
Reward-Guided Iterative Refinement in Diffusion Models at Test-Time
with Applications to Protein and DNA Design

Masatoshi Uehara * 1 Xingyu Su * 2 Yulai Zhao 3 Xiner Li 2 Aviv Regev 1

Shuiwang Ji† 2 Sergey Levine† 4 Tommaso Biancalani† 1

Abstract
To fully leverage the capabilities of diffusion
models, we are often interested in optimizing
downstream reward functions during inference.
While numerous algorithms for reward-guided
generation have been recently proposed due to
their significance, current approaches predom-
inantly focus on single-shot generation, tran-
sitioning from fully noised to denoised states.
We propose a novel framework for test-time re-
ward optimization with diffusion models. Our
approach employs an iterative refinement pro-
cess consisting of two steps in each iteration:
noising and reward-guided denoising. This se-
quential refinement allows for the gradual cor-
rection of errors introduced during reward opti-
mization. Finally, we demonstrate its superior
empirical performance in protein and cell-type
specific regulatory DNA design. The code is avail-
able at https://github.com/masa-ue/ProDifEvo-
Refinement.

1. Introduction
Diffusion models have achieved significant success across
various domains, including computer vision and scientific
fields (Ramesh et al., 2021; Watson et al., 2023). These
models enable sampling from complex natural image spaces
or molecular spaces that resemble natural structures. Be-
yond the capabilities of such pre-trained diffusion models,
there is often a need to optimize downstream reward func-
tions. For instance, in text-to-image diffusion models, the
reward function may be the alignment score (Black et al.,
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Figure 1: Our proposed framework follows an iterative pro-
cess, with each iteration injecting noise into the sample and
then denoising it while optimizing rewards. For sequences,
this can be implemented via masked diffusion, initialized
from pre-trained diffusion models (left). Our algorithm can
continuously refine the outputs by gradually correcting er-
rors introduced during reward-guided denoising, improving
the design over successive iterations (middle). For instance,
for the task of optimizing the similarity (RMSD) of a protein
to a target structure (Red), we can progressively minimize
the RMSD through refinement, optimizing the design from
an initial (Orange) fit to a better final fit (Green), as shown
on the right.

2023; Fan et al., 2023; Uehara et al., 2024), while in protein
sequence diffusion models, it could include metrics such as
stability, structural constraints, or binding affinity (Verkuil
et al., 2022), and in DNA sequence diffusion models, it may
involve activity levels (Sarkar et al., 2024; Lal et al., 2024).

Building on the motivation above, we focus on optimizing
downstream reward functions while preserving the natural-
ness of the designs. (e.g., a natural-like protein sequence
exhibiting strong binding affinity) by seamlessly integrating
these reward functions with pre-trained diffusion models
during inference. While numerous studies have proposed
to incorporate rewards into the generation process of diffu-
sion models (e.g., classifier guidance (Dhariwal and Nichol,
2021) by setting rewards as classifiers, derivative-free meth-
ods (Wu et al., 2024; Li et al., 2024)), they rely on a single-
shot denoising pass for generation. However, a natural
question arises:

Can we further leverage inference-time computation during
generation to refine the model’s output?
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In this study, we observe that diffusion models can inher-
ently support an iterative generation procedure, where the
design can be progressively refined through successive cy-
cles of masking and noise removal. This allows us to utilize
arbitrarily large amounts of computation during generation
to continuously improve the design.

Motivated by the above observations, we propose a novel
framework for test-time reward optimization with diffusion
models. Our approach employs an iterative refinement algo-
rithm consisting of two steps in each iteration: partial nois-
ing and reward-guided denoising as in Figure 1. The reward-
guided denoising step transitions from partially noised states
to denoised states using techniques such as classifier guid-
ance or derivative-free guidance. Unlike existing single-shot
methods, our approach offers several advantages. First, our
sequential refinement process allows for the gradual correc-
tion of errors introduced during reward-guided denoising,
enabling us to optimize complex reward functions, such
as structural properties in protein sequence design. In par-
ticular, this correction is expected to be crucial in recent
successful masked diffusion models (Sahoo et al., 2024;
Shi et al., 2024), as once a token is demasked, it remains
unchanged until the end of the denoising step. Besides,
for reward functions with hard constraints, commonly en-
countered in biological sequence or molecular design (e.g.,
cell-type-specific DNA design (Gosai et al., 2023; Lal et al.,
2024) or binders with high specificity), our framework can
effectively optimize such reward functions by initializing
seed sequences within feasible regions that satisfy these
constraints.

Our contribution is summarized as follows. First, we pro-
pose a new reward-guided generation framework for diffu-
sion models that sequentially refines the generated outputs
(Section 3). Our algorithm addresses two major issues in
existing methods such as the lack of a correction mech-
anism and difficulties of handling hard constraints. Sec-
ondly, we provide a theoretical formulation demonstrating
that our algorithm samples from the desirable distribution
exp(r(x))ppre(·), where ppre(·) is a pre-trained distribu-
tion (Section 4) and r(·) is a reward function. Finally, we
present a specific instantiation of our unified framework by
carefully designing the reward-guided denoising stage in
each iteration, which bears similarities to evolutionary algo-
rithms (Section 5). Using this approach, we experimentally
demonstrate that our algorithm effectively optimizes reward
functions, outperforming existing methods in computational
protein and DNA design (Section 6).

1.1. Related Works

We categorize related works into three key aspects.

Guidance (i.e. test-time reward optimization) in diffu-
sion models. Most classical approaches involve classifier
guidance (Dhariwal and Nichol, 2021; Song et al., 2021),
which adds the gradient of reward models (or classifiers)
during inference. As reviewed in Uehara et al. (2025), re-
cently, derivative-free methods such as SMC-based guid-
ance (Wu et al., 2024; Dou and Song, 2024; Phillips et al.,
2024; Cardoso et al., 2023) or value-based sampling (Li
et al., 2024; 2025) have been proposed. However, these
methods rely on single-shot generation from noisy states to
denoised states. In contrast, we propose a novel iterative re-
finement approach that enables the optimization of complex
reward functions, which can be challenging for single-shot
reward-guided generation.

Note while classifier-free guidance (Ho and Salimans, 2022)
and RL (control)-based fine-tuning (e.g., Fan et al. (2023);
Black et al. (2023); Domingo-Enrich et al. (2024); Uehara
et al. (2024); Venkatraman et al. (2024); Zhang et al. (2024))
also aim to address reward optimization in diffusion models,
they are orthogonal to our work, as we focus on test-time
techniques without any training.

Refinement in language models. Refinement-style gener-
ation has been explored in the context of BERT-style masked
language models and general language models (Novak et al.,
2016; Guu et al., 2018; Wang and Cho, 2019; Welleck et al.,
2022; Padmakumar et al., 2023; Wang et al., 2024). How-
ever, our work is the first attempt to study iterative refine-
ment in diffusion models. Note that while some readers
may consider editing in diffusion models (e.g., Huang et al.
(2024)) to be relevant , this is a distinct area, as the focus is
not on reward optimization, unlike our work.

Evolutionary algorithms and MCMC for biological se-
quence design. Refinement-based approaches with re-
ward models, such as variants of Gibbs sampling and genetic
algorithms, have been widely used for protein/DNA design
(Anishchenko et al., 2021; Jendrusch et al., 2021; Hie et al.,
2022; Gosai et al., 2023; Pacesa et al., 2024). However, most
works do not address the integration of diffusion models.
While some studies focus on integrating generative models
(Hie et al., 2024; Chen et al., 2024), we explore an approach
tailored to diffusion models, given the recent success of
diffusion models in protein and DNA sequence generation
(Alamdari et al., 2023; Wang et al., 2024).

We finally remark that as closely related works, evolutionary-
type algorithms with generative models have been actively
investigated (Schneuing et al., 2024; Lee et al., 2025). Com-
pared to these works, we use reward-guided decoding meth-
ods instead of standard decoding ways.
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2. Preliminaries
We first provide an overview of diffusion models, then dis-
cuss current reward-guided algorithms in diffusion models
and the potential challenges, which motivate our proposal.

2.1. Diffusion Models

In diffusion models, the objective is to learn a sampler
ppre(·) ∈ ∆(X ) for a given design space X using avail-
able data. The training procedure is summarized as follows.
First, we define a forward noising process (also called a
policy) qt : X → ∆(X ) that proceeds from t = 0 to t = T .
Next, we learn a reverse denoising process pt : X → ∆(X )
parametrized by neural networks, ensuring that the marginal
distributions induced by these forward and backward pro-
cesses match.

To provide a concrete illustration, we explain masked diffu-
sion models. However, we remark that our proposal in this
paper can be applied to any diffusion model.

Example 1 (Masked Diffusion Models). Here, we explain
masked diffusion models (Sahoo et al., 2024; Shi et al., 2024;
Austin et al., 2021; Campbell et al., 2022; Lou et al., 2023)).

Let X be a space of one-hot column vectors {x ∈ {0, 1}K :∑K
i=1 xi = 1}, and Cat(π) be the categorical distribution

over K classes with probabilities given by π ∈ ∆K where
∆K denotes the K-simplex. A typical choice of the forward
noising process is qt(xt+1 | xt) = Cat(αtxt + (1−αt)m)
where m = [0, · · · , 0︸ ︷︷ ︸

K−1

,Mask]. Then, defining ᾱt = Πt
i=1αi,

the backward process is parameterized as

xt−1 =

{
δ(· = xt) if xt ̸= m

Cat
(

(1−ᾱt−1)m+(ᾱt−1−ᾱt)x̂0(xt;θ)
1−ᾱt

)
, if xt = m,

where x̂0(xt) is a predictor from xt to x0.

Notation and remark. δa denotes the Dirac delta distribu-
tion at mass a. With a slight abuse of notation, we express
the initial distribution as pT+1 : X → ∆(X ), and denote
[1, · · · , T ] by [T ].

2.2. Single-Shot Reward-Guided Generation

Our goal is to generate a natural-like design with a high
reward. In particular, we focus on inference-time algorithms
that do not require fine-tuning of pre-trained diffusion mod-
els. Below, we provide a summary of these methods.

For reward-guided generation, we often aim to sample from

p(α) := argmax
p∈∆(X )

Ex∼p[r(x)]− αKL(p∥ppre) (1)

= exp(r(·)/α)ppre(·)/C,

Figure 2: Existing reward-guided algorithms can be viewed
as sequentially sampling from xT to x0 following the soft
optimal policy {p⋆t }1t=T . The primary distinction among
these algorithms lies in how p⋆t is approximated.

where C is the normalizing constant. This objective is
widely employed in generative models, such as RLHF in
large language models (LLMs) (Ziegler et al., 2019; Ouyang
et al., 2022). In diffusion models (e.g., Uehara et al. (2024,
Theorem 1)), this is achieved by sequentially sampling from
the soft optimal policy {p⋆t }t from t = T + 1 to t = 1,
which is defined by

p⋆t (· | xt) ∝ exp(vt−1(·)/α)ppret (· | xt),

where

vt(xt) := α logEx0∼ppre(x0|xt)[exp(r(x0)/α)|xt]. (2)

and the expectation is taken w.r.t. the pre-trained policy.
Here, as illustrated in Figure 2, vt−1 serves as a look-ahead
function that predicts the reward at x0 from xt, often re-
ferred to as the soft value function in RL (or the optimal
twisting proposal in SMC literature (Naesseth et al., 2019)).

In practice, we cannot precisely sample from soft optimal
policies because (1) the soft value function vt is unknown,
and (2) the action space under the optimal policy is large.
Current algorithms address these challenges as follows.

(1): Approximating soft value functions. A typical ap-
proach is to use r(x̂0(xt)) by leveraging the decoder x̂0(xt)
obtained during pre-training. This approximation arises
from replacing the expectation over x0 ∼ ppre(x0|xt)
in (2) with δx̂0(xt) (i.e., a Dirac delta at the mean of
ppre(x0|xt−1)). Note its accuracy degrades as t increases
(i.e., as the state becomes more noisy). Despite its potential
crudeness, this approximation is commonly adopted due
to its training-free nature and the strong empirical perfor-
mance demonstrated by methods such as DPS (Chung et al.,
2022), reconstruction guidance (Ho et al., 2022), universal
guidance (Bansal et al., 2023), and SVDD (Li et al., 2024).

(2): Handling large action space. Even with accurate
value functions, sampling from the soft optimal policy still
exhibits difficulty because its sample space X is still large.
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Hence, we often resort to approximation techniques as fol-
lows.

• Classifier Guidance: In continuous diffusion models,
the pre-trained policy ppret−1(· | xt−1) is a Gaussian
policy. By constructing differentiable value function
models, we can approximate p⋆t by shifting the mean
using ∇vt(·)/α. A similar approximation also applies
to discrete diffusion models (Nisonoff et al., 2024).

• Derivative-Free Guidance: Another approach is using
importance sampling (Li et al., 2024). Specifically,
we generate several samples from ppret−1(· | xt−1) and
then select the next sample based on the importance
weight exp (vt(·)/α). A closely related method using
Sequential Monte Carlo (SMC) has also been proposed,
as discussed in Section 1.1.

2.3. Challenges of Single-Shot Generation

There are two main challenges with the aforementioned cur-
rent algorithms. First, for certain complex reward functions,
they may fail to fully optimize the rewards. This occurs
because the value functions employed in these algorithms
have approximation errors. When a value function model is
inaccurate, the decision at that step can be suboptimal, and
there is no correction mechanism during generation. This
issue can be particularly severe in recent popular masked
discrete diffusion models in Example 1, where once a token
changes from the masking state, it remains unchanged until
the terminal step (t = 0) (Sahoo et al., 2024; Shi et al.,
2024). Consequently, any suboptimal token generation at
intermediate steps cannot be rectified.

Another related challenge lies in accommodating hard con-
straints with a set C ⊂ X . Although one might assume that
simply setting r(·) = I(· ∈ C) would suffice, in practice, the
generated outputs often fail to meet these constraints. This
difficulty again arises from the inaccuracy of value function
models at large t (i.e., in highly noised states).

3. Iterative Refinement in Diffusion Models
To tackle challenges discussed in Section 2.3, we propose
a new iterative inference-time framework for reward opti-
mization in diffusion models. Our algorithm is an iterative
algorithm where each step consists of two procedures: nois-
ing using forward pre-trained policies and reward-guided
denoising using soft optimal policies. This framework is
formalized in Algorithm 1.

Compared to existing algorithms that only perform single-
shot denoising from t = T to t = 0, our algorithm repeat-
edly performs reward optimization, as depicted in Figure 3.
The challenge of single-shot algorithms – namely, the lack
of a correction mechanism discussed in Section 2.3 – can

Algorithm 1 Reward-Guided Evolutionary Refinement in
Diffusion models (RERD)

1: Require: initial designs x⟨0⟩
0 (the index ⟨·⟩ means the

number of iteration steps), noise level K
2: for s ∈ [0, · · · , S − 1] do
3: Noising: Sample x⟨s+1⟩

K from qK(· | x⟨s⟩
0 ) where qK

is a noising policy from x0 to xK (See Section 2.1).
4: Reward-Guided Generation: Sequentially sample

from {p⋆t }1t=K (i.e., from x
⟨s+1⟩
K to x

⟨s+1⟩
0 ) (In prac-

tice, we need to approximate it. Refer to Algo-
rithm 2).

5: end for
6: Output: {x⟨S⟩

0 }

Figure 3: Summary of RERD: We instantiate it within
masked diffusion models. It alternates reward-guided de-
noising and noising.

be addressed in RERD, by sequentially refining the outputs.

In Algorithm 1, several choices are important, which are
outlined below.

• Initial designs x
⟨0⟩
0 : Here, we consider two ap-

proaches. The first choice is to run {p⋆t } from t = T
to t = 0 as in single-shot inference-time alignment
algorithms. Second, if we have access to real data
{zi} ∼ ppre(·), we select samples with high rewards
as initial designs. A straightforward way is by using
the weighted empirical distribution:

∑
i

exp(zi)/α)∑
j exp(z

j)/α)
δzi . (3)

• Approximation of the soft optimal policy p⋆t in Line
4: As mentioned in Section 2.2, exact sampling from
p⋆t is infeasible. However, we can employ any off-the-
shelf methods to approximate it, such as classifier guid-
ance or IS-based approaches discussed in Section 2.2.
A specific instantiation of this approximation is consid-
ered in Section 5.

• Noise level K: When K is close to 0, the inference
time per loop is reduced. Moreover, because value
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function models used to approximate soft-optimal poli-
cies are typically more precise around K = 0 (see
Section 2.2), the reward optimization step becomes
more effective. On the other hand, using a larger K
allows for more substantial changes in a single step. In
practice, striking the balance, we recommend setting
K/T low.

Next, we provide theoretical clarifications of our framework
in Section 4. Additionally, we present a practical instantia-
tion of our framework in Section 5.

4. Theoretical Analysis
We present the theoretical analysis of RERD. We begin with
the key theorem, which clarifies its target distribution.
Theorem 1 (Target Distribution of RERD). Suppose (a)
the initial design x

⟨0⟩
0 follows p(α) (defined in (1)), (b)

the marginal distributions induced by the forward noising
process match those of the learned noising process in the
pre-trained diffusion models. Then, the output x⟨S⟩

0 from
RERD follows the target distribution

p(α)(·) ∝ exp(r(·)/α)ppre(·).

First, we discuss the validity of the assumptions. The as-
sumption (a) is readily satisfied when using the introduced
strategy of initial designs in Section 3. The assumption (b)
is also mild, as pre-trained diffusion models are trained in
this manner (Song et al., 2021), though certain errors may
arise in practice. Another implicit assumption in practice is
that we can approximate soft-optimal policies accurately.

Next, we explore the implications of Theorem 1. The cen-
tral takeaway is that we can sample from a desired dis-
tribution for our task p(α) in (1). Although this guaran-
tee appears to mirror existing single-shot algorithms dis-
cussed in Section 2.2, we anticipate differing practical per-
formance in terms of rewards. This is due to their robust-
ness against errors in soft value function approximation
vt(xt) ≈ r(x̂0(xt)).

To clarify, recall that in reward-guided algorithms, we
must employ approximated soft value function models
when sampling from the soft optimal policies p⋆t ∝
exp(vt−1(·)/α)ppret−1(· | xt). The approximation often be-
comes more precise as the time step t in the soft optimal
policy approaches 0, as mentioned in Section 2.2. Indeed,
in the extreme case, when t = 0, the exact equality holds.
Therefore, by maintaining a sufficiently small noise level
t = K and avoiding the approximation of value functions
at large t, RERD can effectively minimize approximation
errors in practice.

Sketch of the Proof of Theorem 1. The detailed
proof is deferred to Section A. In brief, first, we

show that the marginal distribution after noising is
ppreK (·) exp(vK(·)/α)/C where ppreK (·) is a marginal dis-
tribution at K induced by pre-trained policies. Then, by in-
duction, during reward optimization, we show that k ∈ [K]:
xk follows pprek (·) exp(vk(·)/α)/C. Then, when k = 0, it
would be equal to ppre(·) exp(r(·)/α).

5. Practical Design of Algorithms
As mentioned, RERD is a unified sequential refinement
framework that can integrate off-the-shelf approximation
strategies during reward-guided denoising (Line 4 in Al-
gorithm 1). A key practical consideration is determining
which approximation methods to adopt. In this context, we
present a specific version that bears similarities to evolution-
ary algorithms.

5.1. Combining Local IS and Global Resampling

Figure 4: Visualization of Algorithm 2. A reward-guided
denoising consists of two components: local value-weighted
sampling for each sample (from k = K to k = 1) and global
resampling among samples in a batch at k = 1.

Our specific recommendation for approximating soft op-
timal policies during reward-guided denoising (Line 4 in
Algorithm 1) is presented in Algorithm 2. Here, we adopt a
strategy that does not require differentiable value function
models, as reward feedback could often be provided in a
black-box manner (e.g., molecular design). Specifically, we
organically combine IS-based and SMC-based approxima-
tions. Given a batch of samples, we apply IS from k = K
to k = 1 (Line 4-6) for each sample in the batch, where the
proposal distribution is a policy from pre-trained diffusion
models. However, at the terminal step k = 1, we perform
selection via resampling (Line 7), which is central to SMC
and evolutionary algorithms. This step involves interaction
among samples in the batch, as illustrated in Figure 4.
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Algorithm 2 Practical version of RERD

1: Require: Estimated value functions {v̂t}0t=T (i.e.,
{r(x̂0(xt)}0t=T ), pre-trained diffusion models
{pprek }1k=T+1, initial designs {x⟨0⟩

0,i }Ni=1 (the index ⟨·⟩
means the number of iteration steps and the index
i ∈ [N ] is an index in a batch), duplication number L
in IS, repetition number S, noise level K, α ∈ R

2: for s ∈ [0, · · · , S − 1] do
3: Noising: For each i ∈ [N ], sample x

⟨s+1⟩
K,i from

forward noising processes qK(· | x⟨s⟩
0,i ).

4: for k ∈ [K − 1, · · · , 1] do
5: IS: Sample ∀i ∈ [N ], {zk,i,l}Ll=1 ∼ pprek+1(· |

x
⟨s+1⟩
k+1,i) and define next states from the weighted

empirical distributions:

∀i : x⟨s+1⟩
k,i ∼

L∑
l=1

wlδzk,i,l
, wl =

exp(r(x̂0(zk,i,l))/α)∑
s exp(r(x̂0(zk,i,s))/α).

6: end for
7: Selection: ∀i ∈ [N ], sample x0,i ∼ ppre1 (· | x⟨s+1⟩

1,i )
and perform resampling:

{x⟨s+1⟩
0,i }N

i=1 ∼
N∑

i=1

wiδx0,i
, wi =

exp(r(x0,i)/α)∑
s exp(r(x0,s))/α)

.

8: end for
9: Output: {x⟨S⟩

0,i }Ni=1

This combined strategy during reward-guided denoising
leverages the advantages of both IS approaches (Li et al.,
2024) and SMC approaches (Wu et al., 2024). First, if we
use the pure IS strategy from k = K to k = 1, when a sam-
ple in a batch is poor, it will not be permanently discarded
during the refinement process. In contrast, in Algorithm 2,
the final selection step allows for the elimination of such
poor samples through resampling. Second, if we use the
pure SMC strategy from k = K to k = 1, resampling is
performed at every time step, which significantly reduces
the diversity among samples in the batch. We apply the
SMC approach only at the final step.

Relation to evolutionary algorithm. The above version
can be viewed as a modern variant of the evolutionary al-
gorithm, which seamlessly integrates diffusion models. An
evolutionary algorithm typically consists of two steps: (a)
candidate generation via mutation and crossover and (b)
selection. In Algorithm 2, the step (a) corresponds to Lines
3-6, where reward-guided generation is employed, and the
step corresponds to Line 7.

Remark 1. When the reward feedback is differentiable, we
can effectively integrate classifier guidance into the proposal
distributions. For further details, see the Appendix in Li
et al. (2024).

5.2. Constrained Reward Optimization

We often need to include hard constraints so that generated
designs fulfill certain conditions. This is especially crucial in
molecular design, where we may require low-toxicity small
molecules or cell-type–specific DNA sequences, as shown
in Section 6.2. Here, we explore how to enable generation
under such constraints. Formally, we define the constraint
set as C = {x : r2(x) < c}. Given another reward r1(·) to
be optimized, our objective is to produce designs with high
r1(·) while ensuring r2(x) < c.

Naı̈ve approaches with single-shot algorithms. As an
initial consideration, we examine how to address this prob-
lem using existing single-shot methods. A straightforward
approach is to use the following reward

r(·) = r1(·)I(r2(·) < c)

or use a log barrier formulation:

r(·) = r1(·) + log(max(c− r2(·), c1)),

where c1 is a suitably small value, and then sample from t =
T to t = 0 by following approxima soft-optimal policies.
However, in reality, the outputs at t = 0 often fail to satisfy
these constraints, regardless of how the rewards are defined.
This shortcoming arises because the value function models
used during reward-guided denoising are not completely
accurate.

Integration into our proposal (Algorithm 2). Now, we
consider incorporating the above rewards into our frame-
work in Algorithm 2. Here, compared to single-shot al-
gorithms, we can often begin with feasible initial designs
that satisfy the constraints x ∈ C. Then, by keeping the
noise level K in Algorithm 2 small, we can avoid deviat-
ing substantially from these feasible regions. This gradual
refinement strategy makes it easier to produce designs that
fulfill hard constraints.

6. Experiment
We aim to evaluate the performance of the proposed method
(RERD) across several tasks by investigating the effective-
ness of refinement procedures compared to existing single-
shot guidance methods in diffusion models. We begin by
introducing the baselines and metrics used in our evaluation.
Subsequently, we present our results in protein and DNA
design. For further details and additional results, refer to
Section C. The code is available at https://github.com/masa-
ue/ProDifEvo-Refinement.

Baselines and our proposal. We compare baselines that
address reward-guided generation in diffusion models with
RERD. Note that we primarily focus on settings where
reward feedback is provided in a black-box manner.
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Table 1: The results for the protein design task show that our method consistently outperforms the baselines. Note that
P50 and P95 represent the median and 95% quantile of the rewards for generated designs, respectively. LL denotes the
(estimated) per-residue log-likelihood. Values in parentheses represent the estimated 95% standard deviation.

Task (a) ss-match (b) cRMSD (c) globularity (d) symmetry
P50 ↑ P95 ↑ LL ↑ P50 ↓ P95 ↓ LL ↑ P50 ↑ P95 ↑ LL ↑ P50 ↑ P95 ↑ LL ↑

SMC 0.63 (0.04) 0.80 -3.28 8.9 (0.7) 5.1 -3.58 -2.79 (0.05) -2.13 -4.43 -0.45 (0.03) 0.21 -3.30
SVDD 0.66 (0.02) 0.82 -3.03 8.2 (0.4) 4.6 -3.59 -2.45 (0.02) -2.00 -4.68 -0.33 (0.04) 0.36 -3.56

GA 0.70 (0.00) 0.95 -3.51 6.3 (0.4) 3.01 -3.60 -1.35 (0.02) -1.22 -4.38 0.21 (0.04) 0.44 -3.07
RERD 0.86 (0.01) 0.96 -3.13 1.68 (0.02) 0.96 -3.51 -1.29 (0.02) -1.15 -4.45 0.34 (0.01) 0.69 -3.08

(a) Generated proteins (Green)
when optimizing ss-match are
shown. Red represents the tar-
get secondary structures. The ss-
match score for the left figure is
0.96, while for the right figure, it
is 1.0.

(b) Generated proteins (Green)
from RERD when cRMSD are
shown. Red represents the tar-
get backbone structures. The
cRMSD score for the left figure
is 0.42, while for the right figure,
it is 0.6.

(c) Generated proteins
when optimizing globu-
larity.

(d) Generated proteins when optimizing
symmetry

Figure 5: We visualize the sequences generated from RERD using ESMFold.

Figure 6: The refinement step from RERD when optimizing
cRMSD in two target backbone structures is demonstrated.
Recall that the first iteration corresponds to the result from
SVDD. The Y-axis represents the median reward of gener-
ated samples (Lower is better).

• SVDD (Li et al., 2024): A representative single-shot,
derivative-free guidance method (without refinement).

• SMC (Wu et al., 2024): Another single-shot, represen-
tative derivative-free guidance method.

• GA: A naı̈ve approach for sequence design that uses
pre-trained diffusion models to generate mutated de-
signs within a standard genetic algorithm (GA) pipeline
(Hie et al., 2022). To ensure a fair comparison, we allo-
cate the same computational budget as RERD below.

• RERD in Algorithm 2 (Ours). We set K/T = 10%
and S = 50. For initial designs, we use the results
generated by SVDD in Section 6.1 and designs that
satisfy the constraints in Section 6.2.

Note that we have used the same hyperparameters α,L
across baselines (SMC, SVDD) and RERD.

Metrics. We report the top 95% quantile (P95) and me-
dian of rewards (P50) from generated designs, as these are
the primary metrics to optimize. Additionally, we present
the estimated per-residue log-likelihood (LL) using the pre-
trained diffusion models, which serves as a secondary metric
that we aim to maintain at a moderately high value to pre-
serve the naturalness of the designs. 1

6.1. Protein Design

We begin by outlining our tasks. First, we use EvoDiff
(Alamdari et al., 2023), a representative discrete diffusion
model for protein sequences trained on the UniRef database,
as our unconditional base model. Next, following existing
representative works in protein design (Hie et al., 2022;
Watson et al., 2023; Ingraham et al., 2023), we consider four
reward functions related to structural properties, which take
the generated sequence as input. For more details, refer to
Section C.

• ss-match: We use Biotite (Kunzmann and Hamacher,
2018) to predict the secondary structure (ss). We then
calculate the mean matching probability across all
residues between the predicted and reference secondary

1We also report the diversity of generated designs. Since this
metric is difficult to compare formally and secondary in the context
of reward optimization, it is included in the Appendix.
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Table 2: The results for the DNA design task show that our method consistently outperforms the baselines.

Task HepG2 K562 SKNSH
P50 ↑ P95 ↑ LL ↑ P50 ↓ P95 ↓ LL ↑ P50 ↑ P95 ↑ LL ↑

SMC 1.2 (0.3) 1.6 -1.15 1.0 (0.2) 1.4 -1.21 0.8 (0.2) 1.0 -1.22
SVDD 2.3 (0.2) 2.8 -1.08 1.3 (0.3) 1.6 -1.26 1.7 (0.3) 2.0 -1.21

GA 2.3 (0.4) 2.7 -1.21 2.2 (0.3) 2.6 -1.31 1.9 (0.4) 2.5 -1.28
RERD 7.9 (0.2) 9.1 -1.18 7.4 (0.2) 8.9 -1.25 5.5 (0.2) 6.7 -1.24

structures, where the target structure is represented by a
sequence consisting of a (α-helices), b (β-sheets), and
c (coils). A score of 1.0 indicates perfect alignment.

• cRMSD: This is the constrained root mean square
deviation against the reference backbone structure af-
ter structural alignment. Typically, < 2Å indicates a
highly similar structure. Note that a lower value is
preferred.

• globularity (+ pLDDT): It reflects how closely the
structure resembles a globular shape. Additionally,
we optimize pLDDT to improve the stability of the
structure.

• symmetry (+pLDDT, hydrophobicity): It indicates
the symmetry of the structure in the generated se-
quence. Additionally, we optimize pLDDT and hy-
drophobicity to improve the stability of the structure.

Note that each of the above rewards is computed after es-
timating the corresponding structure using ESMFold (Lin
et al., 2023). Besides, for both ss-match and cRMSD, we
use 10 reference proteins randomly chosen from datasets in
Dauparas et al. (2022) and report the mean of the results.

Results. We present our performance in Table 3 and vi-
sualize generated sequences in Figure 5. Overall, our algo-
rithm (RERD) consistently demonstrates superior perfor-
mance in terms of rewards while maintaining reasonably
high likelihood. Notably, as illustrated in Figure 6, for sev-
eral challenging tasks, while one-shot guidance methods
such as SVDD underperforms, our approach, with refine-
ment steps, gradually yields improved results.

6.2. Cell-Type-Specific Regulatory DNA Design

We begin by outlining our tasks. Here, we focus on widely
studied cell-type-specific regulatory DNA designs, which
are crucial for cell engineering (Taskiran et al., 2024; Su
et al., 2025). Specifically, our goal is to design enhancers
(i.e., DNA sequences that regulate gene expression) that
exhibit high activity levels in certain cell lines while main-
taining low activity in others.

Following existing works (Lal et al., 2024; Sarkar et al.,
2024; Gosai et al., 2023), we construct reward functions

as follows. Using datasets from Gosai et al. (2023), which
measures the enhancer activity of 700k DNA sequences
(200-bp length) in human cell lines using massively parallel
reporter assays (MPRAs), we trained oracles based on the
Enformer architecture (Avsec et al., 2021) as rewards across
three cell lines (rH(·) in HepG2 cell line, rK(·) in K562
cell line , and rS(·) in SKNSH cell line). Then, we aim to
respectively optimize the following:

r̄H(x) = rH(x)I(rK(x) < c)I(rS(x) < c) (4)

where c is a threshold. Here, optimizing r̄H means maxi-
mizing rH while retaining rK, rS low. Then, similarly, we
define r̄K, r̄S by exchanging their roles.

Here are several additional points to note. First, as discussed
in Section 5.2, directly using r̄H , r̄K , r̄S in practice would
lead to suboptimal performance. Therefore, we use log
barrier reward functions for all methods. Additionally, for
GA and RERD, we initialize the designs with samples
that satisfy the constraints (e.g., I(rK(x) < c)I(rS(x) <
c))). Recall that one of the advantages of our method is
its ability to leverage designs from feasible regions that
satisfy the constraints. Finally, we use pre-trained discrete
diffusion models from Wang et al. (2024a) as the backbone
unconditional diffusion models.

Figure 7: (Left) The refinement step from RERD is demon-
strated. The Y-axis represents the median reward of gener-
ated samples (Higher is better), (Right) Generated designs
from IRAO. It is seen that the activity in the target cell line
HepG2 is only high.

Results. The results are presented in Table 2. Our meth-
ods consistently exhibit superior performance in terms of
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rewards while maintaining a relatively high likelihood. No-
tably, while it has been reported that SMC and SVDD excel
in optimizing individual rewards (e.g., rH only) in exist-
ing works such as Li et al. (2024), we have observed that
they struggle with handling additional constraints. In con-
trast, as shown in Figure 7, RERD effectively handles such
constraints (i.e., ensuring cell-type specificity) by gradually
refining the results, starting from designs in feasible regions.

7. Conclusion
We introduce a new framework for inference-time reward
optimization in diffusion models, utilizing an iterative evo-
lutionary refinement process. We also provide a theoretical
guarantee for the framework’s effectiveness and demonstrate
its superior empirical performance in protein and DNA de-
sign, surpassing existing single-shot reward-guided gener-
ation algorithms. As future work, we plan to explore its
application in small-molecule design.

Impact Statement
This paper presents a novel framework for inference-time re-
ward optimization in diffusion models, with applications in
protein and DNA design. Our work aims to improve the abil-
ity of generative models to optimize structured objectives
through iterative refinement. While this research primarily
contributes to technical advancements in generative model-
ing, it has potential implications in domains such as drug
discovery and biomolecular engineering, where optimizing
protein structures can accelerate scientific innovation.

We acknowledge that generative models, particularly those
optimized for specific reward functions, could be misused if
not carefully applied, such as in the design of harmful bio-
logical agents. However, our work is intended for scientific
and therapeutic applications, and we emphasize the impor-
tance of responsible deployment and alignment with ethical
guidelines in biotechnology. Overall, our contributions align
with the broader goal of machine learning methodologies,
and we do not foresee any immediate ethical concerns be-
yond those generally associated with generative models.
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A. Proof of Theorem 1
Here, we use induction. Hence, we prove that x⟨1⟩

0 follows p(α).

Distribution after noising. First, we consider the distribution after noising. This is∫
qK(x

⟨1⟩
K | x⟨0⟩

0 )p(α)(x
⟨0⟩
0 )dx

⟨0⟩
0 .

By plugging in the first assumption regarding distributions of initial designs, it is equal to∫
qK(x

⟨1⟩
0 | x⟨1⟩

K )qK(x
⟨1⟩
K ) exp(r(x

⟨0⟩
0 )/α)dx

⟨0⟩
0 . (5)

Recalling this definition of soft value functions:

exp(vK(·)/α) = Eppre(x0|xK)[exp(r(x0)/α) | xK ]

and the assumption (b) (q0(x0|xK) = ppre(x0|xK) and qK(·) = ppreK (·) ), the term (5) is equal to

ppreK (·) exp(vK(·)/α))/C.

Distribution after reward-guided denoising. Now, we consider the distribution of x⟨1⟩
0 :

1/C

∫ {
1∏

k=K

p⋆k(xk−1 | xk)

}
ppreK (xK) exp(vK(xK)/α))d(x0, · · · , xK).

With some simple algebra, this is equal to

1/C

∫ {
1∏

k=K−1

p⋆k(xk−1 | xk)

}
×

ppreK (xK−1|xK) exp(vK−1(xK−1)/α))

exp(vK(xK)/α))
× ppreK (xK) exp(vK(xK)/α))d(x0, · · · , xK)

= 1/C

∫ {
1∏

k=K−1

p⋆k(xk−1 | xk)

}
× ppreK (xK−1|xK)ppreK (xK) exp(vK−1(xK−1)/α))d(x0, · · · , xK)

= 1/C

∫ {
1∏

k=K−1

p⋆k(xk−1 | xk)

}
ppreK−1(xK−1) exp(vK−1(xK−1)/α))d(x0, · · · , xK−1).

Repeating this argument from k = K − 1 to k = 0, the above is equal to

ppre0 (·) exp(r(·)/α)/C.

This concludes the statement.

B. Additional Details for Protein Design
In this section, we have added further details on experimental settings and results.

B.1. Details on Baselines

• RERD (Algorithm 2): We have used parameters L = 20, N = 10, S = 30 in general. For the importance sampling
step, we have used α = 0.0, and for the selection step, we have used α = 0.2.

• SVDD: We set the tree width L = 20, α = 0.0.

• SMC: In SMC, we set α = 0.05 because if we choose α = 0.00, it just gives a single sample every time step. Refer to
Appendix B in Li et al. (2024).

• GA: Here, compared to Algorithm 2, we have changed the mutation part (Line 3-7) with just sampling from pre-trained
diffusing models without any reward-guided generation. To have a fair comparison with RERD, we increase the
repetition number S so that the computational budget is roughly the same as our proposal.
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B.2. Details on Reward Functions

Globularity. Globularity refers to the degree to which a protein adopts a compact and nearly spherical three-dimension
structure (Pace and Hermans, 1975).It is defined based on the spatial arrangement of backbone atomic coordinates, where
the variance of the distances between those coordinates and the centroid is minimized, leading to a highly compact structure.
Here, we set the protein length 150.

Globular proteins are characterized by their structure stability and water solubility, differing from fibrous or membrane
proteins. The compact conformation helps proteins to maintain proper protein folding and reduce the risk of aggregation.

Symmetry. Protein symmetry refers to the degree to which protein subunits are arranged in a repeating structure
pattern (Goodsell and Olson, 2000; Lisanza et al., 2024; Hie et al., 2022). Here we focus on the rotational symmetry of a
single chain, which is defined by the spatial organization of subunit centroids. Specifically, we try to minimize the variances
of the distances between adjacent centroids to achieve a more uniform and balanced arrangement. Here, we set the protein
length to be 150 to 240.

Symmetric proteins can bring multiple functional sites into close proximity, facilitating interactions and supporting the
formation of large proteins with optimized biological functions.

Hydrophobicity. Hydrophobicity refers to the degree to which a protein repels water, primarily defined by the distribution
of hydrophobic amino acids within the structure, namely, Valine, Isoleucine, Leucine, Phenylalanine, Methionine and
Tryptophan (Chandler, 2002). Hydrophobicity is optimized by minimizing the average Solvent Accessible Surface Area
(SASA) of the hydrophobic residues above, thus reducing their exposure to the surrounding solvent. Hydrophobicity
enhances the protein structural stability, especially in the polar solvents such as water, facilitates the protein-protein
interactions by prompting binding at the hydrophobic surfaces, and drives the proper protein folding by guiding the
hydrophobic residues to the protein core.

pLDDT. pLDDT (predicted Local Distance Difference Test) is a confidence score used to evaluate the reliability of the
local structure in predicted proteins. It is defined by the confidence of model predictions, assigning a confidence value to
each residues. A higher pLDDT score indicates greater model confidence and suggests increased structural stability. To
optimize the whole protein structure, we try to maximize the average pLDDT across the whole sequence as predicted by
ESMFold (Lin et al., 2023).

B.3. Additional Results

More metric (diversity, pLDDT, and pTM). We have included additional metrics in Table 3.

• Generally, higher pLDDT and pTM values indicate more accurate structure predictions at the local residue and the
global structure, respectively. However, in the context of de novo protein design, a low pLDDT does not necessarily
imply poor performance (Verkuil et al., 2022). In the globularity task, it is expected that the generated protein is more
novel protein.

• We define diversity as 1 - the mean pairwise distance (normalized by length), where the distance is measured using the
Levenshtein distance. While diversity can be an important metric to evaluate the performance of pre-trained generative
models, in the context of reward optimization, this metric may be secondary. It is shown that generated sequences from
RERD are reasonably diverse enough without collapsing to single samples.

Table 3: Additional metrics for experiments in protein design. We have reported the median of pLDDT, pTM, and diversity
of generated proteins.

Task (a) ss-match (b) cRMSD (c) globularity (d) symmetric
pLDDT pTM diversity pLDDT pTM diversity pLDDT pTM diversity pLDDT pTM diversity

RERD 0.75 0.69 0.28 0.76 0.71 0.14 0.41 0.29 0.56 0.82 0.79 0.49
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Recovery rate when optimizing cRMSD. By optimizing cRMSD, we can tackle the inverse folding task. While we have
not extensively investigated the performance in terms of recovery rates, we present the observed recovery rates for several
proteins as a reference when using RERD. Although it does not match the performance of state-of-the-art conditional
generative models specifically trained for this task, such as ProteinMPNN (Dauparas et al., 2022), our algorithm, which
combines unconditional diffusion models with reward models at test-time, demonstrates competitive performance.

Table 4: Recovery rates when optimizing cRMSD

Proteins 5KPH 6NJF EHEE rd1 0101 EA:run2 0325 0005

RERD 0.26 0.31 0.28 0.30
ProteinMPNN 0.41 0.53 0.35 0.38

More generated proteins. We have visualized more generated proteins in Figure 8.

(a) The generated proteins
(Green) when optimizing
ss-match are shown. Red
represents the target sec-
ondary structures. The ss-
match score is 1.0 here.

(b) The generated proteins (Green)
when optimizing cRMSD are shown.
Red represents the target secondary
structures.

(c) The generated proteins
when optimizing globular-
ity are shown.

(d) The generated proteins when opti-
mizing symmetry are shown.

Figure 8: More generated protein from RERD.

C. Additional Details for DNA Design
Pre-trained models. We use the pre-trained diffusion model trained in Wang et al. (2024b). The code and its performance
are available in their paper. Here, we use the discrete diffusion model proposed in (Sahoo et al., 2024) using the same CNN
architecture as in (Stark et al., 2024) and a linear noise schedule.

Reward oracles. We use the exact oracle used in Wang et al. (2024b). Again, the code and its performance are available
in their paper. Here, we use the Enformer architecture (Avsec et al., 2021) initialized with its pretrained weights. We use the
data splitting based on chromosome following standard practice (Lal et al., 2024).

Hyperparameters in baselines and RERD. We set S = 15, α = 0.0, L = 20.

Diversity. We calculate the diversity as in the protein design task. It is 0.47 in HepG2, 0.49 in K562, and 0.53 in SKNSH.
It is shown that generated sequences are reasonably diverse enough.
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