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Abstract

We characterize the statistical efficiency of knowledge transfer through n samples
from a teacher to a probabilistic student classifier with input space S over labels
A. We show that privileged information at three progressive levels accelerates the
transfer. At the first level, only samples with hard labels are known, via which the
maximum likelihood estimator attains the minimax rate /|S!14l/n. The second level
has the teacher probabilities of sampled labels available in addition, which turns out to
boost the convergence rate lower bound to IS|IAl/n. However, under this second data
acquisition protocol, minimizing a naive adaptation of the cross-entropy loss results
in an asymptotically biased student. We overcome this limitation and achieve the fun-
damental limit by using a novel empirical variant of the squared error logit loss. The
third level further equips the student with the soft labels (complete logits) on A given
every sampled input, thereby provably enables the student to enjoy a rate 1S|/n free
of | A|. We find any Kullback-Leibler divergence minimizer to be optimal in the last
case. Numerical simulations distinguish the four learners and corroborate our theory.

1 Introduction

It has become common sense that transferring intrinsic information from teachers to the greatest
extent can expedite a student’s learning progress, especially in machine learning given versatile and
powerful teacher models. Learning with their assistance has been coined knowledge distillation (KD)
(Hinton et al., 2015; Lopez-Paz et al., 2015), a famous paradigm of knowledge transfer leading to
remarkable empirical effectiveness in classification tasks across various downstream applications
(Gou et al., 2021; Wang & Yoon, 2021; Gu et al., 2023b). The term distillation implies a belief that
the inscrutable teacher(s) may possess useful yet complicated structural information, which we should
be able to compress and inject into a compact one, i.e., the student model (Breiman & Shang, 1996;
Bucilud et al., 2006; Li et al., 2014; Ba & Caruana, 2014; Allen-Zhu & Li, 2020). This has guided the
community towards a line of knowledge transfer methods featuring the awareness of teacher training
details or snapshots, such as the original training set, the intermediate activations, the last-layer logits
(for a probabilistic classifier), the first- or second-order derivative or statistical information, and even
task-specific knowledge (Hinton et al., 2015; Furlanello et al., 2018; Cho & Hariharan, 2019; Zhao
etal., 2022; Romero et al., 2014; Zagoruyko & Komodakis, 2016; Yim et al., 2017; Huang & Wang,
2017; Park et al., 2019; Tian et al., 2019; Tung & Mori, 2019; Qiu et al., 2022; Srinivas & Fleuret,
2018; Cheng et al., 2020; Liang et al., 2023).

Mathematics of Modern Machine Learning Workshop at NeurIPS 2023.



However, in more general modes of knowledge transfer, the procedure- or architecture-specific
information can be unavailable, irrelevant, or ill-defined. Modern proprietary large language models
(LLMs) like GPT-4 (OpenAl, 2023b) and Claude 2 (Anthropic, 2023) strictly confine the data returned
through their APIs except the generated tokens, not to mention their training sets. Therefore, there
has been an effort towards distilling LLMs only through oracle queries via locally crafted prompts
(Zheng et al., 2023; Peng et al., 2023). In denoising (Tsybakov, 2003), boosting (Freund & Schapire,
1995), and prediction with expert advice (Cesa-Bianchi et al., 1997), the teacher group itself is the
classes of interest and the student only gets positive-valued feedback from the teacher group, so the
teacher implementation is immaterial. In certain circumstances of robot learning (Abbeel & Ng, 2004;
Ross & Bagnell, 2010), the teacher demonstration may come from threshold-based classifiers or even
human experts, where no teacher probability is defined.

To unify different natures of teacher information acquisition in knowledge transfer and assess the
technical barriers in a principled way, we decompose the transfer set' into a generative model 7*(-|-)
giving one a in the label space A given a query s in the input space S and the additional information
provided by the teacher for each sample pair (s,a). > Take several LLMs as examples. In OpenAl’s
chat completion API® for GPT-4, only responses are returned given a prompt s, in which no privileged
information is accessible. An early completion APT* for GPT-3 (Brown et al., 2020), however, also
returns the log-likelihood of every token in the generated response. If with open-sourced models like
GPT-2 (Radford et al., 2019) in hand, practitioners can extract the last-layer logits of each position
in the sampled sequence as the privileged information. These typical examples reveal a trend that the
more powerful a foundation model (Bommasani et al., 2021) is, the less likely it is to release privileged
information as a teacher model’, which naturally motivates a question:

What is the fundamental limit of knowledge transfer given limited privileged information in general?

In this work, we answer this question with minimal inductive bias by analyzing three protocols of
knowledge transfer with easier difficulties in order over finite S and .A. Concretely, for any learner 7, we
study the total variation between it and the reference policy 7* conditioned on an input distribution p, i.e.,

D p()TV@E([s),m* () = TV(7,7*[p),
sES
where 7 can access n samples {(s;,a;)}?_, and optionally certain fraction of 7*(-|s;),Vi € [n].

We give additional background discussions after Appendix 4.

2 Transfer via Hard Labels
This is equivalent to the standard setting for estimating the conditional density 7*(+|-).

2.1 Hardness of Estimation

We first generalize the idea of constructing hard instances for learning discrete distributions on A
(Paninski, 2008) to our nonsingleton S to understand the difficulty when only (s,a) paris are available.
We remark that the proof of Theorem 2.1 (in Appendix F.2) is the only one in this work that utilizes
Assouad’s method (Yu, 1997) directly.

Theorem 2.1. For nonempty S, A with |A| > 1, and n > [SIA|/4,

S
inf  sup Eq,xr)n TV(T,7%[p) 2 M, 2.1
Tell(D)pxn*€P n

where D ~ (px 7*)™, I1(D) denotes all (possibly random) estimators mapping D to A(A|S).

"Here we mean the information a student has access to in total.

2This is inspired by the learning using privileged information (LUPI) framework (Vapnik et al., 2015; Lopez-
Pazetal., 2015).

*https://platform.openai.com/docs/api-reference/chat

*https://platform.openai.com/docs/api-reference/completions

>See, e.g., Ramesh et al. (2021, 2022); OpenAl (2023a) in computer vision for a similar tendency.
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The +/|S| dependence in the lower bound intuitively makes sense because the classic lower bound
for |S|=11is Q(4/4l/n) and each input roughly get 7/|s| samples when p is distributed evenly.

2.2 Maximum Likelihood Estimation
We approximate the teacher 7* via minimizing the following negative log-likelihood loss:
TcE,sg € argmin CEg (D)= argmin fZlogﬂ'(ai [s:). 2.2)
TEA(A]S) rEA(AIS)
It is possible to exactly attain the minimum O in (2.2). A refactoring detailed in Appendix E.1 indicates

a natural relation between the hard version CEg and the soft version CEg,, which leads to a neat
closed-form solution for the optimization problem.

~ =N(s,a) (D)/I‘ls (S(D))v SGS(D)7
Teesa(als) { € A(A) arbitrarily, otherwise. @3)
Theorem 2.2. For any ¢ € (0,1), with probability at least 1—,
~ N S|(JA|+1og(|S|/d
TV(Fet g |p)5\/| (1A ng(\ 1/9)) 2.4)

The upper bound in expectation E [TV (Tcg sq1,7*|p)] S +/IS!I4I/n is no better than (2.4) up to log
factors. An instance-dependent version in expectation is

SIAl() |, IS]
n

E[TV(Tcese, )] S -

; 2.5)
where &(7*) :=max csdistty (7*(:|s),Dirac(A)) =2maxscsminge 4 (1 —7*(a|s)).

Thus, Tcg sg1 is worst-case optimal and may even have a n~! rate in some benign cases with 7* close
enough to vertices of the simplex A(A).

3 Transfer via Partial SLs

Besides D, we can also access R == {(s;,a;,7*(a;|s;)) } ;. The introduction of R leads to a quadratic
reduction of the learning difficulty.

3.1 Blessing of Ground Truth
Theorem 3.1. For nonempty S, A with |A|> 2, and n > ISI(lA|-1)/2—1,
~ S||A
inf sup IE(pXW*)nTV(7T,7T*|p)Zw7

7ell(D,R)pxn*€P n

3.1)

where D ~ (p x 7)™, R = {(s,a,7*(a|s)): (s,a) € D}, and ﬁ(D,R) denotes all (possibly random)
learners mapping (D,R) to A(A|S).

3.2 Failure of Empirical Cross-Entropy Loss

The Partial SLs R motivates us to define a loss CE interpolating between CE.g and CEgy.

7cepr € argmin CEyy(D,R):= argmin fZﬂ*(ai|si)log7r(ai|si). (3.2)
TEA(A]S) TEA(A]S) T

We can obtain the following exact solution to (3.2) by another technique detailed in Appendix E.2.



s q)(D)*(als), seS(D),

%CE’Pt'(as){eA(A) arbitrarily, s¢S(D). e

The convergence analysis of 7cg py crucially relies on its relationship with 7cg <. For any s € S(D),
ﬁCE’pﬂ can be reformulated as

7" (a|s)7cE sqi(als) 5
ZbE.A?T*(MS)%CE,sgI(b‘S). 34

e piials) =
Lemma 3.2. For |S|=1,

Fcepn (18) 3 [1* (9)]° /D [7*(als)]
ac A

Al

under ¢, in R if p x 7* is independent of n.

Lemma 3.2 roughly means 7cg i o (7*)? approximately as n goes to infinity, which implies that
small parts of 7* are underestimated and large parts of 7* are overestimated. We make this intuition
technically right in Theorem 3.3, whose rigorous statement, mechanism, and proof are deferred to
Appendix G.4.

Theorem 3.3. If p x 7* does not vary with n, 7/1:CE7pt| coincides with 7?CE7Sg| (and thus asymptotically
unbiased®) only if 7*(-|s) = Uniform(.A) or 7*(+|s) € Dirac(A) for all s€ S. Even for |S| =1, Ticg pti
is asymptotically biased in general.

3.3 Empirical Squared Error Logit Loss

Ba & Caruana (2014) suggests the practically promising SEL loss’:

7r*):Z%Z[10g7r(a|5i)flogﬂ*(a|si)]2. (3.5)

i=1 a€cA

Here we analyze the minimization of its empirical variant with normalized logits under the second
data acquisition protocol for simplicity:

[logm(a;|s;) logﬂ'*(ai|si)]2. (3.6)

l\D\’—‘

n
SELpu(D,R):=>
i=1
Exact matching on the seen samples in (D, R) shows that Tsg| ¢ € argmin, ¢ A48 SELp (D,R)

{peA(A):pla)=7"(als) Vac A(D,s)}, s€S(D),

3.7
A(A) arbitrarily, otherwise. .7)

S TseLpil (|8) € {

The following three-fold Theorem 3.4 indicates that Tsg| v converges faster than Tcg ¢ by a factor of
/n though its performance upper bound has worse dependence on |S||.A| compared with that of Tcg sg1.

Theorem 3.4. If |S| > 1, for any § € (0,min(1,(IS1+2)/10)), with probability at least 1 —4,

)<8|(A|+\/|A|log<|8|/6>)l S|
og—

TV(TseL,pu, 77| p) S 5 (3.8)
If |S| =1, for any J € (0,1/10], with probability at least 1 —,
~ ~ Al VAL 1
TV (TseLpe, 7] p) = TV(TseL pt, ) S A +|7|10g7. (3.9

~n n 1)
The expected risk ETV (Tsep 1,7 |p) S IS114I/n is not polynomially tighter than (3.8) or (3.9).

6Though TcE,ptl 18 NOt an estimator, we can discuss unbiasedness under a more general notion, i.e., for K
constants {c¢; }f(:l, the random variables { X Zn}f{:l is called asymptotically unbiased if X; », — ¢; in some mode
of convergence as n— oo for every i € [K].

"Practical versions of SEL often allow unnormalized logits. See Remark G.1 for more discussions.



Remark 3.5. Theorem 3.3 together with Theorem 3.4 manifests the advantage of employing the
empirical SEL loss, which induces an alignment between the normalized logits of the learner and
those of 7* under squared loss, over the empirical CE loss in offline distillation when the teacher is
moderately reserved. A similar observation between these two style of empirical surrogate losses
in online policy optimization is verfied in practice (Zhu et al., 2023b).

4 Transfer via Soft Labels

At the lightest level, the student has the extra information Q@ ={(s,7*(:|s): s €S(D)}. The availability
of Q apparently eases the transfer process, especially when the support size |.A| of the teacher classifier
is huge. Such an intuition can be precisely depicted by a |.4|-free minimax lower bound.

4.1 |A|-Free Lower Bound

Theorem 4.1. For S with |S| > 1, Awith |A4|>1,and n>|S|—1,

N S
inf sup E(pxﬂ*)nTV(w,ﬂ*\p)Z%, 4.1)

#7ell(D,Q)pxn+eP
where D ~ (p x 7)™, Q = {(s,7*(:|s)):s€S(D)}, and II(D, Q) denotes all (possibly random)
learners mapping (D, Q) to A(A|S).

This setting cannot have a rate better than n~—1, which is consistent with the n~1 rate in Theorem 3.1
since the difficulties of the later two settings (intuitively, the information provided at these two levels)
should be the same when 7*(-|s) € Dirac(A) for any s € S.

4.2 Kullback-Leibler Divergence Minimization

Cross-entropy loss minimization under full observation is equivalent to

A R e el oy~ g S =T (C]8), if seS(D),
TCEw S arg;nm;KL(w Clsolim(ls:)) = Fcew (ls) { € A(A) arbitrarily, otherwise. “42)
Theorem 4.2. For any ¢ € (0,%/10], with probability at least 1 —9,
~ N S| VIST, 1
TV(7ce,,,m |P)§%+#10g5 4.3)

The upper bound ETV (7cg,,, ,7*|p) SI51/n on the expected risk for g, nearly matches (4.3).

Theorem 4.2 guarantees the optimality of 7cg,, in that it maximally utilizes the given logits.

5 Conclusion

We embark on investigating knowledge transfer beyond pure black- or white-box regimes and settle
its sample complexity, respectively; provided that the teacher can afford (1) only to act as a generative
model, or (2) additionally the probabilities at sampled classes, or (3) additionally the logits conditioned
on each sampled input. The theoretical analysis unveils a crucial insight that tailoring the idea of
minimizing CE to new information acquisition scenarios may be sub-optimal in general, provably
in knowledge transfer via Partial SLs. Several avenues remain to be further explored.

* Huge S and A in practice (Zeng et al., 2022; Almazrouei et al., 2023) necessitate function
approximation, which is also important to our analysis itself. For example, the equivalent
effectiveness of minimizing the CE or SEL loss (with Soft Labels) from an alphabet-matching
perspective may be incomplete after incorporating the approximation error, which may
consequently corroborate the empirical superior of the vanilla SEL loss (Ba & Caruana, 2014).

* All our upper bounds do not adapt to the student initialization strategy for unseen inputs or
labels; while the student may be pre-trained in practice (Gu et al., 2023b; Jiang et al., 2023).
Thus it is vital to incorporate the skillfulness of the student before transfer to the convergence
analysis.
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A Additional Introduction

A.1 Main Contributions & Clarifications

Table 1 gives an overview of rate bounds in distinct data acquisition protocols. Hard Labels indicates
7 to be a black-box for 7 throughout the learning process. Partial SLs stands for partial soft labels,
which means the teacher provides the student with an extra (partial) ground truth 7* (a|s) for every
sample (s,a). Soft Labels is a synonym of the logits on the entire .A exposed to 7 given each s in
{si}7_,. Intuitively, each of the three levels discloses richer information than previous ones, which
at least cannot make it harder to learn. Rigorously, progressively faster minimax rates are matching
exactly at all levels® and every high-probability upper bound has its upper confidence radius at most
the same order of the corresponding expectation lower bound up to polylog factors.

Table 1: Major theoretical findings of knowledge transfer with different acquired data. The second
column shows one out of n data points available to the student. Worst-case bounds in the last column

hold with high probability and O(-) hides polylog factors.

Transfer via  Data Format Lower Bound \ Loss Performance

/ISIIAl/n ~\/S-An
Hard Labels  (s,a) Q( Sl l/) CEgy O( Sl l/)
Theorem 2.1 Theorem 2.2
CE Q(1)
. . Q(ISIIAl/n ptl Theorem 3.3
Partial SLs  (s,a,7*(als)) Thanrem/&)l O(SI1A1/)
SELpi 17 »
eorem 3.4
. Q(ISl/n O(1S|/n
Soft Labels  (s,a,7*(:|s)) The(()rer/nzl.l CEq The(()rer/né)l.Z

Technically, the later two protocols are nonstandard in density estimation, especially in terms of the
derivation of minimax lower bounds in that we assume the data generating process to be (p x 77*)™. The
constructive proof (Appendix F.3) of Theorem 3.1 may be of independent interest. The performances
at the second level are also more tricky. Theorem 3.3 sentences a naive adaptation of the cross-entropy
loss (CE,y) to be a misfit with probability 1 when the privileged information is at a modest level.

We do not require 7* to be trained in any sense and assume 7 to have no awareness of the teacher
implementation, inspired by the aforementioned practical trend. Consequently, we do no distinguish
the teacher probability from the Bayes probability (Menon et al., 2020; Dao et al., 2021) and p can
have no relation with teacher training. We idealize the samples to be i.i.d., while all the results already
extend to the setting where different (s,a) pairs are mildly dependent, of which we refer the readers
to Appendix J for detailed discussions.

A.2 Additional Related Works on Understanding Knowledge Transfer

Hinton et al. (2015) refers to the logits generated on a dataset by a teacher model, who has been trained
using the same dataset, as soft labels; and refers to {a; }?_; in this dataset as hard labels. Our terms,
however, pay no attention to whether p matches the original dataset; and our Soft Labels strictly carry
more information (of p x 7*) than our Hard Labels, both of whose inputs {s; }?_; are sampled from
p. So the third column of Table 1 does not account for the class similarities argument (Furlanello
etal., 2018), the regularization effect via label smoothing (LS) argument (Yuan et al., 2020; Tang et al.,
2020), or the bias-variance trade-off argument (Zhou et al., 2021; Menon et al., 2020); all of which are
classical wisdom explaining the benefit of soft labels in KD (Hinton et al., 2015).

These previous views are neither consistent nor complete for justifying why soft labels improves
student training. (Miiller et al., 2020) undermines the hypothesis that class similarities in soft labels are
vital by the effectiveness of KD in binary classification. Han et al. (2023) challenges the regularization
via LS thesis through better interpretablity-lifting effect of KD than LS. Dao et al. (2021) develops

8We defer the matching expectation bounds to respective sections.
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the bias-variance trade-off perspective in more complex scenarios. In contrast, we define Soft Labels
(also Partial SLs) and tackle its boost over Hard Labels rigorously following the information-theoretic
direction of the data processing inequality (Polyanskiy & Wu, 2022). We survey more works unraveling
knowledge transfer. Other empirical and enlightening paradigms are deferred to Appendix B.

Most analyses of KD with trained deep nets as the teacher (Phuong & Lampert, 2019; Ji & Zhu, 2020;
Panabhi et al., 2022; Harutyunyan et al., 2023) lie in the linear or kernel regime, notably except Hsu
et al. (2021), which finds the student network to have fundamentally tighter generalization bound
than the teacher network under several nonlinear function approximation schemes. There are also
works analyzing knowledge transfer between neural networks of the same architecture (Mobahi et al.,
2020; Allen-Zhu & Li, 2020). Our framework goes exactly in the reverse direction: our analysis is
not restricted to parsimonious students, over-parameterized teachers; or the compression sub-concept
of knowledge transfer (Bucilua et al., 2006; Bu et al., 2020). For example, a human demonstrator,
who does not learn only from data and is able to output probabilistic belief, can also fit into the first
column of Table | as a kind of teacher in the LUPI framework.

Remark A.1. This work departs from Lopez-Paz et al. (2015, Section 4.1) essentially in several
ways. First, our results hold for any legal (discrete) p x 7* and do not need to assume data—teacher,
data—student, teacher—student transfer rates manually. Second, their result crucially hinges on
the assumption that the teacher learns from data faster than the student, while we have clarified our
formulation of 7* that differs completely. Finally, their transfer speed from the teacher to the student
relies on the hardness of classification of each data point, e.g., the notion of linear separability (Shalev-
Shwartz & Ben-David, 2014), yet we consider finite domains S x A and do not have these issues.

Remark A.2. Optimality is not explicitly defined for 7* in our formulation, yet we solely want to
mimic (the conditional density of) the teacher, so 7* is dubbed the reference policy. This view aligns
with a recent belief that foundation models are by definition “good” and in effect black-box teachers,
judges, and raters of the student ones (Peng et al., 2023; Liu et al., 2023; Zheng et al., 2023). Generally
speaking, optimal reward maximization is neither sufficient nor necessary for efficient knowledge
transfer (< accurate imitation), because an optimal policy can differ from teacher demonstrations
(Ng et al., 2000), which may even be sub-optimal itself (Brown et al., 2019; Chen et al., 2021), and
convergent imitation can result in constant sub-optimality (Gao et al., 2023; Zhu et al., 2023a).

B Additional (Empirical) Related Works

We review key paradigms closely related to our formulation, especially KD; and point the reader to
Weiss et al. (2016); Gou et al. (2021); Alyafeai et al. (2020); Zhu et al. (2023c); Wang & Yoon (2021);
Tian et al. (2023) for numerous algorithms of knowledge transfer on modalities like sequences, images,
graphs, etc. We restrict our survey to the single task of interest: classification. °

B.1 Inspiring Paradigms of Knowledge Transfer in Machine Learning

Paradigms of Knowledge Transfer. Knowledge transfer is not a patent of neural nets with sof tmax
as their last layers. Similar ideas have realizations for ensemble of classification trees (Breiman &
Shang, 1996) and even margin-based classifiers (Burges & Scholkopf, 1996). Since 2010s, there has
been a line of work concentrating on the utilization of a trained teacher model and its original training
set in a totally white-box manner with the purpose of student accuracy improvement (Hinton et al.,
2015; Furlanello et al., 2018; Cho & Hariharan, 2019; Zhao et al., 2022; Romero et al., 2014; Yim et al.,
2017; Huang & Wang, 2017; Park et al., 2019; Tian et al., 2019; Tung & Mori, 2019; Qiu et al., 2022).
As the computation budget becomes relatively tight with respect to the scale of datasets, another line
of works propose to avoid using of the full dataset for teacher pre-training during KD, and resort to
architecture-specific metadata (Lopes et al., 2017), synthetic data (Nayak et al., 2019; Yin et al., 2020;
Fang et al., 2022), or bootstrapping (Gu et al., 2023a) instead; which is dubbed the data-free approach.
The sagacious vision that the teacher architecture may be agnostic or the teacher (log-)probability
output may at least go through certain censorship does not receive enough attention from the community
in the era of open sourcing (Orekondy et al., 2019; Wang et al., 2020; Wang, 2021; Nguyen et al., 2022).
However, after the debut of closed-source and powerful foundation models, practitioners find it plausibly
nice to train their own models to purely mimic the response of these strong teachers. For example,
though OpenAl only exposes transparent APIs of ChatGPT & GPT-4 (OpenAl, 2023b) to customers,

Topics related to knowledge transfer across different tasks or modalities are beyond the scope.
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there has been a line of efforts to distilling black-box language models without even accessing the
last-layer logits (Zheng et al., 2023; Wang et al., 2023b,a). Some primary results (Wang et al., 2023a)
show that only letting LLaMA (Touvron et al., 2023a) mimic about 6000 carefully chosen trajectories
generated by human-GPT-4 interactions can drastically boost the performance of these open-source
autoregressive language models on common evaluation benchmarks (Gao et al., 2021; Li et al., 2023).

Remark B.1. Motivated by the progress trend of knowledge transfer, we decouple the formulation
of the input distribution p from teacher training details and view the reference poicy 7* as the gold
standard (ground truth), beyond just a proxy of it.

C Preliminaries

Notation. For two nonnegative sequences {a,} and {b,}, we write a,, = O(b,,) or a,, < by, if
limsupan/b, < co; equivalently, b, = (ay,) or b, = a,. We write ¢,, = O(d,,) if ¢,, = O(d,,) and
¢, = Q(d,,). For a metric space (M,d), distq(-,N') := inf,eprd(-,y) for any N'C M. The term
alphabet is a synonym of finite set. For a set or multiset C, let |C| denote its cardinality. For any alphabet
X, on which given two distributions p, g, the total variation between themis TV(p,q) :=0.5|[p—q||;,
their Kullback-Leibler (KL) divergence is KL(p||q) := E, [logp—1logg]; and we denote all | X'| Dirac
distributions on X’ by Dirac(X’), where Dirac(X,x) stands for the one concentrated at .

C.1 Common Setup

The teacher always exposes to the student a multiset D = {(s;,a;) €S x A}, consisting of n i.i.d.

input-label tuples. To analyze D in a fine-grained way we introduce for X" 3 X" S5 the number
of occurrences n, (X™) of x and themissing mass mo(v,X"™), which measures the portion of X’ never
observed in X" (McAllester & Ortiz, 2003). We refer to the input (resp. label) component {s; }?_;
(resp. {a; 1) of D as S(D) (resp. A(D)) and also define a multiset A(D,s) for every s €S to denote

the a;’s in D that are associated with the visitations of s, taking into account multiplicity.'”

C.2 Quantity of Interest

We assume D ~ (p x 7)™ follows a product measure, where 7 € A(A|S) is the ground truth
distribution over A given s € S the teacher holds and p is some underlying input generating distribution.
No assumption is imposed on the data generating process p x 7* except for belonging to

P={pxn*:pe A(S),m* € A(A|S)}.

In this work, we evaluate the performance of a student 7 based on the TV between 7 and 7 conditioned
on p defined as

TV(@,7*(p) i=Eo, o [TV(7,7)), (C.1)

though the student is never allowed to access p directly. We investigate the convergence rate of (C.1)
among three categories of students told by the teacher’s degree of openness in the tabular setting.
Intuitively speaking, all the learning procedures of interest try to match the log-probability kernel
log, a notion of normalized logits, between the student and the teacher, especially via variants of
the cross-entropy loss, which is standard in the study of classification both theoretically and practically
(Paszke et al., 2019). Besides the universal definition CEg, (p||q) :== —E,[logg] of the cross-entropy
between p < ¢, a popular counterpart for hard labels specialized to classifiers is commonly defined
as CEsg(s,a;m) :== CEgy (Dirac(A,a)||7(-|s)) = —logm(als).

D Experiments

We conduct simulations to verify the intuitive performance rankings %CEysg| < %SELypﬂ < TcE,, given
moderately large sample sizes and also numerically provide the asymptotical biasedness of Tcg p¢ With
a finite-sample counterpart. Moreover, we design adversarial data generating distributions inspired by
the information-theoretic arguments (Appendix F) for the three types of reserved teachers respectively

19See Appendix E for the rigorous definitions of n, (X™), mo(,X™), and A(D,s).
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in the non-asymptotic regime, thereby accurately exhibiting the matching convergence rates of Tcg g1,
TSEL ptl> and g, in terms of n.

~

In this section, we specify a fair inductive bias due to the tabular nature: if s ¢ S(D), 7(+|s) is set
to Uniform(.A) for all learners; for Tsgr pi(-|s), the missing mass is amortized uniformly among

A\A(D,s) if se S(D).

D.1 Classic Regime: Telling Learners Apart

In the classic regime, p x 7* stays invariant no matter whether n tends to infinity or not. An instance in
this sense should not only expose the inferior of Tcg i but also showcase the hardness of |S|>1, i.e.,
p should be strictly bounded away from zero in 2(|S]) inputs. To these ends, we specify Instance 0 in
Appendix I. We simulate four typical realizations of it, whose estimated risks is presented in Figure 1.
Each marker in Figure | represents the empirical mean of TV (7,7*|p) in 100 independent repeats given
the corresponding sample size n. Any broken line in Figure 1 has nothing to do with sequential design
and our experiment is purely offline. As shown in Figure 1 (a, b), either in a general case with (|S|,|A|) =

(100,25) or for a 100-armed rewardless bandit, IETV(%CE7pt|,7r*| p) fails to converge but all other
learners do, corroborating the asymptotically constant bias of 7cg v and the consistency of the others.

(a) (5 =100, A = 25) Instance 0: n-Oblivious (b) (5 =1,A =100) Instance 0: n-Oblivious
= °
0.6 S L e e R R e T B B o L
i 04 o —o CEgg
S N,
> 02 SNe—e—e, = CEpy
05 = i il o S DAL
| ._-j' 0 100 200 300 400 500 600 700 800
u n
0.4 (c) (§=8,A=5000) Instance 0: n-Oblivious
Y S04 ¥t c
= — X +\+\+—+
E 03 3 L -+ SE Lptl
g0 @ 02 e T——
F F =% CEyy
<y R B e
0.2 5 10 15 20 25 30

(d) (5 =1024, A = 2) Instance 0: n-Oblivious

0.1

3 o T/ r
- Y .
i 02 e, ° CEsgI
Tl B % z + .
00 3R e o R o 350500 |0 [ do + SELpy
Woo T +
0 500 1000 1500 2000 2500 0 1000 2000 3000 4000
n n

Figure 1: Estimated risks in expectation. p x 7* does not vary with n.

Though Instance 0 is effectively so easy to learn for any of %CE’SQ s %SEL,pH , and Tcg,, that none of the
three worst-case upper bounds is tightly attained, the numerical performance rankings among them
in Figure 1 coincides with our intuition and theoretical analysis. The “benign”-case comparison in
Figure 1 (c), where the sample sizes are small enough to make the worst-case lower bounds vacuous, still
favors Tcg,, over TseL pu in the large-|.A| regime. Figure 1 (d) manifests that the 1/|S||.A| gap between
the worst-case upper bounds for Tcg s and TseL pti, Which is reversely dominated by the exponential
rate'! of TsEL,pt! in this Instance 0, may not be observed in general even for large |S||.A| and small n.

Remark D.1. Direct calculations imply that if p > c¢s > 0 for all inputs with cs irrespective of n
when n is large enough, ETV(7cg,,,7*|p) can decay exponentially fast, exemplified by Figure |
(a). ETV(TseL pti,m*|p) will enjoy a similar linear convergence so long as we additionally require
7*(+|$) > c4 >0 for all s €S and all labels with c 4 independent of n for sufficiently large n, again
exemplified by Figure 1 (a).

D.2 Non-Asymptotic Regime: Illustration of Matching Rates

Instance O serves as an intriguing average case, but we need to design worst-case instances that may
vary with n (Wainwright, 2019) in the non-asymptotic regime for different data acquisition settings in

See Remark D.1 for details.
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order to verify the minimax optimalities. The adversarial Instance 1, 2, and 3 with their design insights
are detailed in order in Appendix I for verification of matching rates at all three levels.

Since 7cE sgl» TSEL ptl» and Tcg,, enjoy optimal rates of order n~! or n~%°, we can manifest them using

lines in a log-log plot. More generally, if some notion of risk has risk=0(n?") for some 5* <0,
logrisk — $*logn will be at least bounded by two straight lines on a log-log scale. We instantiate
the above idea for Instance 1, Instance 2, and Instance 3 in Figure 2, in which each marker represents
the average of 64000 independent repeats. We also conduct linear regressions over logrisk ~ logn for

corresponding minimax learners and report the slope B as estimated 5* in each subfigure of Figure 2.
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Figure 2: Estimated risks in expectation. p X 7* scales with n in a setting-specific way.

We remark on several interesting phenomena of Figure 2.

Remark D.2. Regarding parameters other than n as constants, the B ’s precisely verify the worst-case
rates ETV (7 cg,sg,7*|p) ~ 105 (Figure 2 (a, b)), ETV(7seL,pr,7*|p) ~n~! (Figure 2 (c, d)), and
ETV(7cg,,, 7 |p) ~n~ (Figure 2 (e, f)).

Remark D.3. AllInstance 1, 2, and 3 happen to be too easy for Tcg ot to be obviously biased. This
phenomenon is actually predictable because 7*(+|s) becomes very close to Uniform(.A) in Instance I,
and to some one in Dirac(.A) in both Instance 2 or 3 for all inputs when n is relatively large. In these
cases, %CE7pt| largely coincides with %CE,SQ as predicted by Theorem 3.3.

Remark D.4. The risks of sy in Instance | and the risks of 7cg,, in Instance | and 2 decay expo-
nentially fast, which is consistent with the arguemnts in Remark D.1, i.e., only vanishing schemes like
7* in Instance 2 for Tsg( i and p in Instance 3 for g, can force their risks to have a polynomial decay.

Remark D.5. We are able to provably explain the good performance (beyond worst cases) of TcE sl
in Instance 2 and 3, in which £(7*) =O(n™1). (Recall the definition of £(-) in Theorem 2.2.) Thus, the
instance-dependent bound in Theorem 2.2 indicates a benign-case rate of ETV (g sq1,m*|p) Sn™t.

Additional Notation in Appendix. For any event Z, Z° denotes its complementary event.

[K]:={1,...,K} and [K]:={0,..., K — 1} for any positive integer K. We set (S,A4) = (|S|,|4|) and
index the input and label spaces by (S,.4) = ([S],[A]) when necessary. We also use a general notion
of Dirac distribution in proving the lower bounds: given any measurable space (Z,%), we define
Dirac(Z2,z)(D):=1{z€ D} VD € X. If X and ) are two alphabet, we denote by A()) the probability
simplex on ) and define A(Y|X) :={x(:|-): X = A(Y)} =« (-|z) € A(Y),Va € X. We denote by
log the natural logarithm and adopt the convention Olog0=0.

16



E Missing Notation, Definitions, and Derivations

Additional Notation in Appendix. For any event Z, Z¢ denotes its complementary event. [K]:=
{1,...,K} and [K]:={0,...,K —1} for any positive integer K. We set (S,A) = (|S],|.A|) and index the
input and label spaces by (S,.A) = ([S],[A]) when necessary. We also use a general notion of Dirac dis-
tribution in proving the lower bounds: given any measurable space (Z,X), we define Dirac(Z,z)(D) =
1{z€ D} VD e X. We denote by log the natural logarithm and adopt the convention 0log0=0.

Definition E.1. For n i.i.d. samples X" drawn from a distribution v over an alphabet X, the number
of occurrences of z is denoted by n, (X™) =", 1{X; =z}, upon which we further measure the
portion of X never observed in X™ by the missing mass

mo(,X") =Y v(2)1{n, (X")=0}. (E.1)
zeS

It is worth mentioning that, D, S(D), A(D), and A(D,s),Vs € S are treated as multisets when fed into
functionals like mq (v,-), n, (+), ,|A(D,s)|=n4(S(D)); while
in set operations like S\S(D) or under the summation sign like ) - __ s(p)» Where they act as ranges of
enumeration, we slightly abuse the notations for simplicity to refer to their deduplicated counterparts.
Definition E.2. All the n,(S(D)) labels in D mapped from s; = s form a multiset

A(D,s):={a€ A:forall (z,a) €D s.t. z=s}.

E.1 Maximum Likelihood Estimation

TcE,sg € argmin CEq (D)

TeA(A|S)
= argmin CEsgi(s4,a;m) = argmin — N(s,q)(D)log(als)
weA(A\S); ) TEA(ALS) ;aze;
. n(s,a)(D)
= argmin — n,(S(D)) ————Llogm(als) . (E.2)
TEA(ALS) SG;:D) ‘;ns(S(D))

—CEwi (1o, (D) /na(S(D)I7(:]5))
Noticing that (E.2) is the summation of the cross-entropy between nes,) (P)/n, (S(D)) and 7 (+| s) weighted
by ns(S(D)) over S(D), we figure out the explicit solution of Tcg <4 as
TcE |(a|s) (D)/RS<S(D>), SES(D),
8 € A(A) arbitrarily, otherwise.

E.2 Empirical Cross-Entropy Loss

Ns.a D ™ (als
ficepi € argmin CEyy(D,R)= argmin — Y Z, ZM
TEA(A]S) TEAAIS) L5(D) acA Z

where Zs:=) . 40(s,q)(D)7*(als). Therefore, by the same cross-entropy minimization argument,
the explicit solution is

logr(als),

_ ) W(s,a) ('D)’/T*(a|8)/ZS, (5 a) €D, * .
Feepulals)d {o, seS(D)ad AD,s), | <Moo D) (als);
€ A(A) arbitrarily, s¢S(D).

F Information-Theoretic Arguments

F.1 Additional Notation in Appendix F

We write KL(7||7'|A) :== Epox [KL(7(:]2)||7'(:]2))] for A € A(S) and 7,7’ € A(A|S) likewise for
alphabets S,.4 to have notations concise. The values of A in the proofs of Theorem 2.1, Theorem 3.1,

and Theorem 4.1 are different under the same notation. A similar logic applies to the values of 7
in the proofs of Theorem 2.1 and Theorem 3.1.
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F.2 Proof of Theorem 2.1
Proof. We fix p to be Uniform(S) and define a loss function over A(A|S) x A(A|S) as

I(m"):=TV(m,x'|p)= ZTV "(]s)). (F.1)

Obviously, (A(A|S),l) becomes a metric space. Wlthout loss of generality, suppose A is even, we
decompose [ as

|m(2)—1s) =" (2] — L|s) |+ |m(2]s) =7 (24] )|

dsA/2+]‘(7T,7T )i=ls,j(m,7") = 9g , (F.2)
S—1A/2 SA/2
= ZZZSJ (mm")= Z d;(m,m"). (E3)
5=0j=1 i=1
Inspired by Paninski’s construction (Paninski, 2008), we define 7, as
(2 1Us) = A (o) = A (s el 5 )

where 7€ {—1,+1}%5/2 and A is to be specified later. For any 7 ~; 7/, i.e., any pairin {—1,+1}45/2
that differs only in the i-th coordinate, the construction of 7 leads to

2N
d’i (7T7-77T7-/) = 57 (FS)
We thereby refer 7~ 7 to any pair in {—1,+1}45/2 that differs only in one coordinate and obtain
LHS of (2.1)> inf sup E(psxr ) U(T,m7)

REM(D)re{—1,+1}45/2
p=Uniform(S)

mm(l TV((pxm)" (px7)™))

TT!

minexp(~KL((px )| (px 7r)"))

A
—minexp(—nKL(px 7. ||px 7)) = meexp( nKL (7|7 |p))

T~/

—Aexp( -2Alo 1+A)

4 SA 1 A
A n o,
> Zexp(fSS—AA ) (F.6)

where

* the second inequality is by Assouad’s lemma (Yu, 1997, Lemma 2),
¢ the third inequality holds due to a variant (Lemma H.2) of the Bretagnolle-Huber inequality,
* the first equality holds due to the decomposable property of KL (Tsybakov, 2009, Section 2.4),

* the second equality follows from a basic property of f-divergence (Polyanskiy & Wu, 2022,
Proposition 7.2.4),

* the last equality is by the definition of 7 in (F.4) and p = Uniform(S),

* the last inequality derives from log(1+ ) <z, > 0 and an additional constraint A < 0.5
we impose.

The assignment A =0.25,/54/n with n > SA4/4 s a feasible choice for inequality (F.6) to hold, whose
RHS further equals to

exp(—0.5) [SA
16 n
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F.3 Proof of Theorem 3.1

Proof. Without loss of generality, we assume A > 2 is odd, then for a fixed A :=1, which does NOT
vary with S, A, or n in THIS proof, we define IT:= {71'.,- TE {fl,qtl}As/2 } where

. S(I4Tsa/24; )

27—1|s) = ——FF—

7TT( ] |S) 2(n+1) I
— S . s,7) € X . (F7)

7. (24]s) i) (s,7) €[S]x | =
S A-1
To get a lower bound on a Bayes risk, we design a prior over P as

A =Dirac(A(S),Uniform(S)) x T, (E8)

where

I := Uniform(11).
Intuitively speaking, for any p x 7 sampled from A, p must be uniform over S and 7 must be some 7
with 7 uniformly distributed over {—1,+1}54/2 12 Therefore, if we let A(D,R) be the corresponding
posterior over P conditioned on (D,R) and I'(D, R ) be the marginal posterior over A(A|S), we can
by the definition of I" and 7, obtain A(D,R) = Dirac(A(S),Uniform(S)) x I'(D,R) where for any
(s,a)€{0,...,5—1} x{1,...,A—1} and 7 ~T'(D,R), by the Bayes rule,

F.9)

{ I'(D,R)[r(a|s)=7*(als)]=1,(s,a) €D or (s,Buddy(a)) € D;

I'(D,R) [w(a|s) = S(HA)] =I'(D,R) [w(a|s) = S(l_m} =1 otherwise;

— 2(n+1) 2(n+1)

where (recall that A > 2 is assumed to be odd) we define the “Buddy” fora€ [A—1]={1,...,A—1} as

a—1, aiseven;

F.1
a+1, aisodd. (E10)

Buddy(a) = {
The intuition behind (F.9) is that if 7 ~T'(D,R), the marginal posterior of 7(a|s) for any seen (s,a)
in D must be a Dirac concentrated at 7* (a|s) and by the design of [I={, }, 7(als) is also determined
if (s,Buddy(a)) € D."* Note that the last label, A, is designed to be ignored, which we do not consider

in both (F.9) and the following argument driven by Fubini’s theorem. We define a event £p(s,a) for
every (s,a) witha < A as

Ep(s,a)=(s,a) €D or (s,Buddy(a)) € D.
Next, we can apply Fubini’s theorem to the Bayes risk with A as its prior.
]Ep><7r*~A [E(pxﬂ*)nTV(%77T*|p)]
1 ~
=Y ErearEpn ey Ennr(o,0) TV(E(13).m( 15))

seS

1 o~
> 560 EnnrEpe(pxnnin Y Ennr(p,0)|Flals) (als)]

s€S a<A
1
=55 2 Er ~rEpn(oxry D {
sES a<A

Erwr(p,0) ([T (als)=7(als)||€p(s,a)JE[1{Ep(s,a)}|D]
+Err(p,0)lT(als) =7 (als)||€5 (s,0)|E[1{Ep(s,a)} D]

}

"2To be technically rigorous, we say the prior for p over A(S) and the prior for 7* over A(A|S) are assigned
independently, similar assignment also appears in the proof of Theorem 4.1.

Rigorously speaking, 7* (a|s) in (F.9) refers to some concrete realization to some 7, (a|s), which is collected
by R. Itis a slight abuse of notation and a similar one appears in (F.15) in the proof of Theorem 4.1, too.
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1 ~ & C
2 gZEwerDN(pww Y Erureo,0) [T (als) —m(als)||E5 (s,0) E[L{ER(5,a)} D]

SES a<A
1 c
=550 Er ~rEp(pxnyn D_BIL{Ep(5.0)}|D]{
sES a<A
1] S(A+A)| 1] S(1-A)
5 Flals)~ 3 ‘+27<as> 02
}
1 . 1 S
ZﬁZE”*NFED%pXﬂ*)"ZE[H{gp(Sﬂ)HD]i'TH (F.11)
SES a<A
1
:4(n+1>w2aj<AP{<s,a>¢Dand (s,Buddy(a)) ¢ D} (E12)
= 1— . = 11— —
4(n+1)s’§A< pls) n+1> 4(n+1)s’§A< S n+1)
1 1 \"
i, 2, ()
S(A-1) _ SA
N T >
“de(n+1)~ 0’ (F.13)

where the inequality in (F.11) holds because of the triangle inequality and A = 1 by design, and
the equality in (F.12) holds because for any possible value of 7* a priori, i.e., any 7, P{E%(s,a)}
is always (1—1/(n+1))" by the design of I1 = {r, }; the penultimate and the last equality hold due to
the fact that the distribution of p is always Dirac(A(S),Uniform(S)) no matter whether a priori or
a posteriori (conditioned on (D,R)). Since the minimax risk is bounded from below by the worst-case
Bayes risk (Polyanskiy & Wu, 2022, Theorem 28.1), the proof is completed. O

F.4 Proof of Theorem 4.1

Proof. We assign £ =1/(n+1) and design ap € A(S) as p(0) =1 —5-1/(n+1) and p = 1/(n+1) for all
other inputs following Rajaraman et al. (2020, Figure 1 (b)). Then it suffices to get a lower bound
for a Bayes risk given a prior over P, which we design as

Az :=Dirac(A(S),p) xI's, (E.14)
where
'3 :=Uniform (et ), Ige :={m € A(A|S) : 7(-|s) € Dirac(A),Vs € S}.

Intuitively speaking, 7* is uniformly distributed over all deterministic policies, which indicates the
marginal prior distribution of 7*(:|s) for any s € S is

1
I'3[r(-|s) =Dirac(A,a)] = Z,Va cA.
We abbreviate the corresponding posterior of A3 (resp. I's) conditioned on (D, Q) as A3(D,Q) (resp.
I's(D, Q)), which by definition implies A3(D, Q) = Dirac(A(S),p) x I's(D, Q) and by the Bayes
formula implies that for any s€ S and 7 ~T'3(D,Q),
L3(D,Q)[w(-|s)=7*(|s)] =1,5€8(D);
I'5(D,Q)[r(-|s)=Dirac(A,a)] =1/A,seS\S(D).
Without loss of generality, we assume A > 1 is even and then by Fubini’s theorem,
Ep><7r*~A3 [E(pxﬂ*)nTV(%,ﬂ*|p)]
= P(5)Er oty Epnpxn)n Brnra(0,0) TV(R(]5).7(]5))
sES

= P(8)Ernry Epnpxrnyn {Ennrg(p,0) [TV (:|3),7(|5))| s € S(D)|E[L (s € S(D))| D]
sES

(F.15)
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+Ernry(0,0)[TV(F(|s)7(]5))]s ¢ S(D)]E[L(s ¢ S(D))|D] }
> () nrsEp(pxnyn {E[L(s ¢ S(D))| DIErmry(p,0) [TV(@([8),m(]5))]s ¢ S(D)] }

seS
=Zp(S)Ew~r3E<pw>n{E[H(S¢S(D))D]-;ZTV(%(-s),DiraC(A»a))}
seS acA
= P(8) B or, Epcneyn {
SES
1,4/2—1
E[1(s¢S(D)ID]- 5 > [TV(7(-|s),Dirac(A,a))+ TV(7(|s),Dirac(A,a+A/2))]
a=0
}
A/2-1
2Zp(s)ﬁn(sgéS(D))Z > TV(Dirac(A,a),Dirac(A,a+A/2))
seS a=0
= S B £S(D)) & 5 = 5 S pls)Bls £8(D), (£.16)
seS seS

where the last inequality holds due to the triangle inequality of TV. Therefore,

LHS of (F.16)>0.5% p(s)P(s¢S(D))=0.5Y p(s)(1—p(s))"

sES s€ES
S—1 1 \" -1
> 1- 2 5 2= (F.17)
2(n+1) n+1 2e(n+1)~n

where the second inequality is by only considering the .S — 1 inputs with mass 1/(n+1). Since the
minimax risk is bounded from below by the worst-case Bayes risk, the proof is completed. O

G Arguments for Specific Learners

G.1 Additional Definitions in Appendix G

In this section we denote the MLE of p by

Py = G.1)

The event B, ; defined as follows will be used in the proofs of Theorem 2.2 and Theorem 3.4.

Bii=1{ny(S(D))=i},¥(s,i) €S x [n+1]. (G.2)

G.2 Proof of Theorem 2.2

G.2.1 Proof of the High-Probability Bound

Proof. For|S|>1, we define

Uy =1, (S(D)) TV (Feg.eg (-|8),7(-]5)) Vs €S.
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We decompose the LHS of (2.4) as

LHS=) <nS(Sn(D)) +n(s) ﬁ(s)> TV (TcE sel(-]5),7*(-]s))

sES

<32 3 ols) ) TV R ) 7 (1))

seS seS

1
< =N u 12TV (p,p), G.3
7”s§esu+ (pp) (G.3)

(@)
where the first inequality is by triangle inequality and the second one holds due to the boundedness
of TV. We define another two types of events to bound (7) in (G.3):

J(S(D 1
Dszz{us<\/n(‘s‘2())<|A|log2+log|86+ >},V8€S; (G4)

2 S|+1
E::{2TV(p,ﬁ)§\/n<8|10g2+10g| ‘;— )} (G.5)
Notice that P(D¢|B;o) = 0 by the definition of Bs; in (G.2) and for any ¢ > 0,

P(D¢|Bs ;) <9/(Is|+1),Vs € S by Lemma H.4; thus by the law of total probability,

P(Ds)=Y P(Dy|Bs;)P(Bs;)>(1— o | Y P(Bs;)=1— = ,Vs€S. G.6
(D)= 3 BB B0 2 (1 g1y | P =1 i wees. @9

Also noticing that P(E€) <4/(s|+1) by Lemma H.4, we apply a union bound over E° and {D¢};cs
for (4) in (G.3) to conclude that with probability at least 1 —4,

)< ¢ Allog? Hog(([SL+1)/3), s V0S@Y) ﬁ(

2

1
|Slog2+log|$|5+> . (G

Q
By the Cauchy-Schwarz inequality,

. 1 /IS
Qin(GN<— /|5|S€z;ns(3(7)))= —. (G.8)

Substituting (G.8) back to the RHS of (G.7) yields the conclusion. The case of | S| =1 follows from
Lemma H.4. O

G.2.2 Proof of the Worst-Case Upper Bound in Expectation
Proof. Taking expectation on both sides of (G.3) yields

EITV (7 1 |S|
<7 —
[ V(”CE,sgIﬂ‘ |p)] n E Eus+ \/>

seS

=%ZE 15 (S(D))E[TV(Tce sei(-]5),m" (-]5)) Ins (S(D))] | + @, (G.9)

n
SES

where the inequality holds due to Lemma H.3. For every s, we trivially have

~ Alng(S(D

5, < VHARGO) G10)
if conditioned on Bs . If otherwise conditioned on B ,, we still have

7 < VIAN(S(D)) G.11)

s = 2 ?
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where the inequality follows from Lemma H.3. Therefore, substituting (G.10) and (G.11) back to
(G.9) gives

VIA S| _ /Al S|
LHS of (G.9) < 721&/% (S(D))+\/7< 2n§#p(s)+\/7

|SIIAl

n
where the first inequality follows from the law of total expectation with respect to B; o and By , the
second inequality follows from Jensen’s inequality together with the definition of n;(S(D)), and the
last inequality is by the Cauchy-Schwarz inequality.
G.2.3 Proof of the Instance-Depedent Upper Bound in Expectation
Proof. We define the set of the numbers of occurences of all inputs as

Ns:={n,(S(D)):s€S}. (G.12)
Then we decompose the LHS of (2.5) as

Zp E[TV(7cE,sel(-|5),7*(:]5))]

s€ES
:E[
Z p(s)EI:TV(%CE,sgI('|3),7T*('|5))’N3:|
seS(D)
* Z [TV cesel(*]s), 7 (+]s)) Ns}
seS\S(D

]

<E| 3 p8[TVifce,a (r” () (S0 | +EmalpS(D), (@13
s€S(D) Iz

I

where the inequality is by the definition and boundedness of TV (Tcg sgi(:|5),7*(+]s)). We divide I;
and /5 so at to conquer them as follows.

Bounding /;. Forevery s€ S, we define

I(s)=E [TV<%CE,sg|<-|s>m*<-s>>

n(5(0)|

Then we can bound I (s) by Jensen’s inequality for s € S(D):

=5 B ke (o)l (5(P)
acA
1 (n5(S(D))7ce sgi(als) —ns(S(D))7*(als))”
: ZA E[ [n.(SD)) %(3(@))]
Z 1 o), (G.14)

25 (S5(P)
where the last equality holds due to the observation that
n5(S(D))7ce sg1(als) ’ns (8(D)) ~Binomial(ns(S(D)),7*(als)).
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Therefore, we can bound the summation inside the expectation of I; as

afs)(1—*(al5))
> h=33 3 Vo ns<s<D>>

s€S(D) aEAseS(D)
ZZ\/— Y(1—m*(als))
V2 1+ ns(S(D))
)(A—=7*(als))
(g‘l ;9 1+n (S(D)) 7’ G.15)

where the first inequality holds due to ng(S(D)) > 1,Vs € S(D) and the last inequality is by the
Cauchy-Schwarz inequality. Substituting (G.15) into It =E[}_ c 5p)p(s)I1(s)] gives

Il<—z ZT(* als)(1— 7r*(a|s))EH‘f:EfS,)(’m

aG.A seS
Z Z J(1—m (a| )
aEA seS

\/T—I—lz Zmln (m*(als),1—7*(a|s))

CLEA SES
1
< s/ min(m*(als),1—7*(als))
S||A|
‘nH—i—l Sg‘Xme ),1—7"(als)), (G.16)

&(m)
where the first inequality is by Jensen’s inequality, the second inequality derives from Lemma H.8,

and the penultimate inequality holds due to the Cauchy-Schwarz inequality. §~ (7*) in (G.16) can be
further bounded from above by

1—7*(b * = inTV(7*(:|s),Di b
I?Eaécgé% 7 (b]s)+ a%;ﬁbw (als) maxmin (7*(|s),Dirac(A,b))

:meagcdistw(w*(~|s),Dirac(A)) =¢&(m").
To sum up, I1 $+/&(m)|S||A|n—1.

Bounding /;. Explicit calculation yields

5= p(s)(1—p(s)" < D2 < B,

sES
where the inequality follows from Lemma H.5. O

G.3 Proof of Lemma 3.2

Proof. Since |S| =1, we omit the conditioning on s € S for brevity in this proof. By Lemma H.1,
%CE,sgI B) 7'&'* .
Therefore, applying the continuous mapping theorem (Durrett, 2019, Theorem 3.2.10) to (3.4) gives

o PP
SRS ST

uniformly for every a € A.
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G.4 Proof of Theorem 3.3

Proof. By (2.3) and (3.3), TcE sgi(-|s) o ns(S(D)) and Tce pei(-]s) x ng(S(D))7*(+|s) for any
s€8(D). Therefore, the solution set of Tcg i coincides with that of Tcg o only if 7 = Uniform(A)
or 7 € Dirac(.A); otherwise Lemma 3.2 implies that

Hminf TV (Tce pt, 7| p) >0 almost surely,
n— 0o

and we thus rigorously justify the £2(1) in Table 1 with probability one. O

G.5 Proof of Theorem 3.4
G.5.1 Proof of the High-Probability Bounds

Proof. For |S|> 1, we define
Vs :=1(S(D)) TV (TseL pui (+]5),77(+5))
and decompose LHS of (3.8) into three terms as

LHS < 5(s) TV (FseLpul (- )+ _lp(s)=p(s)| TV (FserLpn (1), 7 (-|s))  (G.17)
seS seS
mo (p,S(D)), matches Definition E. 1
<1 1 p(s)
,Ezvﬁﬁ > %—wﬁ > p(s) , (G.18)
s€S seS(D) s€S\S(D)

()
where pis defined in (G.1) and the second inequality follows from p(s) =0,Vs € S\S(D) along with
the boundedness of TV. We additionally define two kinds of events to bound (i¢) in (G.18).

4 S
DSZ{USS9|A+3 Afog!S1+2 },\ues;

. 418 S S|+2
E={mo<p,s<7>>> Bl n"log"é}.

Recall Definition E.2 for A(D,s), if n,(S(D)) >0, by (3.7),
2TV (TseLpu(-15),m* (15) = D [Tse,pu(als)—" (als)]

acA
= > [FseLpulals)—m*(als)| < 2mo(r*([5),A(D;s)), (G.19)
ac A\ A(D,s)
where the inequality holds due to triangle inequality. Consequently,
Vs <ng(S(D))mo(m*(+|s),A(D,s)),Vs € S(D);
to which we apply Lemma H.7 to obtain
. é
(D |Bs,i) < |S| Vz>0
where B, ; is defined in (G.2). Also noticing that IP’(D§|BS70) =0 by definition, we can control P(Dy)
by

LN ) - )
= P(D4|Bs)P(Bss)> | 1——=— P(Bs;)=1— VseS.
S BB BB 2 (1= 5y ) S BB =1 g e

Since P(E) >1—6/(5|+2) by Lemma H.7, we apply a union bound over £° and { D¢} ¢ s for (ii) in
(G.18) to conclude that with probability at least 1 — (ISI+1)3/(|5]+2),
A

—_—
p(s) 1‘

4| Al+3+/| Allog((|S]+2) /6)
o SINEEDY

p(s)

=04

(i1) <

seS(D) (G.20)

4|8 3/IS|, |S|+2
+— 4 ———log——.
In n 1)
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We further decompose A in (G.20) in a pragmatically tight enough way as
p(s) np(s)
A<ISl+ YD ooy S e
Sesz(p) pls) seszw) ns(S(D))

_ 2np(s) np(s)
S8k 2 Sy o) P 2

np(s)
<|S|+QZ
=n s(S(D))+1

B no(s) no(s)
=S sy )T G2y
sES 568—,_/

s

A

where S and 5‘ are defined as

S::{SGS:O<,0( )< log(|S|(|f|+2)/5) 29090} (G.22)

By the definition of S, all s’s in S have small enough p(s), and thus A in (G.21) can be trivially
bounded from above, i.e.,
S10S1+2).

200
<29 610
A <59 ISllee™—%

(G.24)

Foreach se S. , we define

- ¢21og(8|<|8|+2>/6>
’ np(s) ’

then by the definition of S, 1 —ns > 0.1. Therefore, noticing that n;(S(D)) ~ Binomial(n,p(s)), we

can apply Corollary H.10 to each r in (G.21) to conclude that for every s € S, with probability at
least 1—5/(Is|(5|+2)),

rs 1 1 10

np(s) = (I—ns)np(s)+1 = 0.1np(s)+1 = np(s)’ (G.25)

which followed by a union bound argument within S yields that with probability at least 1 —9/(|s|+2),

Ain(G.21)<10[S|. (G.26)

We then denote by E the event conditioned on which (G.26) holds and denote by E the event

conditioned on which (G.20) holds. A union bound argument over £ and E* shows that with
probability at least 1 —§, the LHS of (3.8) is bounded from above by

4] A[+3/| Allog((|S[+2)/9)
In

SI1S1+2)\ | 48] . 3y/IST, |8]+2
12)5+ 22 Sllog S1081+2) | 4151 | 3vI81,, 1512
0 9In n 0

For |S| =1, invoking Lemma H.7 for (G.19) to draw the conclusion.
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G.5.2 Proof of the Upper Bound in Expectation
Proof. Substituting (G.19) into (G.17) yields an upper bound for ETV(Tsgr pu,7*|p) as

S B+ S B |ols) ~ ) [Elmo(x* (1) A(D.9)Ins (S(D))] | G.27)

568 seS

Us

Each Ev; in (G.27) can be bounded from above via (G.19) by

E | ns(S(D)E[mo (7" (-[5),A(D,s))[ns(S(D))] | - (G.28)

Us

Conditioned on B j,, invoking Lemma H.5 to conclude

4
Us < M (G.29)
9
The above inequality trivially holds if otherwise conditioned on B, . Similarly, we always have
. IA| 4 Al
< . G.30
=P ST T on (G.30)
Substituting (G.29) back to (G.28) gives
ZE ‘S”A‘ (G.31)
seS
By Lemma H.8, substituing (G.30) and (G.31) back to (G.27) yields
~ |SIIAl p(s) [SIIAl
ETV ) S—— E < . G.32
(WSEL-,PH”/T ‘p)w n +‘A|§S né(S(D))—Fl ~ n ( )
O

Remark G.1. The empirical variant of vanilla SEL in our second case actually match the log
probability, which is by definition normalized. Analyzing an unnormalized version, which is more
relevant to the matching the logits in practice (Ba & Caruana, 2014; Kim et al., 2021), in the second
setting may call for new techniques. Also, some preliminary results on the empirical side manifest
the difference between minimizing forward KL and reverse KL in scenarios related to our last setting
(Jiang et al., 2019; Gu et al., 2023b; Agarwal et al., 2023), whose analysis are left are future work.

G.6 Proof of Theorem 4.2
Proof. Since TV is bounded from above by 1 and TV(7icg,, (:|s),7*(+|s)) =0,¥s € S(D),

LHS= > p(s)TV(Rce,, (‘]s). 7" (1) <> _p(s)1{s¢S(D)} =M. (G.33)

s€S\S(D) seS

Noticing that M realizes Definition E.1 to mg(p,S(D)), we invoke Lemma H.7 to get

3y/|S|log(1/6) 4 34/|Slog(1/4)

M<EM+& |S| w (G.34)
n 9n n

Substituting (G.34) back to (G.33) finishes the proof. O]

H Auxiliary Lemmas

In contrast with other non-asymptotic tools below, we must assume the mass p does not vary with
n in the asymptotic guarantee Lemma H. 1.
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Lemma H.1. Let p be a probability mass function over an alphabet S, whose empirical estimation
from X71,..., X, "~ plspn( )= HXi=1}/n, then
P =,

where the almost surely convergence is defined under the /o, metric in RIS/,

Proof. Without loss of generality, we assume S = [|S|]; thereby inducing p(z) = F(z) — F(z —1)
for x € [|S]], where F(xz) = P(X < z) is the distribution function of X ~ p. Similarly,
pn(z)=F,(z)—F,(x—1) for

n

P(X; <-
_§oruns)

i=1
Therefore,

max |pp () —p(x)| <sup|Fy(x) = F(x) = (Fp(z—1) = F(z—1))|

ze[|S]] z€R

<2sup|F, (2) ~ F(2)| = 2| Fy — F
rzeR

The proof is thus completed by invoking the Glivenko-Cantelli Theorem (Van der Vaart, 2000,
Theorem 19.1). O

H.1 Bounding TV from Above

Lemma H.2 (Bretagnolle—Huber inequality (Bretagnolle & Huber, 1979)). If P and @) are two
probability measures on the same measurable space, then

TV(P.Q) <1- Jexp(—KL(P|Q))

LemmaH.3. Ifa,....a, "% e A(A), whose MLE is T =7 (a1,...,ay,); and | A| < co, then

[A]

1
ETV(7,m)<— .
n

Proof. We reproduce the proof of this standard result here for completeness.

LHS=§ZE|%<a>—w<a>|§§Z E(# (a)—n(a))?

ac€A a€A
772\/—\/&1*7” Z\/ Y(1—7(
a€A
<—Z\/7r(a)< |A|
a 2\/ﬁa€¢4 ~2 n

where the first inequality is by Jensen’s inequality, the third equality holds due to
n(a) ~ Binomail(n,m(a)), and the last inequality is by the Cauchy-Schwarz inequaity. O

Lemma H.4. Under the same setting as Lemma H.3, for any 6 € (0,1), with probability at least 1 — ¢,

|Allog2+log(1/9)

TV(7,m) <
(7.m) < -

Proof. This is a straightforward corollary of the Bretagnolle-Huber-Carol inequality (van der Vaart
& Wellner, 1996, Proposition A.6.6) based on the relationship between TV and ¢;. O
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H.2 Missing Mass Analysis

Observations like Lemma H.5 are key and common in the analysis of learning from finite and static
datasets (Rajaraman et al., 2020; Rashidinejad et al., 2021).

Lemma H.5. Forall z€[0,1],n>0, z(1—2)" < (4/9)n.

Proof. By taking the derivative w.r.t. x,

n+1

1 1 1 1 4
max LHS = o —<—lim (1-—)"H=—<—.
z€[0,1] n+1 n nn—oo n+1

O

Lemma H.6 (Rajaraman et al. 2020, Theorem A.2). Given a distribution v on an alphabet S and n
i.i.d. samples X" "~ v, then for any § € (0,1/10], with probability at least 1 —3,

mo(u,X”)—E[ (l/ Xn 3\/|?10g 1/6

Lemma H.7. Under the same setting as Lemma H.6, for any 6 € (071/ 10], with probability at least 1—4,

(v < 51 3/1STog(1/6)

In
Proof.
Emo(r,X") =Y v(@)Bl{z¢ X"} => v(x)P(z¢X")
€S €S
4|8
= () 1-v(x)" < 151 (H.1)
on’
€S
where the inequality holds due to Lemma H.5; we conclude that V¢ € (0,1/10], with probability at least
1-94,
4|18  3+/|S|log(1/6
o) < 451 3y/[STog(1/5)
In n
by substituting (H.1) into Lemma H.6. O

H.3 Upper Bounds for Binomial(n,p)
The following two bounds for X ~ Binomial(n,p) both follow from E[2¥] = (1—p+pz)",Vz€R.
Lemma H.8. Let X ~ Binomial(n,p). If p€(0,1],
1 1
X+17 p(n+1)

Proof. This folklore (Canonne, 2020) derives from an observation that by Fubini’s Theorem,
1 ! X
E—= /] E d
X+1 /0 [="1dz,

(L—ptpz)" ' |' _1-(1-p"t' 1
p(n+1) o p(n+1)  ~ p(n+1)

whose RHS is

1
/ (I—p+p2)"dz=
0

Lemma H.9. Let X ~ Binomial(n,p). Forany n€ (0,1),

P(X < (1-n)np) <exp (— 7722%) :
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Proof. A combination of Mitzenmacher & Upfal (2017, Exercise 4.7) and the proof of Mitzenmacher
& Upfal (2017, Theorem 4.5) yields the upper bound, which we provide here for completeness. For
any ¢ <0, by Markov’s inequality,

E[Y] _ (Ltp(e'~1)"

P(X <(1-n)np) :P<etx §et(17’7)"”> <

— et(l—m)np - et(l—n)np
< exp(np(e!—1))  [exp(e'—1)\"" e~ "
- et(l—n)np o et(1—n) B (]_—77)1*77 ’

where the last inequality follows from 14z < e” Vx € R and in the last equality we set t =log(1—n).

It remains to show
2

—n—(1-n)log(1—n) < —%,vne (0,1). (H.2)
We thereby define f (1) :=—n—(1—n)log(1—n)+0.5n2. A direct calculation gives

f'(m)=log(1—=n)+n,f'(0)=0;
) == +1<0n€ (0.1

So f is nonincreasing in [0,1) and thus (H.2) holds. O

Lemma H.9 helps us obtain a high-probability counterpart of Lemma H.8.
Corollary H.10. Let X ~ Binomial(n,p) and p>0. Forany § € (0,1), if

S [Pos/)
np

1 1
< .
X+17 (1—-n)np+1

then with probability at least 1 —4,

Proof. By Lemma H.9,

1 1 n*np
< <(1— < _ —5.
P<X+l>(1—77)np—|—1>]P(X(l n)np)exp( 5 > )

I Hard-to-Learn Instances for Experiments

Instance 0 Forevery s € S, 7*(+|s) := 0.5Uniform(.A) +0.5Dirac(A,s mod A+ 1) because any
reference policy far away from both Uniform(.A) and any one in Dirac(.A) is sufficient to reveal the
disadvantage of Tcg py according to Theorem 3.3. p := Uniform(S) is enough to ensure about »/s
visitations of each input.

Interestingly, we conjecture there does not exist a worst-of-three-worlds instance that can simulta-
neously expose the fundamental limits of %CE,Sgh %SELM., and 7cg,,, in that the constructive proofs (in
Appendix F) of Theorem 2.1, Theorem 3.1, and Theorem 4.1 since the progressively richer information
are substantially different from each other. Since our learners in this section is uniformly initialized
over unseen labels, any single instance covered by the Bayes prior in the lower bound arguments of
a setting'* is sufficient to numerically illustrate the corresponding difficulty of estimation (learning).

*See, e.g., Appendix F.3 for a concrete Bayes prior in use.
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Instance 1 To verify the minimax optimality of 7cg s, With only samples avaiable, we adapt the
proof of Theorem 2.1 (Appendix F.2), which is based on Assouad’s hypercube reduction (Yu, 1997).
In numerical simlations, any vertex of the hypercube is applicable since we have already enforced
an uniform initialization of any 7 in unseen inputs. We choose the teacher policy

A

A

2

(25— 1]s) = 1+0'25‘/SA/”,7T*(2j|s)— 1-0.25\/SA/n V(s.4) €T x {A];

and p = Uniform(S) for simplicity. The two key insights behind the design of Instance 1
are (1) p must be nonvanishing in ©(|S|) inputs to manifest the hardness of |S| > 0, (2)
TV(7m*(-|s),Uniform(A)) =©(n ") is crucial for Instance 1 to be hard enough for any minimax opti-
mal learner. (If |4| is odd, simply let the last label A to have zero mass and replace A with A—1 here.)

Instance2 To verify the minimax optimality of Tsg| o with sampled odds avaiable, we adapt the
proof of Theorem 3.1 (Appendix F.3), which is based on a carefully designd Bayes prior. Similarly,
we can use any single instance covered by the support of the Bayes prior. We choose the teacher policy

)

T (25—1s)=

S S A-1 — [A-1
2 1*(2]]s)=0,m*(A]s)=1—2- "= V(s
QI =0* (Als)=1- 5 S W) T8Tx | 2
and p = Uniform(S) for simplicity. (If | 4| is even, simply let the last label A to have zero mass and
replace A with A—1 here.)

Instance 3 To verify the minimax optimality of wcg,, with complete logits avaiable, we adapt the
proof of Theorem 4.1 (Appendix F.4), which includes a specialized p to slow down the convergence
of 7icg,,. Specifically, p= (n+1)~* for all inputs except the last one. Theoretically, the assignment
of 7* will not affect the convergence of 7cg,,,, SO we use a 77* same as that in Instance 3 only to ensure
that TTsg| py 18 not able to converge too fast.

J Discussions: Dependent Samples in Rewardless MDPs

Besides the popular approach of fine-tuning LLMs (Ouyang et al., 2022; Touvron et al., 2023b) that
interprets instructions as inputs and the entire response as a label, there is a more granular perspective
where each token is considered a label a; (See, e.g., the Logprobs option in the OpenAl completion
API'")) and s, is simply the concatenation of s; and a;, i.e., s;11 ~ P(-|s;,a;), where P is the
deterministic transition kernel induced by concatenation. Our bounds for i.i.d. samples already
subsume this plausible more involved case through lack of reward. The following reductions hold
for any P e A(A|S x A) including the aforementioned concatenation kernel.

The proof of any lower bound remains valid so long as P(-|s,a) := p(-),V(s,a) € S x A in the
constructed hard-to-learn instance, making the samples i.i.d. Our upper bounds allow p to explicitly
depend on 7* and even PP, so the samples can be viewed as i.i.d. samples from dZ. x 7* given the input
occupancy measure d~.. € A(S) is well-defined. Hence, replacing p with d=. validates all arguments
for upper bounds. Intuitively, d-. (s) is the probability of visiting s in a trajectory induced by the
transition kernel P and reference policy 7*. It is well-developed in either episodic MDPs (Yin et al.,
2021) or discounted MDPs (Rashidinejad et al., 2021). These seamless reductions crucially hinge
on the absence of value functions and any notion of reward signal in our theoretical framework.

Remark J.1. Our analysis covers but is not specialized to the case where p depends on 7* or vice
versa. Therefore, the result remains unchanged regardless of the relation between p and the original
training set for training the teacher 7*. (For example, p may be the distribution of instructions selected
by maintainers on the student side (Peng et al., 2023).) It will be intriguing if some further analysis
can show any impact of teacher training or data quality on the students’ statistical rate.

Phttps://platform.openai.com/docs/api-reference/completions/create#logprobs
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