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Abstract—In the realm of challenging long-horizon planning
tasks involving multiple manipulators, existing methods en-
counter computational scalability issues or require an impractical
amount of training data. To address these limitations, we present
Generative Factor Chaining (GFC), a novel approach based
on modularized generative models for learning and composing
skills in complex tasks. Our proposed method treats a long-
horizon planning task in a complex scene as a spatial-temporal
factor graph, where nodes represent objects in the scene and
factors denote constraints/skills that connect different objects.
By employing the diffusion model framework, different factors
can be jointly learned using individual skill data, which is
readily obtainable. During inference, these factors can be flexibly
composed, possibly with additional constraints, to achieve long-
horizon planning. The modular design of GFC enables general-
ization to unseen planning tasks. We showcase the advantages of
our method through real-world experiments. More details can be
found at: https://sites.google.com/view/generative-factor-chaining

I. INTRODUCTION

Solving real-world sequential manipulation tasks requires
reasoning about dependencies among manipulation steps. For
example, a robot needs to grip the center or the tail of a
hammer, instead of its head, in order to subsequently hammer
a stake. The complexity of planning problems increases when
multiple manipulators are involved, where spatial coordination
constraints, in addition to sequential dependencies among
manipulation steps of each arm, need to be satisfied. An
example of such a scenario is shown in Figure 1, where the
arm on the left has to reason about the effect of picking up
the hammer with a certain pose, such that the arm on the
right can coordinate to re-grasp. Subsequently, the two arms
must coordinate to hammer the stake. While classical Task and
Motion Planning (TAMP) methods have shown to be effective
at solving sequential manipulation problems by hierarchical
decomposition [15], they require comprehensive knowledge of
the system state and kinodynamic model. Further, searching
in such a large solution space to satisfy numerous constraints
poses a severe scalability challenge. In this work, we aim
to develop a learning-based planning framework to tackle
complex manipulation tasks with both sequential and spatial
coordination constraints.

To solve complex sequential manipulation problems, prior
learning-to-plan methods have largely adopted the options
framework [4] and either implicitly [12, 50] or explicitly [1,
32, 28] model the preconditions and effect of the options
or primitive skills. Key to their successes are skill chaining
functions that can determine whether executing a skill can
satisfy the precondition of the next skill in the plan, and
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Fig. 1. Motivational example. Selected keyframes of a coordinated
manipulation task. The goal is to pass the hammer from the left arm to the
right arm and hammer the stake. A simplified spatial-temporal factor graph
representation is illustrated, where squares are factors representing constraints,
and circles are nodes representing object and robot states. Our method models
both temporal (sequential) constraints between manipulation steps and spatial
constraints for coordinated actions between multiple manipulators.

eventually the success condition of the overall task. For
example, Deep Affordance Foresight [50] uses a learned skill
feasibility predictor to guide the plan sampler. Generative
Skill Chaining [32] constructs generative models for each
skill. It then generates a plan by conditionally sampling skill
sequences where each intermediate state satisfies the effect of
the previous skill and the precondition of the next.

Unfortunately, despite the benefit, the use of vectorized
states and the assumption of a linear chain of sequential
dependencies severely limits the expressiveness of these meth-
ods. Consider a task where a robot is tasked to fetch two items
from a box. Intuitively, the skills for fetching one object should
have no influence on that of the other object. However, they
will be represented together due to vectorized states and be-
cause of the linear dependency assumption, the skill-chaining
methods are forced to model such sequential dependencies. In
fact, we will empirically demonstrate that merely swapping
the orders of skills that have no sequential dependencies in
a plan can drastically affect the performance of these skill-
chaining methods. Similarly, a skill that is intended to satisfy
the condition of a subsequent skill a few steps later will be
forced to influence the steps in between. Finally, the skill
chain representation forbids these methods from effectively
modeling multiple-arm manipulation tasks, where two or more
concurrent skills must be planned to jointly satisfy a constraint.
In this paper, we aim to relax the sequential dependency and
construct a factorized state representation that can flexibly
handle concurrent skill executions and facilitate generalization.

To this end, we introduce Generative Factor Chaining
(GFC), a learning-to-plan method that relaxes the linear de-
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Fig. 2. Factor graph for a multi-arm coordination task. Our factor graph-based planning formulation is to solve for a sequence of spatial factor graphs
from the initial state to a goal factor by chaining them using temporal skill factors. The above figure is an illustration of the temporal evolution of a factor
graph by the execution of single or multiple skills sequentially or in-parallel. Given the hammer grasped by the left arm and a nail out of reach of the right
arm, the goal is to handover the hammer to right arm followed by left arm picking up the nail. Finally, both arms coordinate to move to a position such that
hammer can strike the nail. The subscript in the nodes denotes the temporal evolution of each of them.

pendency assumption and enables flexible plan composition
by adopting a factor graph [10] representation. We represent
states as spatial factor graphs and chain them using temporal
skill factors to construct a spatial-temporal factor graph plan to
solve for the geometrical solution and satisfy a goal condition.
Further, individual spatial factors are designed as constraints,
and skill factors are represented by distributions learned with
diffusion models. While the distributions are trained only for
the skill-level transition, they are chained using a probabilistic
graphical model of the spatial-temporal factor graph plan to
sample from a plan-level distribution with spatial constraints
directly at inference. We empirically evaluate the factorized
state representation and its applicability in handling sequen-
tial independence and improving long-horizon reasoning. In
summary, our key contributions are as follows:

• We develop GFC, a learning-to-plan method that can
flexibly model complex dependencies in long-horizon
manipulation beyond linear sequential dependencies.

• GFC can perform zero-shot generalization to new coor-
dination tasks with multiple manipulators by composing
parallel skill chains of each arm directly at inference.

• GFC can reuse skill factor distributions to satisfy novel
task constraints without any additional learning.

• On nine long-horizon single-manipulator tasks and four
coordination tasks in simulation, we highlight the effec-
tiveness of the flexible factor graph representation and
CFG’s spatial-temporal probabilistic chaining capability.

II. RELATED WORK

Geometric Task and Motion Planning (TAMP). Gen-
erating motion to satisfy task and environment constraints
is a fundamental challenge in long-horizon planning prob-
lems. TAMP frameworks decompose a complex planning
problem into constraint satisfaction problems at task and
motion levels [44, 4, 40, 33, 30] and characterize their
solutions with symbolic task plan and primitive skills or
local motion planning problems [35, 47, 8]. Notably, Garret
et al. [15] drew connections between task-and-motion plans
and dynamic factor graphs [10], where constraints are factors
and robot and environment configurations are nodes. This
formulation introduces considerable flexibility in reusing and
composing constraint solvers across tasks. However, classi-
cal TAMP approaches rely on formulating fully-observable
conditions and accurate system dynamics to generate feasible
motion [21, 28, 41, 25, 49, 36, 48]. While such methods
are exhaustive, their strong assumptions limit their practical
applications and scalability. To this end, we opt for a learning-
based solution [50, 1], while our factor graph representation
and the goal of achieving compositional generalization remain
heavily inspired by classical TAMP frameworks.

Learning to solve sequential manipulation tasks. There
is a rich literature on learning to solve manipulation tasks with
sequential dependencies. Most relevant to this work are skill-
chaining methods that model pre- and post-conditions of pre-
defined skills to search for feasible goal-reaching plans [27,
26, 1, 24, 5, 23, 9]. Recent skill-chaining methods have shown
multi-task learning and generalization to new tasks [12, 50,
1, 32]. However, considering strict sequential dependencies



might be limiting when independent tasks occur in a sequence.
In contrast, our method adopts a factor graph representation
that can flexibly model independence, skip-step dependencies,
and multi-arm coordination in long-horizon tasks.

Generative models for planning. Recent advances in
generative models have been adopted for imitation learn-
ing [52, 22, 37, 7, 31, 14, 39, 38], and offline reinforce-
ment learning [20, 2] settings. In addition to the capacity
to model complex state and action distributions, generative
models have also been shown to encourage compositional
generalization [55, 32, 13]. When trained on large multi-task
datasets, Diffuser [20] and Decision Diffuser [2] have shown
“trajectory stitching”, the ability to combine data of different
tasks. Most relevant to us are Generative Skill Chaining
(GSC) [32] and Diffusion-CCSP [51], both designed to achieve
systematic compositional generalization. GSC introduced a
compositional diffusion model that can compose skill chains
through a guided diffusion process. However, similar to other
skill-chaining methods discussed above, GSC cannot discern
between independent skills and considers irrelevant sequen-
tial dependencies. Diffusion-CCSP trains diffusion models
to generate object configurations to satisfy multiple spatial
constraints, while resorting to external solvers to plan the
sequential manipulation steps that lead to the configuration.
Our method can be viewed as solving the combined problem:
it can generate plans to satisfy both spatial and temporal
constraints represented in a factor graph.

Learning for coordinated manipulation. Coordinating two
or more arms for manipulation presents numerous planning
challenges [6, 34, 46], including searching in a combinatorial
state-action space and solving complex constraint satisfac-
tion problems for coordinated motion. Recent works have
utilized learning-based frameworks [3, 8, 17, 16, 45]. The
key challenges involve dealing with the increased exploration
space in a Reinforcement Learning setting [3, 17] or miti-
gating compounding errors in an offline Imitation Learning
setting [45, 16]. However, most existing works have focused
on learning task-specific policies for single or a handful of
coordinated manipulation tasks [3, 16] or require multi-arm
demonstration data collected through a specialized teleopera-
tion device [45], posing a significant scalability challenge. In
contrast, our factor graph-based representation enables com-
positional generalization by design. We empirically demon-
strate that GFC can solve new coordinated manipulation tasks
through inference-time-guided diffusion.

III. BACKGROUND

Diffusion Models. A core component of our method is
based on distributions learned using diffusion models. A
diffusion model learns an unknown distribution p(x(0)) from
its samples by approximating the score function ∇ log p. It
consists of two processes: a forward diffusion or noising
process that progressively injects noise and a reverse diffusion
or denoising process that iteratively removes noise to recover
clean data. The forward process simply adds Gaussian noise
ϵ to clean data as x(t) = x(0) + σtϵ for a monotonically

increasing σt. The reverse process relies on the score function
∇x log pt(x(t)) where pt is the distribution of noised data x(t).
In practice, the unknown score function is estimated using a
neural network ϵϕ(x(t), t) by minimizing the denoising score
matching [43] objective

Et,ϵ,x(0) [λ(t)∥ϵ− ϵϕ(x(t), t)∥2] (1)

where λ(t) is a time-dependent weight. Several recent works
have explored the advantages of diffusion models like scal-
ability [19, 42, 54, 53] and the ability to learn multi-model
distributions [18, 11, 29, 2]. We are particularly interested in
the compositional ability [55, 52, 13, 51, 32] of these models
for the proposed method.

Problem setup. We assume access to a library of param-
eterized skills [21] π ∼ Π such as primitive actions like
Pick and Place. Each skill π requires a pre-condition to
be fulfilled and is parameterized by a continuous parameter
a ∈ Aπ governing the desired motion while executing the
skill in a state s. For a given symbolically feasible task plan
from a starting state s0 to reach a specified goal condition
sgoal, generated by a task planner or given by an oracle, the
problem is to obtain the sequence of continuous parameters to
make the plan geometrically feasible. For example, given a nail
at a target location and a hammer on a table, the symbolic plan
is to Pick the hammer and Reach the nail. A geometrically-
feasible plan requires suitable Pick and Reach parameters
such that the hammer’s head can strike the nail.

Learning for skill chaining. Existing works on this prob-
lem model the planning problem as a “chaining” problem:
They first model the pre-conditions and effect state distri-
butions for every skill π ∼ Π from the available data and
a symbolic plan skeleton ΦK = {π1, π2, ..., πK} consisting
of K-skills is constructed. With this model, they search for
the given skill sequence (plan) such that each skill satisfies
the pre-conditions of the next skill in the plan. STAP used
learned policy priors, system dynamics, and value functions
to perform data-driven optimization with shooting and the
cross-entropy maximization method. In GSC, the policy and
transition model is formulated as a diffusion model based
distribution pπ(s, aπ, s

′) which allows for flexible forward and
backward chaining. While the forward chain ensures dynamics
consistency in the plan by a forward rollout of a trajectory τ =
{s0, aπ1 , s1, aπ2 , sgoal} associated with Φ2 = {π1, π2} using

pτ (τ |s0) ∝ pπ1
(s0, aπ1

, s1) pπ2
(aπ2

, sgoal|s1),
the backward chain ensures that the goal is reachable from the
intermediate states via an alternate representation

pτ (τ |sgoal) ∝ pπ2(s1, aπ2 , sgoal) pπ1(s0, aπ1 |s1).
Following the above setup, the resulting forward-backward
combination can be simply represented as

pτ (τ |s0, sgoal) ∝
pπ1

(s0, aπ1
, s1)pπ2

(s1, aπ2
, sgoal)√

pπ1
(s1)pπ2

(s1)
(2)

The use of the diffusion model to represent individual
transitions further allows constraint-guided sampling to handle
unseen constraints at inference.
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Fig. 3. Scene as spatial factor graph. We show how a state of the
environment consisting of a gripper arm, hammer, and nail is formulated
as a spatial factor graph with existing Grasped factor between the arm and
hammer nodes. Skill as temporal factor The figure shows a spatial-temporal
factor graph of executing a Move skill (move A such that A aligns with B). We
illustrate the spatial-temporal sequence of the spatial factor graphs connected
with temporal skill factors. The execution of the skill π1 modifies the existing
factor(s) between the nodes of interest (A, H) and adds new factor(s).

IV. METHOD

We aim to solve unseen long-horizon planning problems by
exploiting the inter-dependencies between the objects impor-
tant for the task at hand in the scene. Our method adopts
factor graphs to represent states and realize their temporal
evolution by the application of skills. While previous works
have considered vectorized state representations making it dif-
ficult to decouple spatial-independence, we focus on factorized
state representations such that the state of the environment
is entirely modular, containing information about all the ob-
jects in the scenario and the task-specific constraints between
them. We use a spatial-temporal factor graph to represent
sequential and coordinated manipulation plan. This repre-
sentation factorizes states by individual objects’ and robot’s
states and allows us to combine skills from multiple arms
on single/multiple objects simultaneously to achieve unseen
collaborative tasks directly at inference. Further, we transform
our spatial-temporal factor graph into a probabilistic graphical
model by representing temporal factors as skill-level transition
distributions and spatial factors as constraint-satisfaction dis-
tributions. We eventually compose all the factors to construct a
plan-level distribution directly at inference and use it to sample
optimal node variables for the whole plan at once using reverse
diffusion sampling.

A. Representing States, Skills, and Plans in Factor Graphs

States as factor graphs. We define a factor graph
G = {V,F} of a state s consisting of the decision variables
V and factors F . Every robot and object in the scene can be
considered as a decision variable node v ∈ V in the factor
graph containing their respective observations and jointly rep-
resenting the state of the environment. Following the definition
of a standard factor graph [10], the inter-dependencies between
the nodes are represented by factors f ∈ F in the form
of certain relationships or constraints. For example, if we
consider state s0 illustrated in Figure 3, the nodes of a factor
graph are {arm, hammer, nail} and the factors existing in
this scene are {Grasped(arm,hammer)=True}. With an
abuse of notation, we will consider s ≡ G = {V,F} for the
rest of the paper.

Skills as temporal factors. We augment the definition of
a parameterized skill for our factor graph representation. We
define the preconditions of a skill as a set of nodes and factors.
For example, a precondition of the skill that moves the hammer
in hand to align with a nail Move(A,H) is that there exists
a Grasped factor between the arm node A and the hammer
node H . The skill is considered feasible iff the precondition
nodes and factors are present in the factor graph of the current
state. A new state and its factor graph s′ ≡ G′ = {V,F ′} is
created when a skill is applied. s′ is created by modifying
s with the effect of skill π, which changes the state of the
nodes involved and, optionally, add or remove their factors.
For example, the skill Move(A,H) modifies the state of the
arm node A and the hammer node H and creates an Aligned
constraint factor between the hammer H and the nail N .
Finally, a temporal factor representing the state transition
caused by executing the skill is created between s and s′. The
continuous parameter of the skill aπ1

is added as a node to the
factor, as it governs the behavior of the skill. An illustration of
this two-state spatial-temporal graph is illustrated in Figure 3.
The skill definitions can be extracted from standard PDDL
symbolic skill operator with minor adaptations, following the
duality of factor graphs and plan skeletons [15].

Plans as spatial-temporal factor graphs. Note that
the single-step transition described above already constitutes
a plan and thus an optimization problem: satisfying the
Aligned, Grasped, and the transition dynamics constraints
by finding the correct Move parameters aπ1

. Executing a plan
causes temporal evolution to the initial state factor graph,
creating a spatial-temporal factor graph. Each skill in a plan
introduces additional nodes and factors to the factor graph,
with added complexity for optimization. The learning-based
optimization setup will be described in Section IV-C.

B. Representing Coordination in Factor Graphs

A key advantage of the factor graph representation is the
ability to model multi-arm coordination tasks by connecting
the temporal chains of each arm using spatial constraints. Such
tasks often require skills to be simultaneously executed on
each arm to operate on different or the same objects. We
consider two cases for parallel skill execution, where multiple
robots are operating on: (1) independent objects and (2) the
same object, leading to independent and dependent temporal
chains respectively. With our factorized state representation,
we can independently control the execution of individual skills
correlated with the nodes of interest. When the current state s
satisfies the pre-condition of all required skills, the execution
results in a factor graph created by applying the union of the
effects of all the skills to the current factor graph.

Example. We consider a scenario shown in Figure 4 (Left).
The left gripper arm L0 is holding the pink cup C0 (with
factor Grasped between them) and the right gripper arm R0

is holding the green cup M0 (with factor Grasped between
them). Both the grippers can independently execute the skill
Move and modify separate factors in the factor graph (fπ1

1

and fπ2
2 ). Now, to successfully execute a skill Pour, one can
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Fig. 4. (Left) Parallel independent chaining The figure shows the execution of two skills (π1 and π2) in-parallel on two independent sets of nodes (L,
C and R, M) to modify their existing factors (Grasped). The two independent executions can be connected via external factors µ1 (FixedTransform)
introducing spatial dependencies between nodes C and M. (Right) Parallel dependent chaining The figure shows overlapping nodes of interest while parallel
execution of two skills. The pot is to be picked by using both the arms simultaneously. The effect of this are resulting factors (Grasped) between (L, P and
R, P) and external factor µ2 (FixedTransform) between L and R. Overlapping nodes satisfy both skill’s temporal effects.

add a constrained relationship factor (µ1) between the two
object nodes representing a set of favorable transforms that
satisfy the precondition of Pour. Such an ability to augment
constraints flexibly allows zero-shot coordination planning for
unseen tasks at test time. Similarly, we can consider another
scenario as shown in Figure 4 (Right), where there are two
arms and a pot with no existing factors. With our construction
of parallel chaining, a single object (P0) can be picked by two
grippers (L0 and R0) by only using information about how it
can be picked with one arm (i.e. π1 and π2) and augmenting
the spatial constraint factor (µ2) between the two gripper nodes
and the object node. This spatial factor will represent a fixed
transform for subsequent planning.

C. Generative Factor Chaining
Now we have a formulation to construct a symbolic spatial-

temporal factor graph plan for a task and chain them using
spatial factor and temporal skill factors sequentially or in
parallel. To make this plan geometrically feasible, we must
find the optimal node variable values. While the underlying
optimization problem can be solved using classical factor
graph solvers in theory, it is difficult to model the transition
dynamics for complex manipulation tasks in practice. Further,
combining learning-based forward dynamics and sampling can
also be employed, however, they provide less flexibility and
modularity as shown by prior work [32]. In this work, we
resort to a generative modeling formulation based on diffusion
models. The key idea is to leverage the expressive generative
model to capture the transition dynamics and exploit the flexi-
ble sampling strategies and compositionality of diffusion mod-
els. Our method, termed Generative Factor Chaining (GFC),
can flexibly compose spatial-temporal factor distributions to
sample optimal node variable values for the complete plan.
Below we will first lay out the necessary formulation that
bridges factor graph and probability distribution, and then we
will describe GFC and its inference.

Probabilistic graphical model formulation. Solving for
the whole spatial-temporal plan requires us to compute the
joint distribution of all the decision variable nodes, in par-
ticular the skill action parameters. While prior work [32]

formulates this simply as the joint distribution p(s, a, s′)
of the vectorized states and skill parameters, we build a
probabilistic graphical model with temporal skill-level dis-
tributions and spatial constraint satisfaction distributions. For
an arbitrary spatial-factor graph with state-decision variables
V = {V1, V2, . . . , Vn} and factors F = {f1, f2, . . . , fm},

p(V1, V2, . . . , Vn) ∝ ΠFfj(Sj),

where Sj ⊆ V and a factor fj is included iff there is an edge
between fj and any one of Vj ∈ V which also implies Vj ∈ Sj .
Further, we can flexibly consider additional constraint factors
µ ∈ M in such factor graph as

p(V1, V2, . . . , Vn) ∝ ΠFfj(Sj) ΠMfµ(Sµ) (3)

Now we can use the distribution p(V1, V2, . . . , Vn) to be a
distribution of the state p(s) with all the spatial factors, and
represent the temporal skill factor distribution of kth-skill πk

as the joint distribution:

pπk
(s, a, s′) ≡ pπk

(Sπk
, a, S′

πk
), Sπk

⊆ Vπk
pre

which is executable iff the skill’s pre-condition
sπk
pre ≡ {Vπk

pre,Fπk
pre} is satisfied by the current state

i.e. Vπk
pre ⊆ V and Fπk

pre ⊆ F . Once executed, it
leads to the transitioned state S′

πk
, a factor graph of

the modified object nodes and spatial factors. For an
example, one can consider Figure 4 (left) where the
pre-condition of Move(C0, L0) is Vπk

pre={C0, L0} and
Fπk

pre={Grasped(C0, L0)}. Once executed, it results in
adding a new factor {FixedTransform(C1,M1)}. Based
on the above formulation of a short-horizon transition
distribution, we extend to construct a trajectory-level
distribution. We leverage the modularity of factored states by
replacing states s with a set of decision variables Sπk

in the
interest of skill πk. This allows us to chain multiple skills in
series and parallel. In such a scenario, the denominator term
exists only for certain decision nodes iff they are common
in two consecutive skills. For the sake of simplicity, we will
formulate the probabilistic model for the two chains shown
in Figure 4 by following the forward-backward analysis



introduced by GSC and discussed in section III. We can write
the top chain as:

pπ1
(L0, C0, aπ1

, L1, C1)pπ2
(R0,M0, aπ2

, R1,M1)pµ1
(C1,M1)

(4)
showing the independence of factors. Similarly, the bottom
chain can be constructed as:
pπ1(L0, P0, aπ1 , L1, P1)pπ2(R0, P0, aπ2 , R1, P1)√

pπ1
(P1)pπ2

(P1)
pµ2

(L1, R1)

(5)
where the factors are dependent on each other. It is worth
noting that the augmented constraint factors pµ work as
a weighing function and can be more precisely repre-
sented by pµ(Sµ) ≡ pµ(y = 1|Sµ) for some constraint-
satisfaction index y. For example, after picking the pot
in Figure 4 (right), the two arms must satisfy a fixed target
transform (say Tp) while planning bimanually. Mathematically,
pµ

(
distance(Tc, Tp) = 0|{L1, R1}

)
= 1 for any arbitrary

transform Tc while planning.
Generative Factor Chaining We align towards diffusion

model-based learned distributions to represent the probabilities
in the formulated probabilistic graphical model. We transform
the probabilities into their respective score functions ϵ(x(t), t)
for a particular reverse diffusion sampling step t and train it
using the score-sde loss in Equation 1. Hence, for sampling a
scene-graph for Equation 3, we can write as:

ϵ(V
(t)
1 , V

(t)
2 , . . . , V (t)

n , t) =
∑
F

ϵfj (S
(t)
j , t) +

∑
M

ϵfµ(S
(t)
µ , t)

(6)
Similarly, we can show for the probabilistic chain in Equa-
tion 4 as:

ϵ(L
(t)
0 , C

(t)
0 , R

(t)
0 ,M

(t)
0 , L

(t)
1 , C

(t)
1 , R

(t)
1 ,M

(t)
1 , t) =

ϵπ1
(L

(t)
0 , C

(t)
0 , a(t)π1

, L
(t)
1 , C

(t)
1 , t)+

ϵπ2(R
(t)
0 ,M

(t)
0 , a(t)π2

R
(t)
1 ,M

(t)
1 , t) + ϵµ1

(C
(t)
1 ,M

(t)
1 , t)

and for the dependent factor chain in Equation 5 as:

ϵ(L
(t)
0 , P

(t)
0 , R

(t)
0 , L

(t)
1 , P

(t)
1 , R

(t)
1 , t) =

ϵπ1
(L

(t)
0 , P

(t)
0 , a(t)π1

, L
(t)
1 , P

(t)
1 , t)+

ϵπ2(R
(t)
0 , P

(t)
0 , a(t)π2

R
(t)
1 , P

(t)
1 , t)− 1

2
ϵπ1

(P
(t)
1 , t)

−1

2
ϵπ2

(P
(t)
1 , t) + ϵµ2

(L
(t)
1 , R

(t)
1 , t)

Generalization to new coordination tasks. We can realize
from Equation 6 that the final score function depends on the
composition of all the factors in the spatial-temporal factor
graph. While factors f ∈ F are mostly modeled implicitly by
the temporal skills, the external factors can be any arbitrary
spatial constraints that ensure the satisfaction of the pre-
condition of the subsequent skills. Hence, with new additions
to the set of external factors µ′ ∈ M′, one can reuse the same
temporal skills with an added set of new spatial constraints.

Summary. GFC is a new paradigm to solve complex
manipulation problems using spatial-temporal factor graphs.

GFC can be divided into the following segments: (1) train indi-
vidual skill factor distributions individually, (2) create spatial-
temporal factor graph from a plan skeleton, (3) compose
individual spatial and temporal factor distributions to construct
a probabilistic graphical model, and (4) use the plan-level
distribution to sample plan solutions. The proposed approach
is modular as the individual skill factors and constraints
can be flexibly connected to form new graphs. GFC can
connect parallel skill chains with added spatial factors to
solve coordinated manipulation problems directly at inference.
Additional detail on algorithm is included in supplementary
material.

V. EXPERIMENT

In this section, we seek to validate the following hypotheses:
(1) GFC relaxes strict temporal dependency to allow spatial-
temporal reasoning, performing better or on par with prior
works in single-arm long-horizon sequential manipulation
tasks, (2) GFC can effectively solve coordination tasks, and (3)
GFC can flexibly plug and play skills to solve novel coordina-
tion planning problems. We perform a systematic evaluation
on 9 long-horizon single-arm manipulation tasks from prior
works and 4 complex multi-arm coordination tasks simulation.
We also demonstrate deploying GFC on two Franka Panda
manipulators in the real world.

A. Setup

Parameterized skills. We consider a finite set of parame-
terized skills: (1) Pick: Gripper picks up an object from the
table and the parameters contain 6-DoF pose in the object’s
frame of reference, (2) Place: Gripper places an object at the
target location and parameters contain 6-DoF pose in the place
target’s frame of reference, (3) Move: Gripper reaches a target
location with an object in hand and parameters contain 6-DoF
pose in the robot’s frame of reference within the workspace,
(4) ReGrasp: Gripper grasps object mid-air and parameters
are same as pick, (5) Push: Gripper uses the grasped object to
push away another object, (6) Pull: Gripper uses the grasped
object to pull another object inwards, (7) Strike: Gripper
strikes another object with one object in hand (e.g., a hammer),
and (8) Pour: Gripper rotates the object in hand in a pouring
fashion. While the first six skills can be trained as diffusion
models, the last two are defined using designed motions with
pre-condition as external dependency constraints, for example,
FixedTransform (µ) in Figure 4. Following the baseline
methods, all skills are trained and executed in the local frame
of the robot of interest.

Relevant baselines and metrics: Our proposed method is
based on factorized states and supports long-horizon planning
for collaborative tasks directly at inference via probabilistic
chaining. In this context, we consider prior method based
on probabilistic chaining with vectorized states (GSC [32])
as a baseline. We further consider discriminative search-
based approaches for solving long-horizon planning by skill
chaining with uniform priors (Random CEM) and learned
policy priors (STAP [1]). Since all prior works use sequential
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Fig. 5. Optimal plan execution with sampled parameters. We qualitatively evaluate the performance of our method in finding the optimal node variable
values and skill parameters to solve for the plan and achieve the goal condition. We show successful solutions in simulation for the Hammer Place task (Top),
Pour Cup task (bottom left), and Bimnual Reorientation task (bottom right).

planning, we compare the performance of the proposed method
on the sequential version of the parallel skeleton.

Data collection and skill model training. To train skill
models, we collect individual skill transition data in a single-
manipulator setting and independent of any other skills in
the library. We use an oracle controller in the robot frame
of reference to sample suitable grasp positions for picking
from the table and store the successful ones to train for
Pick skill. We use several picked objects to reach randomly
sampled target locations within the workspace of the robot for
collecting the data for Move skill. Further, since it is not trivial
to generate data for Regrasp, an inverse of the transition data
from Pick and Move datasets is used. We predominantly
use these three skills for all the considered tasks. For each
transition, we collect the initial state of all the decision
variables, the sampled action parameter, and the final states of
the modified decision variable. While we collect observations
for all the decision variables, the ones independent to the skill
of interest are used as conditioning variables while training.
We train the skill factor distributions using the denoising score-
matching loss as discussed in section III. Our diffusion model
architecture uses an identical Transformer backbone as GSC,
except it predicts only for nodes of interest at the current
step. Additional detail on model training and architecture is
included in supplementary material.

Real robot setup: Similar to prior learning-based meth-
ods [1, 32], GFC trained in simulation can be used to perform
sequential manipulation tasks in a real robot environment.
We take RGB-D images from a Kinect Azure camera and
perform semantic segmentation to locate objects and estimate
their poses with the corresponding point cloud. The estimated
state is then used to construct the environment for planning.
Additional qualitative results on robot hardware are provided
in the supplementary material.
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Fig. 6. Results on single-manipulator task suite [1, 32]. GFC consistently
achieves success rate that are as good as prior works while outperforming them
as the horizon length increases. It leverages the factorized states to discern
between independent skill executions. Like all the baseline algorithms, GFC
success rate is reported with 100 trials.

B. Key Findings

GFC relaxes strict linear dependency assumptions. We
first evaluate GFC on single-manipulator long-horizon tasks
introduced by STAP [1] and also used by GSC [32]. These
tasks consider manipulation by reasoning about the usage
of a tool (a hook) to manipulate blocks out of or into the
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Fig. 7. Results on coordinated two-manipulator tasks. We consider four
tasks to evaluate parallel skill execution and spatial-temporal composition
capability of GFC. After testing on 100 scenarios, we significantly outperform
baselines with sequential chaining for Hammer Place Hammer Nail and
Pour Cup tasks. No other methods can support the Bimanual Reorientation
task. We included a detailed evaluation on task success rate given different
reorientation goals. A plan is successful if the goal condition is satisfied like
AinB(Hammer, Box), onTopOf(Hammer, Nail), FixedTransform(Pink
Cup, Green Cup) and FixedTransform(Pot, Ground)

robot workspace (sample initial states shown in Figure 6).
Hook Reach is to hook the cube in order for the arm to
grasp and move the block to a target. Rearrangement Push
requires placing a cube such that it can be pushed beneath
a rack using the tool. Constrained Packing is to place four
cubes on a constrained surface without collisions. While these
tasks are originally designed to highlight linear sequential
dependencies, there are steps with indirect dependencies or
independence that only GFC can effectively model because
of the factorized states. For example, in Rearrangement Push,
the picking pose of the cube should not affect the tool use
steps. As shown in Figure 6, we observe that the performance
of GFC is consistently on-par with the baseline for tasks with
strict linear dependencies such as Hook Reach and on-par or
better for tasks with more complex dependency structures such
as Rearrangement Push. This validates our hypothesis that
GFC effectively models sequential dependencies, in addition to
independence and skipped-step dependencies in long-horizon
tasks.

GFC can solve complex coordinated manipulation tasks.
Here, we aim to validate that GFC can effectively model
and solve different types of coordinated manipulation tasks.
We present results on tasks with increased collaboration
challenges. First, we consider tasks that require coordination
but can be serialized into interleaved skill chains and solved
by prior skill-chaining methods. Hammer Place, as shown
in Figure 5, is for one arm to pick a hammer from a box,
hand it over to the second arm to be placed into another box.
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Fig. 8. Analysis of sampled Pick and Grasp skill parameters We show
that the planner is able to reason about the long-horizon action dependency
of Pick and Grasp skills. (Top) While we see that Hammer Place can be
solved by pick/grasp at head/tail and vice versa, to satisfy the precondition of
Strike in Hammer Nail, the hammer must be grasped near tail so must be
picked near head. (Bottom) We further show orientation reasoning as well,
where the hammer can either be grasped on the same side or the flip side.

Hammer Nail is for the first arm to pick up the hammer,
handover to the second arm, and pick up a nail. Both arms
then move to positions such that the head of the hammer is
aligned with nail for the subsequent hammering step. The task
is illustrated in Figure 2 (bottom). As shown in Figure 7,
our method significantly outperforms all baselines in both
tasks. The proportional gap is larger in the more challenging
Hammer Nail task, which includes additional spatial and
temporal constraints such as the hammer must be re-grasped
towards the tail end for the subsequent hammering step, and
the hammer and nail must be aligned for a successful strike.
This demonstrates that GFC can effectively model and resolve
both spatial and temporal constraints in complex tasks.

Finally, we consider the Bimanual Reorientation (Figure 5)
task where two arms must simultaneously operate on the same
object of interest. The task is for both arms to pick a pot, lift
it up, and try to rotate it to a target reorientation angle (about
z-axis) as illustrated for a 45-deg angle. The tasks must be
solved via parallel skill chaining with spatial constraints and
hence none of the prior baselines can be used. The factor
graph includes a spatial fixed transform constraint between
both the arms and hence the subsequent skills operate while
satisfying the constraint. Figure 7 (bottom) shows a detailed
task success rate breakdown given different orientation goals.
The task poses a considerable challenge as it requires GFC to
reason about suitable Pick pose that would not violate either
robot’s kinematic constraint at the final reoriented placing pose
(temporal constraint), while simultaneously satisfying the fixed
transform constraint of holding the pot (spatial constraint).
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Fig. 9. Linear chaining has limitations. The above figure describes the
three types of ablation skeletons prepared for evaluating the disadvantages
of imposing strict linear dependency. The performance in-consistent chain is
significantly lower than that in the consistent chain for baselines while GFC
uses the parallel skeleton.

GFC can generalize to unseen coordination plans. Here,
we show that GFC can solve unseen coordinated manipulation
tasks by reusing skills and enforcing additional spatial con-
straints at inference time. The Pour Cup task is to Pick one
cup with each arm, Move to position the two arms, and Pour
the content of one into the other. GFC can directly reuse Pick
and Move skill models and adapt the Strike skill model
for the Pour step by introducing a new spatial constraint.
Unlike hammer that can strike from either face of the head,
the cups can only be poured using the open top and not the
closed bottom. The constraint can be directly added as a factor
and optimized globally through guided diffusion process.
We note that other methods can also be adapted to solve
new tasks. For examples, GSC can linearize the skill chain
and add additional goal constraints, and STAP can similarly
plan through its forward dynamics. GFC supports such zero-
shot generalization by design and facilitates chaining multiple
independent temporal chains to satisfy desired spatial factors.
Detailed quantitative comparison is shown in Figure 7.

GFC can handle independence and inconsistent skill or-
ders. Here, we analyze how independent steps in a sequential
manipulation chain affects the performance of each method.
We consider Hammer Place, where the order of transporting
the cube and handing over hammer is interchangeable. As
illustrated in Figure 9, we consider a consistent plan skeleton
where sequentially-dependent steps for the two main objec-
tives, i.e., (1) opening lid then transporting cube and (2)
picking, handing over, and placing hammers, are completely
sequentially. We also consider an inconsistent plan skeleton
where the steps are interleaved. We show the handover success

and overall task success in Figure 9 (Bottom). A successful
handover requires choosing non-overlapping parameters for
Pick and Regrasp skills along with a Move parameter
which allows grasping. While this increases the difficulty
leading to lower scores in the handover success rate, even
with a minor distraction in inconsistent skeleton, the previous
approaches failed to propagate the skipped-step dependencies
as evident from the task success rate.

Analyzing long-horizon reasoning ability in coordinated
manipulation. As discussed before, in order to perform a
successful handover in Hammer Place, a planner must gen-
erate suitable Pick and Move skill parameters such that
the hammer becomes graspable and a suitable parameter for
ReGrasp skill exists for the other arm. Additional task
constraint is imposed in the Hammer Nail task, where the
robot must grasp the hammer by the tail end to perform a
successful Strike. We conducted a focused analysis of such
reasoning capabilities quantitatively and qualitatively.

We observe in Figure 8 (top left) that while Hammer Place
task can be solved by picking or grasping on any end of
the hammer handle, Hammer Nail requires more constrained
parameter sampling as shown in Figure 8 (top right). Further,
it is worth noting that along with the parameter selection along
the handle axis, the method also samples suitable orienta-
tion (same or flip side) for grasping as shown by two examples
in Figure 8 (bottom) leading to different strike positions.

VI. LIMITATIONS AND FUTURE DIRECTIONS

While powerful, GFC presents many opportunities for future
works. First, our proposed method does not generate high-level
task plans. While it is possible to directly perform a symbolic
search with the skill operators we adopted, we consider solving
the full TAMP problem in our framework an important future
direction. Second, it is important to note that our method
assumes full observability and operates in a low-dimensional
state space. A future direction is to extend GFC to a learned
latent space. Finally, similar to prior works [50, 1, 32], our
approach relies on a fixed set of primitive skills. Future work
can explore integrating learned skills or trajectory generators
for additional generality and scalability.

VII. CONCLUSION

We presented GFC, a learning-to-plan method to solve
complex coordinated manipulation planning problems with
given skeleton plans. GFC can flexibly plan for multiple
arms sequentially or in parallel operating on one or more
objects in the scene. It uses spatial factor graph to represent
states and uses temporal skill factors to chain them. The final
spatial-temporal plan is solved by composing the spatial factor
distributions and diffusion model-based skill distributions. We
compose short-horizon skills to sample from a plan-level
probabilistic graphical model distribution. GFC is shown to
solve sequential and coordinated tasks directly at inference and
reason about long-horizon action dependency across multiple
temporal chains. The proposed framework is flexible, scalable
and generalizes well to unseen multiple-manipulator tasks.
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