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Abstract

Existing methods for solving Riemannian bilevel optimization (RBO) problems
require prior knowledge of the problem’s first- and second-order information and
curvature parameter of the Riemannian manifold to determine step sizes, which
poses practical limitations when these parameters are unknown or computationally
infeasible to obtain. In this paper, we introduce the Adaptive Riemannian Hypergra-
dient Descent (AdaRHD) algorithm for solving RBO problems. To our knowledge,
AdaRHD is the first method to incorporate a fully adaptive step size strategy
that eliminates the need for problem-specific parameters in RBO. We prove that
AdaRHD achieves anO(1/ϵ) iteration complexity for finding an ϵ-stationary point,
thus matching the complexity of existing non-adaptive methods. Furthermore, we
demonstrate that substituting exponential mappings with retraction mappings main-
tains the same complexity bound. Experiments demonstrate that AdaRHD achieves
comparable performance to existing non-adaptive approaches while exhibiting
greater robustness.

1 Introduction

Bilevel optimization has garnered significant attention owing to its diverse applications in fields
such as reinforcement learning [48, 34], meta-learning [6, 66, 40], hyperparameter optimization
[25, 72, 94], adversarial learning [8, 86, 87], and signal processing [49, 23]. This paper focuses
on “Riemannian bilevel optimization (RBO)” [32, 22, 53], a framework that arises in applications
such as Riemannian meta-learning [79], neural architecture search [76], image segmentation [27],
Riemannian min-max optimization [43, 38, 101, 29, 88, 37], and low-rank adaption [97]. The general
formulation of RBO is as follows:

min
x∈Mx

F (x) := f(x, y∗(x)),

s.t. y∗(x) = argmin
y∈My

g(x, y), (1)

whereMx,My are dx- and dy-dimensional complete Riemannian manifolds [53], the functions
f, g :Mx ×My → R are smooth, the lower-level function g(x, y) is geodesic strongly convex w.r.t.
y, and the upper-level function f is not required to be convex.

To address Problem (1), we extend the recent advance in Euclidean adaptive bilevel optimization [92]
to propose an adaptive Riemannian hypergradient method. Although certain aspects of Euclidean
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analysis extend naturally to Riemannian settings, the manifold’s curvature parameters introduce many
analytical challenges. We propose key technical difficulties in designing adaptive methods for solving
RBO problems as follows:

(i) RBO necessitates that variables are constrained on Riemannian manifolds, making it intrinsically
more complex than its Euclidean counterpart. Furthermore, critical parameters such as geodesic
strong convexity, Lipschitz continuity, and curvature parameters over Riemannian manifolds are
more computationally demanding to estimate than their Euclidean counterparts. Consequently,
the geometric structure of the manifold creates distinct analytical challenges in the convergence
analysis of adaptive algorithms.

(ii) Compared to single-level Riemannian (adaptive) optimization, RBO inherently involves inter-
dependent variable updates, resulting in complex step size selection challenges arising from
coupled (hyper)gradient dynamics.

(iii) Unlike non-adaptive RBO methods, adaptive step-size strategies can cause divergent behavior
during initial iterations since the initial step size may be too large, which must be rigorously
addressed to enable robust theoretical convergence analysis.

In this work, we present a comprehensive convergence analysis that demonstrates our approach to
resolving these challenges.

1.1 Related works

Table 1 summarizes key studies on (Riemannian) bilevel optimization that are relevant to our methods.
The table compares their applicable scenarios, whether they are adaptive, and their computational
complexity of first- and second-order information. Note that constants, such as condition numbers,
are omitted from the complexity analysis for simplicity. For a comprehensive review of the related
works, please refer to Appendix A.

Table 1: Comparisons of first-order and second-order complexities for reaching an ϵ-stationary point. Here,
“Euc” and “Rie” represent the feasible region of the algorithms are Euclidean space and Riemannian manifold,
respectively. The notations “Det”, “F-S”, and “Sto” represent the applicable problems as deterministic, function-
sum, and stochastic, respectively. Additionally, Gf and Gg are the gradient complexities of f and g, respectively.
JVg and HVg are the complexities of computing the second-order cross derivative and Hessian-vector product of
g. The notation Õ denotes the omission of logarithmic terms in contrast to the standard O notation. Furthermore,
the notation “NA” represents that the corresponding complexity is not applicable.

Methods Space Adaptive Type Gf Gg JVg HVg

D-TFBO [92] Euc ✓ Det O(1/ϵ) O(1/ϵ2) O(1/ϵ) O(1/ϵ2)
S-TFBO [92] Õ(1/ϵ) Õ(1/ϵ) Õ(1/ϵ) Õ(1/ϵ)

RHGD-HINV [32]

Rie ✗
Det

O(1/ϵ) Õ(1/ϵ) O(1/ϵ) NA
RHGD-CG [32] O(1/ϵ) Õ(1/ϵ) O(1/ϵ) Õ(1/ϵ)
RHGD-NS [32] O(1/ϵ) Õ(1/ϵ) O(1/ϵ) Õ(1/ϵ)
RHGD-AD [32] O(1/ϵ) Õ(1/ϵ) O(1/ϵ) Õ(1/ϵ)

RSHGD-HINV [32] F-S O(1/ϵ2) Õ(1/ϵ2) O(1/ϵ2) NA
RieBO [53] Rie ✗

Det O(1/ϵ) Õ(1/ϵ) O(1/ϵ) Õ(1/ϵ)
RieSBO [53] Sto O(1/ϵ2) Õ(1/ϵ2) O(1/ϵ2) Õ(1/ϵ2)
RF2SA [22] Rie ✗

Det Õ(1/ϵ3/2) Õ(1/ϵ3/2) NA NA
RF2SA [22] Sto Õ(1/ϵ7/2) Õ(1/ϵ7/2) NA NA

AdaRHD-GD (Ours) Rie ✓ Det O(1/ϵ) O(1/ϵ2) O(1/ϵ) O(1/ϵ2)
AdaRHD-CG (Ours) O(1/ϵ) O(1/ϵ2) O(1/ϵ) Õ(1/ϵ)

1.2 Contributions

This paper introduces the Adaptive Riemannian Hypergradient Descent (AdaRHD) algorithm, the first
method to incorporate a fully adaptive step size strategy, eliminating the need for parameter-specific
prior knowledge for RBO. The contributions of this work are summarized as follows:
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(i) We develop an adaptive algorithm for solving RBO problems, eliminating reliance on prior
knowledge of strong convexity, Lipschitzness, or curvature parameters. Our method achieves a
convergence rate matching those of non-adaptive parameter-dependent approaches. Furthermore,
by replacing exponential mappings with computationally efficient retraction mappings, our
algorithm maintains comparable convergence guarantees while reducing computational costs.

(ii) We establish upper bounds for the total iterations of resolutions of the lower-level problem
in Problem (1) and the corresponding linear system required for computing the Riemannian
hypergradient. The derived bounds match the iteration complexity of the standard AdaGrad-
Norm method for solving the strongly convex problems [91].

(iii) We evaluate our algorithm against existing methods on various problems over Riemannian
manifolds, including the Riemannian hyper-representation and robust optimization problems.
The results demonstrate that our method performs comparably with non-adaptive methods while
exhibiting significantly greater robustness.

2 Preliminaries

In this section, we review standard definitions and preliminary results on Riemannian optimiza-
tion. All results presented here are available in the literature [52, 10, 32, 53], we restate them for
conciseness.

We first establish essential properties and notations for Riemannian manifolds. The definition of a
Riemannian manifold has been conducted in the literature [52, 10]. The Riemannian metric on a
Riemannian manifoldM at x ∈ M is denoted by ⟨·, ·⟩x : TxM× TxM → R, with the induced
norm on the tangent space TxM defined as ∥u∥x =

√
⟨u, u⟩x for any u ∈ TxM. We then recall

the definitions of exponential mapping and parallel transport. For an tangent vector u ∈ TxM
and a geodesic c : [0, 1] → M satisfying c(0) = x, c(1) = y, and c′(0) = u, the exponential
mapping Expx : TxM→M is defined as Expx(u) = y. The inverse of the exponential mapping,
Exp−1

x : M → TxM, is called logarithm mapping [10, Definition 10.20], and the Riemannian
distance between two points x, y ∈ M is given by d(x, y) = ∥Exp−1

x (y)∥x = ∥Exp−1
y (x)∥y.

Parallel transport Px2
x1

: Tx1
M → Tx2

M is a linear operator that preserves the inner product
structure, satisfying ⟨u, v⟩x1

= ⟨Px2
x1
u,Px2

x1
v⟩x2

for all u, v ∈ Tx1
M.

We now define key properties of functions on Riemannian manifolds. The Riemannian gradient
Gf(x) ∈ TxM of a differentiable function f :M→ R is the unique vector satisfying

⟨Gf(x), u⟩x = Df(x)[u], ∀u ∈ TxM,

where Df(x)[u] denotes the directional derivative of f at x along u [83, 10, 53]. For twice-
differentiable f , the Riemannian Hessian Hf(x) is defined as the covariant derivative of Gf(x).
A function f : M → R is “geodesically (strongly) convex” if f(c(t)) is (strongly) convex w.r.t.
t ∈ [0, 1] for all geodesics c : [0, 1] → Ω, where Ω ⊆ M is a geodesically convex set [53, Defini-
tion 4]. Particularly, if f is twice-differentiable, µ-geodesic strong convexity of f is equivalent to
Hf(x) ⪰ µId, where Id is the identity operator. Further, f is “geodesically Lf -Lipschitz smooth” if

∥Gf(x)− Px
y Gf(y)∥x ≤ Lfd(x, y), ∀x, y ∈M,

and for twice-differentiable f , this property is equivalent toHf(x) ⪯ Lf Id.

Finally, for a bi-function f :Mx ×My → R, the Riemannian gradients of f w.r.t. x and y are
denoted by Gxf(x, y) and Gyf(x, y), respectively, while the Riemannian Hessians are Hxf(x, y)
and Hyf(x, y). Moreover, the Riemannian cross-derivatives G2xyf(x, y) : TyMy → TxMx and
G2yxf(x, y) : TxMx → TyMy , discussed in [32, 53], are linear operators. Furthermore, the operator
norm of a linear operator G : TyMy → TxMx is defined as

∥G∥x = sup
u∈TyMy,∥u∥y=1

∥G[u]∥x.

Building on the concepts of Lipschitz continuity (cf. Definition B.1) and geodesic strong convexity
for functions defined on Riemannian manifolds, we present the following proposition.
Proposition 2.1 ([10, 32, 53]). For a function f : M → R, if its Riemannian gradient Gf is
L-Lipschitz continuous, then for all x, y ∈ U ⊆M, it holds that

f(y) ≤ f(x) +
〈
Gf(x),Exp−1

x (y)
〉
x
+

L

2
d2(x, y).
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If f is µ-geodesic strongly convex, then for all x, y ∈ U , it holds that

f(y) ≥ f(x) +
〈
Gf(x),Exp−1

x (y)
〉
x
+

µ

2
d2(x, y). (2)

Additionally, for the Lipschitzness of the functions and operators, and an important result of the
trigonometric distance bound over the Riemannian manifolds, we present them in Appendix B.

3 Adaptive Riemannian hypergradient descent algorithms

Standard Riemannian bilevel optimization (RBO) approaches [22, 32, 53] determine step sizes for
updating the variables using problem-specific parameters such as strong convexity, Lipschitzness, and
curvature constants. However, these parameters are frequently impractical to estimate or compute,
posing challenges for step size determination. This limitation underscores the need for adaptive RBO
algorithms that operate without prior parameter knowledge.

3.1 Approximate Riemannian hypergradient

Prior to presenting our primary algorithm, we first introduce the Riemannian hypergradient, as the
core concept of our methodology relies on this construct. Following general bilevel optimization
frameworks, we define the Riemannian hypergradient of F (x) in Problem (1) as follows:
Proposition 3.1. [32, 53] The Riemannian hypergradient of F (x) are given by

GF (x) = Gxf(x, y∗(x))− G2xyg(x, y∗(x))H−1
y g(x, y∗(x))[Gyf(x, y∗(x))] ∈ TxM. (3)

Proposition 3.1 fundamentally hinges on the implicit function theorem for Riemannian manifolds
[29], which necessitates the invertibility of the Hessian of the lower-level objective function g w.r.t. y.
In this paper, this requirement is satisfied as g is geodesically strongly convex w.r.t. y. Consequently,
y∗(x) is unique and differentiable.

However, the Riemannian hypergradient defined in (3) is computationally challenging to evalu-
ate. First, the exact solution y∗(x) of the lower-level objective is not explicitly available, ne-
cessitating the use of an approximate solution ŷ, we employ the adaptive Riemannian gradient
descent method to compute this approximation. Second, calculating the Hessian-inverse-vector
product H−1

y g(x, y∗(x))[Gyf(x, y∗(x))] in (3) incurs prohibitive computational costs. To address
this, given the approximation ŷ of y∗(x), we can approximate the Hessian-inverse-vector product
H−1

y g(x, ŷ)[Gyf(x, ŷ)] by solving the linear systemHyg[v](x, ŷ) = Gyf(x, ŷ), which is originated
from the following quadratic problem:

min
v∈TŷMy

R(x, ŷ, v) =
1

2
⟨v,Hyg(x, ŷ)[v]⟩ŷ − ⟨v,Gyf(x, ŷ)⟩ŷ . (4)

Denote v̂ as the approximate solution of Problem (4). In this paper, we use the adaptive gradient
descent method (cf. Steps 11-15 of Algorithm 1) or the tangent space conjugate gradient method
[80, 10] (cf. Step 16) to obtain such a v̂. Specifically, the tangent space conjugate gradient algorithm
is presented in Algorithm 2 of Appendix C.

Then, given the estimations ŷ and v̂, the approximate Riemannian hypergradient [22, 32, 53] is
defined as follows,

ĜF (x, ŷ, v̂) = Gxf(x, ŷ)− G2xyg(x, ŷ)v̂ ∈ TxMx. (5)

3.2 Adaptive Riemannian hypergradient descent algorithm: AdaRHD

Motivated by the recent adaptive methods [92] for solving general bilevel optimization, we employ
the “inverse of cumulative (Riemannian) gradient norm” strategy to design the adaptive step sizes
[91, 89, 92], i.e., adapting the step sizes based on accumulated Riemannian (hyper)gradient norms.

Given the total iterations T , set the accuracies for solving the lower-level problem of Problem (1)
and linear system as ϵy = 1/T and ϵv = 1/T . Our Adaptive Riemannian Hypergradient Descent
(AdaRHD) algorithm for solving Problem (1) is presented in Algorithm 1. For simplicity, when
employing the gradient descent and conjugate gradient to solve the linear system, respectively, we
denote AdaRHD as AdaRHD-GD and AdaRHD-CG, respectively.
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Algorithm 1 Adaptive Riemannian Hypergradient Descent (AdaRHD)

1: Initial points x0 ∈ Mx, y0 ∈ My, and v0 ∈ Ty0
M, initial step sizes a0 > 0, b0 > 0, and

c0 > 0, total iterations T , error tolerances ϵy = ϵv = 1
T .

2: for t = 0, 1, 2, ..., T − 1 do
3: Set k = 0 and y0t = y

Kt−1

t−1 if t > 0 and y0 otherwise.
4: while ∥Gyg(xt, y

k
t )∥2yk

t
> ϵy do

5: b2k+1 = b2k + ∥Gyg(xt, y
k
t )∥2yk

t
,

6: yk+1
t = Expyk

t
(− 1

bk+1
Gyg(xt, y

k
t )),

7: k = k + 1.
8: end while
9: Kt = k.

10: Set n = 0 and v0t = Py
Kt
t

y
Kt−1
t−1

v
Nt−1

t−1 if t > 0 and v0 otherwise.

11: while ∥∇vR(xt, y
Kt
t , vnt )∥2yKt

t

> ϵv do

12: c2n+1 = c2n + ∥∇vR(xt, y
Kt
t , vnt )∥2yKt

t

,

13: vn+1
t = vnt − 1

cn+1
∇vR(xt, y

Kt
t , vnt ), ▷ Gradient descent

14: n = n+ 1.
15: end while
16: Or set v0t = 0 and invoke vnt = TSCG(Hyg(xt, y

Kt
t ),Gyf(xt, y

Kt
t ), v0t , ϵv). ▷ Conjugate

gradient
17: Nt = n.
18: ĜF (xt, y

Kt
t , vNt

t ) = Gxf(xt, y
Kt
t )− G2xyg(xt, y

Kt
t )[vNt

t ],

19: a2t+1 = a2t + ∥ĜF (xt, y
Kt
t , vNt

t )∥2xt
,

20: xt+1 = Expxt
(− 1

at+1
ĜF (xt, y

Kt
t , vNt

t )).
21: end for

3.3 Convergence analysis

This section establishes the errors between the approximate Riemannian hypergradient (5) and the
exact Riemannian hypergradient (3), the convergence result of Algorithm 1, and the corresponding
computation complexity.

3.3.1 Definitions and assumptions

Similar to the definition of an ϵ-stationary point in general bilevel optimization [27, 42, 41], the
definition of an ϵ-stationary point in Riemannian bilevel optimization [22, 32, 53] is given as follows.
Definition 3.1 (ϵ-stationary point). A point x ∈ Mx is an ϵ-stationary point of Problem (1) if it
satisfies ∥GF (x)∥2x ≤ ϵ.

We first concern the upper bound of curvature constant ζ(τ, c) defined in Lemma B.1.
Assumption 3.1. The manifoldsMx andMy are complete Riemannian manifolds. Moreover,My

is a Hadamard manifold whose sectional curvature is lower bounded by τ < 0. Moreover, for all
iterates ykt in the lower-level problem, the curvature constant ζ(τ, d(ykt , y

∗(xt))) defined in Lemma
B.1 is always upper bounded by a constant ζ for all t ≥ 0 and k ≥ 0.

Assumption 3.1 is commonly used in the Riemannian optimization, which ensures that the lower-level
objective g can be geodesically strongly convex [99, 53] and is essential for the convergence of the
lower-level problem [32, 53].

We then adopt the following assumptions concerning the fundamental properties of the upper- and
lower-level objectives of Problem (1).
Assumption 3.2. Function f(x, y) is continuously differentiable and g(x, y) is twice continuously
differentiable for all (x, y) ∈ U = Ux×Uy ⊆Mx×My , and g(x, y) is µ-geodesic strongly convex
in y ∈ Uy for any x ∈ Ux.
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This assumption is prevalent in (Riemannian) bilevel optimization [27, 42, 41, 56, 34, 50, 22, 32, 53].
Under this assumption, the optimal solution y∗(x) of the lower-level problem is unique for all
x ∈Mx and differentiable [32, 53], ensuring the existence of the Riemannian hypergradient (3.1).
Assumption 3.3. Function f(x, y) is lf -Lipschitz continuous in U ⊆Mx ×My . The Riemannian
gradients Gxf(x, y) and Gyf(x, y) are Lf -Lipschitz continuous in U . The Riemannian gradients
Gxg(x, y) and Gyg(x, y) are Lg-Lipschitz continuous in U . Furthermore, the Riemannian Hessian
Hyg(x, y), cross derivatives G2xyg(x, y), G2yxg(x, y) are ρ-Lipschitz in U .

Assumption 3.3 is a standard condition in the existing literature on (Riemannian) bilevel optimization
[27, 42, 41, 32, 53]. These conditions ensure the smoothness of the objective function F in Problem
(1) and the Riemannian hypergradient GF defined in (3).
Assumption 3.4. The minimum of F overMx, denote as F ∗, is lower-bounded.

Assumption 3.4 concerns the existence of the minimum of the upper-level problem, which is a minor
requirement.

3.3.2 Convergence results

Denote v̂∗t (x, y) := argminv∈TyMy
R(x, y, v). We can then bound the estimation error of the

proposed schemes of approximated hypergradient as follows.
Lemma 3.1 (Hypergradient approximation error bound). Suppose that Assumptions 3.1, 3.2, 3.3,
and 3.4 hold. The error for the approximated Riemannian hypergradient generated by Algorithm 1
satisfies,

∥ĜF (xt, y
Kt
t , vNt

t )− GF (xt)∥xt ≤ L1d
(
y∗(xt), y

Kt
t

)
+ Lg∥vNt

t − v̂∗t (xt, y
Kt
t )∥

y
Kt
t

,

where L1 := Lf +
lfρ
µ + Lg(

Lf

µ +
lfρ
µ2 ).

Lemma 3.1 establishes that the error between the approximate and exact Riemannian hypergra-
dients is bounded by the errors arising from the resolutions of the lower-level problem in Prob-
lem (1) and the linear system (4). Consequently, we can actually integrate the stopping criterion
∥ĜF (xt, y

Kt
t , vNt

t )∥2xt
≤ 1/T into Algorithm 1 to enable early termination. By Lemma 3.1, this

criterion ensures that ∥GF (xt)∥2xt
≤ O(1/T ), which implies that xt is an O(1/T )-stationary point

of Problem (1). Moreover, integrating this criterion does not increase the overall computational
complexity of Algorithm 1, since the norm of ĜF (xt, y

Kt
t , vNt

t ) is already computed at Step 20.

Similar to Proposition 2 in [92], we derive upper bounds on the total number of iterations required
to solve both the lower-level problem in Problem (1) and the linear system (4). However, owing to
the geometric structures inherent in Riemannian manifolds, these bounds cannot be directly inferred
from [92, Proposition 2] and require a meticulous analysis.
Proposition 3.2. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Then, for any 0 ≤ t ≤ T , the
numbers of iterations Kt and Nt required in Algorithm 1 satisfy:

Kt ≤
log(C2

b /b
2
0)

log(1 + ϵy/C2
b )

+
1

(µ/b̄− ζL2
g/b̄

2)
log

(
b̃

ϵy

)
.

AdaRHD-GD:

Nt ≤
log(C2

c /c
2
0)

log(1 + ϵv/C2
c )

+
c̄

µ
log

(
c̃

ϵv

)
,

where Cb, Cc, b̄, c̄, b̃, and c̃ are constants defined in Appendix G.

AdaRHD-CG:

Nt ≤
1

2
log

(
4L3

gl
2
f

µ3ϵv

)
/log

(√
Lg/µ+ 1√
Lg/µ− 1

)
.

Remark 3.1. Proposition 3.2 provides upper bounds for the total iterations of the resolutions of the
lower-level problem in Problem (1) and the linear system (4). Since 1/ log(1 + ϵy) is of the same
order as 1/ϵy , it holds that Kt = O(1/ϵy), which matches the standard AdaGrad-Norm for solving
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strongly convex problems [91]. Additionally, we also have Nt = O(1/ϵv) and Nt = O(log(1/ϵv))
when employing gradient descent and conjugate gradient methods, respectively. Moreover, similar to
AdaGrad-Norm [91], the step size adaptation for the lower-level problem proceeds in two stages:
Stage 1 requires at most O(1/ log(1 + ϵy)) iterations, while Stage 2 requires at most O(log(1/ϵy))
iterations. Furthermore, due to geometric properties of Riemannian manifolds, these bounds cannot
be directly derived from [92] and introduce additional technical challenges. Specifically, the constants
Cb, Cc, b̄, c̄, b̃, and c̃ are all related to curvature ζ, and increase as ζ increases.

Based on Proposition 3.2, we have the following convergence result of Algorithm 1.
Theorem 3.1. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold. The sequence {xt}Tt=0 generated
by Algorithm 1 satisfies,

1

T

T−1∑
t=0

∥GF (xt)∥2xt
≤ C

T
= O

(
1

T

)
,

where C is a constant defined in Appendix G.

Theorem 3.1 demonstrates that our proposed adaptive algorithm achieves a convergence rate matching
standard non-adaptive (Riemannian) bilevel algorithms (e.g., [27, 42, 41, 32, 53]), demonstrating
its computational efficiency. Moreover, although Algorithm 1 shares a similar algorithmic struc-
ture with D-TFBO [92] and some Euclidean analyses extend naturally to Riemannian settings, its
convergence analysis still presents significant theoretical challenges. For example, the geometric
structure of Riemannian manifolds necessitates the use of the trigonometric distance bound (Lemma
B.1) instead of its Euclidean counterpart and requires incorporating the curvature constant into the
step size adaptation (cf. Proposition 3.2), which substantially increases the analytical difficulty. We
subsequently derive the complexity bound for Algorithm 1.
Corollary 3.1. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Algorithm 1 needs T = O(1/ϵ)
iterations to achieve an ϵ-accurate stationary point of Problem (1). The gradient complexities of
f and g are Gf = O(1/ϵ) and Gg = O(1/ϵ2), respectively. The complexities of computing the
second-order cross derivative and Hessian-vector product of g are JVg = O(1/ϵ), HVg = O(1/ϵ2)
for AdaRHD-GD, and HVg = Õ(1/ϵ) for AdaRHD-CG, respectively.

Corollary 3.1 demonstrates that the gradient complexity (Gg) and Hessian-vector product complexity
(HVg) of AdaRHD-GD surpass those of non-adaptive Riemannian bilevel optimization methods
[32, 53] by a factor of 1/ϵ. This gap originates from the additional iterations needed to guarantee the
solution of the lower-level problem in Problem (1) and linear system 4, which is necessitated by the
lack of prior knowledge regarding the strong convexity, Lipschitzness, and curvature constants.

Designing algorithms to eliminate the 1/ϵ-gap is an interesting future direction. Potential strategies
to bridge this gap could be drawn from adaptive methods in Riemannian optimization, such as
sharpness-aware minimization on Riemannian manifolds (Riemannian SAM) [95], Riemannian
natural gradient descent (RNGD) [36], and the framework for Riemannian adaptive optimization
[69]. Riemannian extensions of Euclidean approaches like adaptive accelerated gradient descent [60],
adaptive proximal gradient method (adaPGM) [51], adaptive Barzilai-Borwein algorithm (AdaBB)
[102], and adaptive Nesterov accelerated gradient (AdaNAG) [75] may also be viable alternatives to
the inverse of cumulative gradient norms strategy [91] employed in Algorithm 1.

3.4 Extend to retraction mapping

Given that retraction mapping is often preferred in practice for its computational efficiency over
exponential mapping, this section demonstrates that its incorporation into Algorithm 1 achieves
comparable theoretical convergence guarantees. A modified version of Algorithm 1, incorporating
retraction mapping, is presented in Algorithm 3 (cf. Appendix D). To formalize this extension, the
second condition of Assumption 3.1 must be modified as follows.
Assumption 3.5. All the iterates of the lower-level problem generated by Algorithm 3 lie in a bounded
set belonging toMy that contains the optimal solution, i.e., there exists a constant D̄ > 0 such that
d(ykt , y

∗(xt)) ≤ D̄ holds for all t ≥ 0 and k ≥ 0.

Under Assumption 3.5, the curvature constant ζ(τ, d(ykt , y
∗(xt))) in Assumption 3.1 is bounded by

its definition, thereby ensuring consistency with Assumption 3.1. Additionally, it is necessary to
consider the error between the exponential and retraction mappings.
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Assumption 3.6. Given z1 ∈ U ⊆ M (here M can be Mx or My) and u ∈ TxM, let z2 =

Retrz1(u). There exist constants cu ≥ 1, cR ≥ 0 such that d2(z1, z2) ≤ cu∥u∥2z1 and ∥Exp−1
z1 (z2)−

u∥z1 ≤ cR∥u∥2z1 .

Assumption 3.6 is standard (e.g., [32, Assumption 2] and [45, Assumption 1]) in bounding the
error between the exponential mapping and retraction mapping, given that retraction mapping is a
first-order approximation to the exponential mapping [32].

Then, similar to Theorem 3.1, we have the following convergence result of Algorithm 3.
Theorem 3.2. Suppose that Assumptions 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 hold. The sequence {xt}Tt=0
generated by Algorithm 3 satisfies,

1

T

T−1∑
t=0

∥GF (xt)∥2xt
≤ Cretr

T
= O

(
1

T

)
,

where Cretr is a constant defined in Appendix H.

Algorithm 3 achieves a convergence rate nearly identical to that of Algorithm 1 while being more
practical to implement. Furthermore, the complexity analysis of Algorithm 3 closely aligns with that
of Algorithm 1 and is, therefore, omitted here.

4 Experimental results

In this section, adhering to the experimental framework established by [32], we conduct comprehen-
sive experiments to evaluate our algorithm against the RHGD method. Since the RieBO algorithm
proposed by [53] shares the same algorithmic framework as RHGD, we categorize them as a single
method for comparison. We designate RHGD-50 and RHGD-20 as configurations with maximum
iteration limits for solving the lower-level problem in RHGD set to 50 and 20, respectively. For
consistency, we exclusively employ Algorithm 3 in this section due to its computational efficiency in
practice. Detailed experimental settings and additional experiments are provided in Appendix I, and
our codes are available at https://github.com/RufengXiao/AdaRHD.

4.1 Simple problem

In the first experiment, following [32], we consider a simple problem, which aims to determine the
maximum similarity between two matrices X ∈ Rn×d and Y ∈ Rn×r, where n ≥ d ≥ r, formulated
as:

max
W∈St(d,r)

trace(M∗(W)X⊤YW⊤)

s.t. M∗(W) = argmin
M∈Sd++

⟨M,X⊤X⟩+ ⟨M−1,WY⊤YW⊤ + λI⟩,

where St(d, r) = {W ∈ Rd×r : W⊤W = Ir} and Sd++ = {M ∈ Rd×d : M ≻ 0} represent the
Stiefel manifold and the symmetric positive definite (SPD) matrices, respectively, and λ > 0 is the
regular parameter. The matrix W ∈ St(d, r) aligns X and Y in a shared dimensional space, while
the lower-level problem learns an appropriate geometric metric M ∈ Sd++ [96]. Additionally, the
geodesic strong convexity of the lower-level problem and the Hessian inverse expression can be found
in Appendix H of [32]. In this experiment, we generate random data matrices X and Y with two
sample sizes: n = 100 and n = 1000, where d = 50 and r = 20.
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Figure 1: Performances of methods in n = 100.
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Figure 2: Performances of methods in n = 1000.

Figures 1 and 2 show the evolution of the upper-level objective function (Upper Objective) over
time and the associated hypergradient estimation errors (Hypergrad error) across outer iterations.
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Figure 1 corresponds to n = 100, while Figure 2 represents the n = 1000 case. These results
demonstrate that our algorithm exhibits faster convergence and superior performance compared to
RHGD while maintaining scalability with increasing sample dimensionality, confirming its efficiency
and robustness. Moreover, although GD achieves quicker initial convergence, CG demonstrates
greater robustness, as evidenced by its lower hypergradient estimation errors.

4.2 Robustness analysis

In the second experiment, also from [32, Section 4.2], we address the deep hyper-representation
problem for classification, which is a subclass of hyper-representation problems [25, 72, 94, 58, 73].
In contrast to the 2-layer SPD network employed for ETH-80 dataset classification in [32], to
demonstrate the efficacy of our algorithm, here we utilize a 3-layer SPD network [39] as the upper-
level architecture to optimize input embeddings over the larger AFEW dataset [19], comprising seven
emotion classes. The training set contains 1,747 matrices with imbalanced class distribution (267,
235, 173, 292, 342, 288, and 150 samples per class, respectively). This optimization problem is
formulated as follows:

min
A1, A2, A3

−
∑

i∈Dval

y⊤
i log(SPDnet(Di;A1,A2,A3)β

∗(A1,A2,A3))
|Dval| ,

s.t. β∗(A1,A2,A3) = argmin
β∈Rr(r+1)/2

−
∑

i∈Dtr

y⊤
i log(SPDnet(Di;A1,A2,A3)β)

|Dtr| + λ
2 ∥β∥

2,

A1 ∈ St(d, d1), A2 ∈ St(d1, d2), A3 ∈ St(d2, r),

where SPDnet(·;A1,A2,A3) denotes the 3-layer SPD network with layer parameters A1, A2, and
A3 [39], the term yi represents the one-hot encoded label, and D = {Di}ni=1 denote a set of SPD
matrices where Di ∈ Sd++. Each matrix Di has dimensions of 400 × 400, and we set d1 = 100,
d2 = 20, and r = 5.

In this study, we perform a series of experiments with varying initial step sizes to evaluate the
robustness and advantages of our proposed AdaRHD algorithm. To address computational constraints,
we utilize a 5% subset of the AFEW dataset [19] rather than the full dataset, ensuring tractable
training durations. For AdaRHD, we initialize hyperparameters a0, b0, and c0 to equal values and
test performance across the range {0.2, 1, 2, 10, 20}. For RHGD, we fix ηx and ηy to equal values
and evaluate the set {5, 1, 0.5, 0.1, 0.05}. To mitigate sampling bias and validate robustness, each
algorithm is executed five times with distinct random seeds, each iteration employing a unique 5%
data subset. This methodology enables systematic assessment of optimization sensitivity to step sizes
and establishes the generalizability of our algorithm under practical constraints.
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(d) RHGD-20
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(f) AdaRHD-GD
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(g) RHGD-50
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Figure 3: Epoch vs. validation accuracy and ergodic performance mini∈[0,t] ∥ĜF (xi, y
Ki
i , vNi

i )∥2xi
under

different initial step sizes for each algorithm. In the figures for “AdaRHD-X”, the labels indicate the values of
1/a0 = 1/b0 = 1/c0; in the figures for “RHGD-X”, the labels represent the values of ηx = ηy .

The results are presented in Figure 3 and Table 2. It can be observed that the RHGD-50 and RHGD-20
fail when the initial step sizes are set to 5, 1, or 0.5, whereas the corresponding configurations of
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Table 2: Time to reach a specific validation accuracy under different initial step sizes for each algorithm.
The values outside the parentheses indicate the mean over five random trials, while the values inside the
parentheses represent the standard deviation. “Step Size (A/R)” denotes the initial step sizes used in each method:
1/a0 = 1/b0 = 1/c0 in the “AdaRHD-X” algorithm; ηx = ηy in the “RHGD-X” algorithm. “X%” indicates
the time required to reach the corresponding validation accuracy.

AdaRHD-CG AdaRHD-GD RHGD-50 RHGD-20
Step Size 50% 70% 85% 50% 70% 85% 50% 70% 85% 50% 70% 85%

5.0 287.20 464.79 1217.06 432.66 690.62 1488.26 / / / / / /
(93.61) (124.76) (635.57) (157.76)(136.52)(426.67) / / / / / /

1.0 131.84 191.51 245.63 200.26 317.31 421.99 / / / / / /
(18.76) (34.15) (72.42) (31.21) (68.92) (88.31) / / / / / /

0.5 118.09 169.79 241.54 192.51 291.83 477.49 / / / / / /
(19.91) (28.59) (33.09) (22.86) (54.21) (120.17) / / / / / /

0.1 217.32 312.58 427.84 297.90 447.60 546.18 171.97 370.69 808.48 36.01 168.47 540.46
(33.96) (33.66) (53.40) (42.60) (53.50) (66.68) (78.36) (68.61) (146.57) (12.37) (120.86) (88.54)

0.05 251.47 415.51 633.46 358.25 504.80 648.86 137.88 715.91 1510.09 41.36 179.11 1067.92
(36.27) (49.75) (96.54) (32.89) (15.58) (42.91) (136.10)(104.62)(363.41) (6.88) (157.76)(122.98)

AdaRHD remain relatively stable. Notably, even when using a step size greater than 1 (i.e., a0 = b0 =
c0 = 0.2), although the performance is less stable compared to other settings, AdaRHD is still able
to converge effectively. Table 2 also shows that AdaRHD-CG consistently achieves 85% validation
accuracy in the shortest amount of time. On the other hand, step sizes of a0 = b0 = c0 = 1 or 2 yield
the best performance among all initializations for the AdaRHD variants, while the corresponding
RHGD configurations fail to converge. These results further demonstrate the robustness of the
proposed AdaRHD method, which significantly reduces the sensitivity to the choice of initial step size
and greatly improves training efficiency. Moreover, although RHGD-20 requires the shortest time to
reach 50% and 70% validation accuracies, it demands more time than our method to achieve 85%
validation accuracy, demonstrating the efficiency of our approach. Meanwhile, the lower standard
deviation exhibited by our method further highlights the robustness of our algorithm.

5 Conclusion

This paper proposes an adaptive algorithm for solving Riemannian bilevel optimization (RBO) prob-
lems, employing two strategies: gradient descent and conjugate gradient, to compute approximate
Riemannian hypergradients. To our knowledge, this is the first fully adaptive RBO algorithm, incor-
porating a step size mechanism, eliminating prior knowledge requirements of problem parameters.
We establish that the method achieves an O(1/ϵ) iteration complexity to reach an ϵ-stationary point,
matching the complexity of the standard non-adaptive algorithms. Additionally, we show that substi-
tuting the exponential mapping with a computationally efficient retraction mapping maintains this
complexity guarantee.

Notably, this work focuses exclusively on developing an adaptive double-loop algorithm for determin-
istic Riemannian bilevel optimization (RBO) problems when the lower-level objective is geodesically
strongly convex. Future research directions include: (1) designing single-loop adaptive algorithms
[92]; (2) extending the framework to stochastic settings [32, 22, 53] via adaptive step sizes such as in-
verse cumulative stochastic (hyper)gradient norms [91] or other strategies [21, 46, 85, 57, 63, 95, 69];
(3) addressing geodesically convex (non-strongly convex) lower-level objectives through regulariza-
tion [2] or Polyak-Łojasiewicz (PŁ) conditions [14]; and (4) investigating alternative adaptive step
size strategies [60, 95, 36, 69, 51, 75] to resolve the 1/ϵ-gap in gradient (Gg) and Hessian-vector
product (HVg) complexities compared to non-adaptive Riemannian bilevel methods [32, 53].

Acknowledgements

We sincerely appreciate the reviewers for their invaluable feedback and insightful suggestions. This
work is partly supported by the National Key R&D Program of China under grant 2023YFA1009300,
National Natural Science Foundation of China under grants 12171100, and the Major Program of
NFSC (72394360,72394364).

10



References
[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization Algorithms on Matrix

Manifolds. Princeton University Press, 2009.

[2] Jan Harold Alcantara and Akiko Takeda. Theoretical smoothing frameworks for general
nonsmooth bilevel problems. arXiv preprint arXiv:2401.17852, 2024.

[3] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In
International Conference on Learning Representations, 2019.

[4] Amir Beck. First-order methods in optimization, volume 25. SIAM, 2017.

[5] Tamir Bendory, Yonina C Eldar, and Nicolas Boumal. Non-convex phase retrieval from stft
measurements. IEEE Transactions on Information Theory, 64(1):467–484, 2017.

[6] Luca Bertinetto, Joao F. Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. In International Conference on Learning Representations,
2019.

[7] Rajendra Bhatia. Positive definite matrices. Princeton university press, 2009.

[8] Nicholas Bishop, Long Tran-Thanh, and Enrico Gerding. Optimal learning from verified
training data. In Advances in Neural Information Processing Systems, pages 9520–9529, 2020.

[9] Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions
on Automatic Control, 58(9):2217–2229, 2013.

[10] Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University
Press, 2023.

[11] Nicolas Boumal and Pierre-antoine Absil. Rtrmc: A riemannian trust-region method for
low-rank matrix completion. In Advances in Neural Information Processing Systems, pages
406–414, 2011.

[12] Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. Global rates of convergence for
nonconvex optimization on manifolds. IMA Journal of Numerical Analysis, 39(1):1–33, 2019.

[13] Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction problems.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 547–555, 2011.

[14] Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel opti-
mization: Hardness results and improved analysis. In Conference on Learning Theory, pages
947–980. PMLR, 2024.

[15] Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for
stochastic bilevel optimization. In International Conference on Artificial Intelligence and
Statistics, pages 2466–2488. PMLR, 2022.

[16] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternat-
ing stochastic gradient methods for bilevel problems. In Advances in Neural Information
Processing Systems, pages 25294–25307, 2021.

[17] Anoop Cherian and Suvrit Sra. Riemannian dictionary learning and sparse coding for positive
definite matrices. IEEE Transactions on Neural Networks and Learning Systems, 28(12):2859–
2871, 2016.

[18] Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms. In Advances in
Neural Information Processing Systems, pages 26698–26710, 2022.

[19] Abhinav Dhall, Roland Goecke, Jyoti Joshi, Karan Sikka, and Tom Gedeon. Emotion recogni-
tion in the wild challenge 2014: Baseline, data and protocol. In Proceedings of the International
Conference on Multimodal Interaction, pages 461–466, 2014.

11



[20] Justin Domke. Generic methods for optimization-based modeling. In International Conference
on Artificial Intelligence and Statistics, pages 318–326. PMLR, 2012.

[21] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(7):2121–2159, 2011.

[22] Sanchayan Dutta, Xiang Cheng, and Suvrit Sra. Riemannian bilevel optimization. arXiv
preprint arXiv:2405.15816, 2024.

[23] Rémi Flamary, Alain Rakotomamonjy, and Gilles Gasso. Learning constrained task similarities
in graphregularized multi-task learning. Regularization, Optimization, Kernels, and Support
Vector Machines, 103:1, 2014.

[24] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Machine
Learning, pages 1165–1173. PMLR, 2017.

[25] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568–1577. PMLR, 2018.

[26] Daniel Gabay. Minimizing a differentiable function over a differential manifold. Journal of
Optimization Theory and Applications, 37:177–219, 1982.

[27] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

[28] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In International Conference on Machine Learning,
pages 3748–3758. PMLR, 2020.

[29] Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. Nonconvex-nonconcave
min-max optimization on riemannian manifolds. Transactions on Machine Learning Research,
2023.

[30] Andi Han, Bamdev Mishra, Pratik Jawanpuria, Pawan Kumar, and Junbin Gao. Riemannian
hamiltonian methods for min-max optimization on manifolds. SIAM Journal on Optimization,
33(3):1797–1827, 2023.

[31] Andi Han, Bamdev Mishra, Pratik Kumar Jawanpuria, and Junbin Gao. On riemannian
optimization over positive definite matrices with the bures-wasserstein geometry. Advances in
Neural Information Processing Systems, 34:8940–8953, 2021.

[32] Andi Han, Bamdev Mishra, Pratik Kumar Jawanpuria, and Akiko Takeda. A framework for
bilevel optimization on riemannian manifolds. In Advances in Neural Information Processing
Systems, volume 37, pages 103829–103872, 2024.

[33] Mehrtash Harandi, Mathieu Salzmann, and Richard Hartley. Dimensionality reduction on
spd manifolds: The emergence of geometry-aware methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(1):48–62, 2017.

[34] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic
algorithm framework for bilevel optimization: Complexity analysis and application to actor-
critic. SIAM Journal on Optimization, 33(1):147–180, 2023.

[35] Inbal Horev, Florian Yger, and Masashi Sugiyama. Geometry-aware principal component
analysis for symmetric positive definite matrices. In Asian Conference on Machine Learning,
pages 1–16. PMLR, 2016.

[36] Jiang Hu, Ruicheng Ao, Anthony Man-Cho So, Minghan Yang, and Zaiwen Wen. Riemannian
natural gradient methods. SIAM Journal on Scientific Computing, 46(1):A204–A231, 2024.

[37] Zihao Hu, Guanghui Wang, Xi Wang, Andre Wibisono, Jacob D Abernethy, and Molei Tao.
Extragradient type methods for riemannian variational inequality problems. In International
Conference on Artificial Intelligence and Statistics, pages 2080–2088. PMLR, 2024.

12



[38] Feihu Huang and Shangqian Gao. Gradient descent ascent for minimax problems on riemannian
manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(7):8466–8476,
2023.

[39] Zhiwu Huang and Luc Van Gool. A riemannian network for spd matrix learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 31, pages 2036–2042,
2017.

[40] Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning with
task-specific adaptation over partial parameters. In Advances in Neural Information Processing
Systems, volume 33, pages 11490–11500, 2020.

[41] Kaiyi Ji, Mingrui Liu, Yingbin Liang, and Lei Ying. Will bilevel optimizers benefit from loops.
In Advances in Neural Information Processing Systems, volume 35, pages 3011–3023, 2022.

[42] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International Conference on Machine Learning, pages 4882–4892. PMLR,
2021.

[43] Michael Jordan, Tianyi Lin, and Emmanouil-Vasileios Vlatakis-Gkaragkounis. First-order
algorithms for min-max optimization in geodesic metric spaces. In Advances in Neural
Information Processing Systems, volume 35, pages 6557–6574, 2022.

[44] Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic
gradient algorithms on matrix manifolds. In International Conference on Machine Learning,
pages 3262–3271. PMLR, 2019.

[45] Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic recursive gradient
algorithm. In International Conference on Machine Learning, pages 2516–2524. PMLR, 2018.

[46] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[47] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in
pytorch. arXiv preprint arXiv:2005.02819, 2020.

[48] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information
Processing Systems, volume 12, pages 1008–1014, 1999.

[49] Gautam Kunapuli, Kristin P Bennett, Jing Hu, and Jong-Shi Pang. Classification model
selection via bilevel programming. Optimization Methods & Software, 23(4):475–489, 2008.

[50] Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order
method for stochastic bilevel optimization. In International Conference on Machine Learning,
pages 18083–18113. PMLR, 2023.

[51] Puya Latafat, Andreas Themelis, Lorenzo Stella, and Panagiotis Patrinos. Adaptive proximal al-
gorithms for convex optimization under local lipschitz continuity of the gradient. Mathematical
Programming, 213:433–471, 2025.

[52] John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer
Science & Business Media, 2006.

[53] Jiaxiang Li and Shiqian Ma. Riemannian bilevel optimization. Journal of Machine Learning
Research, 26(18):1–44, 2025.

[54] Lizhen Lin, Drew Lazar, Bayan Saparbayeva, and David Dunson. Robust optimization and
inference on manifolds. Statistica Sinica, 34:1299–1323, 2024.

[55] Lizhen Lin, Brian St. Thomas, Hongtu Zhu, and David B Dunson. Extrinsic local regression on
manifold-valued data. Journal of the American Statistical Association, 112(519):1261–1273,
2017.

13



[56] Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization
made easy: A simple first-order approach. In Advances in Neural Information Processing
Systems, volume 35, pages 17248–17262, 2022.

[57] Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic
polyak step-size for sgd: An adaptive learning rate for fast convergence. In International
Conference on Artificial Intelligence and Statistics, pages 1306–1314. PMLR, 2021.

[58] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In International Conference on Artificial Intelligence and Statistics,
pages 1540–1552. PMLR, 2020.

[59] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter
optimization through reversible learning. In International Conference on Machine Learning,
pages 2113–2122. PMLR, 2015.

[60] Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. In
International Conference on Machine Learning, pages 6702–6712. PMLR, 2020.

[61] David Martínez-Rubio, Christophe Roux, Christopher Criscitiello, and Sebastian Pokutta.
Accelerated methods for riemannian min-max optimization ensuring bounded geometric
penalties. In International Conference on Machine Learning, pages 280–288. PMLR, 2025.

[62] Bamdev Mishra, Hiroyuki Kasai, Pratik Jawanpuria, and Atul Saroop. A riemannian gossip
approach to subspace learning on grassmann manifold. Machine Learning, 108:1783–1803,
2019.

[63] Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of sgd with stochastic
polyak stepsizes: Truly adaptive variants and convergence to exact solution. In Advances in
Neural Information Processing Systems, volume 35, pages 26943–26954, 2022.

[64] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
Conference on Machine Learning, pages 737–746. PMLR, 2016.

[65] Peter Petersen. Riemannian geometry, volume 171. Springer, 2006.

[66] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. In Advances in Neural Information Processing Systems, volume 32, pages
113–124, 2019.

[67] Soumava Kumar Roy, Zakaria Mhammedi, and Mehrtash Harandi. Geometry aware con-
strained optimization techniques for deep learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4460–4469, 2018.

[68] Hiroyuki Sakai and Hideaki Iiduka. Riemannian adaptive optimization algorithm and its
application to natural language processing. IEEE Transactions on Cybernetics, 52(8):7328–
7339, 2021.

[69] Hiroyuki Sakai and Hideaki Iiduka. A general framework of riemannian adaptive optimization
methods with a convergence analysis. arXiv preprint arXiv:2409.00859, 2024.

[70] Hiroyuki Sato. A dai–yuan-type riemannian conjugate gradient method with the weak wolfe
conditions. Computational Optimization and Applications, 64:101–118, 2016.

[71] Hiroyuki Sato, Hiroyuki Kasai, and Bamdev Mishra. Riemannian stochastic variance reduced
gradient algorithm with retraction and vector transport. SIAM Journal on Optimization,
29(2):1444–1472, 2019.

[72] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In International Conference on Artificial Intelligence
and Statistics, pages 1723–1732. PMLR, 2019.

[73] Daouda Sow, Kaiyi Ji, and Yingbin Liang. On the convergence theory for hessian-free
bilevel algorithms. In Advances in Neural Information Processing Systems, volume 35, pages
4136–4149, 2022.

14



[74] Suvrit Sra and Reshad Hosseini. Conic geometric optimization on the manifold of positive
definite matrices. SIAM Journal on Optimization, 25(1):713–739, 2015.

[75] Jaewook J Suh and Shiqian Ma. An adaptive and parameter-free nesterov’s accelerated gradient
method for convex optimization. arXiv preprint arXiv:2505.11670, 2025.

[76] Rhea Sanjay Sukthanker, Zhiwu Huang, Suryansh Kumar, Erik Goron Endsjo, Yan Wu, and
Luc Van Gool. Neural architecture search of spd manifold networks. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages 3002–3009. International Joint
Conferences on Artificial Intelligence Organization, 2021.

[77] Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere ii: Recovery
by riemannian trust-region method. IEEE Transactions on Information Theory, 63(2):885–914,
2016.

[78] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations of
Computational Mathematics, 18:1131–1198, 2018.

[79] Hadi Tabealhojeh, Peyman Adibi, Hossein Karshenas, Soumava Kumar Roy, and Mehrtash Ha-
randi. Rmaml: Riemannian meta-learning with orthogonality constraints. Pattern Recognition,
140:109563, 2023.

[80] Lloyd N Trefethen and David Bau. Numerical linear algebra. SIAM, 2022.

[81] Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging
stochastic gradient descent on riemannian manifolds. In Conference On Learning Theory,
pages 650–687. PMLR, 2018.

[82] Ioannis Tsaknakis, Prashant Khanduri, and Mingyi Hong. An implicit gradient-type method for
linearly constrained bilevel problems. In ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 5438–5442. IEEE, 2022.

[83] Loring W Tu. An Introduction to Manifolds. Springer, 2011.

[84] Bart Vandereycken. Low-rank matrix completion by riemannian optimization. SIAM Journal
on Optimization, 23(2):1214–1236, 2013.

[85] Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon
Lacoste-Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates.
In Advances in Neural Information Processing Systems, volume 32, pages 3732–3745, 2019.

[86] Jiali Wang, He Chen, Rujun Jiang, Xudong Li, and Zihao Li. Fast algorithms for stackelberg
prediction game with least squares loss. In International Conference on Machine Learning,
pages 10708–10716. PMLR, 2021.

[87] Jiali Wang, Wen Huang, Rujun Jiang, Xudong Li, and Alex L Wang. Solving stackelberg
prediction game with least squares loss via spherically constrained least squares reformulation.
In International Conference on Machine Learning, pages 22665–22679. PMLR, 2022.

[88] Xi Wang, Deming Yuan, Yiguang Hong, Zihao Hu, Lei Wang, and Guodong Shi. Riemannian
optimistic algorithms. arXiv preprint arXiv:2308.16004, 2023.

[89] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over
nonconvex landscapes. Journal of Machine Learning Research, 21(219):1–30, 2020.

[90] Quan Xiao, Han Shen, Wotao Yin, and Tianyi Chen. Alternating projected sgd for equality-
constrained bilevel optimization. In International Conference on Artificial Intelligence and
Statistics, pages 987–1023. PMLR, 2023.

[91] Yuege Xie, Xiaoxia Wu, and Rachel Ward. Linear convergence of adaptive stochastic gradient
descent. In International Conference on Artificial Intelligence and Statistics, pages 1475–1485.
PMLR, 2020.

15



[92] Yifan Yang, Hao Ban, Minhui Huang, Shiqian Ma, and Kaiyi Ji. Tuning-free bilevel optimiza-
tion: New algorithms and convergence analysis. In International Conference on Learning
Representations, 2025.

[93] Wei Yao, Chengming Yu, Shangzhi Zeng, and Jin Zhang. Constrained bi-level optimization:
Proximal lagrangian value function approach and hessian-free algorithm. In International
Conference on Learning Representations, 2024.

[94] Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and applica-
tions. arXiv preprint arXiv:2003.05689, 2020.

[95] Jihun Yun and Eunho Yang. Riemannian sam: Sharpness-aware minimization on riemannian
manifolds. In Advances in Neural Information Processing Systems, volume 36, pages 65784–
65800, 2023.

[96] Pourya Zadeh, Reshad Hosseini, and Suvrit Sra. Geometric mean metric learning. In Interna-
tional Conference on Machine Learning, pages 2464–2471. PMLR, 2016.

[97] Emanuele Zangrando, Francesco Rinaldi, Francesco Tudisco, et al. debora: Efficient bilevel
optimization-based low-rank adaptation. In International Conference on Learning Representa-
tions, 2025.

[98] Hongyi Zhang, Sashank J Reddi, and Suvrit Sra. Riemannian svrg: Fast stochastic optimization
on riemannian manifolds. In Advances in Neural Information Processing Systems, volume 29,
pages 4599–4607, 2016.

[99] Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In
Conference on Learning Theory, pages 1617–1638. PMLR, 2016.

[100] Jingzhao Zhang, Hongyi Zhang, and Suvrit Sra. R-spider: A fast riemannian stochastic
optimization algorithm with curvature independent rate. arXiv preprint arXiv:1811.04194,
2018.

[101] Peiyuan Zhang, Jingzhao Zhang, and Suvrit Sra. Sion’s minimax theorem in geodesic metric
spaces and a riemannian extragradient algorithm. SIAM Journal on Optimization, 33(4):2885–
2908, 2023.

[102] Danqing Zhou, Shiqian Ma, and Junfeng Yang. Adabb: Adaptive barzilai-borwein method for
convex optimization. Mathematics of Operations Research, 2025.

[103] Pan Zhou, Xiao-Tong Yuan, and Jiashi Feng. Faster first-order methods for stochastic non-
convex optimization on riemannian manifolds. In International Conference on Artificial
Intelligence and Statistics, pages 138–147. PMLR, 2019.

16



Appendix

A Related works

Bilevel optimization: Bilevel optimization is rooted in the Stackelberg game [13, 8, 86, 87]. When
the lower-level objective is strongly convex, various methods have been proposed [27, 16, 42, 41,
18, 56, 34, 50]. Hypergradient-based approaches include approximate implicit differentiation (AID)
[20, 64]; iterative differentiation (ITD) [59, 24, 72, 28]; Neumann series (NS) [27]; and conjugate
gradient (CG) [42]. Recent studies address bilevel problems with constraints on either the upper- or
lower-level objective. For example, [15, 34] focus on scenarios where constraints are imposed solely
on the upper-level objective, whereas [82, 90, 93] develop methods for problems with lower-level
constraints. For a comprehensive overview, we refer readers to [42, 41, 50] and the references therein.

Riemannian optimization: Riemannian optimization has attracted considerable attention due to its
broad applications, including low-rank matrix completion [11, 84]; phase retrieval [5, 78]; dictionary
learning [17, 77]; dimensionality reduction [33, 81, 62]; and manifold regression [55, 54]. Various
methods have been developed, such as Riemannian (stochastic) gradient descent [26, 1, 9, 5, 12];
nonlinear conjugate gradients [70]; and variance-reduced stochastic gradients [98, 100, 45, 71, 103].
For further details, see [10] and references therein.

Riemannian adaptive optimization: Several adaptive algorithms have been developed to solve
Riemannian optimization problems. Notable examples include the Riemannian adaptive stochastic
gradient algorithm (RASA) [44], Riemannian AMSGrad (RAMSGrad) [3], modified RAMSGrad [68],
constrained RMSProp (cRMSProp) [67], sharpness-aware minimization on Riemannian manifolds
(Riemannian SAM) [95], Riemannian natural gradient descent (RNGD) [36], and a framework for
Riemannian adaptive optimization [69]. For a comprehensive overview of their application scopes,
we refer readers to [69].

Riemannian bilevel optimization: Research on Riemannian bilevel optimization remains limited to
a few recent studies. [53] investigated hypergradient computation for such problems on Riemannian
manifolds and developed deterministic and stochastic algorithms, namely the algorithm for Rieman-
nian bilevel optimization (RieBO) and the algorithm for Riemannian stochastic bilevel optimization
(RieSBO), for solving Riemannian bilevel and stochastic bilevel optimization, respectively. In paral-
lel, [32] proposed a framework termed Riemannian hypergradient descent (RHGD), which provides
multiple hypergradient estimation strategies, supported by convergence and complexity analyses.
The authors also extended their framework to address Riemannian minimax and compositional
optimization problems. By leveraging the value-function reformulation and the Lagrangian method,
[22] introduced a fully stochastic first-order approach, the Riemannian first-order fast stochastic
approximation (RF2SA), which is applicable to scenarios where both objectives are stochastic or
deterministic.

Adaptive bilevel optimization: The closest related approach to our method is the D-TFBO proposed
in [92], which tackles Euclidean bilevel optimization by employing a similar adaptive step size
strategy. While some aspects of Euclidean analysis extend directly to Riemannian settings, geometric
curvature introduces distortions that create unique analytical challenges. We derive convergence guar-
antees similar to those of D-TFBO and enhance our algorithm’s efficiency by replacing exponential
mapping with retraction mapping, thereby reducing computational overhead. To our knowledge, this
work presents the first fully adaptive method with theoretical convergence guarantees for solving
Riemannian bilevel optimization problems.

B Additional preliminaries for Section 2

The Lipschitzness of the functions and operators in the Riemannian manifolds are defined as follows:

Definition B.1. [32, Definition 1] For any x, x1, x2 ∈ Ux, y, y1, y2 ∈ Uy, where Ux × Uy ⊆
Mx ×My ,

(i) a function f :Mx → R is said to have L-Lipschitz Riemannian gradient in Ux if ∥Px2
x1
Gf(x1)−

Gf(x2)∥x2
≤ Ld(x1, x2).
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(ii) a bi-function f :Mx ×My → R is said to have L-Lipschitz Riemannian gradient in Ux × Uy
if ∥Py2

y1
Gyf(x, y1)−Gyf(x, y2)∥y2 ≤ Ld(y1, y2), ∥Gxf(x, y1)−Gxf(x, y2)∥x ≤ Ld(y1, y2),

∥Px2
x1
Gxf(x1, y) − Gxf(x2, y)∥x2

≤ Ld(x1, x2) and ∥Gyf(x1, y) − Gyf(x2, y)∥y ≤
Ld(x1, x2).

(iii) a linear operator G(x, y) : TyMy → TxMx (e.g. Gxyg(x, y)), is said to be ρ-Lipschitz in
Ux × Uy if ∥Px2

x1
G(x1, y) − G(x2, y)∥x2 ≤ ρ d(x1, x2) and ∥G(x, y1) − G(x, y2)Py2

y1
∥x ≤

ρ d(y1, y2).

(iv) a linear operator H(x, y) : TyMy → TyMy (e.g. Hyg(x, y)), is said to be ρ-Lipschitz in
Ux × Uy if ∥Py2

y1
H(x, y1)Py1

y2
− H(x, y2)∥y2

≤ ρ d(y1, y2) and ∥H(x1, y) − H(x2, y)∥y ≤
ρ d(x1, x2).

Due to the curvature of Riemannian manifolds, the notion of distance differs from that in Euclidean
space. Accordingly, we have the following trigonometric distance bound on Riemannian manifolds.
Lemma B.1 (Trigonometric distance bound [99, 98, 31]). Let xa, xb, xc ∈ U ⊆ M and denote
a = d(xb, xc), b = d(xa, xc) and c = d(xa, xb) as the geodesic side lengths. Then, it holds that

a2 ≤ ζ(τ, c)b2 + c2 − 2
〈
Exp−1

xa
(xb),Exp

−1
xa

(xc)
〉
xa

where ζ(τ, c) =

√
|τ |c

tanh(
√

|τ |c)
if τ < 0 and ζ(τ, c) = 1 if τ ≥ 0, and τ denotes the lower bound of the

sectional curvature of U [65, Section 3.1.3].

C Tangent space conjugate gradient algorithm

In this section, we introduce the tangent-space conjugate gradient method [80, 10], which is used in
Section 3.1.

Algorithm 2 Tangent Space Conjugate Gradient vn = TSCG(Hyg(x, ŷ),Gyf(x, ŷ), v0, ϵv)

1: Let r0 = Gyf(x, ŷ) ∈ TyMy, p
0 = r0.

2: while ∥Hyg(x, ŷ)[v
n]− Gyf(x, ŷ)∥ŷ > ϵv do

3: ComputeHyg(x, ŷ)[p
n].

4: an+1 =
∥rn∥2

ŷ

⟨pn,Hyg(x,ŷ)[pn]⟩ŷ ,
5: vn+1 = vn + an+1pn,
6: rn+1 = rn − an+1Hyg(x, ŷ)[p

n],

7: bn+1 =
∥rn+1∥2

ŷ

∥rn∥2
ŷ

,

8: pn+1 = rn+1 + bn+1pn,
9: n = n+ 1.

10: end while

D Additional results of Section 3.4

Since the retraction mapping only affects the total number of iterations required for the lower-
level problem in Problem (1) to converge, without influencing the error bounds, the hypergradient
approximation error bound (Lemma 3.1) remains consistent with that in Algorithm 1. Moreover,
analogous to Proposition 3.2, we establish the following upper bounds on the total number of iterations
required to solve the lower-level problem in Problem (1) and the linear system (4).
Proposition D.1. Suppose that Assumptions 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 hold. Then, for any
0 ≤ t ≤ T , the iterations Kt and Nt required in Algorithm 3 satisfy:

Kt ≤
log(C2

b /b
2
0)

log(1 + ϵy/C2
b )

+
1

(µ/b̄− ζ̄L2
g/b̄

2)
log

(
b̃

ϵy

)
.
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Algorithm 3 AdaRHD with Retraction (AdaRHD-R)

1: Initial points x0 ∈ Mx, y0 ∈ My, and v0 ∈ Ty0M, initial step sizes a0 > 0, b0 > 0, and
c0 > 0, total iterations T , error tolerances ϵy = ϵv = 1

T .
2: for t = 0, 1, 2, ..., T − 1 do
3: Set k = 0 and y0t = y

Kt−1

t−1 if t > 0 and y0 otherwise.
4: while ∥Gyg(xt, y

k
t )∥2yk

t
> ϵy do

5: b2k+1 = b2k + ∥Gyg(xt, y
k
t )∥2yk

t
,

6: yk+1
t = Retryk

t
(− 1

bk+1
Gyg(xt, y

k
t )),

7: k = k + 1.
8: end while
9: Kt = k.

10: Set n = 0 and v0t = Py
Kt
t

y
Kt−1
t−1

v
Nt−1

t−1 if t > 0 and v0 otherwise.

11: while ∥∇vR(xt, y
Kt
t , vnt )∥2yKt

t

> ϵv do

12: c2n+1 = c2n + ∥∇vR(xt, y
Kt
t , vnt )∥2yKt

t

,

13: vn+1
t = vnt − 1

cn+1
∇vR(xt, y

Kt
t , vnt ), ▷ Gradient descent

14: n = n+ 1.
15: end while
16: Or set v0t = 0 and invoke vnt = TSCG(Hyg(xt, y

Kt
t ),Gyf(xt, y

Kt
t ), v0t , ϵv). ▷ Conjugate

gradient
17: Nt = n.
18: ĜF (xt, y

Kt
t , vNt

t ) = Gxf(xt, y
Kt
t )− G2xyg(xt, y

Kt
t )[vNt

t ],
19: a2t+1 = a2t + ∥ĜF (xt, y

Kt
t , vNt

t )∥2xt
,

20: xt+1 = Retrxt
(− 1

at+1
ĜF (xt, y

Kt
t , vNt

t )).
21: end for

AdaRHD-GD:

Nt ≤
log(C2

c /c
2
0)

log(1 + ϵv/C2
c )

+
c̄

µ
log

(
c̃

ϵv

)
,

where Cb, Cc, b̄, c̄, b̃, c̃, and ζ̄ are constants defined in Appendix H.

AdaRHD-CG:

Nt ≤
1

2
log

(
4L3

gl
2
f

µ3ϵv

)
/log

(√
Lg/µ+ 1√
Lg/µ− 1

)
.

E Extension to Riemannian min-max Problems

Riemannian min-max problems [43, 38, 30, 101, 88, 29, 61, 37] have recently attracted increasing
attention. The general form of such problems is

min
x∈Mx

max
y∈My

f(x, y), (6)

which can be regarded as a special case of the Riemannian bilevel optimization problem (1) with
g(x, y) = −f(x, y).
If f is geodesically strongly convex with respect to y over My, the Riemannian hypergradient
(3) reduces to GF (x) = Gxf(x, y∗(x)), and the approximate Riemannian hypergradient becomes
ĜF (x, ŷ) = Gxf(x, ŷ). The pseudocode of the adaptive method for solving Problem (6) is summa-
rized in Algorithm 4.

Before establishing the convergence result of Algorithm 4, we present the required assumptions.

Assumption E.1. The following conditions hold:
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Algorithm 4 AdaRHD for Riemannian Min-Max Optimization

1: Input: initial points x0 ∈ Mx, y0 ∈ My; initial step sizes a0 > 0, b0 > 0; total iterations T ;
tolerance ϵy = 1

T .
2: for t = 0, 1, 2, . . . , T − 1 do
3: Set k = 0 and initialize y0t = y

Kt−1

t−1 if t > 0, otherwise y0t = y0.
4: while ∥Gyg(xt, y

k
t )∥2 > ϵy do

5: Update b2k+1 = b2k + ∥Gyg(xt, y
k
t )∥2yk

t
.

6: yk+1
t = Expyk

t

(
− 1

bk+1
Gyg(xt, y

k
t )
)

,

or yk+1
t = Retryk

t

(
− 1

bk+1
Gyg(xt, y

k
t )
)
. ▷ retraction step

7: k ← k + 1.
8: end while
9: Kt ← k.

10: Compute ĜF (xt, y
Kt
t ) = Gxf(xt, y

Kt
t ).

11: Update a2t+1 = a2t + ∥ĜF (xt, y
Kt
t )∥2xt

.

12: xt+1 = Expxt

(
− 1

at+1
ĜF (xt, y

Kt
t )
)

,

or xt+1 = Retrxt

(
− 1

at+1
ĜF (xt, y

Kt
t )
)
. ▷ retraction step

13: end for

(i) Assumptions 3.1 and 3.4 are satisfied (Assumptions 3.5 and 3.6 are required when retraction is
used);

(ii) f(x, y) is continuously differentiable, and−f(x, y) is geodesically strongly convex with respect
to y;

(iii) f(x, y) is lf -Lipschitz continuous, and its Riemannian gradients Gxf(x, y) and Gyf(x, y) are
Lf -Lipschitz continuous.

We now state the convergence guarantee of Algorithm 4.
Theorem E.1. Suppose that Assumption E.1 holds. Then, the sequence {xt}Tt=0 generated by
Algorithm 4 satisfies

1

T

T−1∑
t=0

∥GF (xt)∥2xt
≤ Cmm

T
= O

(
1

T

)
,

where Cmm is a constant depending on the curvature, Lipschitz, and strong convexity parameters.

Moreover, the overall gradient complexity of Algorithm 4 is O(1/ϵ2).

F Preliminary results for proofs

Lemma F.1. [89, Lemma 3.2] For any non-negative α1, ..., αT , and α1 ≥ 1, we have
T∑
l=1

αl∑l
i=1 αi

≤ log

(
T∑
l=1

αl

)
+ 1.

Lemma F.2. Suppose that Assumptions 3.1, 3.2, and 3.3 holds. Then, the following statements hold,

(1) For x1, x2 ∈Mx, it holds that

d(y∗(x1), y
∗(x2)) ≤ Lyd(x1, x2),

where Ly :=
Lg

µ and y∗(x) is the optimal solution of the lower-level problem in Problem (1);

(2) The Riemannian hypergradient GF (x) satsifies ∥GF (x)∥x ≤ lf (1 + Lg/µ), and for x1, x2 ∈
Mx, it holds that

∥GF (x1)− Px1
x2
GF (x2)∥x1

≤ LF d(x1, x2),
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where LF :=
(
Lf +

ρlf
µ

)(
1 +

Lg

µ

)2
;

Proof. The proofs of Lemma F.2 can be derived from [27, Lemma 2.2], here we provide them for
completeness.

(1): For x1, x2 ∈ Mx, there exist two geodesics c1 : [0, 1]→My and c2 : [0, 1]→Mx such that
c1(t) = y∗(c2(t)) for t ∈ [0, 1], and c2(0) = x1, c2(1) = x2. Then, we have

d(y∗(x1), y
∗(x2)) =

∫ 1

0

∥c′1(t)∥c1(t)dt =
∫ 1

0

∥Dy∗(c2(t))[c
′
2(t)]∥c2(t)dt ≤

Lg

µ

∫ 1

0

∥c′2(t)∥c2(t)dt =
Lg

µ
d(x1, x2),

where the first inequality follows from Dy∗(x) := −H−1
y g(x, y∗(x))G2yxg(x, y∗(x)).

(2): By the definition of GF (x), from Assumptions 3.2 and 3.3, it holds that

∥GF (x)∥x = ∥Gxf(x, y∗(x))− G2xyg(x, y∗(x))[H−1
y g(x, y∗(x))[Gyf(x, y∗(x))]]∥x

=∥Gxf(x, y∗(x))∥x + ∥G2xyg(x, y∗(x))∥y∗(x)∥H−1
y g(x, y∗(x))∥y∗(x)∥Gyf(x, y∗(x))∥y∗(x) ≤ lf +

Lg

µ
lf .

Furthermore, we have

∥Px2
x1
GF (x1)− GF (x2)∥x2

≤
∥∥Px2

x1
Gxf(x1, y

∗(x1))− Gxf(x2, y
∗(x2))

∥∥
x2

+
∥∥∥Px2

x1
G2xyg(x1, y

∗(x1))− G2xyg(x2, y
∗(x2))Py∗(x2)

y∗(x1)

∥∥∥
x2

∥∥H−1
y g(x1, y

∗(x1))∥y∗(x1)

∥∥Gyf(x1, y
∗(x1))∥y∗(x1)

+ ∥G2xyg(x2, y
∗(x2))∥x2

∥∥∥Py∗(x2)
y∗(x1)

H−1
y g(x1, y

∗(x1))Py∗(x1)
y∗(x2)

−H−1
y g(x2, y

∗(x2))
∥∥∥
y∗(x2)

∥Gyf(x1, y
∗(x1))∥y∗(x1)

+ ∥G2xyg(x2, y
∗(x2))∥x2∥H−1

y g(x2, y
∗(x2))∥y∗(x2)

∥∥∥Py∗(x2)
y∗(x1)

Gyf(x1, y
∗(x1))− Gyf(x2, y

∗(x2))
∥∥∥
y∗(x2)

.

(7)

By Assumptions 3.2 and 3.3, for the first term of (7), we have

∥Px2
x1
Gxf(x1, y

∗(x1))− Gxf(x2, y
∗(x2))∥x2

≤∥Gxf(x1, y
∗(x1))− Gxf(x1, y

∗(x2))∥x1 + ∥Px2
x1
Gxf(x1, y

∗(x2))− Gxf(x2, y
∗(x2))∥x2

≤Lfd(y
∗(x1), y

∗(x2)) + Lfd(x1, x2) =

(
LfLg

µ
+ Lf

)
d(x1, x2).

We then consider the fourth term of (7), we have∥∥∥Py∗(x2)
y∗(x1)

Gyf(x1, y
∗(x1))− Gyf(x2, y

∗(x2))
∥∥∥
y∗(x2)

≤
∥∥∥Py∗(x2)

y∗(x1)
Gyf(x1, y

∗(x1))− Gyf(x1, y
∗(x2))

∥∥∥
y∗(x2)

+ ∥Gyf(x1, y
∗(x2))− Gyf(x2, y

∗(x2))∥y∗(x2)

≤
(
LfLg

µ
+ Lf

)
d(x1, x2).

For the second term of (7), we have

∥Px2
x1
G2xyg(x1, y

∗(x1))− G2xyg(x2, y
∗(x2))Py∗(x2)

y∗(x1)
∥x2

≤∥Px2
x1
G2xyg(x1, y

∗(x1))Py∗(x1)
y∗(x2)

− Px2
x1
G2xyg(x1, y

∗(x2))∥x2 + ∥Px2
x1
G2xyg(x1, y

∗(x2))− G2xyg(x2, y
∗(x2))∥x2

≤
(
ρLg

µ
+ ρ

)
d(x1, x2).

For the third term of (7), we have∥∥∥Py∗(x2)
y∗(x1)

H−1
y g(x1, y

∗(x1))Py∗(x1)
y∗(x2)

−H−1
y g(x2, y

∗(x2))
∥∥∥
y∗(x2)

≤
∥∥H−1

y g(x1, y
∗(x1))−H−1

y g(x2, y
∗(x1))

∥∥
y∗(x1)

+
∥∥∥Py∗(x2)

y∗(x1)
H−1

y g(x2, y
∗(x1))Py∗(x1)

y∗(x2)
−H−1

y g(x2, y
∗(x2))

∥∥∥
y∗(x2)
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≤
(

ρ

µ2
+

ρLg

µ3

)
d(x1, x2),

where the last inequality follows from the operator norm satisfying
∥A−1 −B−1∥ ≤ ∥B−1(B −A)A−1∥ ≤ ∥A−1∥∥B−1∥∥A−B∥. (8)

Combining the above inequalities, we have
∥Px2

x1
GF (x1)− GF (x2)∥x2

≤
(
LfLg

µ
+ Lf

)
d(x1, x2) +

lf
µ

(
ρLg

µ
+ ρ

)
d(x1, x2)

+ Lglf

(
ρ

µ2
+

ρLg

µ3

)
d(x1, x2) +

Lg

µ

(
LfLg

µ
+ Lf

)
d(x1, x2)

=(
LfLg

µ
+ Lf +

lf
µ

(
ρLg

µ
+ ρ

)
+ Lglf

(
ρ

µ2
+

ρLg

µ3

)
+

Lg

µ

(
LfLg

µ
+ Lf

)
)d(x1, x2)

=

(
Lf +

ρlf
µ

)(
1 +

Lg

µ

)2

d(x1, x2).

The proof is complete.

Denote v∗(x) := argminv∈Ty∗(x)My
R(x, y∗(x), v) and v̂∗(x, y) := argminv∈TyMy

R(x, y, v).

Lemma F.3. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Then, the following statements hold,

(1) The objective R(x, y, v) is µ-strongly convex and Lg-smooth w.r.t. v;

(2) v∗(x) satisfies ∥v∗(x)∥y∗(x) ≤
lf
µ , and v̂∗(x, y) also satisfies ∥v̂∗(x, y)∥y ≤ lf

µ ;

(3) For x, x1, x2 ∈Mx and y1, y2 ∈My , it holds that∥∥∥v∗(x1)− Py∗(x1)
y∗(x2)

v∗(x2)
∥∥∥
y∗(x1)

≤ Lvd(x1, x2), and ∥v̂∗(x, y1)−Py1
y2
v̂∗(x, y2)∥y1

≤ L̂vd(y1, y2),

where Lv := (
Lf

µ +
lfρ
µ2 )(1 + Ly) and L̂v :=

Lf

µ +
lfρ
µ2 .

Proof. (1): Since ∇2
vR(x, y, v) = Hyg(x, y), the strong convexity of R(x, y, v) follows from

Assumption 3.2. Then, by Assumption 3.3, for v1, v2 ∈ TyMy , we have
∥∇vR(x, y, v1)−∇vR(x, y, v2)∥y ≤ ∥Hyg(x, y)∥y∥v1 − v2∥y ≤ Lg∥v1 − v2∥y.

(2): For v̂∗(x, y), we have
∇vR (x, y, v̂∗(x, y)) = Hyg(x, y)[v̂

∗(x, y)]− Gyf(x, y) = 0,

which demonstrates that

∥v̂∗(x, y)∥y =
∥∥H−1

y g(x, y)Gyf(x, y)
∥∥
y
≤
∥∥H−1

y g(x, y)
∥∥
y
· ∥Gyf(x, y))∥y ≤

lf
µ
.

Since v∗(x) satisfies v∗(x) = v̂∗(x, y∗(x)), the desired result follows.

(3): By the definition of v∗(x), we have∥∥∥v∗(x1)− Py∗(x1)
y∗(x2)

v∗(x2)
∥∥∥
y∗(x1)

≤
∥∥∥H−1

y g(x1, y
∗(x1))[Gyf(x1, y

∗(x1))]− Py∗(x1)
y∗(x2)

H−1
y g(x2, y

∗(x2))[Gyf(x2, y
∗(x2))]

∥∥∥
y∗(x1)

.

The remaining proof is similar to that of Lemma F.2 (2), thus, we omit it.

By the definition of v̂∗(x, y), we have

∥v̂∗(x, y1)− Py1
y2
v̂∗(x, y2)∥y1

=
∥∥H−1

y g(x, y1)Gyf(x, y1)− Py1
y2
H−1

y g(x, y2)Gyf(x, y2)
∥∥
y1

≤
∥∥H−1

y g(x, y1)
(
Gyf(x, y1)− Py1

y2
Gyf(x, y2)

)∥∥
y1

+
∥∥(H−1

y g(x, y1)Py1
y2
− Py1

y2
H−1

y g(x, y2)
)
Gyf(x, y2)

∥∥
y1

≤Lf

µ
d(y1, y2) + lf

ρ

µ2
d(y1, y2),

where the second inequality follows from (8).
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Lemma F.4. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Then, for any t ≥ 0, we have

d(yKt
t , y∗(xt))

2 ≤ ϵy
µ2

, and
∥∥∥vNt

t − v̂∗(xt, y
Kt
t )
∥∥∥2
y
Kt
t

≤ ϵv
µ2

.

Proof. According to the termination conditions of Algorithm 1 for the lower-level problem and the
linear system, we have

∥Gyg(xt, y
Kt
t )∥2

y
Kt
t

≤ ϵy, and ∥∇vR(xt, y
Kt
t , vNt

t )∥2
y
Kt
t

≤ ϵv.

By the strong convexity of g and R (cf. Lemma F.3), we have

d2(yKt
t , y∗(xt)) ≤

1

µ2

∥∥∥∥Gyg(xt, y
Kt
t )− Py

Kt
t

y∗(xt)
Gyg (xt, y

∗(xt))

∥∥∥∥2
y
Kt
t

≤ ϵy
µ2

and∥∥∥vNt
t − v̂∗(xt, y

Kt
t )
∥∥∥2
y
Kt
t

≤ 1

µ2

∥∥∥∇vR(xt, y
Kt
t , vNt

t )−∇vR
(
xt, y

Kt
t , v̂∗(xt, y

Kt
t )
)∥∥∥2

y
Kt
t

≤ ϵv
µ2

,

where we use the definitions ∥Gyg(xt, y
∗(xt))∥2 = 0 and ∥∇vR

(
xt, y

Kt
t , v̂∗(xt, y

Kt
t )
)
∥2 = 0.

Lemma F.5. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Then, for any t ≥ 0, we have

∥ĜF (xt, y
Kt
t , vNt

t )∥2 ≤ C2
f ,

where Cf :=
(

2L2
gϵv
µ2 +

4L2
gl

2
f

µ2 + 4l2f

) 1
2

.

Proof. By the definition of ĜF , we have

∥ĜF (xt, y
Kt
t , vNt

t )∥2xt

≤2
∥∥∥ĜF (xt, y

Kt
t , vNt

t )− ĜF
(
xt, y

Kt
t , v̂∗(xt, y

Kt
t )
)∥∥∥2

xt

+ 2
∥∥∥ĜF (xt, y

Kt
t , v̂∗(xt, y

Kt
t )
)∥∥∥2

xt

=2
∥∥∥G2xyg(xt, y

Kt
t )

(
vNt
t − v̂∗(xt, y

Kt
t )
)∥∥∥2

xt

+ 2∥Gxf(xt, y
Kt
t )− G2xyg(xt, y

Kt
t )v̂∗(xt, y

Kt
t )∥2xt

≤2
∥∥∥G2xyg(xt, y

Kt
t )
∥∥∥2
xt

∥vNt
t − v̂∗(xt, y

Kt
t )∥2

y
Kt
t

+ 4∥Gxf(xt, y
Kt
t )∥2xt

+ 4∥G2xyg(xt, y
Kt
t )v̂∗(xt, y

Kt
t )∥2xt

≤
2L2

gϵv

µ2
+

4L2
gl

2
f

µ2
+ 4l2f ,

where the last inequality follows from Assumptions 3.1, 3.2, 3.3, Lemmas F.3 and F.4.

G Proofs of Section 3.3

G.1 Proof of Lemma 3.1

Proof. By the definitions of v∗t (xt) and v̂∗t (xt, y
Kt
t ), we have

∥ĜF (xt, y
Kt
t , vNt

t )− GF (xt)∥xt

≤∥Gxf(xt, y
Kt
t )− Gxf(xt, y

∗(xt))∥xt
+ ∥G2xyg(xt, y

Kt
t )vNt

t − G2xyg(xt, y
∗(xt))v

∗
t (xt)∥xt

≤Lfd(y
Kt
t , y∗(xt)) + ∥G2xyg(xt, y

Kt
t )∥xt

∥vNt
t − P

y
Kt
t

y∗(xt)
v∗t (xt)∥yKt

t

+ ∥G2xyg(xt, y
Kt
t )− G2xyg(xt, y

∗(xt))Py∗(xt)

y
Kt
t

∥xt∥v∗t (xt)∥y∗(xt)

≤Lfd(y
Kt
t , y∗(xt)) + Lg∥vNt

t − P
y
Kt
t

y∗(xt)
v∗t (xt)∥yKt

t
+ ρ∥v∗t (xt)∥y∗(xt)d(y

Kt
t , y∗(xt))

≤
(
Lf +

ρlf
µ

)
d(yKt

t , y∗(xt)) + Lg∥vNt
t − P

y
Kt
t

y∗(xt)
v∗t (xt)∥yKt

t
, (9)
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where the third and fourth inequalities follow from Assumption 3.3 and Lemma F.3 (2), respectively.

For ∥vNt
t − P

y
Kt
t

y∗(xt)
v∗t (xt)∥yKt

t
, we have

∥vNt
t − P

y∗(xt)

y
Kt
t

v∗t (xt)∥yKt
t
≤∥vNt

t − v̂∗t (xt, y
Kt
t )∥

y
Kt
t

+ ∥v̂∗t (xt, y
Kt
t )− Py∗(xt)

y
Kt
t

v̂∗t (xt, y
∗(xt))∥yKt

t

≤∥vNt
t − v̂∗t (xt, y

Kt
t )∥

y
Kt
t

+

(
Lf

µ
+

lfρ

µ2

)
d(yKt

t , y∗(xt)),

where the last inequality follows from Lemma F.3 (3) and the fact that v∗t (xt) = v̂∗t (xt, y
∗(xt)).

Combining this result with (9), we obtain

∥ĜF (xt, y
Kt
t , vNt

t )− GF (xt)∥xt
≤
(
Lf +

ρlf
µ

)
d(yKt

t , y∗(xt)) + Lg∥vNt
t − P

y
Kt
t

y∗(xt)
v∗t (xt)∥yKt

t

≤
(
Lf +

ρlf
µ

)
d(yKt

t , y∗(xt)) + Lg

(
∥vNt

t − v̂∗t (xt, y
Kt
t )∥

y
Kt
t

+

(
Lf

µ
+

lfρ

µ2

)
d(yKt

t , y∗(xt))

)
=

(
Lf +

lfρ

µ
+ Lg

(
Lf

µ
+

lfρ

µ2

))
d(yKt

t , y∗(xt)) + Lg∥vNt
t − v̂∗t (xt, y

Kt
t )∥

y
Kt
t

.

The proof is complete.

G.2 Proof of Proposition 3.2

Inspired by Proposition 1 in [92], we first give a result that concerns the step sizes at, bk, and cn.

Proposition G.1. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Denote {T,K,N} as the
iterations of {x, y, v}. Given any constants Ca ≥ a0, Cb ≥ b0, Cc ≥ c0, then, we have

AdaRHD-GD:

(1) either at ≤ Ca for any t ≤ T , or ∃t1 ≤ T such that at1 ≤ Ca, at1+1 > Ca;

(2) either bk ≤ Cb for any k ≤ K, or ∃k1 ≤ K such that bk1 ≤ Cb, bk1+1 > Cb;

(3) either cn ≤ Cc for any n ≤ N , or ∃n1 ≤ N such that cn1
≤ Cc, cn1+1 > Cc.

We then consider the case where we use the conjugate gradient method to solve the linear system.
Therefore, we do not need to consider the step size cn.

AdaRHD-CG:

(1) either at ≤ Ca for any t ≤ T , or ∃t1 ≤ T such that at1 ≤ Ca, at1+1 > Ca;

(2) either bk ≤ Cb for any k ≤ K, or ∃k1 ≤ K such that bk1
≤ Cb, bk1+1 > Cb;

G.2.1 Improvement on objective function for one step update

We first define a threshold for at:
Ca := max{2LF , a0}. (10)

Lemma G.1. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Then, we have

F (xt+1) ≤ F (xt)−
1

2at+1
∥GF (xt)∥2xt

− 1

2at+1

(
1− LF

at+1

)
∥ĜF (xt, y

Kt
t , vNt

t )∥2xt
+

ϵy,v
2at+1

.

(11)
Furthermore, if t1 in Proposition G.1 exists, then for any t ≥ t1, we have

F (xt+1) ≤ F (xt)−
1

2at+1
∥GF (xt)∥2xt

− 1

4at+1
∥ĜF (xt, y

Kt
t , vNt

t )∥2xt
+

ϵy,v
2at+1

, (12)

where ϵy,v := L̄2

µ2 (ϵy + ϵv) and L̄ := max{
√
2L1,

√
2Lg} with L1 is defined in Lemma 3.1.
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Proof. Combining Lemma F.2 (2) and Proposition 2.1, we have

F (xt+1) ≤F (xt) +
〈
GF (xt),Exp

−1
xt

(xt+1)
〉
xt

+
LF

2
d(xt+1, xt)

2

=F (xt)−
1

at+1

〈
GF (xt), ĜF

(
xt, y

Kt
t , vNt

t

)〉
xt

+
LF

2a2t+1

∥∥∥ĜF (xt, y
Kt
t , vNt

t

)∥∥∥2
xt

=F (xt)−
1

2at+1
∥GF (xt)∥2xt

− 1

2at+1

∥∥∥ĜF (xt, y
Kt
t , vNt

t

)∥∥∥2
xt

+
1

2at+1

∥∥∥GF (xt)− ĜF
(
xt, y

Kt
t , vNt

t

)∥∥∥2
xt

+
LF

2a2t+1

∥∥∥ĜF (xt, y
Kt
t , vNt

t

)∥∥∥2
xt

=F (xt)−
1

2at+1
∥GF (xt)∥2xt

− 1

2at+1

(
1− LF

at+1

)
∥ĜF (xt, y

Kt
t , vNt

t )∥2xt

+
1

2at+1

∥∥∥GF (xt)− ĜF
(
xt, y

Kt
t , vNt

t

)∥∥∥2
xt

. (13)

By Lemma 3.1, it holds that∥∥∥GF (xt)− ĜF
(
xt, y

Kt
t , vNt

t

)∥∥∥2
xt

≤2L2
1d

2(yKt
t , y∗(xt)) + 2L2

g

(
∥vNt

t − P
yt

y∗(xt)
v̂∗(xt, y

∗(xt))∥2yt

)
≤L̄2

(
d2(yKt

t , y∗(xt)) + ∥vNt
t − P

yt

y∗(xt)
v̂∗(xt, y

∗(xt))∥2yt

)
.

Therefore, by Lemma F.4, we have∥∥∥GF (xt)− ĜF
(
xt, y

Kt
t , vNt

t

)∥∥∥2 ≤ L̄2

µ2
(ϵy + ϵv) = ϵy,v.

This Combine (13) deduces the desired result of (11).

If t1 in Proposition G.1 exists, then for t ≥ t1, we have at+1 > Ca ≥ 2LF . The desired result of
(12) follows from (11). The proof is complete.

Then, similar to [92, Lemma 8], we have the following upper bound for the step size at.
Lemma G.2. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold. If t1 in Proposition G.1 does not
exist, we have at ≤ Ca for all t ≤ T .

If the t1 in Proposition G.1 exists, we have
at ≤Ca, t ≤ t1;

at ≤Ca + 2F0 +
2tϵy,v
a0

, t > t1,

where

F0 := 2 (F (x0)− F ∗) +
LFC

2
a

a20
. (14)

Proof. If t1 in Proposition G.1 does not exist, then for any t ≤ T , it holds that at ≤ Ca.

If t1 in Proposition G.1 exists, then for any t < t1, it holds that at+1 ≤ Ca. By Lemma G.1, for any
t ≥ t1, it holds that

F (xt+1) ≤ F (xt)−
1

2at+1
∥GF (xt)∥2xt

− 1

4at+1
∥ĜF (xt, y

Kt
t , vNt

t )∥2xt
+

ϵy,v
2at+1

.

Removing the nonnegative term − 1
2at+1

∥GF (xt)∥2xt
, we have

∥ĜF (xt, y
Kt
t , vNt

t )∥2xt

at+1
≤ 4 (F (xt)− F (xt+1)) +

2ϵy,v
at+1

. (15)

Summing (15) from t1 to t, we have
t∑

i=t1

∥ĜF (xi, y
Ki
i , vNi

i )∥2xi

ai+1
≤ 4

t∑
i=t1

(F (xi)− F (xi+1))+

i∑
i=t1

2ϵy,v
ai+1

4 (F (xt1)− F (xt+1))+

t∑
i=t1

2ϵy,v
at+1

.

(16)
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For F (xt1), by (11), we have

F (xt1) ≤ F (x0) +

t1−1∑
i=0

LF

2a2i+1

∥ĜF (xi, y
Ki
i , vNi

i )∥2xi
+

t1−1∑
i=0

ϵy,v
2ai+1

.

This combines with (16), by F (xt+1) ≥ F ∗, we have

t∑
i=t1

∥ĜF (xi, y
Ki
i , vNi

i )∥2xi

ai+1
≤ 4 (F (x0)− F ∗) +

t1−1∑
i=0

2LF

a2i+1

∥ĜF (xi, y
Ki
i , vNi

i )∥2xi
+

t∑
i=0

2ϵy,v
ai+1

≤4 (F (x0)− F ∗) +
2LF

∑t1−1
i=0 ∥ĜF (xi, y

Ki
i , vNi

i )∥2xi

a20
+

t∑
i=0

2ϵy,v
ai+1

≤4 (F (x0)− F ∗) +
2LFa

2
t1

a20
+

2(t+ 1)ϵy,v
a0

≤ 4 (F (x0)− F ∗) +
2LFC

2
a

a20
+

2(t+ 1)ϵy,v
a0

.

Since a2t+1 = a2t + ∥ĜF (xt, y
Kt
t , vNt

t )∥2xt
, we have

at+1 =at +
∥ĜF (xt, y

Kt
t , vNt

t )∥2xt

at+1 + at
≤ at +

∥ĜF (xt, y
Kt
t , vNt

t )∥2xt

at+1
≤ at1 +

t∑
i=t1

∥ĜF (xi, y
Ki
i , vNi

i )∥2xi

ai+1

≤Ca + 4 (F (x0)− F ∗) +
2LFC

2
a

a20
+

2(t+ 1)ϵy,v
a0

. (17)

The proof is complete.

Similar to (10), we define the thresholds for the step sizes bk and cn as follows:

Cb := max

{
2ζLg

Lg

µ
, b0

}
, Cc := max{Lg, c0}. (18)

Before proving Proposition 3.2, we need two technical lemmas.

Lemma G.3. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Then, we have

d2(yk+1
t , y∗(xt)) ≤

(
1 +

1

b2k+1

ζL2
g −

µ

bk+1

)
d2(ykt , y

∗(xt)).

Proof. By Lemma B.1, we have

d2(yk+1
t , y∗(xt)) (19)

≤d2(ykt , y∗(xt)) +
1

b2k+1

ζ∥Gyg(xt, y
k
t )∥2yk

t
+

2

bk+1
⟨Gyg(xt, y

k
t ),Exp

−1
yk
t
y∗(xt)⟩yk

t

≤d2(ykt , y∗(xt)) +
1

b2k+1

ζ∥Gyg(xt, y
k
t )∥2yk

t
+

2

bk+1
(g(xt, y

∗(xt))− g(xt, y
k
t )−

µ

2
d2(ykt , y

∗(xt)))

≤
(
1 +

1

b2k+1

ζL2
g −

µ

bk+1

)
d2(ykt , y

∗(xt)),

where the second inequality follows from the geodesic strong convexity of g, and the third inequality
follows from

∥Gyg(xt, y
k
t )∥2yk

t
= ∥Gyg(xt, y

k
t )− P

yk
t

y∗(xt)
Gyg(xt, y

∗(xt))∥2yk
t
≤ L2

gd
2(ykt , y

∗(xt)).

The proof is complete.

Lemma G.4. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Then, we have

⟨Gyg(xt, y
k
t ),Exp

−1
yk
t
(y∗(xt))⟩yk

t
≤ − 1

2Lg
∥Gyg(xt, y

k
t )∥2yk

t
.
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Proof. By Assumption 3.3, given any y ∈My , it holds that

g(xt, y
∗(xt)) ≤ g(xt, y) ≤ g(xt, y

k
t ) + ⟨Gyg(xt, y

k
t ),Exp

−1
yk
t
(y)⟩yk

t
+

Lg

2
d2(ykt , y). (20)

Taking y = Expyk
t
(− 1

Lg
Gyg(xt, y

k
t )) in (20) derives

g(xt, y
∗(xt)) ≤ g(xt, y

k
t )−

1

Lg
∥Gyg(xt, y

k
t )∥2yk

t
+
Lg

2

∥∥∥∥ 1

Lg
Gyg(xt, y

k
t )

∥∥∥∥2
yk
t

= g(xt, y
k
t )−

1

2Lg
∥Gyg(xt, y

k
t )∥2yk

t
,

which demonstrates that

g(xt, y
∗(xt))− g(xt, y

k
t ) ≤ −

1

2Lg
∥Gyg(xt, y

k
t )∥2yk

t
. (21)

By the geodesic convexity of g w.r.t. y, we have

g(xt, y
∗(xt))− g(xt, y

k
t ) ≥ ⟨Gyg(xt, y

k
t ),Exp

−1
yk
t
(y∗(xt))⟩yk

t
.

This combines (21) implies that

⟨Gyg(xt, y
k
t ),Exp

−1
yk
t
(y∗(xt))⟩yk

t
≤ g(xt, y
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t
.

The proof is complete.

Proof of Proposition 3.2

Proof. For AdaRHD-GD, denote

K̄ :=
log(C2

b /b
2
0)

log(1 + ϵy/C2
b )

+
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g/b̄
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, (22)

and
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c /c
2
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+
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µ
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where b̃ := max{Lg(b̄−Cb)
2 , 1}, c̃ := max{Lg(c̄ − Cc), 1}, b̄ := Cb +

2Lg

(
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2
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)
+ ζ
)
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) 1
2
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Lemma F.5, and c̄ := Cc + Lg

(
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8l2f
µ2 + 2 log

(
Cc

c0
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.

For AdaRHD-CG, denote
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1

2
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(
4L3
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2
f

µ3ϵv

)
/log

(√
Lg/µ+ 1√
Lg/µ− 1

)
.

We first show that Kt ≤ K̄ for all 0 ≤ t ≤ T .

If k1 in Proposition G.1 does not exist, it holds that bKt ≤ Cb. By [91, Lemma 2], we must have
Kt ≤ log(C2

b/b
2
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b )

. If Kt >
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b/b
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(24)

which contradicts bKt
≤ Cb.
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If k1 in Proposition G.1 exists, then, we have bk1 ≤ Cb and bk1+1 > Cb. We first prove k1 ≤
log(C2

b/b
2
0)

log(1+ϵy/C2
b )

. If k1 >
log(C2

b/b
2
0)

log(1+ϵy/C2
b )

, similar to (24), we have
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b ,

which contradicts bk1
≤ Cb.

By Lemma B.1 and the update mode of yk1
t , we have
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(
Cb
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)
+ ζ, (25)

where (a) follows from (2), (b) follows from the warm start of y0t , (c) follows from [10, Definition
10.1] and Lemma F.1, (d) uses Lemmas F.2 (1) and F.4, (e) follows from Lemma F.5 and bk1

≤ Cb.

For any K > k1, by Lemma G.3, we have
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(
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where the second inequality follows from bK ≥ Cb ≥ 2ζLg
Lg

µ and 1 − x ≤ e−x for 0 < x < 1,

specifically, when bK ≥ 2ζLg
Lg

µ , it holds that 0 < µ
bK
− ζ

L2
g

b2K
< 1, and the third inequality follows

from (25).

Similar to (17), we have
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. (27)

Moreover, by the update mode of yKt and Lemma B.1, we have
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where the second and third inequalities follow from Lemma G.4 and bK ≥ Cb ≥ 2ζLg
Lg

µ , respec-
tively.

By (25), we have
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)
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Then, by (27), 1
1−µ/2Lg

≤ 2, and bk1
≤ Cb, we have
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Denote b̄ := Cb + 2Lg
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. We need to show that µ
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Since k1 ≤ log(C2
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2
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, by the definition of K̄ in (22), it holds that K̄ > k1 as b̃ ≥ 1 > ϵy. If
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2 ≤ 1, it holds that b̃ = 1 in (22). Then, by (29), we have
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(30)

where (a) follows from the definition of K̄, and (b) follows from Lg(b̄−Cb)
2 ≤ 1.

If Lg(b̄−Cb)
2 > 1, it holds that b̃ = Lg(b̄−Cb)

2 in (22), and we have
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Above all, we conclude that after at most K̄ iterations, the condition ∥Gyg(xt, y
K̄
t )∥2

yK̄
t

≤ ϵy is

satisfied, i.e., Kt ≤ K̄ holds for all t ≥ 0. We complete the proof.
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AdaRHD-GD: We show that Nt ≤ N̄gd for all 0 ≤ t ≤ T .

If n1 in Proposition G.1 does not exist, we have cNt
≤ Cc. Similar to Kt of the lower-level problem,
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where (a) follows from Baillon-Haddad Theorem [4, Theorem 5.8 (iv)], i.e., for y ∈ My and
v ∈ TyMy , it holds that
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(b) follows from the warm start of v0t , (c) uses Lemma F.1, and (d) follows from Lemmas F.3 (2) and
F.4, and cn1
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where (a) follows from (33), (b) follows from cn > Cc ≥ Lg, (c) follows from
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t − v̂∗(xt, y
Kt
t )
∥∥∥2
y
Kt
t

−
N−1∑
n=n1

∥∥∥∇vR(xt, y
Kt
t , vnt )

∥∥∥2
y
Kt
t

cn+1Lg
,
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where the first inequality follows from (33), and the second inequality follows from cN ≥ Cc ≥ Lg .

Then, by (32), it holds that

N−1∑
n=n1

∥∥∥∇vR(xt, y
Kt
t , vnt )

∥∥∥2
y
Kt
t

cn+1
≤ Lg

(∥∥∥vn1
t − v̂∗(xt, y

Kt
t )
∥∥∥2
y
Kt
t

−
∥∥∥vNt − v̂∗(xt, y

Kt
t )
∥∥∥2
y
Kt
t

)

≤Lg

∥∥∥vn1
t − v̂∗(xt, y

Kt
t )
∥∥∥2
y
Kt
t

≤ Lg

(
2ϵy
µ2

+
8l2f
µ2

+ 2 log

(
Cc

c0

)
+ 1

)
.

Combining (34) derives

cn ≤ Cc + Lg

(
2ϵy
µ2

+
8l2f
µ2

+ 2 log

(
Cc

c0

)
+ 1

)
.

Denote c̄ := Cc+Lg

(
2ϵy
µ2 +

8l2f
µ2 + 2 log

(
Cc

c0

)
+ 1
)

. Then, considering the monotonicity of µ
c w.r.t.

c, we have∥∥∥vNt − v̂∗(xt, y
Kt
t )
∥∥∥2
y
Kt
t

≤ e−µ(Nt−n1)/c̄

(
2ϵy
µ2

+
8l2f
µ2

+ 2 log

(
Cc

c0

)
+ 1

)
= e−µ(Nt−n1)/c̄

c̄− Cc

Lg
.

Since n1 ≤ log(C2
c/c

2
0)

log(1+ϵv/C2
c )

, by the definition of N̄gd in (23), it holds that N̄gd > n1. Then, similar to
(30) and (31), we have

∥∇vR(xt, y
Kt
t , v

N̄gd

t )∥2
y
Kt
t

≤ L2
g

∥∥∥vN̄gd

t − v̂∗(xt, y
Kt
t )
∥∥∥2
y
Kt
t

≤ e−µ(N̄gd−n1)/c̄Lg(c̄− Cc) ≤ ϵv,

where the last inequality follows from the definition of N̄gd. This indicates that, after at most N̄gd

iterations, the condition ∥∇vR(xt, y
Kt
t , v

N̄gd

t )∥2
y
Kt
t

≤ ϵv is satisfied, i.e, Nt ≤ N̄gd holds for all
t ≥ 0.

AdaRHD-CG: We show that Nt ≤ N̄cg for all 0 ≤ t ≤ T .

Denote κg =
Lg

µ . From [10, Equation (6.19)], given xt ∈Mx and yNt
t ∈My , we have

∥vNt
t −v̂∗t (xt, y

Nt
t )∥2

y
Nt
t

≤ 4κg

(√
κg − 1
√
κg + 1

)2Nt

∥v̂0t−v̂∗t (xt, y
Nt
t )∥2

y
Nt
t

≤ 4κg

(√
κg − 1
√
κg + 1

)2Nt l2f
µ2

,

where the last inequality we use the setting of that v̂0t = 0 and Lemma F.3 (2). Then we have

∥∇vR(xt, y
Kt
t , vNt

t )∥2
y
Kt
t

≤ L2
g

∥∥∥vNt
t − v̂∗(xt, y

Kt
t )
∥∥∥2
y
Kt
t

≤ 4κgL
2
g

l2f
µ2

(√
κg − 1
√
κg + 1

)2Nt

,

which implies that, after at most N̄cg iterations, it holds that ∥∇vR(xt, y
Kt
t , vNt

t )∥2
y
Kt
t

≤ ϵv , where

N̄cg =
1

2
log

(
4κgL

2
gl

2
f

µ2ϵv

)
/log

(√
κg + 1
√
κg − 1

)
=

1

2
log

(
4L3

gl
2
f

µ3ϵv

)
/log

(√
Lg/µ+ 1√
Lg/µ− 1

)
.

We complete the proof.

G.3 Proof of Theorem 3.1

Proof. If t1 in Proposition G.1 does not exist, we have aT ≤ Ca. Then, by (11) in Lemma G.1, for
t < T , we have

∥GF (xt)∥2xt

at+1
≤ 2 (F (xt)− F (xt+1)) +

LF

a2t+1

∥ĜF (xt, y
Kt
t , vNt

t )∥2xt
+

ϵy,v
at+1

,
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where ϵy,v is defined in Lemma G.1. Summing it from t = 0 to T − 1, we have

1

T

T−1∑
t=0

∥GF (xt)∥2xt

at+1
≤ 2

T
(F (x0)− F (xT )) +

LF

a20

1

T

T−1∑
t=0

∥∥∥ĜF (xt, y
Kt
t , vNt

t )
∥∥∥2
xt

+
1

T

T−1∑
t=0

ϵy,v
at+1

≤ 1

T

(
2 (F (x0)− F ∗) +

LFC
2
a

a20

)
+

ϵy,v
a0

=
F0

T
+

ϵy,v
a0

, (35)

where the second inequality follows from
∑T−1

t=0 ∥ĜF (xt, y
Kt
t , vNt

t )∥2xt
≤ a2T ≤ C2

a , and F0 is
defined in (14).

If t1 in Proposition G.1 exists, for any t < t1, by (11) in Lemma G.1, we have

∥GF (xt)∥2xt

at+1
≤ 2 (F (xt)− F (xt+1)) +

LF

a2t+1

∥ĜF (xt, y
Kt
t , vNt

t )∥2xt
+

ϵy,v
at+1

. (36)

For any t ≥ t1, by (12) in Lemma G.1, we have

∥GF (xt)∥2xt

at+1
≤ 2 (F (xt)− F (xt+1)) +

ϵy,v
at+1

. (37)

Summing (36) and (37) from 0 to T − 1, we have

1

T

T−1∑
t=0

∥GF (xt)∥2xt

at+1
=

1

T

(
t1−1∑
t=0

∥GF (xt)∥2xt

at+1
+

T−1∑
t=t1

∥GF (xt)∥2xt

at+1

)

≤ 1

T

(
T−1∑
t=0

2 (F (xt)− F (xt+1)) +
LF

a20

t1−1∑
t=0

∥∥∥ĜF (xt, y
Kt
t , vNt

t )
∥∥∥2
xt

+

T−1∑
t=0

ϵy,v
at+1

)

≤ 1

T

(
2 (F (x0)− F ∗) +

LFC
2
a

a20

)
+

ϵy,v
a0

=
F0

T
+

ϵy,v
a0

,

where the last inequality follows from Assumption 3.4 and at1 ≤ Ca, and F0 is defined in Lemma
G.2. This result is equivalent to (35).

Then, since at+1 ≤ aT , by Lemma G.2, we have

1

T

T−1∑
t=0

∥GF (xt)∥2xt
≤
(
F0

T
+

ϵy,v
a0

)
aT ≤

(
F0

T
+

ϵy,v
a0

)(
Ca + 2F0 +

2Tϵy,v
a0

)
. (38)

Since ϵy = 1/T and ϵv = 1/T , by the definition of ϵy,v := L̄2

µ2 (ϵy + ϵv) in Lemma G.1, we have

ϵy,v = 2L̄2

Tµ2 . Then, by the definition of F0, (38) is equivalent to

1

T

T−1∑
t=0

∥GF (xt)∥2xt
≤
(
F0 + 2L̄2/a0µ

2
) (

Ca + 2
(
F0 + 2L̄2/a0µ

2
))

T
= O

(
1

T

)
.

Let C := (F0 +
2L̄2

a0µ2 )(Ca + 2(F0 +
2L̄2

a0µ2 )). The proof is complete.

G.4 Proof of Corollary 3.1

Proof. By Theorem 3.1, we have
T = O(1/ϵ).

For the resolution of the lower-level problem, we have

Kt = O
(

1

log(1 + ϵ)

)
= O

(
1

ϵ

)
.

Similarly, for the resolution of the linear system, we have

AdaRHD-GD:

Nt = O
(
1

ϵ

)
.
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AdaRHD-CG:

Nt = O
(
log

1

ϵ

)
.

Then, it is evident that the gradient complexities of f and g are Gf = O(1/ϵ) and Gg = O(1/ϵ2),
respectively. The complexities of computing the second-order cross derivative and Hessian-vector
product of g are JVg = O(1/ϵ), HVg = O(1/ϵ2) for AdaRHD-GD, and HVg = Õ(1/ϵ) for
AdaRHD-CG, respectively.

H Proofs for Section 3.4

This section provides the proofs of the results from Section 3.4. For consistency, we retain the
notations introduced in Section 3.3, such as Ca, Cb, Cc, etc.

Firstly, similar to Proposition G.1, we first give a lemma that concerns the step sizes a1, bt, and ct.

Proposition H.1. Suppose that Assumptions 3.1, 3.2, 3.3, 3.5, and 3.6 hold. Denote {T,K,N} as
the iterations of {x, y, v}. Given any constants Ca ≥ a0, Cb ≥ b0, Cc ≥ c0, then, we have

AdaRHD-GD:

(1) either at ≤ Ca for any t ≤ T , or ∃t1 ≤ T such that at1 ≤ Ca, at1+1 > Ca;

(2) either bt ≤ Cb for any t ≤ K, or ∃k1 ≤ K such that bk1
≤ Cb, bk1+1 > Cb;

(3) either ct ≤ Cc for any t ≤ N , or ∃n1 ≤ N such that cn1 ≤ Cc, cn1+1 > Cc.

We then consider the case where the conjugate gradient solves the linear system. Therefore, we do
not need to consider the step size ct.

AdaRHD-CG:

(1) either at ≤ Ca for any t ≤ T , or ∃t1 ≤ T such that at1 ≤ Ca, at1+1 > Ca;

(2) either bt ≤ Cb for any t ≤ K, or ∃k1 ≤ K such that bk1 ≤ Cb, bk1+1 > Cb;

H.1 Proof of Proposition D.1

H.1.1 Improvement on objective function for one step update

Similar to Lemma G.1, we have the following lemma.

Lemma H.1. Suppose that Assumptions 3.1, 3.2, 3.3, 3.5, and 3.6 hold. Then, we have

F (xt+1) ≤ F (xt)−
1

2at+1
∥GF (xt)∥2xt

− 1

2at+1

(
1− L̄F

at+1

)
∥ĜF (xt, y

Kt
t , vNt

t )∥2xt
+

ϵy,v
2at+1

.

Furthermore, if t1 in Proposition H.1 exists, then for t ≥ t1, we have

F (xt+1) ≤ F (xt)−
1

2at+1
∥GF (xt)∥2xt

− 1

4at+1
∥ĜF (xt, y

Kt
t , vNt

t )∥2xt
+

ϵy,v
2at+1

, (39)

where L̄F = (LF cu +2cR(lf + lfLg/µ), ϵy,v = L̄2

µ2 (ϵy + ϵv), L̄ := max{
√
2(Lg(1 +

Lf

µ +
lfρ
µ2 ) +

lfρ
µ ),
√
2Lg}, and cu, cR are defined in Assumption 3.6.

Proof. By Lemma F.2, we have

F (xt+1) ≤ F (xt) +
〈
GF (xt),Exp

−1
xt

(xt+1)
〉
xt

+
LF

2
d(xt+1, xt)

2

=F (xt) +
〈
GF (xt),Exp

−1
xt

(xt+1)− Retr−1
xt

(xt+1)
〉
xt

+
〈
GF (xt),Retr

−1
xt

(xt+1)
〉
xt

+
LF

2
d(xt+1, xt)

2

≤F (xt) + cR

(
lf + lf

Lg

µ

)
∥Retr−1

xt
(xt+1)∥2xt

− 1

at+1

〈
GF (xt), ĜF

(
xt, y

Kt
t , vNt

t

)〉
xt
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+
LF cu
2a2t+1

∥ĜF
(
xt, y

Kt
t , vNt

t

)
∥2xt

≤F (xt) +
cR (lf + lfLg/µ)

a2t+1

∥ĜF
(
xt, y

Kt
t , vNt

t

)
∥2xt

+
LF cu
2a2t+1

∥ĜF
(
xt, y

Kt
t , vNt

t

)
∥2xt

− 1

at+1
∥GF (xt)∥2xt

− 1

at+1
∥ĜF

(
xt, y

Kt
t , vNt

t

)
∥2xt

+
1

at+1
∥GF (xt)− ĜF

(
xt, y

Kt
t , vNt

t

)
∥2xt

=F (xt)−
1

2at+1
∥GF (xt)∥2xt

− 1

2at+1

(
1− LF cu + 2cR (lf + lfLg/µ)

at+1

)
∥ĜF (xt, y

Kt
t , vNt

t )∥2xt

+
1

2at+1

∥∥∥GF (xt)− ĜF
(
xt, y

Kt
t , vNt

t

)∥∥∥2
xt

≤F (xt)−
1

2at+1
∥GF (xt)∥2xt

− 1

2at+1

(
1− LF cu + 2cR (lf + lfLg/µ)

at+1

)
∥ĜF (xt, y

Kt
t , vNt

t )∥2xt
+

ϵy,v
2at+1

,

(40)

where the second inequality uses Lemma F.2 (2) and Assumption 3.6.

If t1 in Proposition H.1 exists, then for t ≥ t1, we have at+1 > Ca ≥ 2(LF cu+2cR(lf + lfLg/µ)).
The desired result of (39) follows from (40). The proof is complete.

Similar to (10), we define a threshold for parameters at when giving an upper bound of the step size
at.

Ca := max{2L̄F , a0}.
where L̄F = (LF cu + 2cR(lf + lfLg/µ) is defined in Lemmas H.1.

Similar to Lemma G.2, we have the following upper bound for the step size at.
Lemma H.2. Suppose that Assumptions 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 hold. If t1 in Proposition H.1
does not exist, we have at ≤ Ca for any t ≤ T .

If there exists t1 ≤ T described in Proposition H.1, we have
at ≤Ca, t ≤ t1;

at ≤Ca + 2F0 +
2tϵy,v
a0

, t ≥ t1,

where we define

F0 := 2 (F (x0)− F ∗) +
L̄FC

2
a

a20
. (41)

The proof of Lemma H.2 closely parallels that of Lemma G.2, requiring only the substitution of LF

with L̄F . Here we omit it.

Before proving Proposition D.1, similar to Lemma G.3, we present the following technical lemma
when substituting the exponential mapping with the retraction mapping.
Lemma H.3. Suppose that Assumptions 3.1, 3.2, 3.3, 3.5, and 3.6 hold. Then, we have

d2(yk+1
t , y∗(xt)) ≤

(
1 +

1

b2k+1

ζ̄L2
g −

µ

bk+1

)
d2(ykt , y

∗(xt)),

where ζ̄ := ζcu + 2D̄cR.

Proof. From Lemma B.1, by the definition that Retr−1
yk
t
yk+1
t = − 1

bk+1
Gg(xt, y

k
t ) we have

d2(yk+1
t , y∗(xt)) ≤ d2(ykt , y

∗(xt)) + ζd2(ykt , y
k+1
t )− 2

〈
Exp−1

yk
t
yk+1
t ,Exp−1

yk
t
y∗(xt)

〉
yk
t

≤d2(ykt , y∗(xt)) +
1

b2k+1

ζcu∥Gyg(xt, y
k
t )∥2yk

t
− 2

〈
Exp−1

yk
t
yk+1
t − Retr−1

yk
t
yk+1
t ,Exp−1

yk
t
y∗(xt)

〉
yk
t

+ 2
1

bk+1

〈
Gyg(xt, y

k
t ),Exp

−1
yk
t
y∗(xt)

〉
yk
t
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≤d2(ykt , y∗(xt)) +
1

b2k+1

ζcu∥Gyg(xt, y
k
t )∥2yk

t
+ 2

1

bk+1

〈
Gyg(xt, y

k
t ),Exp

−1
yk
t
y∗(xt)

〉
yk
t

+ 2D̄∥Exp−1
yk
t
yk+1
t − Retr−1

yk
t
yk+1
t ∥yk

t

≤d2(ykt , y∗(xt)) +
1

b2k+1

(ζcu + 2D̄cR)∥Gyg(xt, y
k
t )∥2yk

t
+ 2

1

bk+1

〈
Gyg(xt, y

k
t ),Exp

−1
yk
t
y∗(xt)

〉
yk
t

≤
(
1 +

1

b2k+1

(ζcu + 2D̄cR)L
2
g −

µ

bk+1

)
d2(ykt , y

∗(xt)), (42)

where the second inequality follows from Assumption 3.6 and

⟨Retr−1
yk
t
yk+1
t ,Exp−1

yk
t
y∗(xt)⟩yk

t
= − 1

bk+1
⟨Gyg(xt, y

k
t ),Exp

−1
yk
t
y∗(xt)⟩yk

t
,

the third inequality follows from Assumption 3.5 by employing [10, Proposition 10.22], i.e.,

∥Exp−1
yk
t
y∗(xt)∥ = d(ykt , y

∗(xt)) ≤ D̄,

and the fourth inequality follows from Assumption 3.6.

Similar to (18), we define the following thresholds for the step sizes bk and cn.

Cb := max

{
2ζ̄Lg

Lg

µ
, b0

}
, Cc := max{Lg, c0},

where ζ̄ = ζcu + 2D̄cR are defined in Lemma H.3.

Proof of Proposition D.1

Proof. For AdaRHD-GD, denote

K̄ :=
log(C2

b /b
2
0)

log(1 + ϵy/C2
b )

+
1

(µ/b̄− ζ̄L2
g/b̄

2)
log

(
b̃

ϵy

)
, (43)

and

N̄gd :=
log(C2

c /c
2
0)

log(1 + ϵv/C2
c )

+
c̄

µ
log

(
c̃

ϵv

)
,

where b̃ := max{Lg(b̄−Cb)
2 , 1}, c̃ := max{Lg(c̄ − Cc), 1}, b̄ := Cb +

2Lg

(
2ϵy
µ2 +

2L2
gC

2
f

µ2a2
0

+ 2ζ̄ log
(

Cb

b0

)
+ ζ̄
)

with Cf =
(

2L2
gϵv
µ2 +

4L2
gl

2
f

µ2 + 4l2f

) 1
2

is defined in

Lemma F.5, and c̄ := Cc + Lg

(
2ϵy
µ2 +

8l2f
µ2 + 2 log

(
Cc

c0

)
+ 1
)

.

For AdaRHD-CG, denote

N̄cg :=
1

2
log

(
4L3

gl
2
f

µ3ϵv

)
/log

(√
Lg/µ+ 1√
Lg/µ− 1

)
.

First, we show that Kt ≤ K̄ for all 0 ≤ t ≤ T .

If k1 in Proposition H.1 does not exist, we have bKt ≤ Cb. By [91, Lemma 2], it holds that
Kt ≤ log(C2

b/b
2
0)

log(1+ϵy/C2
b )

. If Kt >
log(C2

b/b
2
0)

log(1+ϵy/C2
b )

, by ∥Gyg(xt, y
p
t )∥2xt

≥ ϵy and bk ≤ Cb holds for all

k < Kt, we have

b2Kt
=b2Kt−1 + ∥Gyg(xt, y

Kt−1
t )∥2

y
Kt−1
t

= b2Kt−1

1 +
∥Gyg(xt, y

Kt−1
t )∥2

y
Kt−1
t

b2Kt−1


≥b20

Kt−1∏
k=0

(
1 +
∥Gyg(xt, y

k
t )∥2yk

t

b2k

)
≥ b20

(
1 +

ϵy
C2

b

)Kt

> b20

(
(1 +

ϵy
C2

b

)1/ log(1+ϵy/C
2
b )

)log(C2
b/b

2
0)

= C2
b .

(44)

36



This contradicts bKt ≤ Cb.

If k1 in Proposition H.1 exists, we have bk1 ≤ Cb and bk1+1 > Cb. We first prove k1 ≤ log(C2
b/b

2
0)

log(1+ϵy/C2
b )

.

If k1 >
log(C2

b/b
2
0)

log(1+ϵy/C2
b )

, similar to (44), we have

b2k1
≥ b20

(
1 +

ϵy
C2

b

)k1

> C2
b ,

which contradicts the setting that bk1
≤ Cb.

By Lemma H.3, we have

d2(yk1
t , y∗(xt)) ≤ d2(yk1−1

t , y∗(xt)) + ζd2(yk1−1
t , yk1

t )− 2
〈
Exp−1

y
k1−1
t

yk1
t ,Exp−1

y
k1−1
t

y∗(xt)
〉
y
k1−1
t

(a)

≤d2(yk1−1
t , y∗(xt)) + ζcu
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∥∥∥∥∥
2

y
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y
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y
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〉
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t
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≤d2(yk1−1
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bk1

∥∥∥∥∥
2
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bk1

〈
Gyg(xt, y

k1−1
t ),Exp−1

y
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≤d2(yk1−1
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where (a) follows from the second inequality of(42), (b) follows from Assumption 3.5, (c) follows
from Assumption 3.6, (d) follows from the convexity of g, (e) follows from the warm start of y0t , (f)
follows from Lemma F.1, (g) follows from Lemmas F.2 (1) and F.4, and (h) follows from Lemma F.5
and bk1 ≤ Cb.

For all K > k1, by Lemma H.3, we have
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where the first inequality follows from bk ≥ Cb ≥ 2ζ̄Lg
Lg

µ and 1 − m ≤ e−m for 0 < m < 1,

specifically, we have Cb ≥ 2ζ̄Lg
Lg
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< 1, and the second inequality

follows from (45).

Similar to (27), we have
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Similar to (28), we have
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where the second inequality follows from Lemma G.4 and bK ≥ Cb ≥ 2ζ̄Lg
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Since k1 ≤ log(C2

b/b
2
0)

log(1+ϵy/C2
b )

, by the definition of K̄ in (43), it is obvious that K̄ ≥ k1. Therefore, similar
to (30) and (31), by (48), we have
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which indicates that after at most K̄ iterations, the condition ∥Gyg(xt, y
K̄
t )∥2

yK̄
t

≤ ϵy is satisfied, i.e.,

Kt ≤ K̄ holds for all t ≥ 0.

Regarding the total number of iterations Nt required to solve the linear system, since solving it
does not involve retraction mapping, the total iterations match those of Algorithm 1. The proof is
complete.
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H.2 Proof of Theorem 3.2

Proof. The proof of Theorem 3.2 follows a similar approach to Theorem 3.1, requiring only the
substitution of LF with L̄F and the definition of the constant Cretr as

Cretr :=

(
F0 +

2L̄2
F

a0µ2

)(
Ca + 2

(
F0 +

2L̄2
F

a0µ2

))
,

where F0 is defined in (41) of Lemma H.2. Due to this structural similarity, the remaining proof is
omitted.

I Experimental details

This section expands on the experiments discussed in Section 4 and presents supplemental empirical
evaluations. Subsection I.1 details the experimental configurations, while Subsection I.2 includes an
additional implementation to further demonstrate the robustness of our proposed algorithm through
additional empirical validation.

I.1 Experimental Settings

All implementations are executed using the Geoopt framework [47], matching the reference imple-
mentation [32] to guarantee equitable comparison conditions. Furthermore, all the experiments are
implemented based on Geoopt [47] and are implemented using Python 3.8 on a Linux server with
256GB RAM and 96-core AMD EPYC 7402 2.8GHz CPU.

I.1.1 Simple problem

For n = 100, the maximum number of outer iterations in RHGD [32] is set to 200, whereas for
n = 1000, this number is increased to 400. In Algorithm 3, the number of outer iterations is set to
T = 1000 for AdaRHD-GD and T = 10000 for AdaRHD-CG. Following [32], we set λ = 0.01
and fix the step sizes in RHGD as ηx = ηy = 0.5. To ensure consistency, the initial step sizes in
Algorithm 3 are set to a0 = b0 = c0 = 2.

For solving the linear system: we adopt the conjugate gradient (CG) method as the default approach
in RHGD. For our algorithm, the CG procedure is terminated when the residual norm falls below a
tolerance of 10−10 or the number of CG iterations reaches 50. Note that the tolerance 10−10 for CG
procedure can be seen as O( 1

Tα ) with α > 1 is a constant, this will not influence the total iterations
and the complexity results since the convergence rate of the CG procedure is linear. Moreover, for
the GD procedure, we employ the stopping criteria specified in Algorithm 3 or terminate when
the number of iterations reaches min{50⌊t/5⌋, 500}, where ⌊·⌋ denotes the floor function, and t
represents the iteration round t. This warm-start-inspired strategy aims to rapidly obtain a reasonable
solution during early iterations, and progressively increase internal iterations to satisfy the gradient
norm tolerance ϵv in later stages.

For solving the lower-level problem, our algorithm follows the stopping criteria outlined in Algorithm
1 or terminates when the number of iterations reaches min{50⌊t/5⌋, 500}. For RHGD, the maximum
number of iterations is set to either 50 or 20.

Moreover, the number of outer iterations in our algorithm is set to T = 1000 for AdaRHD-CG
and T = 10000 for AdaRHD-GD. Additionally, our algorithm terminates if the approximate hy-
pergradient norm falls below 10−4. For RHGD, the maximum number of outer iterations is set to
200.

I.1.2 Robustness analysis

The experimental configurations in Subsection 4.2 are maintained consistently across all comparative
analyses in Subsection 4.1, except that the number of outer iterations is set to be T = 300 for
AdaRHD-CG and T = 500 for AdaRHD-GD.
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I.2 Additional experiments: hyper-representation problem

I.2.1 Shallow hyper-representation for regression

In this subsection, we adopt a shallow regression framework from [32], incorporating a Stiefel
manifold constraint [39, 33, 35] to preserve positive-definiteness in learned representations. The SPD
representation is transformed into Euclidean space using the matrix logarithm, thereby establishing a
bijection between SPD and symmetric matrices, followed by vectorizing the upper-triangular entries
via the vec(·) operation. We maintain the problem framework established in Subsection 4.2, replacing
the cross-entropy loss with the least-squares loss. The revised problem is as follows:

min
A∈St(d,r)

∑
i∈Dval

(vec(log(A⊤DiA))β∗(A)−yi)
2

2|Dval| ,

s.t. β∗(A) = argmin
β∈Rr(r+1)/2

∑
i∈Dtr

(vec(log(A⊤DiA))β−yi)
2

2|Dtr| + λ
2 ∥β∥

2,
(49)

where λ > 0 is the regular parameter. Following [32], we set d = 50, r = 10, and λ = 0.1.

In Problem (49), the upper-level objective is optimized on the validation set, whereas the lower-
level problem is solved on the training set. Following [32], each element yi is defined by yi =
vec(log(A⊤DiA))β + ϵi, where A and Di are randomly generated matrices, β is a randomly
generated vector, and ϵi represents a Gaussian noise term. We generate n samples of Di, evenly
divided between the validation and training sets. To align with the step size initialization in [32], we
initialize parameters a0, b0, and c0 in our algorithm to 20. Moreover, we configure the number of
outer iterations as T = 1000 for AdaRHD-CG and T = 10000 for AdaRHD-GD. All other settings
align with Section 4.1.
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Figure 4: Shallow hyper-representation for regression (Left two column: n = 200, Right two column:
n = 1000).

In Figure 4, we illustrate the validation set loss (Upper Objective) versus time for n = 200 and
n = 1000, respectively. We observe that AdaRHD-CG converges more effectively and rapidly to
a smaller objective loss compared to AdaRHD-GD and RHGD. Furthermore, note that although
AdaRHD-GD initially converges more slowly than RHGD (potentially due to imprecise hypergradient
estimation affecting the upper-level loss reduction), Figure 4 demonstrates that AdaRHD-GD achieves
a lower objective loss than RHGD at specific time intervals. These results collectively highlight the
efficiency and robustness of our algorithm, as demonstrated in Section 4.1.

I.2.2 Deep hyper-representation for classification

In this subsection, we further evaluate the efficiency and robustness of our proposed algorithm
by extending the deep hyper-representation classification framework introduced in Subsection 4.2
to dataset sampling ratios of 12.5% and 25%. For each configuration, five independent trials are
executed using distinct random seeds. In each trial, a randomly sampled validation set is reserved for
the upper-level problem, with an equally sized training partition allocated to the lower-level task. All
remaining experimental parameters align with those defined in Subsection 4.2.

Figure 5 depicts the validation accuracy against outer epochs (iterations) with 12.5% and 25% dataset
sampling ratios (due to computational constraints, a subset of the full dataset is utilized to ensure
manageable training durations). Table 3 summarizes the computational time required to achieve
specified validation accuracy thresholds across algorithms. For each random seed, an independent
data subset is sampled. Our algorithm exhibits rapid validation accuracy improvements during initial
outer iterations, followed by more gradual advancement in later stages. This behavior likely originates
from the inner-loop strategy: early iterations necessitate more intensive inner-loop computations to
attain high precision, whereas later stages leverage accumulated progress, thereby requiring fewer
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Figure 5: Deep hyper-representation for classification (Left: sampling ratio 12.5%, Right: sampling
ratio 25%).

inner-loop iterations. In contrast, RHGD-20 inner iterations demonstrate rapid initial accuracy gains
but experience pronounced degradation subsequently, particularly at the 25% sampling ratio, where
its accuracy drops below that of our method. This instability is inherent in RHGD when fewer inner
iterations are employed.

Furthermore, while RHGD-20 exhibits faster time-to-50%-accuracy, its elevated variance (evident
in Table 3) confirms inherent instability. Notably, our method achieves target accuracy faster than
RHGD despite requiring additional outer iterations. This advantage, maintained under identical
initial step sizes, demonstrates both the efficacy and stability of our adaptive approach in addressing
Riemannian bilevel optimization problems.

Table 3: Time required for each algorithm to first achieve a specified validation accuracy. “Time(s) to X%”
is defined as the time elapsed until the validation accuracy first reaches X%. Values are presented as mean
± standard deviation across five independent trials using fixed random seeds for all algorithms. Statistically
significant results are marked in bold. “Data ratio” refers to the proportion of the full dataset.

AdaRHD-CG AdaRHD-GD RHGD-50 RHGD-20
data ratio = 12.5%

Time(s) to 50% 878.60± 90.44 1258.83± 138.54 1188.66± 148.46 530.03 ± 306.29
Time(s) to 70% 1666.17 ± 96.74 1865.13± 426.80 3070.22± 169.30 2085.61± 236.33

data ratio = 25%
Time(s) to 50% 2511.13 ± 233.16 3408.80± 508.51 3944.26± 589.55 2598.87± 645.08

I.2.3 Robust optimization on manifolds

In this subsection, following [53, Section 7.1], we consider the robust optimization on manifolds,
which have the following forms:

min
p∈∆n

∥∥p− 1
n

∥∥2 −∑n
i=1 piℓ(y; ξi)

s.t. y ∈ argmin
y∈Sd++

∑n
i=1 piℓ(y; ξi),

(50)

where ∆n := {p ∈ Rn :
∑n

i=1 pi = 1, pi > 0} and Sd++ := {y ∈ Rd×d : y ≻ 0} represent the
multinomial manifold (or probability simplex) and positive definite matrix space, respectively. For
robust Karcher mean (KM) problem, ℓ(y; ξi) in Problem (50) represents the geodesic distance of two
positive definite matrices [7]:

ℓ(y; ξi) = ∥ log(y−1/2ξiy
−1/2)∥2F ,

where ξi’s are the symmetric positive definite data matrices. For robust maximum likelihood es-
timation (MLE) problem, ℓ(y; ξi) in Problem (50) represents the log likelihood of the Gaussian
distribution [74]:

ℓ(y; ξi) =
1

2
log det(y) +

ξi
⊤y−1ξi
2

,

where ξi’s are sample vectors from the Gaussian distribution.

In this experiment, we set the step sizes as ηx = ηy = 1/α0 = 1/β0 = 1/γ0 = 0.1, with all other
settings identical to those in Section 4.2. For the robust Karcher mean problem, we set d = 20 and
n ∈ {5, 10, 20, 50}, randomly generating the symmetric positive definite data matrices ξi’s. For the
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robust maximum likelihood estimation problem, we set d = 50 and n ∈ {100, 300, 500, 1000}, and
randomly generate the sample vectors from a Gaussian distribution with mean 0 and covariance
matrix being a random positive semidefinite symmetric matrix. We use five different random
seeds to conduct experiments for each group. The results are shown in Figure 6, where the x-axis
represents the average time, and the y-axis represents the average value of the ergodic performance
mini∈[0,t] ∥ĜF (xi, y

Ki
i , vNi

i )∥2xi
. Note that for the MLE experiment with n = 100, we do not report

the results of RHGD-20 because it fails to converge in this case. As shown in Figure 6, compared to
RHGD, AdaRHD achieves superior results more efficiently and robustly, which further demonstrates
the superiority and robustness of our algorithm.
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(f) n = 300
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(h) n = 1000

Figure 6: Robust optimization on manifolds (Top row: KM model with d = 20 and different n, Bottom row:
MLE model with d = 50 and different n).

J Broader impacts

This paper proposes an algorithm for solving Riemannian bilevel optimization problems. No negative
societal impacts are anticipated from this research that warrant disclosure.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: For the paper’s contributions and scope, please refer to Sections 3 and 4, which
match the main claims made in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations and future directions of our work, please refer to
Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions and a complete (and correct) proof for
each lemma, proposition, theorem, and corollary. The formal statements of these results are
provided in Section 3, while detailed proofs are documented in Appendices F, G, and H.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We disclose all the information needed to reproduce the main experimental
results of the paper, please refer to Section 4 and Appendix I, along with the supplemental
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to all data and code in the supplementary materials.
Furthermore, we include detailed instructions to replicate the experimental results presented
in Section 4 and Appendix I, along with the corresponding codes in the supplementary
materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Section 4 and Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The values in Table 2 and Figure 3 of Section 4.2, as well as Figure 5, Table
3, and Figure 6 of Appendix I.2.2, are expressed as mean ± standard deviation across five
independent trials conducted with fixed random seeds for each algorithm.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: We provide sufficient information on the computer resources for all experi-
ments, please refer to Section I.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms, in every respect, with the NeurIPS Code of Ethics, we
also discuss the broader impacts and technical limitations of this paper in Section 5 and
Appendix J.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts in Appendix J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data or models that have a high risk for misuse (e.g.,
pretrained language models, image generators, or scraped datasets).

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In Section 4 and Appendix I, along with the supplementary materials, the
creators and original owners of assets (e.g., code, data, models) are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not introduce any human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not introduce any human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLMs are not important, original, or non-standard components of the core
methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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