 0.0088 £+ 0.0002 0.050 +0.002 0.00861 + 0.00007 0.087 + 0.005
m-Occlusion’ 0.1235 £ 0.0004 0.952 & 0.003 0.0644 £ 0.0003 0.1781 % 0.0007 0.018 +0.002 0.247 +0.002
27d_order m-Occlusion’ VO 16.6 £ 0.1 327+1 81.1£0.5 68.4+0.6 4.42 +0.02 70.6 £0.3
OccPOTf Q(NCFT) 2.29 4+ 0.09 7.6+0.4 0.709 % 0.009 36.5+0.6 0.042 +0.002 0.0437 £ 0.0004
ALL (Ours) O(Nnan(Cr + Cg)) 32402 47402 2.44 +0.05 2.28 +0.05 0.200 + 0.005 0.323 + 0.004

F Limitations

For real side-channel leakage datasets we lack ground truth knowledge about the leakiness of each measurement,
and all evaluation metrics considered in our paper have limitations. In particular:

e The ‘oracle’ leakage assessments used in the main paper ignore leakage of order greater than 1 except
where higher-order leakage may be decomposed into first-order leakage of multiple variables, similarly
to the analysis of [Egger et al.| (2022). This relies on careful analysis of implementations by humans,
and is subject to error and oversights. Additionally, the SNR is not guaranteed to detect even
first-order leakage — it is sensitive only to the influence of the secret variable Y on the mean of each

o7

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Under review as submission to TMLR

X; | 'Y, and will not detect cases where the distribution of X; | Y changes with the mean remaining
fixed (e.g. if X; is Gaussian distributed with Y-dependent variance and Y-independent mean).

o The DNN occlusion tests and similar metrics proposed by [Hettwer et al.| (2020) are sensitive only to
the associations between X and Y that the neural net exploits. The superior performance of ALL
compared to prior deep learning-based algorithms, as well as work in other domains such as |Geirhos
et al.| (2020); [Hermann & Lampinen| (2020)), suggests that DNNs are prone to exploiting some but
not all of the associations at their disposal. Additionally, such metrics may be biased in favor of deep
learning methods due to both leveraging SGD-trained DNNs.

o Evaluation via feature selection for a Gaussian template attack as done by [Masure et al.[(2019); Yap
et al.| (2023)) is sensitive only to the top ~ 10 leakiest measurements identified by an algorithm and
ignores all others, which is a major limitation. Additionally, for second-order datasets a template
attack will be unsuccessful unless both of a leaking pair of variables (e.g. r3 and Sbox(ws @ k3) @ r3
for ASCADv1) are leaked through the selected measurements, and because no method considered in
our work except for second-order occlusion has any ability to discern the particular variable leaking
through a measurement, this would rely on random chance.

We believe it is important for work in this domain to use a variety of evaluation strategies to compensate for
these individual limitations. This is similar to image synthesis research where it is common to use precision,
recall, and FID score to avoid the individual limitations of each of these metrics.

ALL (alongside the other deep learning-based method we consider) has major advantages over manual analysis
and simpler parametric methods. However, it also comes with its own limitations:

e Deep learning methods such as ours have a far larger computational cost than parametric methods.
Additionally, ALL is more computationally-expensive than the prior deep learning algorithms apart
from OccPOI and second-order occlusion. This increased cost is not fully reflected in our reported
runtimes because while for fairness we have run both ALL and supervised learning-based methods for
the same number of training steps and post-hoc early-stopped the latter, in practice we find that
supervised learning usually converges to good solutions in fewer training steps than ALL.

e Deep learning methods such as ours require hyperparameter tuning and will give incorrect leakiness
estimates if poorly tuned. We view ALL as complementary with traditional approaches rather than
as a replacement. Traditional approaches can cheaply exploit domain/implementation knowledge
and detect many types of leakage for a low computational cost. ALL can then be used to search for
additionally leaking measurements not detected by these approaches.

Additionally, a limitation of the literature on deep side-channel leakage localization which we do not address
in this work is that experiments are done at a smaller scale than the state of the art in deep side-channel
attacks, and the considered algorithms would likely need to be significantly scaled up for practical use. The
largest-scale experiments in this and prior work consider the ASCADv1-variable dataset, which consists of
300k 1400-measurement power traces and can be attacked with simple MLP and CNN architectures. The
1400-length power traces are extracted from longer 250k-length traces via downsampling and cropping in
the general vicinity of known leaky instructions which were themselves located with a white box analysis.
We believe that a critical direction for future work in this area is scaling existing methods to larger-scale
architectures applied to uncropped high-dimensionality datasets, such as the transformer architecture of
Bursztein et al.| (2023) and the raw ASCADv2 dataset (Masure & Strullu, 2023|), which consists of 800k
1M-measurement power traces.

Our experiments consider mainly temporally-synchronized power trace datasets, which we believe is reasonable
because in practice implementation designers are likely able to collect synchronized traces, as the dataset
authors have done (e.g. by using the clock line of the hardware to trigger an oscilloscope). In practice a
violation of this condition would mean that leakage appears ‘spread out’ (e.g. see row 3 of Fig. {4, making it
more-challenging for designers to identify its source.

o8

1625

1626

1627

1628

1629

1630

Under review as submission to TMLR

A limitation of ALL, alongside the parametric statistical methods and OccPOl, is that they produce only a
single vector summarizing leakage over the entire dataset, rather than for individual traces. As observed by
Wouters et al.| (2020)), the neural net attribution methods can also be used to assign leakiness estimates to
individual traces, though to our knowledge no work has systematically studied this ability. This would be a
useful direction for future work, and would likely require innovation in performance evaluation strategies
beyond those introduced in this paper or prior work.

99

Under review as submission

to TMLR

MC estimate of £(6,7)

MC estimate of £(6,7)

05

MC estimate of £(6.7)

Figure 15: Training curves for ALL with the hyperparameter configuration chosen using our composite model
selection criterion. Grey shaded regions denote ‘pretraining’ phases where we optimize @ but not 7). Note that
jumps in the traces happen because we set 7 = 0.5 for pretraining and change it to the setting chosen through
hyperparameter search for training. (left column) The per-minibatch estimates of our objective function
£(6,7) (i.e. negative cross-entropy classification loss of the classifier) during training. We are optimizing 6
to maximize this value and 9 to minimize it. (center column) The mean rank of the correct label in the
logits of the classifier (lower corresponds to higher classifier performance). We use this instead of accuracy
for its finer granularity. (right column) The performance in terms of oracle agreement over the course
of training; higher is better, as it indicates that the current ALL leakiness estimates are closer to being a

Dataset: ASCADv]1 (fixed)

Dataset: ASCADv1 (fixed)

Dataset: ASCADv]1 (fixed)

train

— val

130

120

train

Lo7s

1050

N
£ 10 v g”“
g \ 5}
= 10 \ £ 05
] \ g
g \ 8
0 \ g
E \ B0+
S w \ o
< \ 203
g7 \ £ o2
5 \ °
@ \, j 01
a0 N 00
0 00 10000 15000 20000 o S0 000 1500 20000 0 000 10000 15000 20000
Training step Training step Training step
Dataset: ASCADvI (variable) Dataset: ASCADvI (variable) Dataset: ASCADv1 (variable)
150 =
train 06
val
o Py
El E
= E 04
£ 1 5
3]
2 503
5 <
& m K
< \ S 02
Z \- £
E ~ S
T ow VIS 01
~
~ 00
w0
0 0000 20000 30000 40000 o 0000 20000 30000 40000 0 0000 0000 30000 40000
Training step Training step Training step
Dataset: DPAv4 (Zaid vsn.) Dataset: DPAv4 (Zaid vsn.) Dataset: DPAv4 (Zaid vsn.)
10
train i train
030
— vl o val
5 —
=R 20
g g
/ 5 E o2
g 8
E Bbo1s
5 &
4 Y
b= S 0
Z w 8
E]
= O s
00
Oy
000
o
0 200 0 600 s 10000 0 200 400 eo0 so0 10000 0 20m 4o oo S0 10000
Training step Training step Training step
Dataset: AES-HD Dataset: AES-HD Dataset: AES-HD
130 N
W train
Aacand val 02
—wd | vl
% by
E Eox
S | g
s | £
g 3
g i S o1
E i 5
5 &
< 2w
7w 2
Z g
o © o
80
000
0 S0 10000 15000 20000 0 S0 10000 15000 20000 I 00 10000 1000 20000
Training step Training step Training step
Dataset: OTiAIT Dataset: OTiAIT Dataset: OTiAIT
= train N train 08 -
— vl N val
L oo
g 5
EE E
g 8
£ 504
o &
2 o
£ 3
= ¢}
O,
i
. 00
0 2o a0 oo so 10 0 200 w0 o s0 100 0 20 a0 w0 w0 1000
Training step Training step Training step
Dataset: OTP (1024-bit) Dataset: OTP (1024-bit) Dataset: OTP (1024-bit)
i 1250 .
rain | rain s
val | 1 val
- o1
1200 <
g 5
= £ 06
g 3
3]
£ 110 5o
5 <
& 15 S04
o g
&um S s

0

0 40 600

Training step

S0 1000

0 a0 40 o0

Training step

S0 1000

strictly-increasing function of the oracle assessments.

60

0 20 40 o0

Training step

50 1000

Under review as submission to TMLR

= ALL (ours) 9~ Gradient-based methods
OccPOI (final) ¥
m*-Ocelusion (final) /=== m-Occlusion

o
>
s

L

0.4 4

Oracle agreement 1
s o
R
: :

e
L

=4
=3

0 10000 20000 30000 40000
Training steps

Figure 16: A comparison of the evolution of oracle agreement vs. training steps for ALL and selected baselines.
Note that the oracle agreement for ALL is flat for the first 20k training steps and jumps up for the remaining
steps because we leave all elements of « fixed at 0.5 during our ‘pretraining’ phase of training, and update
it only during the second half. For 2"%-order m*-Occlusion and OccPOI, due to their high computational

cost we report only the final performance after training via horizontal lines, rather than the evolution of
performance during training.

Dataset: ASCADvI (fixed) Dataset: ASCADvV1 (variable) Dataset: DPAv4 (Zaid vsn.)
o Leaming ratg of 7 eaming rate of e Leamingraigorn
Learning rate of 6 Learning rate of 6 Learning rate of 6
106 1072 10-1 1073 1072 10-° 1074 1072 1072 1077 106 102 104 1073
et S S S S PGP - od 0.8 1 e
<—0.757:-0"'-~'v"="‘4'3'. <~ ‘.:. ..;:P‘—’s'o Tog] ettt T AETEREETTN
- \ - | .&'ﬁ." « % 2 031 &% e eeege oo g
% 0.50 \ g 06 © g -
.50 .
e
g 0.25 ., £ 5 s
)))
S e K 20, P
Q . Q Q
: E |/
.
—0-50 1 : : : : —0.2 : : : : 00 pEimosomnos —
0.2 04 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Budget hyperparameter 7 Budget hyperparameter 7 Budget hyperparameter 7
Dataset: AES-HD Dataset: OTiAIT Dataset: OTP (1024-bit)
__Learning rate of _Learningrate of _ Learning rate of 77
10-° 104 1072 1072 104 1072 1072 10-* 104 1072 1072 10-*
Learning rate of 6 Learning rate of 6 Learning rate of 6
107 10-° 10-* 1073 1072 1077 10-°¢ 10-° 10~ 10-°¢ 10-° 104 1072 1072
0.3 1 . R 3 [
< <084 O'..:‘.::o:. < ...o't"....H.H
- - e * ® . — 0.8 . S
= = & - . = ¢ el
Q 3) . . \ Q -, %
g 021 S 069 ev . £ 06{ "
)) t Q ¢ .
g g B . g ’
eh &n 041 N &b
< 0.1 ~ . 004
% % 0.2 ’ ° % f
] < ° & 0.2
j j j 4
o 0.0 4 o 00 T REdEEEE - - — - - — e ———————— o &
0.0 FEmmmmmmmmmmmmmmmmmmm oo
02 04 06 08 02 04 056 08 02 04 056 08
Budget hyperparameter 7 Budget hyperparameter 7 Budget hyperparameter 7

Figure 17: A plot of the performance of ALL as we perturb its 3 main hyperparameters: the noise budget
7 and the learning rates of the classifier weights 8 and the noise distribution parameter 7. We find that
performance varies smoothly with these hyperparameters and stays significantly better than random guessing
over a large region of the search space, which is useful from a standpoint of hyperparameter tuning. We
consider 7 values in np.arange(0.05, 1.0, 0.05) and learning rates scaled by values in np.logspace(-2,
2, 19) relative to their optimal values according to the oracle agreement metric. All hyperparameters other
than those being perturbed are left at their optimal values according to the oracle agreement metric. We
repeat trials for 5 random seeds and report their mean with dots and + 1 standard deviation with shading.

61

Under review as submission to TMLR

Dataset: ASCADv] (fixed) Dataset: ASCADvVI (fixed) Dataset: ASCADvI (fixed)

600

—— Benadjila’s MLPpe
—— ALL (ours)

train 3 train h —— WoutersNet
120 ’
75 val 1N val ZaidNet
0 y -) 2 —— Benadjila’s CNNyq
10

50

0

Correct AES key rank

Cross-entropy loss |
Mean correct key rank |

0

o 0 10000 1500 20000 0 S0 10000 1s0m 20000 o o it it ot
Training step Training step Traces seen
Dataset: ASCADv]1 (variable) Dataset: ASCADv]1 (variable) Dataset: ASCADv]1 (variable)
56 w0

1 — Benadjila’s CNNo
—— ALL (ours)

train
— val

100

50

Cross-entropy loss |

Mean correct key rank |
Correct AES key rank

m
0 who 20000 s 40000 0 W00 20000 s0000 40000 L T R TR TR
Training step Training step Traces seen

Dataset: DPAv4 (Zaid vsn.) Dataset: DPAv4 (Zaid vsn.) Dataset: DPAv4 (Zaid vsn.)

train

train —— WoutersNet
val ZaidNet
—— ALL (ours)

120

val

100

50

0

0

Cross-entropy loss |

Mean correct key rank |
Correct AES key rank

000 400 G000 S000 10000 0 2000 4000 GW0 000 10000 i It 10

Training step Training step Traces seen
Dataset: AES-HD Dataset: AES-HD Dataset: AES-HD

. 250
. train Pﬁxassﬂ——;r train
5.8 120
val val
56 \ 20

% —— WoutersNet
| ZaidNet

i — ALL (ours)

n i

100

50 \

0 \

Cross-entropy loss |
s
Mean correct key rank |
—

Correct AES key rank

S 10 Te——

0 5000 10000 15000 20000 0 S0 10000 15000 20000 it it i it
Training step Training step Traces seen

Dataset: OTiAIT Dataset: OTiAIT

train 30 train

val val

Cross-entropy loss |

Mean correct key rank |

|
L LJMA ks e
0 20 w0 o0 s0 100 0 20 a0 6o s0 1000
Training step Training step
Dataset: OTP (1024-bit) Dataset: OTP (1024-bit)

L16

train train

val | =11

val

i

P
S

T
2

G Los
3

rre

S 106
3

0.10

Cross-entropy loss

g1
3

0f Y 1 = e

il) Al L
000 " Lo

0 a0 a0 o0 so 100 0 =0 a0 a0 s 100
Training step Training step

Figure 18: Training curves and attack performance of the supervised classifiers which are ‘interpreted’ by the
deep learning baseline methods. (Left column) The training + validation cross-entropy loss vs. training
steps for the supervised classifiers. (center column) The training + validation rank vs. training steps for
the supervised classifiers. (right column) The rank of the correct key as we accumulate predictions on the
attack dataset for the supervised classifiers, which is a common way of evaluating attack performance in the
side-channel literature. For reference, we superimpose the results using open-weight classifiers provided by
Benadjila et al. (2020) and Wouters et al.| (2020). Note that our classifiers can successfully attack all datasets.
They get comparable performance to the open-weight classifiers on ASCADv1-fixed, ASCADv1-variable and
DPAv4, and somewhat worse performance on AES-HD.

62

Under review as submission to TMLR

Oracle agreement Window size: 1 Window size: m* =3 ‘Window size: 19

—— m-occlusion
Avg-pooled ALL (ours)

020

0.08

D«;taselfAS(;ADvgl (fixed)
%
Eglimalcd leakiness of X;
%
Estimated leakiness of Xy
%
EEstimzéted lea;(iness &f)f X
%

2 2 015
006

0.10
0.04

2 00

02
5 10 15 0 20 100 600 0 20 100 600] 200 100 00
Occlusion window size Timestep ¢ Timestep t Timestep t
Oracle agreement Window size: 1 Window size: m* =7 Window size: 19

— —— m-occlusion
Avg-pooled ALL (ours)

Datidset AfSCAD\;l (variable)
W

F;nm;ned];akmiew 0~=f X
g
Es;imate; lea.ki:ness 02f X !
i
?stin;aled: leak;inesiof lz}
i

06

00 00

00

5 10 15 0 250 S0 ™0 1000 1250 0 20 S0 T 1000 1250 0 200 w0 0 1000 1250
Occlusion window size Timestep ¢ Timestep ¢ Timestep ¢

Oracle agreement Window size: 1 ‘Window size: m* = 41 ‘Window size: 49

— m-occlusion

~ 0350 o
> S0 - N
g Avg-pooled ALL (ours) 3 = <
> 0325 % g b S5
=]
] g 2 2
0.300] i
s Zo0s = =
Z 027
& o B 3 3
= ES =R =
2 o] E £
8 Zo 2 =
A o200
0.0 0 0
)) 30 10 0 0 000 2000 000 4000 0 000 200 8000 4000] 000 2000 00 4000
Occlusion window size Timestep ¢ Timestep ¢ Timestep ¢
Oracle agreement Window size: 1 ‘Window size: m* = 31 Window size: 49
030
m-occlusion 0.020 015 017
a5 Avg-pooled ALL (ours) | > >3 2
5 o 0.018 o 014 oy M0
a e | B 5] S
= % 201 2 015
4 8 3
% o 8 oo £ g
2 g g on 2 on
o 8 oo 3 2
2 015 32 = =013
g 2 2]
)3 3 002 g 010 E
8 £ £ £ 01
010 Z oo Z 00 =2
o o oo
0.08
0.008 010
0 0 2 30 10 50 0 200 400 600 800 1000 1200 0 200 400 600 S0 1000 1200 0 200 400 600 SO0 1000 1200
Occlusion window size Timestep ¢ Timestep ¢ Timestep ¢
Oracle agreement Window size: 1 Window size: m* =3 Window size: 19
. 190
0789 === —— m-occlusion 12 30
076 Avg-pooled ALL (ours) >3 3 120
“a 10 ‘AE 25 Na
!<:: 074 L @ 2 & 100
2 2 2
gom g s Rl £
g B S w
- < <
7 om0 S 6 S5 3
g 2 2 = w0
& oes 32 2 3
)3 g4 ERU 2 .
8 o5 E E g
7 2 Z 5 7
064) I Z
062 0 0 0
3 10 15 0 200 40 60 s 1000 0 20 40 60 so0 1000 0 20 40 G0 %0 1000
Occlusion window size Timestep ¢ Timestep ¢ Timestep ¢
Oracle agreement Window size: 1 Window size: m* =5 Window size: 19
05 #7 —— m-occlusion 0.10 0.16 0250
= Avg-pooled ALL (ours) | >3 = 0225
B om0 = o =
3 S 008 1} S 0200
2 2 2 012 2
= 075 o] o g
S om 2 2 2 01rs
= g 006 2 010 Z
S < S 0,15
gon B 3 g o
008
g B ow E 3 0125
2 065 3 S 006 3
£ £ £ £ o
8 2 o0 Zom Z
060 & 4 & 007
002
05 0.00 0050
5 10 15 0 20 a0 60 s00 1000 O 20 a0 60 800 1000 0 200 40 60 800 1000
Occlusion window size Timestep t Timestep t Timestep ¢

Figure 19: A sweep of the window size m for m-Occlusion. In the first column we plot the oracle agreement
vs. window size (red curve). For reference we also plot the output of ALL (blue curve) as we average-pool it
with stride 1 and kernel size m. Note that ALL consistently outperforms m-Occlusion for a wide range of
window sizes. In the second, third and fourth columns we plot the m-Occlusion leakiness assessment for
m = 1, optimal m, and maximum considered m. Observe that there is a smoothing effect as we increase m.

Under review as submission to TMLR

Dataset: ASCADv1 (fixed)

Dataset: ASCADv1 (variable)

0.8
0.8
<+~ T 7T < 06 H
= 061 =
2 |o g
Q [} (] o 041
Boal 8 : H . o) 8
= . . =
& &l o
<) &
2 024 o 216 !
Q Q g
& 8 s H
& i .
o O o4
0.0 g
T T T T T T T —0.2 T T T T T T T
S & & & p g) & & & D> n 5
& ¢ ¢ & & & F & & E
& ¥ S & ¥ & §§
V\’ N o & & & \}» N N & & <
> oy K » A7 N &
Dataset: AES-HD Dataset: OTiAiT
0.8
F
= 06 8
= =
= g -]
L 0.2 Q
g . : g 044
5] 5]
e = b
; 0.24
D 014 2
13} [}
o i3} 0.0
& &
= 0.0 =
o) O -024
) ¢} (o) e}]
° —0.4
—0.14{ ©
T : : : T : : T : : : . : :
Y L = oo D e S D S > > g %)
\0\,{’ \&o < &\o (béx & & *&\\c @é \&\e \&\e me\ & F @)\o
& S S I & & RS & o & &
»oy ® > ’ S

Oracle agreement 1

Oracle agreement 1

Dataset: DPAv4 (Zaid vsn.)

0.

o

0.

o

0.1+

MTTTT

0.0 o 8] ° ° [}
~0.1
)
: " : : : : :
o) & & & 3
S & & e
& N O * >
\}) OC/ OO 0\’
LN N N
Dataset: OTP (1024-bit)
0.8
o
]
; ?
|G %I E? %I
' rfl I:—i_—l
44 ° o o
0.4 ® °
0.2
004 ©
" : : : : : :
& 3 \)%\OQ \\;\00 bA\% & \gg « é@
N & & * >
\}) < o > S
v N W

Figure 20: Distribution of performance of ALL and selected baseline methods during a 50-trial random
hyperparameter search. Note that ALL generally outperforms baselines over a wide range of configurations.
Blue dots denote individual samples, and boxes extend from first quartile to third quartile with a line at the
median and whiskers extending to the furthest dot lying within 1.5x the interquartile range from the box.

64

Under review as submission to TMLR

Dataset: ASCADv1 (fixed) Dataset: ASCADv1 (variable) Dataset: DPAv4 (Zaid vsn.)
0.8
* F
“— “— 064 <+~ 03]
g 0o z z ° 8 ﬂ
£ ule 8 g ™10 8 g 02 e ©
]] ° o] 8 o
sh 021 °© e 5 "21o o 501 ©
) | °) < ° e °
o 00 8 Q00 ()
— — —] (e} 8
o o S 00 o o o
S 0.2 5]]
S S] S
—0.4 —0.14
—0.4 o
e R .
O @ @ & & & & & O @ @ » & RS D@ @ D & RS
Ke &S @ S & Q £ U N » & S & i
BRGNS E RO S O N
xvt‘ wo L é&o(‘ S o SEEN xy$ w & & z“'@ A$ N Ys% »o & &o“ O R SN
5 RN x 5 x o S X x
L T & g oY & w R g
N N N N
Dataset: AES-HD Dataset: OTiAIT Dataset: OTP (1024-bit)
0.4
0.8 4 %,
< 0.3 4 <~ 8 %:' <084
o O =06 =
= S) S i
15 o Q M
g 02 £ 04 5 £ 0.6 H
8 2 . 8 P
5 014 8 g 9217 Q &) & 9 °
<]) 8 < 044 8 (€]
o o] o o 0049 ° o °
o © o B
s e o] S —0.21 S 021 0 [¢]
—0.1) =
o 1o ° O o4l) 8
° }
—0.2 4 004 ©
R R R
N @ Q@ » & & S O © © @ & S & O S Q & & & & &
Qeo\\ & Qa&\ é\\\‘\ & & RS é}& \)@0 Q“&Q & e &\&\ b@‘la S o & &,@ & ¢ b@‘? N
< Vy N c°° & \Q o Y;\ Vy CPO c.°° q’ﬁ “}0 [S) Y;\‘o 4 S oeo q’@ R
N R . 3 o & . 3 > & &
» A » P OC:) w» v 9}’ & O@) A 9}’ & OC‘Q\
S N N N

Figure 21: Ablation studies where we evaluate the influence of individual aspects of ALL on its performance
gains relative to prior work, as described in Sec. These are plots of the distribution of oracle agreement
values after a 50-trial random hyperparameter search with each ablation in place. ‘ALL (ours)’ denotes our
method without modification. ‘ALL + AvgPool(m*)’ denotes an average-pooled version of ALL to mimic the
smoothing effect of m*-Occlusion. ‘ALL (cooperative)’ denotes ALL with the adversarial objective replaced
by a ‘cooperative’ objective where both the classifier and noise distribution are trained to maximize the
performance of the classifier. ‘ALL (unconditional)’ denotes ALL without the occlusion masks being fed as an
auxiliary input to the classifier. ‘m-Occl + heavy dropout’ denotes m-Occlusion with the input dropout to the

classifier chosen from {0.05,0.1,...,0.95} rather than {0.0,0.1} as in our other experiments. ‘m-Occlusion’
denote the results with the unmodified m-Occlusion techniques.

65

	Introduction
	Background and Setting
	Existing work and its limitations
	First-order parametric statistics-based methods
	Neural net attribution-based methods

	Our method: Adversarial Leakage Localization (ALL)
	Implicit definition of leakiness through a constrained optimization problem
	Deep learning-based implementation
	Differences from prior work

	Experimental results
	Synthetic datasets where we know `ground truth' leakiness
	Real power and EM radiation leakage datasets

	Conclusion
	Notation and variable names
	Extended background
	Cryptographic algorithms
	Side-channel attacks
	Power side-channel attacks on AES implementations
	Template attack: example of a classical profiled side-channel attack
	Practical profiled deep learning side-channel attacks on AES implementations

	Extended related work
	First-order parameteric statistics-based methods
	Neural net attribution methods
	Numerical experiment illustrating conditional mutual information decay when many redundant leaking measurements are present

	Extended method with derivations
	Optimization problem
	Estimating mutual information with deep neural nets
	Re-parametrization into an unconstrained optimization problem
	Implementation details

	Extended experimental details and results
	Toy setting where our method succeeds and prior work fails
	Simulated AES datasets where we have ground truth knowledge about leakage
	Data generation procedure
	Experimental details
	Results

	Experiments on real power and EM radiation leakage datasets
	Datasets
	Implementation details for the leakage localization algorithms
	Hyperparameter tuning procedure
	Performance evaluation methods
	Model selection criterion
	Summary of experiments
	Ablation studies
	Theoretical and empirical computational cost of deep learning methods

	Limitations

