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Abstract— Robust person localization from a moving camera
is a fundamental skill for robots to navigate and interact with
humans in the open world. However, the diversity of robot
platforms and environments poses a significant generalization
challenge. Learning-based methods, often trained on datasets
with limited camera motion, fail in out-of-distribution (OOD)
scenarios involving severe camera ego-motion. To address this,
we propose an optimization-based method that models the
human with a four-point skeleton to jointly estimate camera
attitude and 3D person location. Our approach avoids reliance
on large-scale training data and generalizes across different
viewpoints and image projections. Real-robot experiments and
dataset evaluations show our method outperforms existing
approaches, especially in these challenging OOD scenarios. The
system is deployed for person-following on an agile quadruped,
demonstrating its utility for robust open-world Human-Robot
Interaction (HRI).

I. INTRODUCTION

Enabling robots to navigate the open world and collaborate
with humans is a central goal in robotics, with Robot
Person Following (RPF) [1] being a key interactive skill. A
major challenge for open-world deployment is generalization
across diverse environments and hardware embodiments.
Specifically, achieving stable localization under significant
viewpoint changes is critical for robust interaction. This
is particularly challenging for agile robots like quadrupeds
traversing rough terrains [2], [3]. As shown in Fig. 1,
their dynamic movements induce severe camera ego-motion,
which poses a significant out-of-distribution (OOD) problem
compared to the well-studied, leveled-ground scenarios com-
mon in autonomous driving [4].

To mitigate ego-motion, using extra sensors like UWB [2],
LiDAR [5]–[9], or RGB-D cameras [5] can directly provide
the person’s depth, thus bypassing the viewpoint dependency.
However, to achieve robust monocular localization under
such viewpoint shifts, it is necessary to jointly estimate
both the camera’s pose and the person’s 3D location [10].
Some methods attempt to compensate for ego-motion using
state estimation from an IMU [8], [11] or odometry [5],
[6], [12], [13]. Unfortunately, state estimation for highly
dynamic robots often suffers from significant drift, leading
to accumulating localization errors [14], [15]. Other prior
works relying on strong geometric or data-driven priors also
struggle in these dynamic scenarios.

Monocular human perception is also widely studied in
computer vision [16], [17]. However, learning-based models
for depth estimation [18], [19], 3D detection [20], [21],
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Fig. 1. A scenario of a quadruped robot following a person through a
rugged lawn. The robot view is from an onboard panoramic camera (see
Sec. IV-C). The robot’s dynamic motion induces severe camera ego-motion
and vibration, which bring challenges for person localization.

or mesh recovery [22] often fail to generalize. Trained
on datasets with limited camera perspectives, they perform
poorly when faced with the large roll and pitch motions
of a quadruped—a classic OOD failure. Furthermore, meth-
ods using complex parametric models like SMPL [23] can
be sensitive to camera intrinsic parameters, limiting their
hardware generalizability, while recent transformer-based
architectures, despite their strong performance, are often too
computationally intensive for real-time robotic applications
[22].

To address these generalization issues, we propose a real-
time, optimization-based method that estimates 3D person
location from a single image, avoiding reliance on potentially
error-prone odometry. By representing the human as a four-
point model, our method jointly optimizes for the camera’s
attitude and the person’s 3D location. This model-based
approach is inherently more robust to OOD scenarios than
learning-based counterparts and, through a normalization
step, is agnostic to specific camera intrinsics, enhancing its
generalizability across different robot platforms. We demon-
strate its effectiveness on a Unitree Go1 quadruped [2],
achieving stable localization on rough terrain. Our code and
dataset are available at https://medlartea.github.
io/rpf-quadruped/.

II. RELATED WORK

A. Geometric-Model-based Localization
Geometric methods estimate 3D position from 2D joints

by assuming an upright human on a ground plane [24]–
[26]. While recent works have relaxed some constraints for
robotic applications [27]–[29], their core assumption of a
fixed camera pose remains. Thus, these plane geometry-
based methods are suitable for fixed surveillance cameras or
indoor wheeled robots on flat ground, but are ill-suited for
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Fig. 2. The geometry of our observation model. (a) In the raw camera-centric view, the person appears tilted due to the robot’s ego-motion. (b) Our
model assumes an upright person, representing the ego-motion as a corresponding tilt of the camera.

agile robots with large-angle ego-motion, such as quadruped,
humanoid, or outdoor off-road robots.

B. Optimization-based Pose Estimation
Optimization-based methods recover pose by fitting a

model to semantic keypoints [30], [31]. For humans, state-
of-the-art systems like BodySLAM++ [10] achieve high
accuracy by coupling a human model with stereo VIO.
However, this reliance on extra sensors makes it unsuitable
for low-cost, monocular platforms, and its robustness under
the severe ego-motion considered here is untested.

C. Learning-based Pose Regression
Learning-based methods directly regress 3D location from

2D information. Approaches that regress location from 2D
joints [21], [32], [33] generalize poorly, as models trained
on autonomous driving data [34] fail when presented with
out-of-distribution robot viewpoints [4]. Full human mesh re-
covery models [16], [17], [22] often have high computational
costs, suffer from depth ambiguity, and have restrictive cam-
era assumptions. Moreover, many current 3D Human Pose
Estimation (HPE) methods focus on root-relative accuracy.
Consequently, few methods can simultaneously provide the
absolute accuracy, real-time performance, and generalization
capability required for robust person localization.

III. METHODOLOGY
We propose an optimization-based person localization

method robust to camera ego-motion. By fitting a four-point
human skeleton model (Pall = {Pneck, Phip, Pknee, Pankle})
to 2D image observations, our method simultaneously esti-
mates the camera’s 2D attitude (roll, pitch) and the person’s
3D location. We then integrate this method into an RPF
system on a quadruped robot.

A. Human Model and Observations

Our method begins with 2D observations. We use YOLOX
[35] for person detection and AlphaPose [36] for 2D joint
estimation, which is robust to occlusion and distortion [28].
From the left/right joints, we take the median to define our
four keypoints in Pall. Crucially, all 2D points are then back-
projected to a normalized image plane. This normalization
makes our method independent of specific camera intrinsics,
a key feature for generalizing across different robot hardware
and camera embodiments. The projected lengths and ratios

of the segments on this plane encode the person’s distance
and the camera’s viewing angle (Fig. 2a).

B. Parameterization and Constraints

The person’s pose relative to the camera is defined by 5-
DoF (3D translation, 2D rotation), as we ignore the body’s
yaw which can be recovered separately [37]. We represent
the person’s position by their footprint F ∈ R3 in the camera
frame {C}. Their structure is defined by a set of known
heights Hall = {hneck, ..., hankle} for the keypoints in Pall.

Our key assumption is that the person remains upright.
We therefore model the camera’s ego-motion as a rotation
of the camera frame itself, relative to a virtual ground plane
on which the person stands (Fig. 2b). This rotation from the
camera frame {C} to the robot’s frame {R} is parameterized
by roll and pitch Euler angles {θ, ϕ}:

R = Rz(ϕ)Rx(θ), (1)

where Rz(ϕ) and Rx(θ) are elementary rotation matrices.
Our state vector s to be estimated thus consists of the
person’s planar location (XF , ZF ), the camera height hC ,
and the camera attitude:

s = {XF , ZF , hC , θ, ϕ} (2)

In the robot frame {R}, the vector from the camera center
C to any point Pi ∈ Pall is:

−−→
CPi = (XF , hC − hi, ZF )

T , hi ∈ Hall (3)

This vector is then transformed into the camera frame for
reprojection:

PC
i = R−1 ·

−−→
CPi, (4)

where PC
i are the coordinates of Pi in {C}.

C. Optimization Details

To account for body articulation, we assign lower weights
to mobile points (Pknee, Pankle) and higher weights to
stable points (Pneck, Phip). We then minimize the weighted
reprojection error f :

f(XF , ZF , hC , θ, ϕ) =

n∑
i=1

wi

∥∥ni − π(PC
i )

∥∥2 (5)

where π(·) is the camera projection function. We optimize
the state vector s by partitioning it into translation t =



{XF , ZF , hC} and rotation r = {θ, ϕ} and updating them
alternately [30].

We solve this bounded nonlinear least-squares problem
using the Dogbox method [38], [39] with a Cauchy cost
function [40] for robustness.

D. Implementation in RPF Framework

Our method is integrated into a standard RPF pipeline
(Fig. 3) [1], [27]–[29], where our normalization and opti-
mization modules are the key components for localization.
The localization process involves two phases: an offline
initialization and an online tracking phase.

First, during the offline initialization with the robot’s
known static pose, we solve for the target’s joint heights Hall

and initial position. This is a linear least squares problem
solved via SVD [41] by minimizing the reprojection error:

{X∗
F , Z

∗
F ,H∗

all} = arg min
XF ,ZF ,Hall

n∑
i=1

wi

∥∥ni − π(PC
i )

∥∥2
(6)

Second, in the online person-following phase, the calibrated
Hall is used to estimate the person’s location and cam-
era attitude in real-time as described in Sec. III-C. The
resulting location (XF , ZF ) is then used by downstream
modules for data association, trajectory smoothing, person
re-identification [42], and robot control.

IV. EXPERIMENTS

We conduct a series of experiments to evaluate our
method’s accuracy, efficiency, and generalization capability
in open-world scenarios.

A. Baselines

We compare our method against geometric and deep-
learning baselines from Sec. II-A and Sec. II-C:

Geo-model-based:
• Koide’s Method [27]: Locates person via neck point,

assuming a fixed camera.
• Ye’s Method [28]: Extends [27] using four points to

handle occlusion, but still assumes a fixed camera.
Deep-learning-based:

• MonoLoco++ [21]: Regresses 3D location from 2D
joints, trained on KITTI [34].

• Depth Anything [18]: Estimates a relative depth map.
We use average joint depth for distance and the ground
truth of the 1st frame for metric depth.

• Multi-HMR [22]: Recovers human mesh and estimates
absolute distance between the pelvis and the camera.

B. Datasets

We evaluate on three datasets, positioning them as bench-
marks for performance in different environments. KITTI
[34] represents a structured, ”in-distribution” scenario, typ-
ical of autonomous driving, where learning-based 3D-
detection methods are trained. FieldSAFE [43], featuring
a tractor in a field, presents a moderately challenging out-
door environment. Our custom RPF-Quadruped dataset,

recorded on a Unitree Go1 [2] (Fig. 4a), is designed to
be a benchmark for ”out-of-distribution” (OOD) open-world
challenges. It contains three scenarios (Fig. 4b-4d) with
ground truth from a motion capture system or UWB. As
shown in Table I, the significant variance in camera pitch and
roll in our dataset quantitatively demonstrates a distributional
shift from standard benchmarks, posing a stringent test for
viewpoint generalization.

Dataset KITTI [34] FieldSAFE [43] RPF-Quadruped

Distance from Camera (m) 18.44 ± 11.20 7.50 ± 1.50 3.50 ± 3.00
Camera Height (m) 2.31 ± 0.29 4.50 ± 0.09 0.50 ± 0.15
Camera Pitch (deg) / 16.01 ± 5.27 0.5 ± 15.46
Camera Roll (deg) / 0.32 ± 4.18 0.8 ± 10.30

TABLE I. Statistical comparison of mean and standard deviation of
key parameters, highlighting the distributional shift in our RPF-Quadruped
dataset.

(a) Platform (b) Turning Head

(c) Indoor Slope (d) Rugged Lawn

Fig. 4. (a) Our quadruped robot platform. (b-d) Scenarios from our RPF-
Quadruped dataset.

C. Platform and Implementation Details

Our platform is a Unitree Go1 quadruped [2] (Fig. 4a) with
an Intel NUC (i7/RTX 2060), using pin-hole, fisheye, and
panoramic cameras. A UWB sensor provides ground-truth
distance. The Go1’s small size and high step frequency result
in more severe ego-motion than platforms in prior RPF work
[5], [7], [8]. All methods were evaluated on the robot’s NUC,
except for Multi-HMR [22], which ran offline on a desktop
PC (RTX 3070). 2D joint detection for relevant methods was
standardized as per Sec. III-A and accelerated with TensorRT.

D. Evaluation and Results

We evaluate localization accuracy and runtime. Accu-
racy is measured by Average Location/Distance Error
(ALE/ADE) [21], [28]. For sequences with continuous mo-
tion, we also report the Variance of Location/Distance
Error (VLE/VDE) to assess stability.

As shown in Table II, our method achieves the lowest error
and variance on our dataset and FieldSAFE. MonoLoco++
[21] performs best on KITTI, its training domain. In the
challenging Rugged Lawn scenario, our method is visibly
more accurate and stable, as shown by the error distribution
(Fig. 5) and time-series distance plot (Fig. 6). Fig. 6(a) shows



Fig. 3. Our proposed framework for monocular Robot Person Following (RPF). The modules highlighted in orange represent our key contributions: (1)
a normalization step for camera-agnostic processing, and (2) a subsequent optimization-based person localization method.

TABLE II. Comparison of localization accuracy. We evaluate our method
against several baselines and present an ablation study. Metrics include:
Average Location/Distance Error (ALE/ADE) in meters (m), and their
corresponding variances (VLE/VDE) in m2.

Methods
Scenarios Turning Head Indoor Slope Rugged Lawn FieldSAFE [43] KITTI [34]

ALE ↓ ALE ↓ ADE / VDE ↓ ALE / VLE ↓ ALE ↓

Koide’s Method [27] 0.396 0.289 0.3 / 0.3 1.924 / 5.012 1.451
Ye’s Method [28] 0.294 0.261 0.3 / 0.3 1.856 / 3.952 1.420
MonoLoco++ [21] 0.820 0.510 0.6 / 0.2 4.152 / 4.705 0.940
Depth Anything [18] 0.571 0.523 0.5 / 0.6 1.528 / 1.022 2.963
Multi-HMR [22] 0.493 0.254 0.4 / 0.3 3.066 / 0.424 1.520
Ours 0.178 0.101 0.1 / 0.0 1.287 / 0.356 1.220

Ours w/o neck 0.238 0.196 0.2 / 0.1 1.324 / 0.865 1.320
Ours w/o ankle 0.204 0.141 0.1 / 0.0 1.308 / 0.401 1.275
Ours on fisheye images 0.182 0.119 0.1 / 0.0 / /

Fig. 5. A box plot illustrating the distance error of our method compared
to baselines in Rugged Lawn scenario.

that learning-based methods generalize poorly to our scenar-
ios, while Fig. 6(b) shows that geo-model-based methods
produce large errors during ego-motion. Table III confirms
our method’s real-time performance.

V. CONCLUSIONS

In this paper, we presented a real-time (40 FPS),
optimization-based method for monocular person localiza-
tion, addressing the critical challenge of viewpoint gener-
alization under severe camera ego-motion. Our approach,
which jointly estimates camera attitude and person loca-

TABLE III. Comparison of per-frame average runtime. The preprocessing
time accounts for 2D human joint detection. *Runtime for Multi-HMR was
measured on a different PC (see Sec. IV-C).

Method Preprocessing (s) Estimation (s) Total (s)

Koide’s Method [27] 0.02 0.0006 0.0206
Ye’s Method [28] 0.02 0.0008 0.0208
MonoLoco++ [21] 0.02 0.09 0.11
Depth Anything [18] / 0.23 0.23
Multi-HMR [22]∗ / 1.24 1.24
Ours 0.02 0.005 0.025

Fig. 6. Comparison of estimated distance over time on a sequence from
the Rugged Lawn dataset (10s–57s). The plot shows the output of (a) deep-
learning-based and (b) geo-model-based baselines.

tion using a four-point human model, was successfully
demonstrated in a Robot Person Following (RPF) system
on an agile quadruped. Although built upon a traditional
optimization framework, our method’s independence from
large-scale training data and camera intrinsics makes it easy
to deploy across diverse platforms. We believe that achieving
such robust spatial intelligence is a prerequisite for stable
decision-making and navigation in the open world.

We hope our simple yet effective method can serve as a
baseline to research navigation, following, and HRI in un-
structured terrains. Furthermore, we argue that scenarios with
large-angle camera ego-motion are an essential testbed for a
model’s viewpoint generalization. Our contributed dataset,
featuring low-angle perspectives and significant ego-motion,
provides a resource for benchmarking these capabilities.
Future work will focus on handling more postures with
expressive human models and validating our approach on
large-scale egocentric datasets such as TPT-bench [44].

REFERENCES

[1] M. J. Islam, J. Hong, and J. Sattar, “Person-following by autonomous
robots: A categorical overview,” The International Journal of Robotics
Research, vol. 38, no. 14, pp. 1581–1618, 2019.

[2] “Unitree go1,” https://www.unitree.com/cn/go1.
[3] “Alphard club-booster-v2,” https://alphardgolf.com.

https://www.unitree.com/cn/go1
https://alphardgolf.com


[4] X. Ma, W. Ouyang, A. Simonelli, and E. Ricci, “3d object detection
from images for autonomous driving: A survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 46, no. 5, pp. 3537–
3556, 2024.

[5] Z. Zhang, J. Yan, X. Kong, G. Zhai, and Y. Liu, “Efficient motion
planning based on kinodynamic model for quadruped robots following
persons in confined spaces,” IEEE/ASME Transactions on Mechatron-
ics, vol. 26, no. 4, pp. 1997–2006, 2021.

[6] B. Mishra, D. Calvert, B. Ortolano, M. Asselmeier, L. Fina, S. Mc-
Crory, H. E. Sevil, and R. Griffin, “Perception engine using a multi-
sensor head to enable high-level humanoid robot behaviors,” in 2022
International Conference on Robotics and Automation (ICRA), 2022,
pp. 9251–9257.

[7] S. Xin, Z. Zhang, M. Wang, X. Hou, Y. Guo, X. Kang, L. Liu,
and Y. Liu, “Multi-modal 3d human tracking for robots in complex
environment with siamese point-video transformer,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA), 2024,
pp. 337–344.

[8] K. Cho, S. H. Baeg, and S. Park, “3d pose and target position
estimation for a quadruped walking robot,” in 2013 10th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI),
2013, pp. 466–467.

[9] A. Leigh, J. Pineau, N. Olmedo, and H. Zhang, “Person tracking
and following with 2d laser scanners,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 726–733.

[10] D. F. Henning, C. Choi, S. Schaefer, and S. Leutenegger, “Bodys-
lam++: Fast and tightly-coupled visual-inertial camera and human
motion tracking,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 3781–3788.

[11] J. Brookshire, “Person following using histograms of oriented gradi-
ents,” I. J. Social Robotics, vol. 2, pp. 137–146, 06 2010.

[12] A. Roychoudhury, S. Khorshidi, S. Agrawal, and M. Bennewitz,
“Perception for humanoid robots,” Current Robotics Reports, pp. 1–14,
2023.

[13] K. Aso, D.-H. Hwang, and H. Koike, “Portable 3d human pose
estimation for human-human interaction using a chest-mounted fisheye
camera,” in Proceedings of the Augmented Humans International
Conference 2021, 2021, pp. 116–120.

[14] F. Allione, J. D. Gamba, A. E. Gkikakis, R. Featherstone, and
D. Caldwell, “Effects of repetitive low-acceleration impacts on attitude
estimation with micro-electromechanical inertial measurement units,”
Frontiers in Robotics and AI, vol. 10, 2023.

[15] S. Yang, Z. Zhang, Z. Fu, and Z. Manchester, “Cerberus: Low-
drift visual-inertial-leg odometry for agile locomotion,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 4193–4199.

[16] C. Zheng, W. Wu, C. Chen, T. Yang, S. Zhu, J. Shen, N. Kehtarnavaz,
and M. Shah, “Deep learning-based human pose estimation: A survey,”
ACM Computing Surveys, vol. 56, no. 1, pp. 1–37, 2023.

[17] W. Liu, Q. Bao, Y. Sun, and T. Mei, “Recent advances of monocular
2d and 3d human pose estimation: A deep learning perspective,” ACM
Comput. Surv., vol. 55, no. 4, Nov. 2022.

[18] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, “Depth
anything: Unleashing the power of large-scale unlabeled data,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2024, pp. 10 371–10 381.

[19] L. Piccinelli, Y.-H. Yang, C. Sakaridis, M. Segu, S. Li, L. Van Gool,
and F. Yu, “UniDepth: Universal monocular metric depth estimation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2024.

[20] G. Moon, J. Y. Chang, and K. M. Lee, “Camera distance-aware top-
down approach for 3d multi-person pose estimation from a single rgb
image,” 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 10 132–10 141, 2019.

[21] L. Bertoni, S. Kreiss, and A. Alahi, “Perceiving humans: from
monocular 3d localization to social distancing,” IEEE Transactions
on Intelligent Transportation Systems, 2021.

[22] F. Baradel*, M. Armando, S. Galaaoui, R. Brégier, P. Weinzaepfel,
G. Rogez, and T. Lucas*, “Multi-hmr: Multi-person whole-body
human mesh recovery in a single shot,” in ECCV, 2024.

[23] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. Black,
“Keep it smpl: Automatic estimation of 3d human pose and shape from
a single image,” vol. 9909, 10 2016, pp. 561–578.

[24] X. Fei, H. Wang, L. L. Cheong, X. Zeng, M. Wang, and J. Tighe,
“Single view physical distance estimation using human pose,” in 2021

IEEE/CVF International Conference on Computer Vision (ICCV),
2021, pp. 12 386–12 396.

[25] M. Aghaei, M. Bustreo, Y. Wang, G. Bailo, P. Morerio, and
A. Del Bue, “Single image human proxemics estimation for visual
social distancing,” in 2021 IEEE Winter Conference on Applications
of Computer Vision (WACV), 2021, pp. 2784–2794.

[26] W. Choi, C. Pantofaru, and S. Savarese, “A general framework for
tracking multiple people from a moving camera,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1577–
1591, 2013.

[27] K. Koide, J. Miura, and E. Menegatti, “Monocular person tracking and
identification with on-line deep feature selection for person following
robots,” Robotics and Autonomous Systems, vol. 124, p. 103348, 2020.

[28] H. Ye, J. Zhao, Y. Pan, W. Cherr, L. He, and H. Zhang, “Robot
person following under partial occlusion,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
7591–7597.

[29] A. Bacchin, F. Berno, E. Menegatti, and A. Pretto, “People tracking
in panoramic video for guiding robots,” in Intelligent Autonomous
Systems 17, I. Petrovic, E. Menegatti, and I. Marković, Eds. Cham:
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